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We examine the quantum gravitational entanglement of two test masses in the context of linearized
general relativity with specific nonlocal interaction with matter. To accomplish this, we consider an
energy-momentum tensor describing two test particles of equal mass with each possessing some nonzero
momentum. After discussing the quantization of the linearized theory, we compute the gravitational energy
shift, which is operator valued in this case. As compared to the local gravitational interaction, we find that
the change in the gravitational energy due to the self-interaction terms is finite. We then move on to study
the quantum-gravity-induced entanglement of masses for two different scenarios. The first scenario
involves treating the two test masses as harmonic oscillators with an interaction Hamiltonian given by the
aforesaid gravitational energy shift. In the second scenario, each of the test masses is placed in a quantum
spatial superposition of two locations, based on their respective spin states, and their entanglement being
induced by the gravitational interaction and the shift in the vacuum energy. For these two scenarios,
we compute both the concurrence and the von Neumann entropy, showing that an increase in the
nonlocality of the gravitational interaction results in a decrease in both of these quantities.
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I. INTRODUCTION

Einstein’s general relativity (GR) is successful when its
predictions are compared with experiments at large dis-
tances, such as the observations from Solar System tests or
the detection of gravitational waves [1,2], among others.
However, this classical theory fails at very short distances
and early cosmological times, predicting, for instance,
cosmological and black-hole singularities where the notion
of spacetime breaks down [3]. It is believed that some
quantum gravity paradigm would resolve some of these
questions [4]. However, there is no laboratory proof yet of
gravity being a quantum-compatible entity. In fact, we are
not even aware whether gravity obeys the rules of quantum
mechanics or not.
Recently, a proposal to test the quantum nature of

gravity by witnessing the spin entanglement between the
two quantum superposed test masses, known as quantum-
gravity-induced entanglement of masses (QGEM), has
been made [5,6], see also [7]. Also, alternative proposals
aim to test the spin-two nature of the gravitational inter-
action by witnessing the entanglement between a quantum
system and a photon [8]. For all these experimental
protocols, the heart of the argument is based on the
so-called local operation and classical communication
(LOCC) theorem, which states that one cannot entangle
two quantum systems if they were not entangled to begin
with [9,10]. This would mean that two test masses would

entangle in the presence of gravitational interaction
provided gravity obeys the rules of quantum mechanics
[11,12], see also [13–16]. As a natural consequence,
a classical gravitational interaction with matter will not
yield any entanglement whatsoever as shown in [11,12].
In this context, we are testing a quantum feature of

gravity at the lowest order, which provides Newton’s
gravitational potential, in a similar spirit to a Bell-
inequality test on quantum systems [17], where the corre-
lation does not vanish even if one takes ℏ → 0, as was first
shown in the context of two entangled large spins [18,19].
An interesting twist to this above discussion arises when

we wish to introduce nonlocal interaction between matter
and gravity, see [11]. Indeed, this immediately forces us to
put into question one of the key assumptions behind
LOCC, which reflects a local operation. By local, herein
we mean a local unitary transformation. The question we
can ask is how introducing nonlocal quantum gravitational
interaction with matter would affect the entanglement
features between two test masses.
Nonlocal interactions can be described by nonlocal field

theories (see, for example, [20,21]), where there exists a
new nonlocal scale, see in the context of gravity [22]. In
fact, there also exist nonlocal versions of gravity [23–30]. A
very particular form of nonlocality arises in string field
theory [25,31] and p-adic strings [32,33]. In fact, in [34] it
was suggested that nonlocal field theories may even arise
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naturally by discarding the higher modes of a first-quan-
tized string theory, in a particle approximation, which
promotes nonlocality to the status of a fundamental scale.
A nonlocal gravitational action can be recast in terms of a

quadratic action of gravity, which modifies the ultraviolet
(UV) behavior of gravity. The gravitational action contains
infinitely many derivatives and, in order to avoid intro-
ducing ghost degrees of freedom, one takes specific
analytic entire functions, which recovers the local limit
of GR smoothly [22,27]. These theories can resolve the
cosmological singularity, as first shown in [26,35,36] and
the anisotropic Kasner singularity [37]. Such theories also
do not permit pointlike singularities [26,27,38–44], and
there are hints that they can even resolve astrophysical
black-hole singularities [45–49]. Exact solutions in the
context of infinite-derivative gravity have been considered
in [50–53] and the Hamiltonian formulation for nonlocal
theories has been studied in [54–59]. It is also believed that
nonlocal field theories may ameliorate renormalizable
properties of gravity [20,24,28,60–64]. All these effects
are due to the fact that the gravitational interaction with
matter weakens the UV, and this makes such theories
interesting to study. In the following, we shall explore the
consequence of a nonlocal gravitational interaction in the
QGEM experiment, a similar vein as testing the quantum
version of the equivalence principle [65] and probing the
anti–de Sitter spacetime in the context of a warped extra
dimension [66].
The aim of this investigation will be to study the

entanglement provided a nonlocal gravitational interaction
with matter is present. In particular, we shall study how the
entanglement builds up in a momentum basis, a technique
that has never been studied before in this context.
Furthermore, we shall also show that the change in the
gravitational energy is always finite as compared to the
local gravitational interaction with matter. Consequently,
the entanglement never blows up in this class of theories,
which is a novel result. To examine the entanglement, we
shall focus on the concurrence as well as the von Neumann
entropy, which are simple tools for estimating how the two
bipartite states are entangled.
This work is organized as follows. In Sec. II we briefly

discuss a ghost-free infinite-derivative modification of the
quadratic Einstein-Hilbert (EH) action. Subsequently, we
perform a redefinition of fields so that the resulting action
has both local kinetic terms and a nonlocal interaction.
Then in Sec. III we review the quantization procedure
presented in [67]. In Sec. IV we consider the energy-
momentum tensor for a specific nonlocal interaction and
calculate the shift in the gravitational energy. Details
regarding the derivation of the gravitational energy shift
are given in Appendix B. In Sec. V we compute both the
concurrence and von Neumann entropy for the entangle-
ment of two test masses in the context of two different
scenarios: in Sec. VAwe consider the first scenario, which

involves treating the two test masses as harmonic oscil-
lators and we extend the results of [12] for the case of GR;
then in Sec. V B, the second scenario involving the spatial
splitting of two test masses based on their spin [5] is
considered in a parallel setup [68]. In both scenarios, the
entanglement is induced via the gravitational energy shift
derived in Sec. IV. The conclusions of this work are stated
in Sec. VI.

II. INFINITE-DERIVATIVE MODIFICATION

In the present work, we are interested in studying
linearized gravity around a Minkowski background ημν ¼
diagð−1; 1; 1; 1Þ with μ; ν ∈ f0; 1; 2; 3g. To this end, we
shall study the perturbed metric hμν which is related to the
full metric gμν by

hμν ¼
1

κ
ðgμν − ημνÞ; ð2:1Þ

where κ ≔
ffiffiffiffiffiffiffiffiffiffiffi
16πG

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π=M2

p

q
and Mp is the Planck

mass. For the moment, we make use of natural units, i.e.,
c ¼ ℏ ¼ 1; however, we will reintroduce appropriate units
in the last steps when calculating the entanglement of two
test masses. Let us now consider the total quadratic action
of interest, which, in general, includes three contributions,

S ¼ SG þ Sm þ SGF; ð2:2Þ

where SG, Sm, and SGF are the gravitational, matter,
and gauge-fixing actions, respectively. For the quadratic
gravitational action, we take a special class of the most
general infinite-derivative gravity theories considered in
four dimensions [27], namely,1

SG ¼ 1

4

Z
d4x½hμνF ð□Þ□hμν − hF ð□Þ□h

þ 2hμνF ð□Þ∂μ∂νh − 2hμαF ð□Þ∂μ∂νhνα�; ð2:3Þ

where the F ð□Þ may contain infinitely many derivatives
and the d’Alembertian operator is given by □ ¼ ∂

μ
∂μ. The

relative sign difference between the terms in (2.3) above is
due to the fact that such an action has to satisfy the Bianchi
identities and should also recover the usual quadratic EH
action around the Minkowski background in the limits
□ → 0 and F ð□Þ → 1. In general, the higher-derivative
action of gravity will be plagued by ghosts, whose degrees

1The quadratic action for the most general ghost-free infinite-
derivative gravity theory in four dimensions, as considered
in [27], admits two analytic and nonzero nonlocal operators.
In the following, however, we shall limit our consideration to the
case where we have only one such operator F ð□Þ. Nevertheless,
the choice used here where only one nonzero and analytic
operator is considered ensures that the infrared behavior of the
theory coincides with that of GR [27].
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of freedom must be canceled. As noted in [26,27], for
any F ð□Þ, the conservation of δSG=δhμν is preserved.
However, in order for the theory to not admit any additional
degrees of freedom compared to GR, we must require
that the operator F ð□Þ be analytic with no zeros, which
will certainly constrain the form of F ð□Þ. Thus, in the
following, we shall assume the nonlocal operator F ð□Þ to
be of the form

F ð□Þ ¼ e−l
2
□; ð2:4Þ

where l ≥ 0 is referred to as the “length scale of non-
locality” [26,27]. By sending l → 0, or □ → 0, we fully
recover GR, i.e., F ð□Þ → 1.
For the matter action, we use

Sm ¼ −
κ

2

Z
d4xhμνTμν; ð2:5Þ

where Tμν is the energy-momentum tensor.
Finally, to fix the gauge, we introduce the gauge-fixing

action

SGF ¼ −
1

2

Z
d4x

�
∂μhμν −

1

2
∂νh

�
F ð□Þ

�
∂αhαν −

1

2
∂
νh

�
;

ð2:6Þ

which specifies the so-called Harmonic or de Donder gauge
condition. Substituting Eqs. (2.3), (2.5), and (2.6) into the
total action (2.2) gives2

S ¼ 1

4

Z
d4x

�
hμνF ð□Þ□

�
hμν −

1

2
hημν

�
− 2κhμνTμν

�
:

ð2:7Þ

By introducing the redefined field

γμν ≔ F 1=2ð□Þ
�
hμν −

1

2
hημν

�
; ð2:8Þ

which coincides with the redefined field used in [67,69] in
the local case F ¼ 1, we can write the total action (2.7) as

S ¼ −
1

4

Z
d4x

�
∂αγ

μν
∂
αγμν −

1

2
∂
μγ∂μγ

þ 2κ

�
γμν −

1

2
ημνγ

�
F−1=2ð□ÞTμν

�
: ð2:9Þ

The action (2.9) now contains local kinetic terms while
possessing a nonlocal interaction term. In the following

section, we shall review Gupta’s quantization procedure for
such a theory.

III. QUANTIZATION OF THE LINEARIZED
GRAVITY

Following [67], let us consider the action defined as
in (2.9) but with γμν and γ being treated as independent
fields. In addition, we consider the case of a vanishing
energy-momentum tensor, i.e., we set Tμν ¼ 0, and perform
the quantization procedure as in [67]. Accordingly, γμν and
γ collectively contain now 11 components. Furthermore,
γμν and γ each have a canonical conjugate momentum as
well as their own set of commutation relations. Thus, by
introducing the canonical momenta and imposing the usual
commutation relations, one can show that [67]

½γμνðxÞ; γαβðx0Þ� ¼ iðημαηνβ þ ημβηναÞDðx − x0Þ; ð3:1Þ

½γðxÞ; γðx0Þ� ¼ −4iDðx − x0Þ; ð3:2Þ

having followed Schwinger’s notation [70]. Let us now
expand the γμν and γ fields in terms of Fourier modes,
yielding

γμν ¼
1

ð2πÞ3=2
Z

d3kffiffiffiffiffiffiffiffi
2ωk

p ½aμνðkÞeikx þ a†μνðkÞe−ikx�; ð3:3Þ

and

γ ¼ 2

ð2πÞ3=2
Z

d3kffiffiffiffiffiffiffiffi
2ωk

p ½bðkÞeikx þ b†ðkÞe−ikx�; ð3:4Þ

respectively, and where we have used k0 ¼ ωk ¼ jkj.
At this point we note that γμν → γ̂μν and, similarly, γ → γ̂;
i.e., these fields are now treated as quantum operators.
Analogously, hμν → ĥμν and Tμν → T̂μν. However, to avoid
any cluttering of the upcoming formulas, we will not
explicitly write ^ on top of the operators, but it is assumed
everywhere from now onward that positions, momenta, and
gravitational degrees of freedom are all quantum operators.
By making use of the commutation relations (3.1)

and (3.2), one can obtain the following commutation
relations for the Fourier modes:

½aμνðkÞ; a†αβðk0Þ� ¼ ðημαηνβ þ ημβηναÞδð3Þðk − k0Þ; ð3:5Þ

½bðkÞ; b†ðk0Þ� ¼ −δð3Þðk − k0Þ: ð3:6Þ

Finally, in terms of the Fourier modes, the Hamiltonian of
the vacuum system is given by [67]

H0 ¼
Z

d3kωk

�
1

2
a†μνðkÞaμνðkÞ − b†ðkÞbðkÞ

�
: ð3:7Þ2While there are contributions arising from total derivatives,

we shall ignore them in our analysis.
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We note that there is a negative sign appearing on the
right-hand sides of the commutation relations (3.5) and
(3.6) for a0iðkÞ and bðkÞ, respectively, where i ∈ f1; 2; 3g.
It follows that the operators

R
d3kωka

†
0iðkÞa0iðkÞ andR

d3kωkb†ðkÞbðkÞ have nonpositive eigenvalues [67,71].
Therefore, when acting the Hamiltonian on some
state, the terms containing a0iðkÞ and bðkÞ operators
contribute non-negative values to the energy since their
coefficients are negative in the expression (3.7). It follows
that the energy values associated with the Hamiltonian
(3.7) acting on some general state are non-negative.
Nevertheless, there is still the issue of whether these
states will have negative probabilities. It is possible
to impose some supplementary conditions [67,71] that
result in physical states having only two polarizations and
positive probabilities; thus ensuring that the Hamiltonian
is bounded from below. These supplementary conditions
are discussed explicitly in Appendix A and we show,
following [67,71], that these lead to the Hamiltonian
being bounded from below.

IV. SHIFT IN THE GRAVITATIONAL ENERGY

Having assumed a vanishing energy-momentum tensor,
the system in Sec. III was described by the Hamiltonian
(3.7). In order to study the QGEM, we shall now consider
an energy-momentum tensor of the form

Tμν ¼
pμpν

E
½δð3Þðr − rAÞ þ δð3Þðr − rBÞ�; ð4:1Þ

where pμ ¼ ð−E; pÞ and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
[12]. The energy-

momentum tensor (4.1) describes two test masses, denoted
by A and B, with some momentum. Here, we shall confine
the motion of the two test masses A and B to the z axis, so
rA ¼ ð0; 0; xAÞ and rB ¼ ð0; 0; xBÞ. We note that here Tμν is
treated as an operator according to the Weyl quantization
procedure [72]; i.e., all products of position and momentum
operators on the right-hand side of (4.1) represent their
symmetrization. The total Hamiltonian can be computed
as follows:

H ¼ H0 þ κV; ð4:2Þ

where, from Eq. (2.9), the interaction Hamiltonian V is

V ¼ 1

2

Z
d3r

�
γμν −

1

2
ημνγ

�
F−1=2ð□ÞTμν: ð4:3Þ

We denote the ground state of the vacuum system as j0i
and define the following one-particle relativistically nor-
malized states:

jkiμν ≔
ffiffiffiffiffiffiffiffi
2ωk

p
½a†μνðkÞ − ημνb†ðkÞ�j0i: ð4:4Þ

We can now make use of well-known perturbation theory
(see, for example, [73]) to calculate the gravitational energy
shift ΔH to second order in κ,

ΔH ¼ −
κ2

2

Z
d3k

h0jVjkiμνημαηνβαβhkjVj0i
k2

: ð4:5Þ

As noted in [12], the first-order OðκÞ correction is zero
since it will involve inner products of the ground state with
the first excited state only.
By substituting Eqs. (2.4) and (4.1) into (4.3), Eq. (4.5)

becomes

ΔH ¼ −
κ2

8

Z
d3k

�
T †

00ðkÞT 00ðkÞ
k2

þ T †
33ðkÞT 33ðkÞ

k2

�

−
κ2

8

Z
d3k

�
T †

00ðkÞT 33ðkÞ
k2

þ T †
33ðkÞT 00ðkÞ

k2

�

þ κ2

2

Z
d3k

T †
03ðkÞT 03ðkÞ

k2
; ð4:6Þ

where we define

T μνðkÞ ≔
e−l

2k2=2−ik·rA

ð2πÞ3=2

0
BBBBB@

EA 0 0 pA

0 0 0 0

0 0 0 0

pA 0 0 p2
A=EA

1
CCCCCA

þ ðA ↔ BÞ; ð4:7Þ

as the Fourier transform of el
2Δ=2Tμν. We also note that pA

and pB denote the z components of pA and pB, respectively.
As mentioned above, rA, rB, pA, and pB are being treated as
operators with all products of position and momentum
operators representing, implicitly, the symmetrization
frA; pAg=2 and similar. The bottom line is that if gravity
is quantum in nature, so will be the change in the
gravitational energy; consequently, the change in the
gravitational energy would not be a C number, but an
operator-valued quantity.
As remarked in [12], the computation of the gravitational

energy shift includes both a contribution from the self-
energy of the individual particles and a contribution from
the interaction. To this end, let us write

ΔH ¼ ΔHSE þ ΔHD; ð4:8Þ
where ΔHSE is the self-energy contribution and ΔHD is
simply defined through the ΔH − ΔHSE difference. By
substituting the components (4.7) into (4.6) and evaluating
the integral, we find the following expression for the self-
energy:

ΔHSE¼−
1

2lM2
p

ffiffiffi
π

p
�
E2
Aþ

p4
A

E2
A
−2p2

A

�
þðA↔BÞ: ð4:9Þ
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It is evident from (4.9) that the self-energy is finite for
l > 0. We also note that the self-energy above is operator
valued; i.e., it depends on the operators pA and pB. In the
static case, the self-energy reduces to

lim
pA;pB→0

ΔHSE ¼ −
m2

lM2
p

ffiffiffi
π

p ; ð4:10Þ

which is a constant. This result is in stark contrast with the
local scenario, since when l → 0, the self-energy contri-
bution blows away at order Oðκ2Þ.
Turning our attention to finding the quantity ΔHD that

describes the interaction, we find

ΔHD ¼ −
1

M2
pjrA − rBj

�
EAEB þ

p2
Ap

2
B

EAEB
þ
�
EAp2

B

EB
þEBp2

A

EA

�

− 4pApB

�
erf

�jrA − rBj
2l

�
: ð4:11Þ

For a derivation of Eqs. (4.9) and (4.11), we direct the
interested reader to Appendix B. As was done in [12],
we expand our result up to fourth order in the momentum
operators, yielding

ΔHD ≈ −
1

M2
pjrA − rBj

�
m2 þ 3p2

A − 8pApB þ 3p2
B

2

−
5p4

A − 18p2
Ap

2
B þ 5p4

B

8m2

�
erf

�jrA − rBj
2l

�
: ð4:12Þ

We also note that taking the static limit of the last
expression (4.12) gives us

lim
pA;pB→0

ΔHD ¼ −
m2

M2
pjrA − rBj

erf

�jrA − rBj
2l

�
: ð4:13Þ

Equation (4.13) provides us with the operator-valued
version of the potential derived in [27].

V. CONCURRENCE AND ENTROPY
FOR THE ENTANGLEMENT

A. Two harmonic oscillators

Let us now treat the two test masses as harmonic
oscillators; both with frequency ωm. Let us denote the
annihilation (creation) operators for the test masses A and B
as a and b (a† and b†), respectively. For the position
operators xA and xB, we write

xA ¼ −
d
2
þ δxA; xB ¼ d

2
þ δxB; ð5:1Þ

hence the two harmonic oscillators are placed a distance d
apart and are subject to small fluctuations described,
respectively, by δxA and δxB. By performing a Taylor

expansion of the first term on the right-hand side of
Eq. (4.12) up to order ðδxA − δxBÞ2, we can extract the
lowest-order matter-matter interaction energy,

HAB ≔
2m2

M2
pd2

�
1

d
erf

�
d
2l

�
−
e−d

2=4l2

l
ffiffiffi
π

p −
d2e−d

2=4l2

4l3
ffiffiffi
π

p
�
δxAδxB

þ
�
4pApB

M2
pd

−
9p2

Ap
2
B

4M2
pm2d

�
erf

�
d
2l

�
: ð5:2Þ

In terms of the creation and annihilation operators, the
position operators take the usual form [74]

δxA¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mωm
p ðaþa†Þ; δxB¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mωm

p ðbþb†Þ; ð5:3Þ

whereas for the momentum operators, we have

pA¼ i

ffiffiffiffiffiffiffiffiffiffi
mωm

2

r
ða†−aÞ; pB¼ i

ffiffiffiffiffiffiffiffiffiffi
mωm

2

r
ðb†−bÞ: ð5:4Þ

In terms of the creation and annihilation operators a†, a, b†,
and b, the Hamiltonian for the system is of second order in
κ and fourth order in the momentum expansion,

HHO ¼ ℏ½ωmða†aþ b†bÞ þ G1ðabþ a†bþ ab† þ a†b†Þ
þ G2ðab − a†b − ab† þ a†b†Þ
þ G3ða† − aÞ2ðb† − bÞ2�; ð5:5Þ

where the functions

G1 ≔
mG
d3ωm

�
erf

�
d
2l

�
−
de−d

2=4l2

l
ffiffiffi
π

p −
d3e−d

2=4l2

4l3
ffiffiffi
π

p
�
; ð5:6Þ

G2 ≔ −
2mGωm

c2d
erf

�
d
2l

�
; ð5:7Þ

G3 ≔ −
9ω2

mGℏ
16c4d

erf

�
d
2l

�
ð5:8Þ

have been defined. It is at this point that dimensionality of ℏ
and c is reinstated.
Let us denote j0iA and j0iB as the ground states

associated with HHO when there is no interaction, i.e.,
for G1 ¼ G2 ¼ G3 ¼ 0. If instead these functions are non-
zero, we denote the eigenket obtained through first-order
perturbation theory as jψi. Using the standard perturbation
theory of quantummechanics (see [74] for details), we have

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½ðG1þG2Þ2þG2

3�=ð4ω2
mÞ

p �
j0iA ⊗ j0iB

−
ðG1þG2Þ

2ωm
j1iA ⊗ j1iB −

G3

2ωm
j2iA ⊗ j2iB

�
: ð5:9Þ
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The density matrix associated with the test mass denoted by
A can be computed as follows [10]:

ρA ¼
X
n

Bhnjψihψ jniB: ð5:10Þ

That is, one first computes jψihψ j and then traces over the
B eigenstates. Using the density matrix above, one can
compute the concurrence C through [75]

C2 ¼ 2½1 − trðρ2AÞ�: ð5:11Þ

It follows that the concurrence is given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

1þ ððG1 þ G2Þ4 þ G4
3Þ=ð16ω4

mÞ
½1þ ððG1 þ G2Þ2 þ G2

3Þ=ð4ω2
mÞ�2

�s
: ð5:12Þ

Let us now examine the effect of nonlocality on the
concurrence. For our specific choice of parameters, we take
the harmonic oscillator frequency to be ωm ¼ 2πHz and let
A and B be two mesoscopic masses with m ¼ 10−14 kg.
Motivated by [5], the minimum separation3 that we shall
consider is d ∼ 200 μm. For the length scale of nonlocality,
we consider values of l consistent with [22]. For such a
choice of parameters, we have G1=ð2ωmÞ ≈ 1.06 × 10−15,
G2=ð2ωmÞ≈−3.71×10−38, and G3=ð2ωmÞ≈−7.69×10−75

in the local (l ¼ 0) case. The concurrence (5.12) may now
be approximated as

C ≈
jG1j
ωm

: ð5:13Þ

In Fig. 1 we plot the concurrence for various values of l
using the approximation (5.13). It is clear from this figure
that the concurrence approaches that of the local case as the
length scale of nonlocality decreases. In addition, we note
that all curves start to coincide as the separation d increases.
We also note that for smaller values of d the concurrence
decreases for increasing l. Finally, for small d=l, i.e., deep
in the UV or, alternatively, at scales where the nonlocal
interaction is to be proved, the concurrence starts to saturate
the quantum entanglement between the two harmonic
oscillators.
We note that the concurrence is on the order 10−15, i.e.,

beyond any reach of detectability through an experiment
and not even via tomography techniques discussed in [78].
Alternatively, an examination of the von Neumann entropy
defined as [79]

SA ≔ −trðρA log2 ρAÞ; ð5:14Þ

will also give small values. For instance, for a separation
of d ¼ 200 μm, we have SA ≈ 1.11 × 10−28 for the local
(l ¼ 0) case, while SA ≈ 0.69 × 10−28 for l ¼ 50 μm.
In the following subsection, we shall consider a non-

Gaussian scenario for which a difference in the entangle-
ment between local and nonlocal gravitational interactions
may be realized experimentally in the future.

B. Spatial superposition

Here, we shall consider the parallel setup first presented
in [68] and further studied in [78,80,81], although herein
generalized for the case where the gravitational interaction
with matter is nonlocal. Thus, we assume that the two test
masses A and B are each endowed with two spin states:
j↑iA, j↓iA and j↑iB, j↓iB, respectively, and separated by a
spatial superposition of Δx. In addition, we take the two
masses to be separated by a distance D. According to the
experimental protocol outlined in [5], two Stern-Gerlacht
interferometers are used to perform a spatial splitting of the
two test masses based on their spin states. Let us discuss
this protocol and calculate the entanglement for the parallel
setup of [68]. We start off with the state [5]

jψ ii ¼
1

2
jCiAjCiBðj↑iA þ j↓iAÞðj↑iB þ j↓iBÞ; ð5:15Þ

where the test masses A and B are initially localized
according to the states jCiA and jCiB, respectively, and
separated by a distanceD. By performing a spatial splitting
of the two test masses A and B through jC;↑ij → jL;↑ij
and jC;↓ij → jR;↓ij for j ∈ fA;Bg, we have at t ¼ 0 [5],

FIG. 1. Plots of the concurrence (5.12) using the approximation
(5.13). To produce each of the profiles, we have setm ¼ 10−14 kg
and ωm ¼ 2πHz. The solid blue curve corresponds to the local
(l ¼ 0) case, while the dashed orange, dotted green, and dash-
dotted red curves correspond to the cases where l ¼ 50, 55, and
60 μm, respectively.

3As pointed out in [5], the Casimir-Polder interaction [76,77]
is a tenth of that of the Newtonian gravitational interaction at that
distance.
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jψ ii →
1

2
ðjL;↑iA þ jR;↓iAÞðjL;↑iB þ jR;↓iBÞ: ð5:16Þ

The spatial splitting is carried out in such a way that jLiA
and jRiB, as well as jRiA and jLiB, are separated by a
distance D. In Fig. 2, we show the spatial splitting of the
two test masses and the separation between each of the
states.
The spatially split state on the right-hand side of (5.16)

is allowed to evolve for a time τ, being the evolution
described by the operator e−iΔHDτ=ℏ, where ΔHD is the
gravitational energy shift, which in the nonrelativistic case
is given by the right-hand side of (4.13). Thus, one obtains
the final evolution of the state at time t ¼ τ [5],

jψfi ¼
1

2
jCiAjCiB½j↑iAðj↑iB þ eiðθ−ϕÞj↓iBÞ

þ j↓iAðj↓iB þ eiðθ−ϕÞj↑iBÞ�; ð5:17Þ

where the final state is an entangled state and the entan-
glement phase is given by

ϕ ≔
Gm2τ

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ Δx2

p erf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ Δx2

p

2l

�
; ð5:18Þ

θ ≔
Gm2τ

ℏD
erf

�
D
2l

�
: ð5:19Þ

In the expression (5.17), we have ignored an overall phase
factor of eiϕ without any loss of generality. Since the test
masses are now once again localized in position, we can
fully characterize the entanglement using the spin states,
see [5] for further details. Thus, we can ignore the jCiA
and jCiB states in (5.17) and compute the density matrix
associated with A as

ρA ¼ 1

2

�
1 cos ðθ − ϕÞ

cos ðθ − ϕÞ 1

�
: ð5:20Þ

Having obtained the density matrix, we can compute the
concurrence

C ¼ j sin ðθ − ϕÞj; ð5:21Þ

as well as the von Neumann entropy

SA ¼ −
1

2
log2

�
sin2 ðθ − ϕÞ

4

�

−
1

2
cos ðθ − ϕÞ log2

�
1þ cos ðθ − ϕÞ
1 − cos ðθ − ϕÞ

�
; ð5:22Þ

for the entanglement. For the parameter specifications
τ ¼ 1 s, Δx ¼ 100 μm, and D ¼ 200 μm, we have plotted
the concurrence in Fig. 3 for different values of l. This
figure shows how the concurrence grows slowly with
decreasing D=l, a similar behavior as noted in Sec. VA
for the case of two harmonic oscillators. For instance,
at D ¼ 200 μm, the concurrence in the GR case is
C ≈ 3.34 × 10−2, while for the l ¼ 50 μm case, the con-
currence is C ≈ 3.23 × 10−2. In addition, for the same
parameter specifications, we note that the von Neumann
entropy for the GR case is SA ≈ 3.69 × 10−3, while for the
l ¼ 50 μm case, we have SA ≈ 3.49 × 10−3.
The noticeable observation is that the concurrence is

now much bigger than when calculated resorting to the
Gaussian harmonic oscillator case, see Figs. 1 and 3.

FIG. 2. Spatial splitting of the two test masses A and B in the
parallel QGEM setup presented in [68]. The states jLiA and jRiB,
as well as jRiA and jLiB, are separated by a distance D. In
addition, Δx denotes the separation between jLiA and jRiA, as
well as between jLiB and jRiB.

FIG. 3. Plots of the concurrence (5.21) for the parallel setup
presented in [68] for the case of nonlocal gravitational inter-
action: describing two mesoscopic test masses, separated by a
distance D, and spatially split based on their intrinsic spins.
To produce each of the profiles, we have set m ¼ 10−14 kg. The
solid blue curve corresponds to the local (l ¼ 0) case, while the
dashed orange, dotted green, and dash-dotted red curves corre-
spond to the cases where l ¼ 40, 50, and 60 μm, respectively.
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Moreover, if nature is kind enough, such that the modifi-
cation of GR at short distances may occur in the micrometer
range, then we might be able to discern the quantum
entanglement of a gravitational system via the QGEM
protocol [82].
Furthermore, we note that, when D;Δx ≪ l, both

θ;ϕ → Gm2τ=ð2ℏlÞ, leading to a vanishing concurrence.
In such a case entanglement entropy does not make any
sense since the density matrix (5.20) would be noninver-
tible. This simple toy model illustrates that nonlocal
gravitational interaction is able to suppress any gravita-
tional-induced entanglement in the deep ultraviolet limit
provided all the distance scales, such as the superposition
size and the interseparation distance, lie well below the
nonlocal length scale l.
Of course, realizing a QGEM experiment is a daunting

task. Nevertheless, our analysis provides us with a pos-
sibility of studying physics beyond the Standard Model in a
tabletop experiment. There are many experimental chal-
lenges, ranging from creating macroscopic superposition
for such heavy masses and such a large spatial super-
position [5,83–87] to reading out the witness [80,81],
as well as protecting the experiment from jitters and
gravity-gradient noise [88–90], and various sources of
decoherence [5,81,91–93]. Such limitations will not be
discussed here since they lie beyond the scope of this
investigation.

VI. CONCLUSIONS

In this work, we studied the QGEM in the context of
perturbative quantum gravity endowed with a nonlocal
interaction with matter. We briefly reviewed the quantization
of such a theory following [67], and we calculated the shift
in the gravitational energy when the energy-momentum
tensor describes two test particles of equal mass, each one
possessing some momentum. We showed that the self-
energy contribution is finite for l > 0 and diverges in the
local limit l → 0. The fact that, at the lowest order, the
vacuum energy is always finite is a property of nonlocal field
theory. In the static limit, the gravitational energy shift is the
operator-valued version of the potential derived in [27].
In order to study the entanglement induced by gravity,

we followed [11,12] and extracted the lowest-order matter-
matter interaction from the derived operator-valued gravi-
tational energy shift and used this to describe the interaction
between two harmonic traps of equal frequency. We
computed the concurrence as well as the von Neumann
entropy for the entanglement and compared our results with
the l ¼ 0 case. We found that these two quantities decrease
when increasing the length scale of nonlocality for smaller
values of the separation between the two harmonic traps.
As expected, for larger values of the aforesaid separation,
the concurrence corresponding to different values of l
coincided. However, the concurrence and von Neumann
entropy for the entanglement of the two mesoscopic test

masses turned out to be small when compared with the
present experimental sensitivity and, therefore, not able to
be detected experimentally.
We then turned our attention to examining the setup

involving two test masses undergoing parallel spatial split-
ting based on their spins [68] with the entanglement being
induced by the derived gravitational energy shift. For such a
scenario, it was also found that increasing the length scale of
nonlocality resulted in a decrease in the concurrence and von
Neumann entropy. In addition, given the magnitude of these
measures for the entanglement for this scenario, it is possible
that a value for the length scale of nonlocality may be found
experimentally using this parallel setup, provided nature is
kind and the nonlocal scale is on the order of micrometers,
roughly the scale at which the current experiments have
probed any modification of GR in a laboratory [82].
As a final comment, we emphasize that the gravitational

theory considered here, which contains an infinite-derivative
interaction, is motivated by a special class of infinite-
derivative gravity theories containing one analytic and
nonzero nonlocal operator. There are, however, infinite-
derivative gravity theories admitting two analytic and non-
zero nonlocal operators. Thus, a possible extension of the
present work would be to include a second of such operators
and study the resulting entanglement in such a context.
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APPENDIX A: SUPPLEMENTARY CONDITIONS

Here we wish to show that, by imposing the specific
supplementary conditions suggested in [67,71], one is left
with 2 degrees of freedom for physical states associated
with the Hamiltonian (3.7) for linearized gravity and that
these do not possess negative probabilities. For the case of
linearized gravity, the number of degrees of freedom
before imposing any supplementary conditions is 11.
For the sake of the ease of notation, in Appendix A 1
below we shall consider a simpler scenario, which arises
in the context of quantum electrodynamics. For such a
case, there are 4 degrees of freedom, as well as negative
norm states, when no supplementary conditions are
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imposed. Following [71], we discuss how the supple-
mentary conditions suggested therein result in there being
no physical states with negative norms and that the
number of polarizations for such states is reduced to 2.
Then, in Appendix A 2 we shall apply the arguments

of A 1 to the case of linearized gravity following [67]. To
this end, it is shown following the aforesaid reference that,
by imposing similar supplementary conditions, physical
states for the case of linearized gravity do not admit
negative probabilities and that the number of polarizations
reduces from 11 to 2. Furthermore, since the energies
associated with (3.7) are non-negative, it is concluded then
that the Hamiltonian for linearized gravity is indeed
bounded from below.

1. Electromagnetic field

Let us consider the free Maxwell field described by the
four-vector potential Aμ. In terms of the creation and
annihilation operators, c†μðkÞ and cμðkÞ, respectively, the
four-vector potential may be written as [71]

Aμ ¼
1

ð2πÞ3=2
Z

d3k
1ffiffiffiffiffiffiffiffi
2jkjp ϵμ

ν
h
c†νðkÞe−ikx þ cνðkÞeikx

i
;

ðA1Þ

where ϵμν contains the four polarization vectors as its
columns, i.e., for each ν ∈ f0; 1; 2; 3g. It is also noted that
ϵαμϵα

ν ¼ ημν. We let the ϵμ1 and ϵμ2 be transverse to the
momentum kμ while taking ϵμ3 to be longitudinal. In what
follows, we take k to be aligned along the z axis, which
gives ϵμν ¼ δμν.
Imposing the usual commutation relations on Aμ and its

conjugate momentum yields the following commutation
relations for the creation and annihilation operators:

½ciðkÞ; c†jðk0Þ� ¼ δijδ
ð3Þðk − k0Þ; ðA2Þ

½c0ðkÞ; c†0ðk0Þ� ¼ −δð3Þðk − k0Þ; ðA3Þ

where i; j ∈ f1; 2; 3g, while the Hamiltonian for the
system is [71]

Z
d3kjkj

�X3
i¼1

c†i ðkÞciðkÞ − c†0ðkÞc0ðkÞ
�
: ðA4Þ

As a result of the minus sign in the commutation
relation (A3), the operator −

R
d3kjkjc†0ðkÞc0ðkÞ has non-

negative eigenvalues. As a result, the c0ðkÞc†0ðkÞ term
in (A4) yields a non-negative contribution to the energy.
Nevertheless, the fact that c0ðkÞ satisfies a negative
commutation relation may result in negative probabilities.
Therefore, it is necessary to impose some supplementary

conditions to ensure that such negative probabilities do
not occur.
In what follows, we use jp1i, jq1i, jr1i, and js1i to

denote the first excited c1ðkÞ, c2ðkÞ, c3ðkÞ, and c0ðkÞ states,
respectively. Let us start by considering the general state
written as a sum over nμ excited cμðkÞ states,

jφi ≔
X

n1;n2;n3;n0

X
i1 ;…;in1
j1 ;…;jn2
k1 ;…;kn3
l1 ;…;ln0

Ni1;…;ln0
jpi1 ;…; sln0 i; ðA5Þ

where the summation is carried out with the conditions:
im1þ1 > im1

, jm2þ1 > jm2
, km3þ1 > km3

, and lm0þ1 > lm0
.

At this point, let us impose the following supplementary
condition [71]:

∂
μAðþÞ

μ ¼ 0 ⇒ ½c3ðkÞ − c0ðkÞ�jφi ¼ 0; ðA6Þ

where AðþÞ
μ refers to only the eikx part in Eq. (A1) and the

second equality is obtained by using the fact that we have
aligned k along the z axis. Applying this condition to the
state (A5) and integrating over k yields

n1=23 Ni1;…;ln0−1
þ n1=20 Ni1;…;kn3−1;…;ln0

¼ 0: ðA7Þ

The positive sign in front of the second term is a result
of the negative commutation relation (A3). It can be
noted immediately that the state for which n0 ¼ n3 ¼ 0
satisfies (A7). In the case where n0 ¼ n3 ¼ 1, the following
state satisfies (A7):X

i1 ;…;in1
j1 ;…;jn2

Ni1;…;jn2
ðjpi1 ;…; 0; s1i − jpi1 ;…; r1; 0iÞ: ðA8Þ

However, the result obtained when acting the Hamiltonian
(A4) on this state (A8) is zero. Therefore, the state (A8)
does not result in any observable effect. In fact, this is true
for all n0, n3 > 0 [71]. It follows that we may set n0 ¼
n3 ¼ 0 and, therefore, have no c0ðkÞ or c3ðkÞ excited states.
That is, we have only c1ðkÞ and c2ðkÞ excitations for
physical states associated with the Hamiltonian (A4) for the
electromagnetic field; leaving us with only the two trans-
verse polarizations. Finally, we note that, since only c0ðkÞ
satisfies a negative commutation relation and we have
n0 ¼ 0, there will be no negative norm states and, thus, the
Hamiltonian (A4) is bounded from below.

2. Linearized gravity

Let us now return our attention to the system described
by the Hamiltonian (3.7). We define the general state jψi as
the sum over nμν aμνðkÞ excitations and n bðkÞ excitations.
As discussed in Sec. III, the action of the Hamiltonian (3.7)
on such a state yields non-negative energy values.
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However, in order for the Hamiltonian to be bounded from
below, it is necessary to introduce some supplementary
conditions to ensure that there are no negative norm states.
As suggested in [67], we impose the supplementary
condition

∂
μγðþÞ

μν jψi ¼ 0; ðA9Þ

where γðþÞ
μν refers to only the eikx part in (3.3). By aligning k

along the z axis, the supplementary condition (A9) yields
the following constraints:

½a00ðkÞ − a03ðkÞ�jψi ¼ 0; ðA10Þ

½a01ðkÞ − a13ðkÞ�jψi ¼ 0; ðA11Þ

½a02ðkÞ − a23ðkÞ�jψi ¼ 0; ðA12Þ

½a03ðkÞ − a33ðkÞ�jψi ¼ 0: ðA13Þ

Let us start by considering the condition (A10). From
Eq. (3.5), it can be noted that a00ðkÞ satisfies a positive
commutation relation, while a03ðkÞ satisfies a negative one.
It follows that this condition is of the same form as (A6).
We therefore conclude that any state satisfying (A10) and
involving a00ðkÞ or a03ðkÞ excitations will be redundant;
i.e., the action of the Hamiltonian (3.7) on such a state is
zero. Therefore, we may set n00 ¼ n03 ¼ 0, reducing the
number of polarizations from 11 to 9. We now turn our
attention to the condition (A11). From (3.5) it follows that
a01ðkÞ satisfies a negative commutation relation, while
a13ðkÞ satisfies a positive one. Therefore, this condition is
also of the same form as (A6) and we set n01 ¼ n13 ¼ 0
since any a01ðkÞ or a13ðkÞ excitations would lead to
redundant contributions. The condition (A11) thus reduces
the number of polarizations from 9 to 7. The same argu-
ment may be applied to (A12) which yields n02 ¼ n23 ¼ 0

and the number of polarizations is reduced from 7 to 5.
Applying the same argument to (A13) results in
n03 ¼ n33 ¼ 0. However, we already have n03 ¼ 0 as a
result of (A10). Therefore, the condition (A13) reduces the
number of polarizations from 5 to 4.
The second supplementary condition imposed is [67]

½γðþÞμ
μ − γðþÞ�jψi ¼ 0; ðA14Þ

where γðþÞ refers to only the eikx part in (3.4). By defining

ffiffiffi
2

p
a011 ≔ a11 − a22;

ffiffiffi
2

p
a022 ≔ a11 þ a22; ðA15Þ

and making use of the fact that there are no a00ðkÞ or a33ðkÞ
excited states, which follows from the first supplementary
condition (A9), the second supplementary condition (A14)
yields

½
ffiffiffi
2

p
a022ðkÞ − bðkÞ�jψi ¼ 0: ðA16Þ

The operator a022ðkÞ satisfies a positive commutation
relation, while bðkÞ satisfies a negative one. Therefore, it
follows from the discussion given in Appendix A 1 that
there are no a022ðkÞ or bðkÞ excited states. The number
of polarizations for the physical state jψi is now reduced
from 4 to 2, described by a011ðkÞ and a12ðkÞ excitations.
Moreover, since there are no a0iðkÞ or bðkÞ excitations,
which carry negative commutation relations, there are no
physical states with negative norms. It therefore follows
that the Hamiltonian (3.7) is bounded from below provided
that the supplementary conditions (A9) and (A14) are
imposed.

APPENDIX B: DERIVATION
OF EQS. (4.9) AND (4.11)

In order to evaluate the right-hand side of Eq. (4.6),
we require the integrals

Z
d3k

T †
00ðkÞT 00ðkÞ

k2
¼ 1

ð2πÞ3
Z

d3k
ðE2

A þ E2
BÞe−l2k2

k2
þ 2EAEB

ð2πÞ3
Z

d3k
eik·ðrA−rBÞ−l2k2

k2

¼ ðE2
A þ E2

BÞ
4π3=2l

þ EAEB

2πjrA − rBj
erf

�jrA − rBj
2l

�
; ðB1Þ

Z
d3k

T †
03ðkÞT 03ðkÞ

k2
¼ 1

ð2πÞ3
Z

d3k
ðp2

A þ p2
BÞe−l2k2

k2
þ 2pApB

ð2πÞ3
Z

d3k
eik·ðrA−rBÞ−l2k2

k2

¼ ðp2
A þ p2

BÞ
4π3=2l

þ pApB

2πjrA − rBj
erf

�jrA − rBj
2l

�
; ðB2Þ

Z
d3k

T †
33ðkÞT 33ðkÞ

k2
¼ 1

4π3=2l

�
p4
A

E2
A
þ p4

B

E2
B

�
þ p2

Ap
2
B

2πEAEBjrA − rBj
erf

�jrA − rBj
2l

�
; ðB3Þ
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Z
d3k

T †
00ðkÞT 33ðkÞ

k2
¼

Z
d3k

T †
33ðkÞT 00ðkÞ

k2

¼ ðp2
A þ p2

BÞ
4π3=2l

þ 1

4πjrA − rBj
�
EAp2

B

EB
þ EBp2

A

EA

�
erf

�jrA − rBj
2l

�
: ðB4Þ

By substituting Eqs. (B1)–(B4) into (4.6) one can obtain the gravitational energy shift ΔH. We note that the self-energy
(4.9) is made up of the first terms on the right-hand sides of Eqs. (B1)–(B4), while the second terms give the interaction
energy (4.11).
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