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In the framework of a simple gravitational theory that contains a scalar field minimally coupled to
gravity, we investigate the emergence of analytic black-hole solutions with nontrivial scalar hair of
secondary type. Although it is possible for one to obtain asymptotically (anti)de Sitter solutions using our
setup, in the context of the present work, we are solely interested in asymptotically flat solutions. At first,
we study the properties of static and spherically symmetric black-hole solutions emanating from both
regular and phantom scalar fields. We find that the regular-scalar-field-induced solutions are solutions
describing ultracompact black holes, while the phantom scalar fields generate ultrasparse black-hole
solutions. The latter are black holes that can be potentially of very low density since, contrary to
ultracompact ones, their horizon radius is always greater than the horizon radius of the corresponding
Schwarzschild black hole of the same mass. Then, we generalize the above static solutions to slowly
rotating ones and compute their angular velocities explicitly. Finally, the study of the axial perturbations of
the derived solutions takes place, in which we show that there is always a region in the parameter space of
the free parameters of our theory that allows the existence of both ultracompact and ultrasparse black holes.
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I. INTRODUCTION

In this day and age, it is considered common knowledge
that the general theory of relativity (GR) is merely an
effective theory and is therefore expected to break down
at some energy scale. The hierarchy problem, the unknown
nature of dark energy and dark matter, as well as the
incompetence of GR to address by itself an inflationary
era in our Universe, are only some of the most notable
unresolved problems that lead us to examine modified
gravitational theories. Throughout the years, there have been
formulated various modified gravitational theories, however,
the most basic and extensively studied ones are the scalar-
tensor theories. These theories provide an additional scalar
degree of freedom introduced via the existence of a scalar
field that is either minimally or nonminimally coupled with
gravity. Owing to the fact that the vast majority of modified
gravitational theories reduce to scalar-tensor theories in a
particular limit, scalar-tensor theories render a very fertile
framework for developing new ideas and investigating new
spacetime geometries. In addition to the above, the detection
of the Higgs boson in 2012 [1,2] has made physicists widely
acknowledge the existence of scalar fields in nature.

The credibility of modified gravitational theories, which
are typically formulated as cosmological models, relies
significantly on their ability to incorporate local solutions
such as black holes, neutron stars, or stars. If the theory
cannot produce astrophysical realistic local solutions, then
it cannot be considered a viable model. Although the search
for new black-hole solutions in scalar-tensor theories was
prematurely curtailed due to the formulation of no-scalar-
hair theorems [3–5], it was shortly shown that these
theorems can be circumvented. As a result, a plethora of
hairy black holes have then appeared in the literature. A
partial list of asymptotically flat solutions can be found in
Refs. [6–72], while for asymptotically ðAÞdS4 solutions,
the reader is referred to [73–84]. Hairy black holes
constitute a subject of intense study over the past decades,
since they have observable effects, such as the emission of
gravitational waves, black-hole shadows, modifications in
their accretion disks, etc. Thus, they might provide insights
into the fundamental nature of gravity. These solutions have
been studied in both the classical and quantum regimes and
have been found to exhibit a variety of interesting phenom-
ena, such as spontaneous scalarization [34–36,85–99] and
bifurcations [50,100–102]. It is important to note at this
point that the sole existence of black holes does not
guarantee that these objects are serious candidates for
astrophysical objects since astrophysical black holes must
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be both stable and rotating. To this end, it is crucial to
investigate the existence of stable and rotating black-hole
solutions in the context of scalar-tensor theories.
In conjunction with the above, scalar-tensor theories

possess an additional advantage, which is the fact that they
are able to generate local solutions that are prohibited in the
context of GR altogether, such solutions are wormholes and
even solitonic particlelike solutions. In general relativity,
wormholes necessitate the presence of exotic matter near
their throat [103]. Likewise, in electrovacuum, solitonic
solutions were proven to be unstable [104,105]. However,
in the framework of scalar-tensor theories, such as the
Einstein-scalar-Gauss-Bonnet and beyond Horndeski
gravity, it has been demonstrated that real scalar fields
may support regular wormhole solutions [106–113].
Additionally, numerous stable solitonic solutions have
been discovered within the context of scalar-tensor
theories [114–123]. It is worth noting that scalar-tensor
theories also predict the existence of ultracompact black
holes [124,125]. These are local solutions with a horizon
radius always smaller than that of the corresponding GR
black holes of the same mass. Finally, as we are about to see
in the present work, in the context of a very simple theory
with the existence of a scalar field minimally coupled with
gravity, it is possible to obtain besides ultracompact black-
hole solutions, solutions of ultrasparse black holes. The
latter solutions emanate from a phantom scalar field and
describe local objects that, in contrast to the ultracompact
black holes, are less dense than the corresponding GR black
holes of equal mass. All the previously mentioned solutions
could serve as precise models for local astronomical objects
observed in the Universe, such as the x-ray transient
GROJ0422þ 32 [126] (also refer to [127–129]).
The present study is focused on a simple action func-

tional that comprises a minimally coupled scalar field with
both kinetic and potential terms, in addition to Einstein’s
gravity. This theory is a member of the Horndeski class,1

and is conformally equivalent to both fðRÞ and Brans-
Dicke theories. Also, the theory has been widely used in
cosmology, as it offers accurate models for dark energy
and inflation. Regarding the local solutions, the theory was
employed early on for the construction of wormhole
solutions, with the Ellis wormhole [130–132] being a
characteristic example that is supported by phantom fields.
However, due to the no-scalar-hair theorems [3–5], it is
not possible to derive black-hole solutions for a broad
range of potentials. Specifically, black-hole solutions ema-
nating from a regular scalar field can only be obtained for
negative-definite potentials, i.e., VðΦÞ < 0, while—as we
are about to see in Sec. II—similar solutions emanating
from a phantom scalar field necessitate a positive-definite
potential. To this end, it is crucial to identify the potentials

that lead to analytic solutions for black holes. Several
works [7–9,13,21] have been devoted to this direction in
recent years, and they commonly employ the “scalar-
potential engineering” method, in which the form of the
scalar field is specified, and the potential is determined by
solving the field equations. In this work, we consider
several exact/analytic black-hole solutions and investigate
their properties in depth. We demonstrate that the solutions
can indeed describe both ultracompact and ultrasparse
black holes, and then these solutions are generalized into
slowly rotating black holes. We also compare the angular
velocities of these solutions with those of corresponding
slowly rotating Schwarzschild black holes of the same
mass. Finally, in order to evaluate whether these solutions
could represent astrophysical objects, we examine their
thermodynamic stability and their stability under spacetime
perturbations.
The structure of this paper is as follows: in Sec. II, we

introduce our four-dimensional field theory, and then we
derive the black-hole geometry by solving the field
equations. We then examine the geometric and thermody-
namic properties of our solutions, and we also investigate
whether the field theory accompanying our solutions
fulfills the conditions for the evasion of the no-scalar-hair
theorem [5]. In Sec. III, we generalize the static solutions
into slowly rotating ones by using the slow-rotation
approximation, which was first proposed by Hartle [133]
in the framework of general relativity and generalized by
Pani and Cardoso for scalar-tensor theories [134]. In
Sec. IV, we study the stability of our black-hole solutions
under axial perturbations. Finally, we summarize our
analysis and discuss our results in Sec. V.

II. THEORETICAL FRAMEWORK AND STATIC
BLACK-HOLE SOLUTIONS

The class of theories known as Einstein-scalar-Gauss-
Bonnet theories represents a distinctive yet highly com-
prehensive group of generalized gravitational theories.
These theories, in addition to the conventional Einstein
term, incorporate a scalar field and the quadratic Gauss-
Bonnet term. Despite their inherent simplicity, they possess
an extensive range of complexities and intricacies. The
action of the theory takes the form

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ΦÞ2 − VðΦÞ þ αfðΦÞR2

GB

�
:

ð2:1Þ

The theory contains the Einstein-Hilbert term R≡ gμνRμν

and a scalar field Φ nonminimally coupled with the
gravitational field. In the above action and from this time
forth, we use the notation ð∂ΦÞ2 ≡ ∂

μΦ∂μΦ. Also, the
Gauss-Bonnet term is defined as

1It is a Horndeski theory with G2 ¼ X þ VðΦÞ, G4 ¼ 1, and
G3 ¼ G5 ¼ 0.
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R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð2:2Þ

It can be shown that due to the presence of the Gauss-
Bonnet term the above theory violates the weak energy
condition near the horizon of a black hole and therefore
leads to the evasion of the no-scalar-hair theorem [34].
In the work [124], it was demonstrated that the theory
allows for asymptotically flat black-hole solutions through
the utilization of a negative-definite potential. When the
dimensionless coupling constant α=r2h is small, we may
treat the Gauss-Bonnet coupling as a small interaction. The
Oð1Þ terms in the expansion of α=r2h can be described by
the following action functional:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ΦÞ2 − VðΦÞ

�
: ð2:3Þ

The form of the background solution is contingent upon the
nature of the potential employed. In the case where the
potential is positive definite, the background solution
would align with the Schwarzschild black hole, as gov-
erned by the no-scalar-hair theorem. Conversely, in the
context of the Einstein scalar Gauss-Bonnet theory, where
the potential is negative, the background solution would
manifest as a distinctive and nontrivial solution. Hence, it
becomes crucial to ascertain the solutions arising from the
action (2.3), even when the potential is negative definite.
This significance stems from the subsequent utilization of
the Gauss-Bonnet term, which, when allowed to backreact
on the background solution, enables the attainment of a
new viable and realistic astrophysical solution. It is worth
noting that the action (2.3) serves as the foundation for
numerous generalized theories. As a result, the library of
solutions generated can serve as a background not only
for the Gauss-Bonnet interaction but also for a wider range
of interactions, further enhancing its applicability and
versatility.
From the variation of the action (2.3) with respect to the

metric tensor gμν we find the following tensorial equation:

Gμ
ν ¼ TðΦÞμ

ν; ð2:4Þ

where TðΦÞμ
ν is the effective stress-energy tensor associated

with the presence of the scalar field Φ and is defined as

TðΦÞμ
ν ≡ 1

2
∂
μΦ∂νΦ −

1

2
δμν

�ð∂ΦÞ2
2

þ VðΦÞ
�
: ð2:5Þ

By varying the action with respect to the scalar field Φ, we
obtain the following equation of motion:

∇λ∇λΦ − ∂ΦV ¼ 0: ð2:6Þ

Within the scope of this study, our focus lies on deriving
asymptotically flat black-hole solutions that possess scalar

hair. Therefore, we consider the following ansatz for the
line element:

ds2 ¼ −eAðrÞBðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

BðrÞ≡ 1 −
2mðrÞ

r
: ð2:7Þ

It is also reasonable to presume that the scalar field depends
only on the radial coordinate, namely Φ ¼ ΦðrÞ. Using
now the tensorial equation (2.4), we obtain the following
independent equations:

A0ðrÞ ¼ r
2
½Φ0ðrÞ�2; ð2:8Þ

B00ðrÞ þ 3

2
A0ðrÞB0ðrÞ þ

�
A00ðrÞ þ A0ðrÞ

r

þ ½A0ðrÞ�2
2

−
2

r2

�
BðrÞ ¼ −

2

r2
; ð2:9Þ

VðΦÞ¼ 2

r2
−
2

r
A0ðrÞBðrÞ−2BðrÞ

r2
þ1

2
½Φ0ðrÞ�2BðrÞ−2B0ðrÞ

r
:

ð2:10Þ

In the above, the prime symbol is used to represent
differentiation with respect to the radial coordinate r.
Furthermore, it is important to acknowledge that the
scalar-field equation (2.6) is not an independent one, but
instead is derived from the three differential equations
previously mentioned. An explicit proof of the previous
assessment can be found in Appendix A. At this point, it is
apparent that to tackle the system of differential equa-
tions (2.8)–(2.10) that encompasses four unknown func-
tions, we must initially specify a particular expression for
one of the functions involved.
Contrary to what we have done in [125], where we

assumed a Coulombic form for the scalar field ΦðrÞ, here
we assume an expression for the function AðrÞ, namely

AðrÞ ¼ −ξ ln
�
1þ r2=q2

r2=q2

�
: ð2:11Þ

In the above, ξ is a dimensionless constant that takes values
in real numbers, while q is a physical parameter with length
units which is strictly positive. Using Eq. (2.8) we find that

ΦðrÞ ¼ 2
ffiffiffi
ξ

p
ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

p
r=q

�
: ð2:12Þ

Notice that for ξ > 0 we have a real-valued scalar field,
while for ξ < 0 the scalar field becomes purely imaginary.
In the latter case, by performing a scalar field redefinition of
the form Φ ¼ iΦ̃, one is led to the action
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S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ð∂Φ̃Þ2 − VðΦ̃Þ

�
; ð2:13Þ

with Φ̃ being a phantom scalar field—as it is often called—due to the fact that its kinetic term comes with a different sign. It
is evident from Eq. (2.10) that the scalar potential VðΦ̃Þ ∈ R even in the case of phantom field. Consequently, by deciding
on the sign of ξ, one may choose between normal2 or phantom solutions. Finally, the trivial case ξ ¼ 0 leads to the well-
known Schwarzschild solution.
Having determined the scalar field from (2.8), we are now pertaining to (2.9) in order to determine the mass function

mðrÞ or equivalently the function BðrÞ. Substituting the expression for AðrÞ, the differential equation (2.9) takes the form

B00ðrÞ þ 3ξq2

rðq2 þ r2ÞB
0ðrÞ þ 2

q4ðξ2 − 1Þ − 2q2r2ðξþ 1Þ − r4

r2ðq2 þ r2Þ2 BðrÞ ¼ −
2

r2
: ð2:14Þ

By solving the preceding differential equation, one should obtain

BðrÞ ¼ ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ
�
C1 þ 2

Z
ðr=qÞ3ξ−2ð1þ r2=q2Þ−3ξ=2HðrÞdðr=qÞ

�

þHðrÞ
�
C2 − 2

Z
ðr=qÞξð1þ r2=q2Þ−ξ=2dðr=qÞ

�
; ð2:15Þ

where

HðrÞ≡
( ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ R ðr=qÞξ−4ð1þ r2=q2Þ−ξ=2dðr=qÞ; ξ ∈ Z

ðr=qÞ−ð1þξÞ ð1þr2=q2Þξ
ξ−3 2F1

	
ξ
2
; ξ−3

2
; ξ−1

2
;− r2

q2



; ξ ∉ Z

)
: ð2:16Þ

For jzj < 1, the hypergeometric function 2F1ða; b; c; zÞ can be determined via the following convergent infinite series
(see [135]):

2F1ða; b; c; zÞ ¼ 2F1ðb; a; c; zÞ ¼
X∞
n¼0

aðnÞbðnÞ

cðnÞ
zn

n!
: ð2:17Þ

The symbols of the form dðnÞ are rising Pochhammer symbols, which are given by the following relation:

dðnÞ ¼ Γðdþ nÞ
ΓðdÞ ¼

�
dðdþ 1Þ � � � ðdþ n − 1Þ; n > 0

1; n ¼ 0

�
: ð2:18Þ

Although the argument −r2=q2 of the hypergeometric function in (2.16) does not respect the aforementioned condition, by
applying a Pfaff transformation of the form

2F1ða; b; c; zÞ ¼ ð1 − zÞ−a2F1

�
a; c − b; c;

z
z − 1

�
; ð2:19Þ

we can make the argument of the resulting hypergeometric function smaller than unity. Then, the expansion (2.17) can be
directly applied.
Pertaining now to the solution (2.15), it might seem that it was given by a deus ex machina, however, in Appendix B, we

provide a step-by-step treatment of differential equation (2.14). It is important to clarify that for ξ ∈ Z the integrals in
Eqs. (2.15) and (2.16) can be solved in terms of known functions, and thus BðrÞ is determined analytically. On the contrary,
for noninteger values of ξ one may use the expression

2Solutions that originate from a real-valued scalar field (ξ > 0) will be called “normal” throughout this work to be distinguished from
the phantom ones (ξ < 0). We avoid calling them “regular,” since in the literature, regular usually refers to the black holes that do not
contain a singularity.
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BðrÞ ¼ C1ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ þ C2

ξ − 3
ðr=qÞ−ð1þξÞð1þ r2=q2Þξ2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

�

þ 2ð1þ r2=q2Þξ
ξ − 3

��
r
q

�
2ð1−ξÞ Z

2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

��
r
q

�
2ξ−3

�
1þ r2

q2

�−ξ=2
d

�
r
q

�

− 1

ξþ 1 2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

�
2F1

�
ξ

2
;
ξþ 1

2
;
ξþ 3

2
;−

r2

q2

��
: ð2:20Þ

However, since our goal is to keep the analysis as lucid as
possible, we will restrain ourselves to integer values of ξ.
In what follows, we are going to study one normal and

one phantom solution with ξ ¼ 5 and ξ ¼ −2, respectively.
For each positive value of ξ one gets a different normal
solution, while for each negative value of ξ a different
phantom solution appears. The aforementioned choices for
the values of ξ have been made because, in both cases, the
function BðrÞ has a fairly simple expression. Obviously,
one is free to choose differently.3 So, for ξ ¼ 5, (2.15)
leads to

BðrÞ¼
�
1þ r2

q2

�
2
�
q4

r4
þ3q6

r6
þ17

9

q8

r8
−
2M
q

q8

r8

�
1þ r2

q2

�
3=2

�
;

ð2:21Þ

while for ξ ¼ −2, the same expression results in

BpðrÞ ¼
�
1þ r2

q2

�−2�r4
q4

−
2M
q

r
q

�
3

5
þ r2

q2

�
−
1

3

�
: ð2:22Þ

The subscript “p” denotes that we are referring to the
phantom solution. This notation will be henceforth used for
all phantom-related functions. Note that, in both of the
above expressions, the integration constants C1 and C2

have been chosen to be C1 ¼ 0 and C2 ¼ 6M=q. These
particular choices were made in order for the spacetime
(2.7) to be asymptotically flat. Allowing C1 ≠ 0, one could
also obtain asymptotically (anti)de Sitter spacetime geom-
etries. However, in the context of the present work, we will
solely focus on asymptotically flat solutions. The last
assertion can be verified by noticing that

lim
r→þ∞

eAðrÞ ¼ 1; ð2:23Þ

while the expansions of BðrÞ and BpðrÞ, at large values of
the radial coordinate r, are given by

Bðr ≫ 1Þ ¼ 1 −
2M
r

þ 5q2

r2
−
7M
q

q3

r3
þO

�
1

r4

�
; ð2:24Þ

and

Bpðr ≫ 1Þ ¼ 1 −
2M
r

−
2q2

r2
þ 14M

5q
q3

r3
þO

�
1

r4

�
: ð2:25Þ

Note that in the case of a regular scalar field—Eq. (2.24)—
the asymptotic behavior of the spacetime cannot be dis-
tinguished from the geometry of a Reissner-Nordström
black hole. The difference, though, is that in our scenario
the parameter q emanates from the existence of a scalar
field rather than a gauge field. Pertaining now to the
phantom solution, Eq. (2.25), we notice that there is a
minus sign in front of the third term on the rhs of Eq. (2.25).
This particular difference is directly related to the phantom
nature of the scalar field.
Given the functions that describe the spacetime geom-

etry, namely AðrÞ and BðrÞ, as well as the expression for the
scalar field ΦðrÞ, it is straightforward to use Eq. (2.10) to
specify the form of the scalar potential VðΦÞ. In the case of
the regular field, by employing Eqs. (2.11), (2.12), and
(2.21) in (2.10) and setting ξ ¼ 5, one finds that

VðΦÞ ¼
sinh6

	
Φ

2
ffiffi
5

p



18q3

�
121q − 54M

���� coth
�

Φ
2

ffiffiffi
5

p
�����

þ cosh

�
2Φffiffiffi
5

p
��

17q − 18M

���� coth
�

Φ
2

ffiffiffi
5

p
�����

�

þ 6 cosh
�

Φffiffiffi
5

p
��

17q − 12M

���� coth
�

Φ
2

ffiffiffi
5

p
�����

��
:

ð2:26Þ

In the case of the phantom field, besides using Eqs. (2.11),
(2.12), (2.22), and ξ ¼ −2 in (2.10), we also need to
perform the redefinition Φ ¼ iΦ̃ to convert the action
functional (2.3) to the action (2.13) which encompasses
the Lagrangian density of a phantom scalar field. By doing
so, one should obtain

VpðΦ̃Þ ¼
tanh5

	
Φ̃

2
ffiffi
2

p



15q3 cosh
	

Φ̃
2
ffiffi
2

p

 �

48M þ 45q sinh

�
Φ̃

2
ffiffiffi
2

p
�

þ 5q sinh

�
3Φ̃
2

ffiffiffi
2

p
��

: ð2:27Þ3In Appendix C, one may find two additional asymptotically
flat solutions.
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In order to gain a deeper understanding of the spacetime
geometry (2.7), it is essential to analyze its causal structure
as well as the curvature invariants (the Ricci scalar
R≡ Rμ

μ, the scalar R≡ RμνRμν, and the Kretschmann
scalar K≡ RμνρσRμνρσ) that arise from its line element. In
Appendix D, one may find the analytic expressions of all
three curvature invariant quantities for both the normal
(ξ ¼ 5) and the phantom (ξ ¼ −2) solutions. Here, for
brevity, we only present the formulas describing the Ricci
scalars, thus it is

R ¼ 2q2

3r10
ð15r6 þ 100q2r4 þ 130q4r2 þ 51q6Þ

−
108Mq7

3r10

�
1þ r2

q2

�
5=2

; ð2:28Þ

Rp ¼
4

5q4r2

�
1þ r2

q2

�−3
½ð18M − 5rÞr3

þ 2q2ð3M þ 5rÞrþ 5q4�: ð2:29Þ

By simply observing their formulas, it is evident that at
r ¼ 0 the spacetime becomes singular. The existence of a
spacetime singularity together with the cosmic censorship
hypothesis [136] constitutes a clear indication that the line
element (2.7) describes two families of black-hole solu-
tions; normal ones when ξ > 0 and phantom ones when
ξ < 0. To convince ourselves that the spacetime singularity
is always hidden behind a horizon, we need to study the
causal structure of the spacetime (2.7). To this end, we
consider radial null trajectories in the background geom-
etry, while by keeping both the polar angle θ and the
azimuthal angle φ constants, the relation ds2 ¼ 0 results in

dt
dr

¼ � e−AðrÞ=2

jBðrÞj ¼ �
�
1þ r2=q2

r2=q2

�
ξ=2 1

jBðrÞj : ð2:30Þ

At the boundary of the spacetime, where r → þ∞, both
normal and phantom solutions, with BðrÞ given by (2.21)
and (2.22), respectively, lead to dt=dr ¼ �1 as expected.
This behavior is indeed common for all asymptotically
flat spacetimes. On the other hand, the horizon of the
black hole is defined as the region of space where the ratio
dt=dr diverges. In our case, Eq. (2.30) suggests that the
black-hole horizon radius rh would be a root of the
equation BðrhÞ ¼ 0 or, equivalently, a root of the equation
gttðrhÞ ¼ 0.
With the use of equation BðrhÞ ¼ 0 and the expressions

(2.21) and (2.22), one can specify the relations that link the
black-hole mass M with its horizon radius rh and its scalar
hair q. In what follows, we express the ratio rh=ð2MÞ in
terms of the dimensionless quantity q=rh proving that the
scalar hair is of secondary type. For the normal case (2.21),
one finds that

rh
2M

¼ 9

�
1þ q2

r2h

�
3=2

�
9þ 27

q2

r2h
þ 17

q4

r4h

�−1
; ð2:31Þ

while for the phantom case (2.22), one obtains

�
rh
2M

�
p
¼

�
1 −

q4

3r4h

�−1�
1þ 3q2

5r2h

�
: ð2:32Þ

Figures 1(a) and 1(b) depict the graphs of (2.31) and (2.32),
respectively.
The graph presented in Fig. 1(a) illustrates that, as the

value of q=rh increases, the value of rh=ð2MÞ decreases.
It is also obvious that as q=rh approaches zero, the ratio

FIG. 1. The graphs of the ratio rh=ð2MÞ in terms of q=rh for (a) a normal scalar field and (b) a phantom one. The horizontal axis
in (a) is logarithmic.
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rh=ð2MÞ goes to unity and therefore rh ¼ 2M as in the
Schwarzschild case. This behavior is indeed anticipated
given the fact that for q ¼ 0 the scalar field Φ vanishes and
the theory (2.3) reduces to the Einstein-Hilbert action,
which by its turn leads to the Schwarzschild solution.
On the other hand, for q=rh ≥ 1, the condition BðrhÞ ¼ 0

leads to the formation of “ultracompact black holes,” given
that, in this particular region of the parameter space,
rh=ð2MÞ < 0.5. Loosely speaking, an ultracompact black
hole could be defined as a black hole that has a significantly
smaller horizon radius compared to the radius of a
Schwarzschild black hole with the same mass. However,
for values of q=rh greater than 10, the horizon radii of the
associated ultracompact black holes become incredibly
small, raising concerns about the naturalness of this region
in the parameter space.
Notably, in the phantom case, we observe a different yet

intriguing behavior. The graph in Fig. 1(b) demonstrates
that initially, as the value of q=rh increases, so does the
value of rh=ð2MÞ. However, by further increasing the value
of q=rh, we can observe from both the graph and Eq. (2.32)
that, at q=rh ¼

ffiffiffi
34

p
, the ratio rh=ð2MÞ diverges and then

becomes negative. As both rh and M are positive-definite
quantities, this implies that the region in the parameter
space where q=rh ≥

ffiffiffi
34

p
is not physically valid. The fact

that rh > 2M in the region 0 < q=rh <
ffiffiffi
34

p
, merely indi-

cates that, unlike ultracompact solutions, phantom scalar
fields result in black holes that are less dense compared to
the corresponding Schwarzschild black holes of the same
mass M. Henceforth, black-hole solutions for which the
ratio rh=ð2MÞ becomes substantially greater than unity will
be called “ultrasparse black holes.” Note, as an example,
that for q=rh ¼ 1, the resulting phantom solution has
rh=ð2MÞ ≈ 2.400, which means that its volume is more
than 13 times greater than the volume of the corresponding
Schwarzschild black hole of mass M. The preceding
discussion sheds light on a quite interesting characteristic
of the black-hole solutions that emanate from the theory
(2.3). This is the fact that the sole nature of the scalar field,
namely whether it is phantom or not, decides the density of
the resulting solutions. Finally, as in the case of ultra-
compact solutions, the extreme cases of ultrasparse black
holes, namely those where q=rh →

ffiffiffi
34

p
and the ratio

rh=ð2MÞ blows up, are not expected to be physically
plausible. Future observational measurements from mis-
sions such as LIGO-Virgo, the Event Horizon Telescope,
or other astrophysical experiments will hopefully establish
strict bounds on the mass and size of compact objects
[127–129].
It is well known that the entropy of a black hole is also

associated with its horizon radius. One way to calculate the
black-hole entropy is through Wald’s formula [137,138],
which links the Noether charge on the horizon with the
entropy of the black hole. This is expressed as

S ¼ −2π
I

d2x
ffiffiffiffiffi
h2

p �
∂L

∂Rabcd

�
H
ϵ̂abϵ̂cd; ð2:33Þ

where ϵ̂ab represents the binormal to the horizon’s surface
H, h2 denotes the determinant of the two-dimensional
projected metric on H, and L stands for the Lagrangian
density of the theory. Using this equation, it can be shown
that, in our theory, the entropy follows the Bekenstein-
Hawking formula S ¼ A=4. Thus,

S
SSch

¼
�
rh
2M

�
2

; ð2:34Þ

where SSch is the entropy of the corresponding
Schwarzschild black hole with mass M. Pertaining now
to the black-hole solutions with regular hair, meaning their
hair originates from a regular scalar field, it is easy to see
from Fig. 1(a) and Eq. (2.34) that the ratio S=SSch declines
as the value of q=rh rises. Consequently, as these solutions
acquire more hair, they become less thermodynamically
stable. Conversely, one can infer from Fig. 1(b) that black
holes with phantom hair become more thermodynamically
stable as they gain hair. Hence, from a thermodynamic
perspective, ultrasparse black holes appear much more
stable than ultracompact ones.
Let us now turn our attention back to the analysis of the

causal structure of the spacetime. Figure 2 displays the
function gttðrÞ plotted against the dimensionless radial
quantity r=rh for different values of the parameter q=rh.
We have selected q=rh ¼ 0.1, 1.0 for the normal solutions,
and q=rh ¼ 0.5, 1.0 for the phantom ones. By utilizing
Eqs. (2.31) and (2.32), we can readily compute that these
parameter values result in rh=ð2MÞ ≈ 0.985, 0.480 when

FIG. 2. Graphs of the function gttðrÞ in terms of r=rh for both
normal and phantom solutions and for various values of the
parameter q=rh. The graphs containing the symbol p in their
legend refer to phantom solutions. The horizontal axis is
logarithmic.
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the scalar field is regular, and rh=ð2MÞ ≈ 1.174, 2.400
when the scalar field is phantom. Note also, that by
substituting the black-hole mass M from Eqs. (2.31) and
(2.32) into the expressions (2.21) and (2.22), respectively,
we have kept the same horizon radius in all cases. So, the
first thing that one notices in Fig. 2 is that, beyond the
black-hole horizon, the function gttðrÞ converges rapidly to
its asymptotic value, regardless of whether the field is
regular or not, since gttð100rhÞ ≈ −1. However, the cases of
regular and phantom scalar fields exhibit a significant
difference in their behavior; the function gttðrÞ of the
phantom solutions manifests a singular behavior at r ¼ 0,
while for the normal solutions, gttðr → 0Þ remains finite.
Finally, it is apparent from the graphs in Fig. 2 that an
observer would only be able to gravitationally distinguish
between phantom and normal solutions if they were in
close proximity to the horizon.
Having examined the geometrical characteristics of the

line element (2.7), it is now crucial to investigate the energy
conditions satisfied by the stress-energy tensor (2.5) asso-
ciated with the scalar field. The stress-energy tensor TðΦÞμ

ν,
in its entirety, is described by three physical quantities: the
energy density ρE¼−TðΦÞt

t, the radial pressure pr¼TðΦÞr
r,

and the tangential pressure pθ¼TðΦÞθ
θ¼TðΦÞφ

φ. By notic-
ing Eq. (2.5), one can readily deduce that pθ ¼ −ρE,
whereas pr ¼ wrðrÞρE, with the function wrðrÞ defining
the equation of state of the radial pressure pr. In
Figs. 3(a) and 3(b), we display the graphs of r2hðρE þ prÞ
and r2hðρE þP

i piÞ≡ r2hðρE þ pr þ 2pθÞ ¼ r2hðpr þ pθÞ,
respectively, plotted against the dimensionless radial quan-
tity r=rh. In all graphs, we have multiplied the depicted
functions with r2h to make the resulting quantities dimen-
sionless and scale invariant as well. Note that the afore-
mentioned graphs are demonstrated for the same values of

the dimensionless parameter q=rh as in Fig. 2. In addition
to the above, in all formulas, the massM has been replaced
using Eq. (2.31), for the normal, and Eq. (2.32), for the
phantom solution, in order to retain the same horizon radius
in all cases.
It is evident from Fig. 3(a) that, in both normal and

phantom cases, the quantity ρE þ pr nullifies at r ¼ rh
independent of the value of q=rh. Although this behavior
can indeed be verified analytically as well, we are not going
to elaborate more on this since we wish to keep the
discussion as concise as possible. By utilizing Eq. (2.5),
one may confirm on their own the preceding assertion.
From Figs. 3(a) and 3(b), we clearly observe that a regular
scalar field always satisfies the null and strong energy
conditions in the causal region of spacetime, that is outside
the black-hole horizon rh. This is due to the fact that, for
r > rh, both conditions ρE þ pi ≥ 0 and ρE þP

i pi ≥ 0
4

(pi ¼ fpr; pθg) are satisfied everywhere and independent
of the value of q=rh. Conversely, a phantom scalar field
violates both null and strong energy conditions. Although
this violation is more often met in wormhole solutions
[103,106–108,139], it is also anticipated from black-hole
solutions with a phantom scalar hair. The reason is that, by
definition, the kinetic term of phantom scalar fields comes
with the opposite sign, as it was discussed in (2.13). This sign
alone is the one that ultimately leads the phantom fields to
violate the null energy condition and, by its turn, the strong
energy conditions as well. Finally, it is important to mention
that both normal and phantom cases violate either one or
both weak energy conditions. This is indeed anticipated in
order for the solutions to evade the no-scalar-hair theorem.

FIG. 3. Graphs of the quantities (a) r2hðρE þ prÞ and (b) r2hðρE þP
i piÞ in terms of r=rh, for both normal and phantom solutions and

for various values of the parameter q=rh. The graphs containing the symbol p in their legend refer to phantom solutions.

4For a perfect fluid ρþP
i pi ¼ ρþ 3p, and the second

condition would have been ρþ 3p ≥ 0.
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This is also the case even if we consider the complete
Einstein-scalar-Gauss-Bonnet theory (2.1) or any other
theory that evades the no-scalar-hair theorem.
We will now shift our attention to the no-scalar-hair

theorems [3–5], which prohibit the existence of black holes
in the presence of a scalar field. As it was discussed in our
previous work [125], for the field theory considered here,
the no-scalar-hair theorem [5] is solely dependent on the
correlation between the sign of the potential VðΦÞ and the
sign of the kinetic term of the scalar field. By employing
the scalar equation (2.6), as discussed in [125], one obtains
the conditions

Z
∞

rh

dx4
ffiffiffiffiffiffi
−g

p
∂ΦVð∂μΦ∂

μΦþ VÞ ¼ 0; ð2:35Þ

and

Z
∞

rh

dx4
ffiffiffiffiffiffi
−g

p
∂Φ̃Vpð−∂μΦ̃∂

μΦ̃þ VpÞ ¼ 0; ð2:36Þ

for a regular and a phantom scalar field, respectively.
In the above relations, the terms of the form ½ ffiffiffiffiffiffi−gp

V∂μΦ�∞rh
vanish in both boundaries. At the black-hole horizon, rh,
the aforementioned terms vanish due to the factor BðrÞ
that manifests itself through the derivative of the scalar
field with respect to r,5 while at infinity the scalar
potentials vanish due to the fact that the black holes
considered here are asymptotically flat. Notice that, in the
case of a regular scalar field, the first term in (2.35) can be
written as ∂μΦ∂

μΦ¼grrΦ02>0, while in the phantom case,
the corresponding term reads −∂μΦ̃∂

μΦ̃ ¼ −grrΦ̃02 < 0.

Consequently, Eq. (2.35) can be satisfied only if the scalar
potential is negative definite, that is, VðΦÞ < 0, whereas
Eq. (2.36) indicates that the potential of the phantom scalar
field should be positive, i.e., VðΦ̃Þ > 0.
In Fig. 4, we display the graphs of the potentials VðΦÞ

and VðΦ̃Þ in terms of the dimensionless radial quantity
r=rh. Similar to what we did in the previous figure, we have
multiplied the potential with r2h to obtain a dimensionless
and scale invariant quantity. In accordance with what we
discussed previously, it is clear that the potential regarding
a regular scalar field is consistently negative, whereas, for a
phantom scalar field, it is consistently positive. Finally, we
see that both cases lead to asymptotically flat solutions
since both potentials converge rapidly to zero, which is
their asymptotic value.

III. SLOW-ROTATING BLACK HOLES

The objective of this section is to extend the static line
element (2.7) to encompass slowly rotating black-hole
solutions. This will be accomplished by treating the
rotating solutions as an axisymmetric perturbation on the
static and spherically symmetric spacetime (2.7). As back-
ground solutions, we will use the two solutions that we
derive in the previous sections. The method we follow was
first proposed by Hartle [133] in the framework of general
relativity and generalized by Pani and Cardoso for scalar-
tensor theories [134]. Thus, we are led to consider the line
element

ds2 ¼ −eAðrÞBðrÞdt2 þ dr2

BðrÞ
þ r2fdθ2 þ sin2θ½dφ − εωðrÞdt�2g: ð3:1Þ

The above expression involves a dimensionless auxiliary
parameter ε that enables us to regulate the perturbations,
while the function ωðrÞ is directly related to the angular
velocity that a locally stationary observer would obtain at
distance r, due to the rotational frame dragging. In general,
one may allow the angular velocity ω to have an angular θ
dependence as well, and even assume a scalar perturbation
of the form Φtotðr; θÞ ¼ ΦðrÞ þ εΦ1ðr; θÞ. However, in a
previous work of ours [125], we have shown that at first
order in ε, the angular velocity depends only on the radial
coordinate, while the scalar perturbation vanishes. By
evaluating the expansion as ε approaches zero, we discover
that the unaltered set of equations admits the general
solution (2.15) described in the previous section. At first
order in ε though, i.e., OðεÞ in the expansion, the only
independent field equation comes from the ðt;φÞ compo-
nent and it can be presented in the following manner:h

r4e−
AðrÞ
2 ω0ðrÞ

i0 ¼ 0: ð3:2Þ

Therefore, it is straightforward to derive that

FIG. 4. The potential r2hVðΦðrÞÞ in terms of r=rh for different
values of the parameter q=rh. The graphs containing the symbol p
in their legend refer to phantom solutions.

5
∂
μΦ ¼ δμrgrr∂rΦ ¼ δμrBðrÞ∂rΦ and BðrhÞ ¼ 0 by definition.
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ω0ðrÞ ¼ ω1e
AðrÞ
2

r4
; ð3:3Þ

where ω1 is an integration constant.
We observe that, in our theory, the angular velocity ωðrÞ

is solely determined by the metric function AðrÞ and is
independent of whether we are referring to black-hole
solutions emanating from a regular or a phantom scalar
field. By demanding the asymptotic expansion of the
angular velocity ωðrÞ to be identical to the angular velocity
of the slowly rotating Schwarzschild solution, namely
ωSchðrÞ ¼ 2J=r3, we readily find that ω1 ¼ −6J, with J
being the angular momentum of the black hole [134]. The
integration of Eq. (3.3) leads to the expression

ωðrÞ ¼ ω0 − 6J
Z

r

0

1

x4
e
AðxÞ
2 dx: ð3:4Þ

In the above, the integration constant ω0, is merely specified
by imposing the condition that the angular velocity becomes
zero as r approaches infinity. Thus, we obtain

ω0 ¼ 6J
Z

∞

0

1

r4
e
AðrÞ
2 dr: ð3:5Þ

By substituting the metric function AðrÞ, the integral (3.4)
may be expressed in terms of the hypergeometric function,
that is,

ωðrÞ ¼ ω0 −
6Jrξ−3

qξðξ − 3Þ 2F1

�
ξ − 3

2
;
ξ

2
;
ξ − 1

2
;−

r2

q2

�
: ð3:6Þ

Our attention will now be directed toward the solutions
that were studied throughout the present manuscript and,
specifically, the solution for a regular scalar field with
ξ ¼ 5, as well as the solution related to a phantom scalar
field characterized by ξ ¼ −2. For ξ ¼ 5, Eq. (3.6) leads to
the simple relation

ωðrÞ ¼ 2J
r3

�
1þ q2

r2

�−3=2
; ð3:7Þ

while for ξ ¼ −2 one finds that

ωpðrÞ ¼
2J
r3

�
1þ 3q2

5r2

�
: ð3:8Þ

We shall now examine the relative angular velocities of a
slowly rotating black hole, with either regular or phantom
hair, and a slowly rotating Schwarzschild black hole of
equivalent mass. To this end, we will determine the ratio of
their respective angular velocities at the horizon for each
black hole. This calculation can be performed utilizing
Eqs. (3.7) and (3.8) along with Eqs. (2.31) and (2.32).
Below we present the resulting expressions,

ωðrhÞ
ωSchð2MÞ ¼

�
1þ 3

q2

r2h
þ 17

9

q4

r4h

�
3
�
1þ q2

r2h

�−6
; ð3:9Þ

and

ωpðrhÞ
ωSchð2MÞ ¼

�
1 −

1

3

q4

r4h

�
3
�
1þ 3

5

q2

r2h

�−2
: ð3:10Þ

Here, ωðrhÞ=ωSchð2MÞ denotes the ratio regarding normal
black holes, while ωpðrhÞ=ωSchð2MÞ corresponds to the
ratio of phantom black holes.
Figures 5(a) and 5(b) display the graphs of Eqs. (3.9) and

(3.10), respectively, plotted against the dimensionless
quantity q=rh. We consider the case in which the two
compact objects are of identical mass M. As previously
shown in Fig. 1, the values of their horizon radii can differ
significantly depending on the parameter q=rh. In both
cases, we observe that the angular velocities are equal to
ωSchð2MÞ for small values of q=rh. This result is expected
since, for small values of q=rh, the horizon radius of both
black-hole solutions is identical to the horizon radius of the
corresponding Schwarzschild black hole with the same
mass, i.e., rh ¼ 2M (refer to Fig. 1). It is also apparent from
Eqs. (3.7) and (3.8) that, in the limit q → 0, the leading
term in both cases is the same as that of the slowly rotating
Schwarzschild black hole, namely 2J=r3.
To be more specific, Fig. 5(a) reveals that the ratio

ωðrhÞ=ωSchð2MÞ remains almost equal to unity for
q=rh ⪅ 0.2. From q=rh ≈ 0.2 to q=rh ≈ 7, the angular
velocity ωðrhÞ grows 7 times compared to ωSchð2MÞ,
while for the values q=rh⪆7, the relative value of the
angular velocities remains essentially constant. A similar
behavior was also observed in [125] for hairy black-hole
solutions, with their scalar hair being of a Coulombic form.
On the contrary, as shown in Fig. 5(b), the angular velocity
of a given phantom black hole is consistently smaller than
the corresponding angular velocity of a Schwarzschild
black hole with the same mass. Additionally, the same
graph illustrates that, as the value of q=rh increases, the
angular momentum of the phantom black holes decreases
until it reaches zero at q=rh ¼

ffiffiffi
34

p
. It should be noted that

the phantom solutions considered here are ultrasparse, and
thus, as q=rh increases, the horizon radius also increases
until it approaches infinity at q=rh ¼

ffiffiffi
34

p
. The aforemen-

tioned behavior of the angular velocity, of either normal or
phantom black-hole solutions, can be naively understood,
even by using a reasoning based on classical mechanics. It
is common knowledge that an increase in the horizon radius
of a black hole, with the mass kept constant, corresponds to
an increase in its moment of inertia, which in its turn makes
the rotation of such an object harder. Conversely, for an
object with a smaller horizon radius, its moment of inertia
would be smaller, and its rotation would be easier.
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IV. STABILITY

In this section, we will analyze the linear stability of
the black-hole solution described by Eqs. (2.11), (2.12),
and (2.15). To this end, we consider small perturbations hμν
in the background spacetime gμν, namely jhμνj ≪ jgμνj. The
combined effect of the background metric gμν and space-
time perturbations hμν will henceforth be referred to as the
total metric tensor gtotμν defined as

gtotμν ¼ gμν þ hμν: ð4:1Þ

The approach we will employ to study the stability is the
same as the one initially introduced by Regge and Wheeler
in 1957 [140], which was later refined and extended by
Zerilli and Vishveshwara in 1970 [141–143]. Given,
however, that the Lagrangian density of our theory also
contains the kinetic and potential terms of a scalar field, it
becomes necessary to consider scalar-field perturbations as
follows:

Φtot ¼ Φþ δΦ: ð4:2Þ

The perturbations are classified into two distinct catego-
ries based on their parity properties: perturbations exhibit-
ing odd parity ð−1ÞLþ1, which are commonly referred to as
axial perturbations, and perturbations exhibiting even parity
ð−1ÞL, which are typically referred to as polar perturba-
tions. Here, L represents the angular momentum associated
with the specific perturbation mode. For simplicity, in the
context of this work, we will restrict our analysis to the odd
sector. Because of their complexity, the even perturbations
will be examined in a future work. Although the line
element (2.7) describes static black-hole solutions, in
principle, the spacetime perturbations hμν depend on all

spacetime coordinates. Using the method of separation of
variables, we may express the odd perturbations in the
Regge-Wheeler gauge [140] as

hoddμν ¼

2
6664

0 0 0 h0ðrÞ
0 0 0 h1ðrÞ
0 0 0 0

h0ðrÞ h1ðrÞ 0 0

3
7775e−ikt sin θ∂θPLðcos θÞ;

δΦ ¼ 0: ð4:3Þ

The decomposition into modes of fixed energy is achieved
using the term expð−iktÞ, where k denotes the frequency of
the mode. Similarly, the decomposition into modes with
fixed angular momentum L is attained using the Legendre
polynomials PLðcos θÞ. Note also that the perturbations
of (4.3) are expressed in the canonical gauge as it is often
called. For more details regarding spacetime perturbations,
one is referred to [140–143]. The radial part of the back-
ground metric perturbations is encoded inside the functions
h0ðrÞ and h1ðrÞ.
After the substitution of Eqs. (4.1)–(4.3) into the field

equations and by retaining only the linear terms in hμν, one
finds that, for the odd metric perturbations, there merely
exist two independent equations, ðθ;φÞ and ðr;φÞ. The
ðθ;φÞ equation is evaluated to be

�
eA

4r2
½h1ðA0Bþ 2B0Þ þ 2Bh01Þ�−

ik
2r2B

h0

�
× ½2 cotθ∂θPLðcosθÞ þLðLþ 1ÞPLðcosθÞ� ¼ 0; ð4:4Þ

while the ðr;φÞ is of the form

FIG. 5. Graphs of the ratio ωðrhÞ=ωSchð2MÞ in terms of q=rh for (a) the normal and (b) the phantom solutions. The horizontal axis
in (a) is logarithmic.
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�
h1

�
eA

4r4
ð3r2A0B0 þ 2r2B00 þ 2LðLþ 1ÞÞ

þ eAB
2r4

�
r2A00 þ r2A02

2
− rA0 þ r2Φ02 − 2

�
−

k2

r2B

�

−
ik

2r2B
h00 þ

ik
r3B

h0

�
∂θPLðcos θÞ ¼ 0: ð4:5Þ

It should be mentioned at this point that, for L ¼ 0,
P0ðcos θÞ ¼ 1, and both Eqs. (4.4) and (4.5) become
identically zero. Consequently, there are no odd-parity
perturbations for L ¼ 0. Similarly, in the case of L ¼ 1,
where P1ðcos θÞ ¼ cos θ, we observe that Eq. (4.4) is
satisfied identically as well. And although it may seem
that we have (4.5) to work with, one can readily demon-
strate that Eq. (4.5) can be completely gauged away by first
performing a coordinate transformation of the form

x0μ ¼ xμ þ iδμφ
e−ikt

kr2
h0ðrÞ; ð4:6Þ

and then by redefining the function h1ðrÞ via the relation

h1ðrÞ ¼ i
rh00ðrÞ − 2h0ðrÞ

kr
: ð4:7Þ

Hence, odd-parity modes are only present for L ≥ 2.
As the angular component of the aforementioned equa-

tions is either nonvanishing or nonsingular for L ≥ 2, we
may concentrate solely on their radial part. By algebraically
solving Eq. (4.4) with respect to h0ðrÞ and substituting the
obtained result into Eq. (4.5), one obtains a second-order
differential equation for h1ðrÞ. If we now define a new
radial function ΨðrÞ via

h1ðrÞ ¼
rΨðrÞ

BðrÞeAðrÞ=2 ; ð4:8Þ

and also impose the tortoise coordinate r� with the use of
the transformation dr� ¼ dre−AðrÞ=2=BðrÞ, the aforemen-
tioned differential equation takes a Schrödinger-like form,
namely

d2Ψðr�Þ
dr�2

þ ½k2 − VðrÞ�Ψðr�Þ ¼ 0: ð4:9Þ

In the above relation, the potential is determined by

VðrÞ ¼ eAB
2r

�
B0ð3rA0 − 2Þ þ B½2rðA00 þΦ02Þ

þ rA02 − 3A0� þ 2rB00 þ 2LðLþ 1Þ
r

�
: ð4:10Þ

For more information about the derivation of the above
equation, see [125]. The tortoise coordinate facilitates a
coordinate transformation of the region ½rh;þ∞Þ, mapping
it to the interval ð−∞;þ∞Þ. In this way, divergences that
previously appeared on the black-hole horizon rh are
now moved to an infinite distance and, specifically, to
minus infinity. This transformation enables the tortoise
coordinate to serve as a parametrization for the entire
exterior spacetime of the black hole.
Since our spotlight is on the stability of the black-hole

solutions, there is no need to solve Eq. (4.9). The time
evolution factor expð−iktÞ simplifies our task, requiring us
only to determine if the frequency k is purely imaginary.
A negative eigenvalue k2 < 0 indicates an unstable mode
that corresponds to a bound state of the Schrödinger
equation (4.9). Thus, in this case, the frequency k is
purely imaginary, and the mode experiences exponential
growth due to the presence of the term expð−iktÞ.
According to [144], if the potential Vðr�Þ approaches zero
as r� → �∞, then the requirement to exist at least one
bound state is

Z þ∞

−∞
Vðr�Þdr� < 0: ð4:11Þ

However, it has been argued by the authors of [144] that the
existence of a bound state is not ruled out even if the
integral mentioned above is positive. This can be under-
stood intuitively as well, by simply imagining that, for
potentials with shapes similar to those shown in Fig. 6(a)
for q=rh ≥ 1.2, there is no obstacle for a bound state to exist
in the region where the potential is negative definite and
forms a well. Hence, we assert that any solution with a
negative region in its Vðr�Þ potential must contain at least
one unstable mode. Notice also that, due to the fact that the
term LðLþ 1Þ in Eq. (4.10) introduces a positive angular
barrier to the potential, it becomes sufficient to study the
stability of our black-hole solutions in the mode where the
value of the angular momentum is minimum, i.e., L ¼ 2. In
Fig. 6(a) we depict the graphs of the potential Vðr�Þ in
terms of the dimensionless quantity r�=rh, for a family of
six normal solutions. Respectively, Fig. 6(b) illustrates the
graphs of the potential for a family of six phantom
solutions. By purely observing the form of the graphs,
one can promptly deduce that normal solutions with ξ ¼ 5
are stable for q=rh ≲ 1, while the phantom solutions with
ξ ¼ −2 prove to be stable ∀ q

rh
∈ ð0; ffiffiffi

34
p Þ. This outcome is

consistent with the thermodynamic analysis presented in
Sec. II. Specifically, it is observed that ultrasparse black
holes exhibit greater stability relative to ultracompact ones,
both under odd spacetime perturbations and from a
thermodynamic perspective.
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V. CONCLUSIONS

In this work, we have investigated a basic theory
featuring a scalar field that is minimally coupled to gravity.
The Lagrangian density of the scalar field contains both its
kinetic and potential terms. Having adopted a spherically
symmetric form for the metric tensor and a specific
expression for one of its functions, we were then able to
solve the field equations and determine explicitly the
expressions of the unknown functions, including the scalar
field and its potential. It was proven that, depending on the
type of the scalar field, regular or phantom, the resulting
solutions may describe either ultracompact or ultrasparse
black holes. We then generalized these solutions into
slowly rotating ones by utilizing the method developed
in [134]. At the end of our study, we examined the stability
of our solutions under axial perturbations.
Our analysis began with an investigation of the proper-

ties of the spacetime geometry. By expanding the metric
components at infinity, we demonstrated that, by appro-
priately choosing the integration constants, one can either
obtain asymptotically flat or asymptotically (anti)de Sitter
solutions. In the context of the present work, wewere solely
focused on the study of asymptotically flat solutions, and
we showed that the scalar curvature invariant quantities
(the Ricci scalar R ¼ Rμ

μ, the scalar R ¼ RμνRμν, and the
Kretschmann scalar K ¼ RμνρσRμνρσ) indicate the presence
of a true spacetime singularity at r ¼ 0. Examining then
the causal structure of the spacetime, we found that the
singularity is always surrounded by a horizon, implying
that the derived solutions represent black holes. The
resulting black-hole solutions have been classified into
two categories, the normal and the phantom ones. The first
class of solutions originate from regular/real scalar fields,
while the second class is from phantom scalar fields. For
any combination of the black-hole parameters q andM that
leads to an apparent black-hole horizon, the horizon radius

of a normal solution is always smaller than the horizon
radius of the corresponding Schwarzschild black hole of
the same mass. Conversely, a phantom solution with the
same mass would have a greater horizon radius than that of
a Schwarzschild black hole. By appropriately selecting the
scalar charge q and the mass M, the normal and phantom
solutions may lead to either ultracompact or ultrasparse
black-hole solutions, respectively. The former ones possess
extremely low values of the ratio rh=ð2MÞ, while the latter
have extremely high values of the same quantity. An
immediate consequence of the above is that, from a
thermodynamic perspective and for a fixed black hole
mass M, the ultrasparse black holes appear to be the most
stable solutions since their horizon entropy is greater than
that of the corresponding Schwarzschild and ultracompact
solutions.
The fact that the black-hole solutions in the context of the

general theory of relativity are exclusively characterized by
their mass, electromagnetic charge, and angular momentum
is a direct result of the no-hair theorems. Similarly, no-
scalar-hair theorems [3–5] have been formulated for scalar-
tensor theories of gravity, which forbid the association
of black-hole solutions with scalar hair. However, the
no-scalar-hair theorems are only viable in a subclass of
the scalar-tensor theories. The theory we considered in this
work constitutes a simple, yet special type of model that
can evade the no-scalar-hair theorem and lead to well-
defined hairy black-hole solutions. As it was analyzed in
Sec. II, both normal and phantom solutions evade the
no-scalar-hair theorems for negative- and positive-definite
scalar potentials, respectively. Consequently, our hairy
black-hole solutions are well grounded.
Having evaluated the analytic expressions of the scalar

field and its potential, we then turned our attention to the
components of the stress-energy tensor associated with the
assumed scalar-field theory. We showed that the normal

FIG. 6. The potential r2hV in terms of the tortoise coordinate r�=rh for a family of (a) normal and (b) phantom solutions. The value of
the angular momentum L is equal to 2, while the dimensionless parameter q=rh varies.
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solutions—which correspond to a regular/real scalar field
—satisfy both null and strong energy conditions in the
causal region of the spacetime, while in the interior of the
black hole, the energy conditions are violated. On the other
hand, the phantom solutions violate the energy conditions
in the causal region of spacetime. This behavior, though, is
typical for phantom scalar fields, due to the fact that their
kinetic terms come with the wrong sign. This sole differ-
ence is sufficient to render the energy conditions violated.
Except for the examination of static solutions, we also

investigated slowly rotating solutions. The construction of
slowly rotating black holes was achieved by treating the
black-hole rotation as an axisymmetric perturbation on
the background spherically symmetric metric. The method
we followed was first proposed by Hartle [133] in the
framework of general relativity and was then generalized
by Pani and Cardoso for scalar-tensor theories [134]. We
found that the angular velocity of our solutions is directly
related to their scalar charge q. As far as the normal
solutions are concerned, we have shown that the more
scalar charge they acquire, the greater their angular velocity
becomes. On the other hand, the phantom solutions exhibit
the opposite behavior. The greater their scalar charge q is,
the slower they rotate. The reason behind this seemingly
arbitrary connection lies in the fact that, as the value of the
scalar charge q increases, the normal black-hole solutions
become more compact, while the phantom black holes
become more sparse. As a result, between two rotating
black-hole solutions with the same physical characteristics,
the one that is more compact is expected to rotate faster
than the other one. This behavior is indeed illustrated in
Sec. III, and it also concurs with our physical intuition.
Finally, we have studied the stability of our solutions

under axial (or odd) perturbations. We have successfully
determined the Schrödinger-like equation and the associ-
ated effective potential for our solutions. Keeping in mind
that the sole behavior of the effective potential is what
decides the stability of a given solution, we have plotted the
effective potential in terms of the dimensionless parameter
r�=rh, for both normal and phantom black holes. In the case
of normal black-hole solutions with ξ ¼ 5, our analysis
reveals that all resulting solutions are stable when q=rh is
less than or approximately equal to 1. On the other hand,
for phantom black holes with ξ ¼ −2, we have discovered
that these solutions are stable for all values of q=rh within
the range of 0 to

ffiffiffi
34

p
. Of course, a complete stability

analysis demands the examination of polar (or even)
perturbations as well. However, the study of even pertur-
bations requires advanced mathematical methods, since it
involves a system of four first-order differential equations
with variable coefficients. Hence, the sole analysis of even
perturbations constitutes on its own a separate project.
Once the stability of a black-hole solution is fully analyzed,
its quasinormal modes (QNMs) can then be studied. QNMs
are the characteristic oscillations of a black hole that occur

when it is perturbed by an external force or disturbance.
These oscillations are damped and decay over time, and
their frequencies depend only on the properties of the black
hole, such as its mass, angular momentum, and charge,
but not on the details of the perturbation. Therefore, since
different solutions are expected to possess different fre-
quency spectra, QNMs constitute in a sense the identity of a
compact object. In conjunction with the fact that future
updates of the LIGO-Virgo experiments might probe these
frequencies, QNMs are likely to lead to the experimental
verification of compact solutions originating from modified
theories of gravity [145].
Last but not least, the existence of hairy black holes in

anti–de Sitter (AdS) spacetimes has attracted considerable
attention due to its relevance to the AdS=CFT correspon-
dence. This duality suggests a connection between gravity
in AdS spacetimes and conformal field theories on their
boundary. In this context, hairy black holes have been
shown to play a crucial role in the phase structure and
thermodynamics of the corresponding dual-field theory.
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APPENDIX A: THE DERIVATION OF THE
SCALAR-FIELD EQUATION FROM THE

EINSTEIN EQUATIONS

By expanding the ∇λ∇λΦ term in scalar-field equa-
tion (2.6) and multiplying the left-hand side with Φ0, we
obtain

V 0 ¼ B0Φ02 þ BΦ0Φ00 þ B
2r

ð4þ rA0ÞΦ02: ðA1Þ

In the above, we have used the fact that V 0 ¼ ð∂ΦVÞΦ0.
Using now (2.8) to substitute Φ02 in terms of A0, we get

V 0 ¼ 2

r
A0B0 þ BΦ0Φ00 þ BA0

r2
ð4þ rA0Þ: ðA2Þ

Let us now focus on the gravitational field equations (2.9)
and (2.10). By differentiating both sides of Eq. (2.10) with
respect to r and substituting the term B00 þ BA00 that will
appear on the rhs using Eq. (2.9), one should obtain (A2).
This demonstrates the interdependence between the gravi-
tational field equations and the scalar-field equation (2.6),
revealing that the latter can be derived from the former.
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APPENDIX B: DIFFERENTIAL EQUATION OF THE MASS FUNCTION

The differential equation (2.14) is a second-order, linear, and nonhomogeneous differential equation with variable
coefficients; it is also presented below for convenience,

B00ðrÞ þ 3ξq2

rðq2 þ r2ÞB
0ðrÞ þ 2

q4ðξ2 − 1Þ − 2q2r2ðξþ 1Þ − r4

r2ðq2 þ r2Þ2 BðrÞ ¼ −
2

r2
: ðB1Þ

The general solution to the nonhomogeneous differential
equation is given by the sum of the solution regarding the
associated homogeneous differential equation and a par-
ticular solution BpðrÞ of the nonhomogeneous one, namely

BðrÞ ¼ BhðrÞ þ BpðrÞ: ðB2Þ

The homogeneous differential equation

B00
hðrÞ þ PðrÞB0

hðrÞ þQðrÞBhðrÞ ¼ 0; ðB3Þ

with

PðrÞ ¼ 3ξq2

rðq2 þ r2Þ ;

QðrÞ ¼ 2
q4ðξ2 − 1Þ − 2q2r2ðξþ 1Þ − r4

r2ðq2 þ r2Þ2 ; ðB4Þ

has the general solution

BhðrÞ ¼ A1B1ðrÞ þA2B2ðrÞ; ðB5Þ

where A1 and A2 are constants, while B1ðrÞ and B2ðrÞ are
two linearly independent solutions. However, due to the
fact that (B3) has variable coefficients, we need to guess the
first linearly independent solution B1ðrÞ, and then with
the use of the Wronskian we can determine the second one.
It is straightforward to verify that

B1ðrÞ ¼ ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ ðB6Þ

is indeed a solution to (B3). Using now the Wronskian,

WðrÞ¼
����B1ðrÞ B2ðrÞ
B0
1ðrÞ B0

2ðrÞ

����¼B1ðrÞB0
2ðrÞ−B2ðrÞB0

1ðrÞ; ðB7Þ

and the fact that both B1ðrÞ and B2ðrÞ are solutions to the
homogeneous equation, it is easy to show that

W0ðrÞ
WðrÞ ¼ −PðrÞ ⇔ WðrÞ ¼ W0e

−
R

PðrÞdr

¼ W0ðr=qÞ−3ξð1þ r2=q2Þ3ξ=2; ðB8Þ

where W0 is an integration constant. Given that BðrÞ is a
dimensionless function, Eq. (B7) indicates that the function
WðrÞ has dimensions of inverse length. Therefore, we may
render the value of W0 ¼ 1=q. This particular choice
provides the correct units to WðrÞ, while its numerical
value will not affect the generality of the solution BhðrÞ.
Combining now Eqs. (B7) and (B8) we obtain the differ-
ential equation regarding the function B2ðrÞ, that is,

B0
2ðrÞ −

B0
1ðrÞ

B1ðrÞ
B2ðrÞ ¼

WðrÞ
B1ðrÞ

¼ 1

q
e−

R
PðrÞdr

B1ðrÞ
: ðB9Þ

To solve the preceding equation we just need to multiply
both sides with ½B1ðrÞ�−1. By doing so, we obtain

d
dr

�
B2ðrÞ
B1ðrÞ

�
¼ 1

q
e−

R
PðrÞdr

½B1ðrÞ�2
⇔B2ðrÞ ¼

B1ðrÞ
q

Z
e−

R
PðrÞdr

½B1ðrÞ�2
dr:

ðB10Þ

In the above, we have ignored the integration constant since
it does not add any additional information to the general
solution (B5) of the homogeneous equation (B3).
Substituting the expressions of the functions PðrÞ and
B1ðrÞ in (B10), and after some algebra to make the integral
dimensionless, one should get

B2ðrÞ ¼ ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ

×
Z

ðr=qÞξ−4½1þ ðr=qÞ2�−ξ=2dðr=qÞ: ðB11Þ

For ξ ∈ Z the above integral can be solved in terms of
known functions, and thus B2ðrÞ is determined analytically.
For example, one can verify that
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ξ ¼ −2∶ B2ðrÞ ¼ −
1

15

r
q

3þ 5r2=q2

ð1þ r2=q2Þ2 ;

ξ ¼ −1∶ B2ðrÞ ¼
ðr=qÞ4 ln ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

p
Þ − ðr=qÞ4 lnðr=qÞ − ð2þ r2=q2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

p
8ð1þ r2=q2Þ ;

ξ ¼ 1∶ B2ðrÞ ¼
1

2

�
1þ r2

q2

��
ln ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

q
Þ − ln ðr=qÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

p
r2=q2

�
;

ξ ¼ 2∶ B2ðrÞ ¼ −
ð1þ r2=q2Þ2

r3=q3
½1þ ðr=qÞ arctan ðr=qÞ�:

However, for noninteger values of ξ, the best we can do is to
express B2ðrÞ in terms of the hypergeometric function

2F1ða; b; c; zÞ as presented below,

B2ðrÞ¼ðr=qÞ−ð1þξÞ ð1þr2=q2Þξ
ξ−3 2F1

�
ξ

2
;
ξ−3

2
;
ξ−1

2
;−

r2

q2

�
:

ðB12Þ

In the above, we have employed the integral representation
of the hypergeometric function [135], namely

2F1ða; b; c; zÞ ¼
ΓðcÞ

ΓðbÞΓðc − bÞ
Z

1

0

dttb−1ð1 − tÞc−b−1

× ð1 − ztÞ−a; ðB13Þ

with ReðcÞ > ReðbÞ > 0. Note also that an arbitrary con-
stant should be introduced in (B11) in order to convert the
indefinite integral to a definite one. This constant though
does not add additional information to the final result,
therefore, it may ultimately be ignored. Consequently, we
can define the function HðrÞ as follows:

HðrÞ≡
( ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ R ðr=qÞξ−4½1þ ðr=qÞ2�−ξ=2dðr=qÞ; ξ ∈ Z

ðr=qÞ−ð1þξÞ ð1þr2=q2Þξ
ξ−3 2F1

	
ξ
2
; ξ−3

2
; ξ−1

2
;− r2

q2



; ξ ∉ Z

)
; ðB14Þ

which will henceforth be used interchangeably with the
function B2ðrÞ.
Let us now determine the general solution BðrÞ of the

nonhomogeneous differential equation (B1). To this end,
we will use the method of variation of parameters or the
Lagrange method, as it is often called. The basic idea of
the method is to replace the constants A1 and A2 of the
homogeneous solution (B5) with the functions A1ðrÞ and
A2ðrÞ, respectively. Then, the general solution to Eq. (B1)
will be of the form

BðrÞ ¼ A1ðrÞB1ðrÞ þA2ðrÞB2ðrÞ; ðB15Þ

where B1ðrÞ and B2ðrÞ are given by the relations (B6) and
(B14), respectively. Substituting now the expression (B15)
in (B1), and after an appropriate grouping of terms, one
should obtain the following set of differential equations:

� A0
1ðrÞB1ðrÞ þA0

2ðrÞB2ðrÞ ¼ 0

A0
1ðrÞB0

1ðrÞ þA0
2ðrÞB0

2ðrÞ ¼ − 2
r2

�
: ðB16Þ

It is straightforward to solve the above system and
determine the unknown functions A1ðrÞ and A2ðrÞ. By
doing so, we find that

A0
1ðrÞ ¼

2

r2
B2ðrÞ
WðrÞ ⇔ A1ðrÞ ¼ C1 þ 2

Z
ðr=qÞ3ξ−2ð1þ r2=q2Þ−3ξ=2HðrÞdðr=qÞ; ðB17Þ

A0
2ðrÞ ¼ −

2

r2
B1ðrÞ
WðrÞ ⇔ A2ðrÞ ¼ C2 − 2

Z
ðr=qÞξð1þ r2=q2Þ−ξ=2dðr=qÞ: ðB18Þ

Using now (B15) and substituting the expressions of the functions B1ðrÞ, B2ðrÞ, A1ðrÞ, and A2ðrÞ as they are given by
(B6), (B14), (B17), and (B18), respectively, we get the solution
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BðrÞ ¼ ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ
�
C1 þ 2

Z
ðr=qÞ3ξ−2ð1þ r2=q2Þ−3ξ=2HðrÞdðr=qÞ

�

þHðrÞ
�
C2 − 2

Z
ðr=qÞξð1þ r2=q2Þ−ξ=2dðr=qÞ

�
; ðB19Þ

which for noninteger values of ξ can be brought to the following form:

BðrÞ ¼ C1ðr=qÞ2ð1−ξÞð1þ r2=q2Þξ þ C2

ξ − 3
ðr=qÞ−ð1þξÞð1þ r2=q2Þξ2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

�

þ 2ð1þ r2=q2Þξ
ξ − 3

��
r
q

�
2ð1−ξÞ Z

2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

��
r
q

�
2ξ−3

�
1þ r2

q2

�−ξ=2
d

�
r
q

�

− 1

ξþ 1 2F1

�
ξ

2
;
ξ − 3

2
;
ξ − 1

2
;−

r2

q2

�
2F1

�
ξ

2
;
ξþ 1

2
;
ξþ 3

2
;−

r2

q2

��
: ðB20Þ

In the preceding expression, the identity (B13) has been employed.

APPENDIX C: ADDITIONAL ASYMPTOTICALLY FLAT SOLUTIONS

Because of their interesting expressions, we present here the functions BðrÞ for ξ ¼ 1; 2. Hence, for ξ ¼ 1 one can verify
that

BðrÞ ¼
�
1þ r2

q2

��
q2

r2
−
3M
q

q2

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

q2

s
þ 3M

q
ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=q2

p
r=q

��
; ðC1Þ

while for ξ ¼ 2,

BðrÞ ¼
�
1þ r2

q2

�
2
�
3M
r

�
πq
r
−
2q2

r2

�
−
πq2

r2

�
π

4
−
q
r

�
−
�
6Mq
r2

þ 2q3

r3
−
πq2

r2

�
tan−1

�
r
q

�
− q2

r2

�
tan−1

�
r
q

��
2
�
: ðC2Þ

APPENDIX D: THE ANALYTIC FORMULAS FOR THE CURVATURE INVARIANTS

The analytic formulas for the curvature invariant quantities R≡ Rμ
ν, R≡ RμνRμν, and K≡ RμνρσRμνρσ, obtained from

the line element (2.7), are presented below.
For the normal solution with ξ ¼ 5, one finds that

R ¼ 2q2

3r10
ð15r6 þ 100q2r4 þ 130q4r2 þ 51q6Þ − 108Mq7

3r10

�
1þ r2

q2

�
5=2

; ðD1Þ

R ¼ 4q4

27r20
ð675r12 þ 6300q2r10 þ 23475q4r8 þ 42360q6r6 þ 40075q8r4 þ 19295q10r2 þ 3757q12Þ

þ 624M2q14

r20

�
1þ r2

q2

�
5

−
8Mq9

3r20

�
1þ r2

q2

�
5=2

ð180r6 þ 900q2r4 þ 1135q4r2 þ 442q6Þ; ðD2Þ

K ¼ 4q4

27r20
ð2025r12 þ 12000q2r10 þ 35610q4r8 þ 58470q6r6 þ 53306q8r4 þ 25330q10r2 þ 4913q12Þ

þ 48M2q14

r20

�
17þ r4

q4

��
1þ r2

q2

�
5

−
16Mq7

3r20

�
1þ r2

q2

�
5=2

ð30r8 þ 175q2r6 þ 616q4r4 þ 745q6r2 þ 289q8Þ; ðD3Þ

while in the case of the phantom solution, where ξ ¼ −2, one obtains
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Rp ¼ 4

5q4r2

�
1þ r2

q2

�−3
½ð18M − 5rÞr3 þ 2q2ð3M þ 5rÞrþ 5q4�; ðD4Þ

Rp ¼ 16

75q8r4

�
1þ r2

q2

�−6
½3ð156M2 − 120Mrþ 25r2Þr6 þ 3q2ð144M2 þ 30Mr − 25r2Þr4

þ 12Mq4ð9M þ 25rÞr2 þ 15q6ð6M þ 5rÞrþ 25q8�; ðD5Þ

Kp ¼ 16

75q12r4

�
1þ r2

q2

�−6
½225M2r10 þ 300Mq2ð3M þ rÞr8 þ 3q4ð654M2 þ 220Mrþ 75r2Þr6

þ 2q6ð774M2 þ 840Mrþ 175r2Þr4 þ 5q8ð81M2 þ 300Mrþ 110r2Þr2 þ 30q10ð14M þ 15rÞrþ 125q12�: ðD6Þ
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