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We study the underlying structure of the vanishing of the Love numbers of both Schwarzschild and Kerr
black holes in terms of spacetime conformal symmetry in a unified manner for the static spin-s fields. The
perturbations can be reduced with the harmonic decomposition to a set of infinite static scalar fields
in a two-dimensional anti–de Sitter spacetime ðAdS2Þ. In the reduced system, each scalar field is paired
with another, implying that all multipole modes of the perturbation can be regarded as symmetric partners,
which can be understood from the property of the supersymmetry algebra. The generator of the
supersymmetric structure is constructed from a closed conformal Killing vector field of AdS2. The
associated conserved quantity allows one to show no static response, i.e., vanishing of the Love and
dissipation numbers. We also discuss the vanishing Love numbers of the Kerr black hole with the nonzero
dissipation numbers for the nonaxisymmetric perturbations in terms of a radial constant found in a parallel
manner as the axisymmetric field case even though the interpretation for the structure is controversial. The
symmetric structure corresponds to the “ladder” symmetry in [Hui et al., J. Cosmol. Astropart. Phys. 01
(2022) 032] although the geometrical origin is different. Our ladder operator includes the generators of
hidden symmetries in previous works.
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I. INTRODUCTION

The black hole is one of the most surprising predictions
of general relativity. Its only component is the concept
of spacetime. Black holes have remarkable properties in
general relativity, i.e., no hair [1,2] and uniqueness [3–5].
As a consequence, all the astrophysical black holes are
believed to be well described by the Kerr geometry, which
is characterized solely by the mass and spin parameters. On
the other hand, general relativity might need modification
in the vicinity of the event horizon. In modified theories of
gravity, black holes can possess a scalar hair [6,7], unlike
the Kerr black holes. The detection of the deviation from
the Kerr geometry by future gravitational-wave observa-
tions can be a smoking gun for such new physics.
Binary black hole systems are strong candidates for

gravitational-wave sources [8] and also work as astrophysi-
cal laboratories to test strong gravitational fields [9,10].
During the early inspiral phase of a compact binary,
the two bodies behave as point masses, as their internal
structure does not affect the orbital motion [11]. As
the orbital separation sufficiently decreases due to the
gravitational-wave emission, however, the tidal interaction
between the bodies becomes remarkable and higher-order

post-Newtonian correction comes into effect. Its correction
appears at the 5PN order in the gravitational waveform as a
function of a quantity called tidal deformability, which
characterizes how the bodies deform as a static response to
the perturbative tidal field generated by each other [12].
The tidal deformability is encoded in a set of the tidal Love
numbers, which are determined by the internal structure of
the body [13–16]. This means that a measurement of the
tidal Love numbers from a gravitational-wave signal
provides information about the internal structure of the
bodies as an inverse problem [17]. Indeed, the equation of
state of a neutron star has been constrained from
GW170817 [17–19]. In the same manner, it is expected
that a test of the strong-field gravity can be performed with
tidal Love numbers [20].
An intriguing result regarding the tidal Love numbers is

their vanishing for (four-dimensional) black holes in
vacuum in general relativity, i.e., Schwarzschild [14,21]
and Kerr black holes [22–25]. The Schwarzschild and Kerr
black holes either have the vanishing Love numbers for
spin-0 or spin-1 field perturbations [25,26]. On the other
hand, in some modified theories of gravity, black holes can
have nonzero tidal Love numbers [20,27]. One might then
think that an additional field can endow a black hole with
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nonzero Love numbers. In fact, the Love numbers of
black holes can be nonzero in cases with an anisotropic
fluid [28,29] or with a bosonic scalar-field condensate [30]
within general relativity. In addition, black holes have zero
Love numbers in some modified theories of gravity or in
the presence of some kind of “matter” field, e.g., the
Schwarzschild black hole in the Brans-Dicke theory and
the Reissner-Nordström black hole in the Einstein-Maxwell
theory [20,28]. Similarly, even in vacuum in General
Relativity, the Schwarzschild-Tangherlini spacetime has
nonzero Love numbers [26]. In other contexts, several
literatures [31–33] pointed out that from the viewpoint of
an effective field theory approach [34–36], the no tidal
response of the Schwarzschild black hole is puzzling and
seems to be a result of fine-tuning. These suggest that some
nontrivial underlying structure is prohibiting finite Love
numbers.
A linear response of compact objects is also character-

ized by other quantities which are imprinted in gravitational
waveforms coming from an inspiraling binary, i.e., dis-
sipation numbers that quantify the dissipation of an external
tidal field. For a time-varying external field, black holes
have nonzero dissipation numbers due to the presence of
the event horizon, while horizonless compact objects have
their vanishing. This property may allow for constraining
a quantum correction at the horizon scale with future
gravitational-wave observation [37,38]. For a static external
field, Schwarzschild black holes have vanishing Love and
dissipation numbers, meaning no static response. Kerr
black holes have nonzero dissipation numbers for non-
axisymmetric static fields because of a relative motion
arising from rotation, while both the Love and dissipation
numbers vanish for axisymmetric fields, i.e., no static
response.
Several authors independently argue that the vanishing

of Love numbers may be a result of “hidden” symmetries
governing linear perturbations.1 Penna [32] suggested in
the context of the black-hole membrane paradigm that the
emergent local Carroll symmetry [39] in the near-horizon
region may have a role in explaining the no static response
of the Schwarzschild black hole. Charalambous, Dubovsky,
and Ivanov [40] argued that a long-wavelength spin-s field
perturbation in the Kerr spacetime has a hidden SLð2;RÞ ×
Uð1Þ symmetry dubbed Love symmetry and spin-s-field
Love numbers of the Kerr black hole vanish as a conse-
quence of this symmetry based on the SLð2;RÞ represen-
tation theory. Recently, Hui, Joyce, Penco, Santoni, and
Solomon [33] showed the vanishing of scalar-field Love
numbers from the perspective of two types of hidden
symmetries, one of which originates from the presence
of a Killing vector field in a three-dimensional Euclidian
anti–de Sitter space (see also Ref. [41]). More recently,

Charalambous, Dubovsky, and Ivanov [42] conducted a
detailed study on the vanishing of spin-s-field Love
numbers of Kerr-Newman black holes in terms of SLð2;RÞ
representations.
The recent arguments above on the connection between

the static response and a hidden symmetry are reminiscent
of the Laplace-Runge-Lenz vector, the conserved quantity
associated with a dynamical symmetry in the Kepler
problem [43]. The Laplace-Runge-Lenz vector explains
the absence of the periapsis shift in the inverse-square
central force. The Laplace-Runge-Lenz vector also appears
in the structure of the hydrogen atom and explains the
degeneracy of the energy levels with different orbital
angular momenta [44]. Some hidden symmetries may also
explain the vanishing of the Love numbers of black holes
based on the analogy of quantum mechanics and the black-
hole perturbation theory as in Refs. [45–52]. However, we
still have a fundamental question: why does such a hidden
symmetric structure exist?
It is natural to expect that a geometrical property such as

spacetime symmetry gives symmetry for perturbation
fields in a given spacetime. In addition, if some hidden
symmetric structure provides a useful way to understand
the vanishing of Love numbers as several authors argued,
the strategy should work for spin-s fields in a unified
manner because the vanishing Love number is a common
property of all the scalar, vector, and tensor-field perturba-
tions to Schwarzschild and Kerr black holes. In this paper,
for the above problems, we study the underlying symmetric
structure of the vanishing of the spin-s-field Love numbers
of the Schwarzschild and Kerr black holes in terms of
spacetime conformal symmetry in a unified manner. We
reduce a perturbation with the harmonic decomposition
into a set of infinite static scalar fields in the two-
dimensional anti-de Sitter spacetime ðAdS2Þ. We then
discuss a symmetric structure generated by a ladder
operator constructed from a closed conformal Killing
vector field of AdS2.

2 The no static response of the
Schwarzschild black hole can be understood in terms of
the associated conserved quantity. This is also the case of
the Kerr black hole for axisymmetric perturbation fields.
We further discuss the vanishing Love numbers of the Kerr
black hole with the nonzero dissipation numbers for non-
axisymmetric perturbations in terms of a radial constant
which is found in a parallel manner as the axisymmetric

1Here, the terminology “hidden” symmetries means that they
do not correspond to isometries of a spacetime.

2The hidden symmetric structure corresponds to the “ladder”
symmetry in Ref. [33] although the geometrical origin is differ-
ent. Hui et al. [33] gave a generator, i.e., ladder operator, arising
from a Killing vector field of a Euclidean AdS3 for a scalar field
case s ¼ 0; they also found a ladder operator for vector (s ¼ 1)
and tidal field (s ¼ 2) cases but its construction seems to be
heuristic. Our viewpoint gives a ladder operator for spin-s fields
from a closed conformal Killing vector field in AdS2 in a unified
manner. Our operator includes the ladder operators in Ref. [33];
the ladder operators in Ref. [41] and the mass ladder operator in
Refs. [49–51,53,54] for a scalar field case.
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field case even though the interpretation for the aforemen-
tioned structure is controversial [33,42,55]. To our knowl-
edge, this is the first attempt to explain no static response of
the Schwarzschild and Kerr black holes for spin-s fields in
a unified manner based on a symmetric approach from a
geometrical point of view.3

The organization of the rest is as follows. Section II
presents a brief review of a static response of the
Schwarzschild black hole to spin-s field perturbations. In
Sec. III, we reduce the problem of the static spin-s field
perturbation on the Schwarzschild black hole to that of
static scalar fields in AdS2, and further show a hidden
symmetric structure governing the perturbations from the
perspective of spacetime conformal symmetry of the
reduced geometry. We then explain in Sec. IV the no static
response of the Schwarzschild black hole in terms of the
symmetric structure. In Sec. V, we discuss the relation
between the vanishing Love numbers and a hidden sym-
metric structure. Section VI is devoted to the summary and
implication of this paper. Appendices give the supplemen-
tary materials; a slowly varying perturbation case, deriva-
tion of a ladder operator from spacetime conformal
symmetry and the application of the operator to perturba-
tions to the Schwarzschild-Tangherlini black hole [56].

II. STATIC RESPONSE OF SCHWARZSCHILD
BLACK HOLES

In this section, we briefly review a linear static response
of Schwarzschild black holes to external spin-s fields, i.e.,
scalar (s ¼ 0), vector (s ¼ 1), and gravitational (s ¼ 2)
fields [14]. We assume that the amplitude of the field is
small, and its wavelength is much longer than the horizon
scale. The field is then described by a linear static
perturbation theory of the Schwarzschild black hole.

A. Linear perturbation theory of the Schwarzschild
black hole

We here review the linear perturbation theory to the
Schwarzschild black hole for the tidal field (s ¼ 2) and its
generalization for the spin-s fields. The Schwarzschild
black hole spacetime is described by

gð0Þμν dxμdxν ¼ −
Δ
z2

dt2 þ z2

Δ
dz2 þ z2dΩ2; ð2:1Þ

where

Δ ¼ zðz − 1Þ; ð2:2Þ

and dΩ2 ¼ dθ2 þ sin2θdφ2 is the line element of a two-
dimensional unit sphere S2. In the current coordinate
system ðt; z; θ;φÞ, the radial coordinate z is defined in
the range z ∈ ð1;∞Þ, where z ¼ 1 and∞ correspond to the
locations of the event horizon and spatial infinity,
respectively.
We first explain the linear theory of a tidal field

perturbation, i.e., s ¼ 2. On the Schwarzschild background
(2.1), the linearly perturbed metric takes a form,

gμν ¼ gð0Þμν þ hμν; ð2:3Þ

where hμν is a linear perturbation. Each independent
component of hμν is classified as either scalar or vector
part on S2, which can be expanded in terms of scalar
spherical harmonics or vector spherical harmonics, respec-
tively [57,58]. The scalar and vector parts correspond to
even and odd parts, respectively, under the parity trans-
formation ðθ;φÞ → ðπ − θ;φþ πÞ. The former and latter
are also called the polar-type and axial-type perturbations,
respectively. Thus, we have

hμν ¼ hðpolarÞμν þ hðaxialÞμν ; ð2:4Þ

where hðpolarÞμν and hðaxialÞμν denote the polar- and axial-type
perturbations, respectively.
In the Regge-Wheeler gauge [59], the linearized Einstein

equation for the axial- and polar-type perturbations is
reduced to two independent master equations. One for
the axial-type perturbation Φ−

l is the so-called Regge-
Wheeler equation [59] in the static limit:

Δ
z2

d
dz

�
Δ
z2
dΦ−

l

dz

�
−
Δ
z2

�
lðlþ 1Þ

z2
−

3

z3

�
Φ−

l ¼ 0; ð2:5Þ

where l ¼ 2; 3;… is the index of multipoles. Note that
the azimuthal number m does not appear because of the
spherical symmetry of the background spacetime. The
other for the polar-type perturbation is the so-called
Zerilli equation [60]. As shown in Appendix A, with
the Chandrasekhar transformation [61], the solutions of the
static Zerilli equation can be generated from that of the
static Regge-Wheeler equation (2.5).4

We next give a perturbation equation for the spin-s fields.
Static scalar field (s ¼ 0), vector field (s ¼ 1), and axial-
type tidal field (s ¼ 2) perturbations are uniformly
described by [58,63,64]

3When the manuscript had almost completed, Ref. [42]
appeared. The generator in Ref. [42] corresponds to the covariant
Lie derivatives with respect to the tetrad transformations of the
Newman-Penrose approach. It appears to come that this and ours
are one of several aspects of the vanishing of Love numbers from
different perspectives. We mention here that for a scalar field
case, the generators of SLð2;RÞ symmetry in Refs. [40,42] are
Killing vector fields of AdS2.

4The master variable of the static polar-type perturbation can
be defined well in the static limit as well [62].
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Δ
z2

d
dz

�
Δ
z2
dΦðsÞ

l

dz

�
−
Δ
z2

�
lðlþ 1Þ

z2
−
s2 − 1

z3

�
ΦðsÞ

l ¼ 0; ð2:6Þ

where l ≥ s. In this work, we regard Eq. (2.6) as a
fundamental equation governing static spin-s field pertur-
bations to the Schwarzschild black hole in a unified manner
because the polar-type tidal field perturbation can also be
described by the axial-type one with the Chandrasekhar
transformation [61] as stated above.

B. Spin-s-field Love and dissipation numbers

Here, we introduce the notion of the spin-s-field Love
and dissipation numbers. We consider asymptotic behav-
iors of solutions of Eq. (2.6) at the horizon and large
distances. On the one hand, at the horizon z ¼ 1, we have
two linearly independent asymptotic solutions, i.e.,

ΦðsÞ
l jz→1 ∼ const:; lnð1 − 1=zÞ: ð2:7Þ

Note that, at the horizon, the former and latter are regular
and logarithmically divergent, respectively. On the other
hand, at large distances z ≫ 1, we have two linearly
independent asymptotic solutions, i.e.,

ΦðsÞ
l jz≫1 ∼ zlþ1; z−l: ð2:8Þ

A generic expectation might be that in the distant region

z ≫ 1, the regular solution at the horizon, i.e., ΦðsÞ
l jz→1 ∼

const would be written in the form of a linear combination
of two linearly independent solutions, i.e.,

ΦðsÞ
l jz≫1 ∝ zlþ1½1þOð1=zÞ þ 2kðsÞl z−2l−1ð1þOð1=zÞÞ�:

ð2:9Þ

Physically, the first and second terms are interpreted as
the external perturbation field and the static response

of the black hole, respectively. The coefficient kðsÞl is
generically complex. The real part is called spin-s-field
Love numbers [20,30]. Dissipation numbers can be read off
from the imaginary part [23,25]. In the same manner, the
tidal Love and dissipation numbers for the polar-type
gravitational perturbation can also be defined [14,16].

C. Example: Lowest multipole ðl= sÞ case
As an example, we show no static response to the lowest

multipole mode of the physical solution. The analytic

expressions for ΦðsÞ
s are given, respectively, by

Φð0Þ
0 ¼ Cð0Þ

1 zþ Cð0Þ
2 z ln ð1 − 1=zÞ; ð2:10Þ

for s ¼ 0, and

Φð1Þ
1 ¼ Cð1Þ

1 z2 þ Cð1Þ
2 ½1þ 2zþ 2z2 ln ð1 − 1=zÞ�; ð2:11Þ

for s ¼ 1, and

Φð2Þ
2 ¼ Cð2Þ

1 z3 þ Cð2Þ
2 z−1½3þ 4zþ 6z2 þ 12z3

þ 12z4 lnð1 − 1=zÞ�; ð2:12Þ

for s ¼ 2, where CðsÞ
1 and CðsÞ

2 are constants. Note here that

the term of CðsÞ
2 has a logarithmic contribution, which is

divergent in the horizon limit z → 1. To ensure the
regularity of the perturbations at the horizon, we have to

set CðsÞ
2 ¼ 0. Therefore, the solution regular at the horizon

takes the form,

ΦðsÞ
s ¼ CðsÞ

1 zsþ1: ð2:13Þ

Note that this solution has no decaying term of z at large

distances z ≫ 1. Thus, the coefficient kðsÞs is precisely zero
for the Schwarzschild black hole, meaning no static
response. One can show that the higher-multipolar spin-
s-field Love and dissipation numbers also vanish in the
same manner. The tidal Love and dissipation numbers for
the polar-type tidal field perturbation are also precisely zero
as shown in Appendix A.

III. HIDDEN SUPERSYMMETRIC STRUCTURE
OF STATIC PERTURBATIONS

In this section, we show the existence of a “super-
symmetric” structure governing static spin-s field pertur-
bations to the Schwarzschild black hole from a geometrical
point of view. We first demonstrate that the static spin-s
field perturbation to the Schwarzschild black hole can be
reduced to a set of infinite static scalar fields in the two-
dimensional anti–de Sitter spacetime (AdS2). We then
construct a ladder operator that is a generator of the
symmetric structure, from a particular spacetime conformal
symmetry of AdS2, and further derive the conserved
quantity associated with the symmetric structure. In
Appendix B, we show that the following discussion is
completely parallel also for a slowly varying perturbation.

A. Reduction to AdS2

The static spin-s field perturbation satisfies

Δ
z2

d
dz

�
Δ
z2
dΦl

dz

�
−
Δ
z2

�
lðlþ 1Þ

z2
−
s2 − 1

z3

�
Φl ¼ 0; ð3:1Þ

which is the same as Eq. (2.6). Henceforth, we omit the
superscript s denoting the spin of the field. We rewrite
Eq. (3.1) into more convenient form for later discussion:
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d
dz

�
Δ
dϕl

dz

�
−
�
lðlþ 1Þ − s2

z

�
ϕl ¼ 0; ð3:2Þ

where we have defined

ϕlðzÞ ¼
Φl

z
: ð3:3Þ

In what follows, we shall see that Eq. (3.2) can be
identified as the equation of motion for a static scalar
field in AdS2. Consider a line element in the static
coordinates ðt; zÞ,

gAdS2ab dxadxb ¼ −Δdt2 þ 1

Δ
dz2; ð3:4Þ

where a, b run t and z. The scalar curvature of this metric is
calculated as

Rð2Þ ¼ −2: ð3:5Þ

The spacetime described by Eq. (3.4) has a negative
constant curvature, i.e., AdS2. The d’Alembertian in
AdS2 is given by

□AdS2 ≔ −
1

Δ
∂
2
t þ ∂zðΔ∂zÞ: ð3:6Þ

It should be noted that the first term of the left-hand side of
Eq. (3.2) corresponds to the d’Alembertian (3.6) for a static
field, i.e.,

□AdS2 ¼
d
dz

�
Δ

d
dz

�
: ð3:7Þ

This indicates that the variable ϕl in Eq. (3.2) can be
identified as a scalar field in AdS2 of Eq. (3.4) satisfying an
equation of motion,

�
□AdS2 −

�
lðlþ 1Þ − s2

z

��
ϕl ¼ 0: ð3:8Þ

Thus, the static spin-s field perturbation to the
Schwarzschild black hole can be reduced to a set of infinite
static scalar fields in AdS2 of Eq. (3.4). Note that this
reduction differs from the so-called near-horizon limit for
extremal black holes [65] because the emergence of the
AdS2 geometry is not inherited from the enhancement of
the isometry of the background spacetime itself [66,67].
We comment that the reduction above corresponds to the

static limit of that of a slowly varying time-dependent
perturbation. As shown in Appendix B, a slowly varying
time-dependent spin-s field can be reduced to a time-
dependent scalar field in AdS2. The equation of motion for
that takes the same form as Eq. (3.8). The following

argument works even for the case of the time-dependent
field in an almost parallel manner.

B. Ladder operator from spacetime conformal
symmetry

We define a generator of a hidden symmetric structure,
i.e., ladder operator, based on the AdS2 geometry,

Dk� ≔ Lζ −
k�
2

�
∇aζ

a −
s2

k2�

�
; ð3:9Þ

where

kþ ¼ −l − 1; k− ¼ l: ð3:10Þ

Here, Lζ is the Lie derivative with respect to a vector field
ζa called a closed conformal Killing vector field in AdS2 of
Eq. (3.4),

ζa
∂

∂xa
¼ Δ

∂

∂z
; ð3:11Þ

which satisfies a conformal Killing equation,

Lζgab ¼ ð∇cζ
cÞgab; ð3:12Þ

with the closed condition,

∇aζb ¼ ∇bζa: ð3:13Þ

The operator Dk� in Eq. (3.9) can be written as

Dk� ¼ Δ
d
dz

−
k�
2

�
2z − 1 −

s2

k2�

�
: ð3:14Þ

We here point out that the ladder operator satisfies a
commutation relation,�
□AdS2 þ

s2

z
;Dk�

�

¼ −2k�Dk� þ ð∇aζ
aÞ
�
□AdS2 −

�
k�ðk� þ 1Þ − s2

z

��
:

ð3:15Þ

Note that the construction of the ladder operator is
coordinate-independent as seen in Appendix C. We also
comment that the z-coordinate corresponds to a direction of
symmetry generated by the closed conformal Killing
vector field.
For the case of s ¼ 0, the operator (3.9) corresponds to a

mass ladder operator which maps a solution of a massive
Klein-Gordon equation into another solution of that with
different mass squared [49–51,53,54]. The ladder operator
(3.9) corresponds to an extension of the mass ladder
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operator to the case where the massive Klein-Gordon field
in AdS2 has an additional potential term. In the current
case, the important point for the construction is not only
that the effective AdS2 geometry emerges but also that
the potential form inherited from the original black hole
geometry belongs to a special class: as is seen in
Appendix C, for a scalar field with a generic potential
term in AdS2, the possible potential form which admits the
ladder operator is strongly restricted in the form which is
associated with the closed conformal Killing vector field
in AdS2 [see Eq. (C24)], constraining the form of the
corresponding ladder operator at the same time [see
Eq. (C23)]. In other words, an arbitrary potential term is
prohibited by the closed conformal Killing vector field. In
this sense, the ladder operator has a geometrical origin. It
should then be emphasized that the potential term in
Eq. (3.8) admits the ladder operator and is inherited from
the property of the original Schwarzschild geometry. This
also implies that the linearized Einstein equation around
Schwarzschild black holes in the static limit belongs to a
special class admitting a ladder operator.
Surprisingly, the expression for the ladder operator

(3.14) with s ¼ 0 corresponds to that in Eq. (2.4) in
Ref. [33] and that in Eq. (2.20) in Ref. [41] although their
constructions are completely different. The expression
for the operator (3.14) with s ¼ 2 also corresponds to
Eqs. (C.4) and (C.5) in Ref. [33], which are heuristically
constructed; we derive them and explain their origin in a
general context in terms of a detailed analysis based on the
geometrical perspective in AdS2 in Appendix C.

C. Transformation of static scalar fields
by ladder operators

Now, we act the commutation relation (3.15) with k− in
Eq. (3.10) on a smooth function ϕlðzÞ, yielding

ðDl þ∇aζ
aÞ
�
□AdS2 −

�
lðlþ 1Þ − s2

z

��
ϕl

¼
�
□AdS2 −

�
ðl − 1Þl −

s2

z

��
Dlϕl: ð3:16Þ

When the function ϕl satisfies Eq. (3.8), the left-hand side
of the relation (3.16) vanishes; thus, obtaining

�
□AdS2 −

�
ðl − 1Þl −

s2

z

��
Dlϕl ¼ 0: ð3:17Þ

This implies that the function Dlϕl generated by a trans-
formation ϕl → Dlϕl is a solution of the equation of
motion for ϕl in Eq. (3.8) with l → l − 1. In other words,
the action of the ladder operator Dl generates a solution
with the multipole index shifted as l → l − 1. In the same
manner, by acting the commutation relation (3.15) with kþ

in Eq. (3.10) on ϕl, one can show that the ladder operator
generates a function D−l−1ϕl, which satisfies

�
□AdS2 −

�
ðlþ 1Þðlþ 2Þ − s2

z

��
D−l−1ϕl ¼ 0: ð3:18Þ

The function D−l−1ϕl is a solution with the multipole
index shifted as l → lþ 1.
Given the commutation relation (3.15), the multiple

action of the ladder operators further shifts the index l
of the solution as follows. When considering Nth order
multiple actions of the ladder operators on ϕl in Eq. (3.8),

ϕl → Dl−Nþ1 � � �Dl−1Dlϕl; ð3:19Þ

we obtain

�
□AdS2 −

�
ðl − NÞðl − N þ 1Þ − s2

z

��
×Dl−Nþ1 � � �Dl−1Dlϕl ¼ 0: ð3:20Þ

This multiple action generates a solution with a shifted
index as l → l − N. In particular, as will be seen later,
the ðl − sÞth order action generates the lowest multi-
pole mode from the higher multipole mode indexed
with l. In the same manner, Nth order multiple action
D−l−N � � �D−l−2D−l−1 on ϕl generates a solution with the
index shifted as l → lþ N.

D. Supersymmetric structure

The ladder operator relates a static solution with a given
l to other static solutions with a shifted multipole index.
That means that the transformation generated by the ladder
operator keeps the “shape” of the equation of motion. We
discuss here the underlying structure of the shape invari-
ance, i.e., hidden supersymmetric structure.
Let us consider the system that consists of a pair of fields

ðϕl;ϕl�1Þ governed by the action,

S ¼ 1

2

Z
dz

�
−
�
Δ

d
dz

ϕl

�
2

− Vlϕ
2
l −

�
Δ

d
dz

ϕl�1

�
2

− Vl�1ϕ
2
l�1

�
; ð3:21Þ

where the potentials are given by5

5In terms of k� in Eq. (3.10), the potentials take the forms,

Vl ¼ Δ
�
k�ðk� þ 1Þ − s2

z

�
; Vl�1 ¼ Δ

�
ðk� − 1Þk� −

s2

z

�
:

ð3:22Þ
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Vl ¼ Δ
�
lðlþ 1Þ − s2

z

�
;

Vl�1 ¼ Δ
�
ðl� 1Þðl� 1þ 1Þ − s2

z

�
: ð3:23Þ

The action (3.21) is invariant under the continuous trans-
formation,

ϕl → ϕl þ ϵD−k�ϕl�1; ϕl�1 → ϕl�1 þ ϵDk�ϕl;

ð3:24Þ

where ϵ is an infinitesimal parameter. We discuss the
corresponding conserved quantity in the next subsection.
One can inductively generalize the above symmetry of the
pair ðϕl;ϕl�1Þ to that of infinite pairs ðϕl;ϕl�1;ϕl�2; � � �Þ.
As will be seen below, the transformation (3.24) generates a
supersymmetric structure.
We now discuss the detailed property of the above

symmetry. By varying the action (3.21) with respect to
ϕl and ϕl�1, we obtain the equations of motion for ϕl and
ϕl�1, which are consistent with Eq. (3.8),

Hlϕl ¼ 0; Hl�1ϕl�1 ¼ 0; ð3:25Þ

where we have defined the Hamiltonians,

Hl ≔ −Δ
d
dz

�
Δ

d
dz

�
þ Vl;

Hl�1 ≔ −Δ
d
dz

�
Δ

d
dz

�
þ Vl�1: ð3:26Þ

Introducing a function,

Wk� ≔
k�
2

�
2z − 1 −

s2

k2�

�
; ð3:27Þ

the potentials Vl and Vl�1 in Eq. (3.23) can be written as

Vl ¼ W2
k� þ Δ

dWk�
dz

þ β2k� ;

Vl�1 ¼ W2
k� − Δ

dWk�
dz

þ β2k� ; ð3:28Þ

where we have defined

βk� ¼ k2� − s2

2k�
: ð3:29Þ

In terms of Wk� in Eq. (3.27), the ladder operator takes the
form of Dk� ¼ Δ d

dz −Wk� . One can then show the follow-
ing relations:

Hl ¼ D−k�Dk� þ β2k� ; Hl�1 ¼ Dk�D−k� þ β2k� :

ð3:30Þ

This implies

Dk�Hlϕl ¼ Dk�ðD−k�Dk� þ β2k�Þϕl ¼ Hl�1Dk�ϕl ¼ 0;

D−k�Hl�1ϕl�1 ¼ D−k�ðDk�D−k� þ β2k�Þϕl�1 ¼ HlD−k�ϕl�1 ¼ 0: ð3:31Þ

It can be seen that given the solution ϕl ofHl, the function
Dk�ϕl is that ofHl�1; given the solution ϕl�1 ofHl�1, the
function D−k�ϕl�1 is that of Hl.

6 In other words, ϕl

and ϕl�1 are associated with each other through the
transformation generated by the ladder operator. In this
sense, ϕl and ϕl�1 are a symmetric partner under the
transformation by the ladder operators. Note that for a
given ϕl, there exist infinite symmetric partners with
different multipoles generated by the multiple action of
the ladder operators. This feature corresponds to the
supersymmetric structure seen in supersymmetric quantum
mechanics [68].
The above symmetric structure can be understood from

the property of the following algebra. Defining matrices,

H ¼
�Hl − β2k� 0

0 Hl�1 − β2k�

�
; Q ¼

�
0 0

Dk� 0

�
;

Q̄ ¼
�
0 D−k�

0 0

�
; ð3:32Þ

then, we have

½H;Q� ¼ ½H; Q̄� ¼ O; fQ; Q̄g ¼ H;

fQ;Qg ¼ fQ̄; Q̄g ¼ O; ð3:33Þ

where O is the zero matrix; ½; � and f; g denote the
commutator and the anticommutator, respectively. This is
known as the supersymmetry algebra, whereDk� and D−k�
correspond to an intertwiner, and Q and Q̄ correspond to
supercharges in supersymmetric quantum mechanics [68].6This is the emergence of the vertical symmetry in Ref. [33].
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E. Conserved quantity from the supersymmetric
structure

We derive the radially conserved quantity associated
with the supersymmetric structure. When performing the
transformation (3.24), the invariance of the action (3.21)
leads to a conserved quantity,7

Wl ≔ ðD−k�ϕl�1Þ
�
Δ
dϕl

dz

�
−
�
Δ
dD−k�ϕl�1

dz

�
ϕl:

ð3:34Þ

One can show the radial conservation of Wl for the fields
that satisfy the equations of motion, Hlϕl ¼ 0 and
Hl�1ϕl�1 ¼ 0. In other words, the quantity Wl is con-
served in the direction generated by the closed conformal
Killing vector field.
We discuss the property of the conserved quantity in

the radial direction. Let us consider the pair of the lowest
multipole mode ϕs for a given spin weight s and an
originally “unphysical”mode ϕs−1. From the explicit forms
of the ladder operator, D∓s ¼ zðz − 1Þ d

dz � sðz − 1Þ, it
follows that D−sϕs−1jz→1 ¼ 0 and Dsϕsjz→1 ¼ 0 for ϕs−1
and ϕs with the regularity condition at z ¼ 1, while this is
not the case for the logarithmically divergent solutions.
This is a unique property for the pair with ϕs−1, and is not
the case for pairs without it, e.g., ðϕs;ϕsþ1Þ. The radial
conservation of Ws then leads to

ðD−sϕs−1Þ
d
dz

½zsDsϕs� ¼ 0: ð3:35Þ

This means that with the general solution of ϕs−1 prepared,
the conservation ofWs is equivalent to that of the following
quantity:

Ys ≔ zsDsϕs: ð3:36Þ

From the observations above, the radially conserved
quantity Ys identically vanishes for ϕs with regularity at
z ¼ 1, while that is nonzero for the logarithmically diver-
gent solution. This shows that Dsϕs itself identically
vanishes for ϕs with regularity. The quantity Ys is propor-
tional to the induced multipole moment [14,15] as will be
seen in Sec. IV. The vanishing of Dsϕs under the regularity
condition is similar to the phenomenon known as “unbro-
ken supersymmetry” in the context of supersymmetric
quantum mechanics [68].8

One can obtain a radially conserved quantity for general
multipoles. The ladder operators map a given ϕl into the
lowest multipole mode, ϕ̃s ≔ Dsþ1 � � �Dl−1Dlϕl, thereby
yielding a conserved quantity in the radial direction,

Yl ≔ zsDsϕ̃s: ð3:37Þ

The quantity Yl is proportional to the induced multipole
moment [14,15].

IV. NO STATIC RESPONSE OF SCHWARZSCHILD
BLACK HOLE FROM HIDDEN

SYMMETRY

In this section, we discuss no static response of the
Schwarzschild black hole to the spin-s field perturbation in
terms of the supersymmetric structure. In Appendix D,
we show that for the case of the polar-type tidal field
perturbation.

A. Lowest multipole mode case

First, we show the vanishing of the Love and dissipation
numbers for the lowest multipole mode ϕs with a given spin
weight s, by exploiting the radial conservation of Yl in
Eq. (3.36). For the general solution of ϕs, we have

Ys ¼ zsDsϕs

¼ z2sΔ
d
dz

ðz−sϕsÞ: ð4:1Þ

The radial conservation of Ys includes horizontal symmetry
found by direct inspection of the Regge-Wheeler equation
in Ref. [33].
Without knowledge of the exact solutions of the pertur-

bations, we instead use the asymptotic solutions at the
horizon and large distances, i.e.,

ϕsjz→1 ∼ const:; ln ð1 − 1=zÞ; ð4:2Þ

and

ϕsjz≫1 ∼ zs; z−s−1: ð4:3Þ

The translational conservation of Ys of Eq. (4.1) tells us the
asymptotic behavior of the solution at large distances under
the requirement of the regularity at the horizon as follows.
The evaluation of Ys in Eq. (4.1) for ϕsjz→1 ∼ const yields
Ys ¼ 0 at the horizon ðΔ ¼ 0Þ, as we have already known,
for ϕsjz≫1 ∼ zs it also leads to Ys ¼ 0. On the other hand,
the values of Ys are nonzero for ϕsjz→1 ∼ lnð1 − 1=zÞ and
ϕsjz≫1 ∼ z−s−1; then, Ys is included in the factor in front of
the decaying solution and is proportional to the induced
multipole moment [14,15]. Therefore, the solution regular
(logarithmically divergent) at the horizon must connect to a
purely growing (decaying, respectively) solution of z at

7There exists another conserved quantity, W̃l�1 ¼
ðDk�ϕlÞðΔ dϕl�1

dz Þ − ðΔ dDk�ϕl

dz Þϕl�1, which is equivalent to the
quantity (3.34) for the fields satisfying the equations of motion.

8One can show from another conserved quantity W̃s−1 that
D−sϕs−1 also identically vanishes; this is also similar to unbroken
supersymmetry [68].
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large distances. This shows that for ϕs, the spin-s-field
Love and dissipation numbers of the Schwarzschild black
hole vanish.

B. General multipole case

Next, we extend the discussion above to the general
multipole case by using the ladder operators. As stated at
the end of Sec. III, the ladder operators map a given mode
ϕl into the lowest multipole mode ϕ̃s¼Dsþ1 � ��Dl−1Dlϕl,
giving rise to a conserved quantity in the radial direction,

Yl ¼ zsDsϕ̃s

¼ z2sΔ
d
dz

�
z−sϕ̃s

�
; ð4:4Þ

which is the same form as Ys in Eq. (4.1).
Asymptotic solutions of ϕl at the horizon and large

distances are, respectively,

ϕljz→1 ∼ const:; ln ð1 − 1=zÞ; ð4:5Þ

and

ϕljz≫1 ∼ zl; z−l−1: ð4:6Þ

Noting that the ladder operators have no logarithmic term,
the solution regular at the horizon, ϕljz→1 ∼ const, should
give rise to ϕ̃sjz→1 ∼ const, showing the vanishing of the
conserved quantity Yl. On the other hand, the solution
logarithmically divergent at the horizon, i.e., ϕljz→1∼
lnð1 − 1=zÞ, leads to ϕ̃sjz→1 ∼ lnð1 − 1=zÞ, giving the non-
zero Yl.
From the asymptotic form of the ladder operators at large

distances,

Dl ¼ z2ð1þOð1=zÞÞ d
dz

− lzð1þOð1=zÞÞ for z ≫ 1;

ð4:7Þ

it follows that the ladder operator Dl cancels out the
leading term of ϕljz≫1 ∼ zl. Hence, the leading behavior of
Dlϕljz≫1 comes from the subleading term of ϕljz≫1,
leading to Dlϕljz≫1 ∼ zl−1. In the same manner, one
can show Dl−1Dlϕljz≫1 ∼ zl−2. This indicates that
ðl − sÞth order action of the ladder operators on ϕljz≫1 ∼
zl leads to ϕ̃sjz≫1 ∼ zs, giving the vanishing of Yl. On the
other hand, the ladder operator on ϕljz≫1 ∼ z−l−1 leads to
Dlϕljz≫1 ∼ z−l. Hence, the ðl − sÞth order action leads to
ϕ̃sjz≫1 ∼ z−s−1, giving nonzero Yl, which is proportional
to the induced multipole moment [14,15].
To summarize the above analysis, the solution regular

at the horizon, i.e., ϕljz→1 ∼ const, and the solution
purely growing at large distances, i.e., ϕljz≫1 ∼ zl, give

the vanishing Yl, while the solution divergent at the
horizon, i.e., ϕljz→1 ∼ lnð1 − 1=zÞ, and the solution purely
decaying at large distances, i.e., ϕljz≫1 ∼ z−l−1, lead to the
nonzero Yl. This shows that the solution regular at the
horizon connects to that purely growing at the distant
region, and does not contain the decaying term, i.e.,
the vanishing of spin-s-field Love and dissipation numbers
for all l.

V. VANISHING LOVE OF KERR BLACK HOLES
FROM HIDDEN SYMMETRY

We here study the vanishing of Love numbers of the Kerr
black hole for static spin-s field perturbations in terms of a
hidden supersymmetric structure. We first reduce the static
perturbation into a set of infinite static scalar fields in AdS2.
It is then found that there exists the hidden supersymmetric
structure from spacetime conformal symmetry of the
reduced geometry in the parallel manner as in the
Schwarzschild black hole case. We show no static response
of the Kerr black hole in terms of the associated conserved
quantity. We also discuss the vanishing Love numbers of
the Kerr black hole with the nonzero dissipation numbers
for the nonaxisymmetric perturbations.

A. Spin-s-field Love numbers of Kerr black holes

Linear perturbations to the Kerr black hole are governed
by the Teukolsky equation [69]. The radial Teukolsky
equation for the spin-s field perturbation in the static limit is
given by

Δ−s d
dz

�
Δsþ1

d
dz

ΦðsÞ
lmðzÞ

�
þ
�
m2χ2 þ imχsð2z − 1Þ

Δ

− lðlþ 1Þ þ sðsþ 1Þ
�
ΦðsÞ

lmðzÞ ¼ 0; ð5:1Þ

where l and m are integers such that l ≥ s and jmj ≤ l.
The dimensionless parameter χ ∈ ½0; 1Þ denotes a spin of
the black hole and

Δ ¼ zðz − 1Þ: ð5:2Þ

The dimensionless radial coordinate z ∈ ð1;∞Þ is related to
the areal coordinate r as

z ¼ r − r−
rþ − r−

; ð5:3Þ

where rþ and r− are the radii of the event and Cauchy
horizons, respectively. In this coordinate, the event
horizon and infinity are located at z ¼ 1 and z ¼ ∞,
respectively.
The static response of the Kerr black hole is charac-

terized by the asymptotic behavior of the field at large
distances under the requirement of the smoothness of a
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function Δ2ΦðsÞ
lm at the horizon z ¼ 1 [22,24]9:

ΦðsÞ
lm

���
z≫1

∝ zl−s
h
1þOð1=zÞ þ κðsÞlmz

−2l−1ð1þOð1=zÞÞ
i
:

ð5:4Þ

Note that in general the coefficient κðsÞlm is complex based on
the Newtonian analogy for rotating bodies. The real part of

κðsÞlm is called the (conservative) spin-s-field Love numbers.
The dissipation numbers can be read off from the imaginary
part [23,25]. For spin-s field perturbations, the Kerr black
hole has zero conservative Love numbers but has nonzero
dissipation numbers in general [23,25]. In the case of the
axisymmetric static perturbation m ¼ 0, the dissipation
numbers also vanish [22,24].

B. Reduction to AdS2

We first reduce the static spin-s field perturbation into a
two-dimensional problem. Introducing a new variable,

ϕðsÞ
lmðzÞ ≔ Δs=2ΦðsÞ

lm; ð5:5Þ

the static Teukolsky equation (5.1) can be rewritten as

d
dz

�
Δ

d
dz

ϕðsÞ
lm

�
−
�
lðlþ 1Þ − 4m2χ2 − s2

4Δ

þ imχs
1 − 2z
Δ

�
ϕðsÞ
lm ¼ 0: ð5:6Þ

This equation can be identified as an equation of motion for
a static scalar field in AdS2, whose line element is given by
Eq. (3.4). We thus reduce the static perturbation to the Kerr
black hole into a set of infinite static scalar fields in AdS2,
which satisfy

�
□AdS2 −

�
lðlþ1Þ−4m2χ2−s2

4Δ
þ imχs

1−2z
Δ

��
ϕðsÞ
lm¼ 0;

ð5:7Þ

where the d’Alembertian □AdS2 is given by Eq. (3.7). Note
that even in the nonrotating limit χ → 0, Eq. (5.7) does not
reproduce Eq. (3.8) because the Teukolsky equation is not
smoothly reduced to the Regge-Wheeler equation.

C. Supersymmetric structure and radially conserved
quantities

We here show the existence of a supersymmetric
structure and derive the associated conserved quantity in
the radial direction. As shown in Appendix C, in the current
system, we have a ladder operator arising from spacetime
conformal symmetry of AdS2,

Dk� ¼ Δ
d
dz

−
k�
2

�
2z − 1 − i

2mχs
k2�

�
; kþ ¼ −l − 1;

k− ¼ l; ð5:8Þ

which shifts l into l� 1 in Eq. (5.7). This arises from the
Kerr geometry for the same reason as the ladder operator
(3.9) for the Schwarzschild black hole does (see also
Appendix C). Note that the construction of the ladder
operator is coordinate-independent. The ladder operator
(5.8) corresponds to the operators in Eqs. (3.7) and (D.2) in
Ref. [33], and the operator with ω ¼ 0 in Eqs. (19a) and
(19b) in Ref. [55].
To see that the operator (5.8) is a generator of a hidden

supersymmetric structure, let us consider a pair of the

fields, ðϕðsÞ
lm;ϕ

ðsÞ
l�1mÞ, governed by the action,

S ¼ 1

2

Z
dz

�
−
�
Δ

d
dz

ϕlm

�
2

− Vlmϕ
2
lm −

�
Δ

d
dz

ϕl�1m

�
2

− Vl�1mϕ
2
l�1m

�
; ð5:9Þ

where

Vlm ¼ Δ
�
lðlþ 1Þ − 4m2χ2 − s2

4Δ
þ imχs

1 − 2z
Δ

�
;

Vl�1m ¼ Δ
�
ðl� 1Þðl� 1þ 1Þ − 4m2χ2 − s2

4Δ

þ imχs
1 − 2z
Δ

�
: ð5:10Þ

Henceforth, we omit the superscript s of the variables. The
equations of motion for ϕlm and ϕl�1m are given by

Hlmϕlm ¼ 0; Hl�1mϕl�1m ¼ 0; ð5:11Þ

where the Hamiltonians are defined as

Hlm ≔ −Δ
d
dz

�
Δ

d
dz

�
þ Vlm;

Hl�1m ≔ −Δ
d
dz

�
Δ

d
dz

�
þ Vl�1m; ð5:12Þ

which are consistent with Eq. (5.7). One can then show

9The requirement above corresponds to eliminating of a
logarithmic contribution from the asymptotic solution near the
horizon. The presence of the logarithmic contribution gives
blowups of the second-order derivative of Δ2ΦðsÞ

lm at the horizon
[22,24]. The smoothness condition also corresponds to no out-
going-wave boundary condition for time-dependent fields in the
zero-frequency limit [22,24].

KATAGIRI, KIMURA, NAKANO, and OMUKAI PHYS. REV. D 107, 124030 (2023)

124030-10



Hlm ¼ D−k�Dk� þ β−k�βk� ;

Hl�1m ¼ Dk�D−k� þ βk�β−k� ; ð5:13Þ

with

βk� ¼
�
1

2
þ i

mχ

k�

�
ðsþ k�Þ: ð5:14Þ

Here, we have

Dk�Hlmϕlm ¼ Hl�1mDk�ϕlm ¼ 0;

D−k�Hl�1mϕl�1m ¼ HlmD−k�ϕl�1m ¼ 0; ð5:15Þ

which has the same structure as Eq. (3.31) does. Therefore,
ϕlm and ϕl�1m are a symmetric partner under the trans-
formation generated by the ladder operator, which can be
understood from the property of the supersymmetry alge-
bra. Note that the supersymmetric structure can be gener-
alized to that of infinite pairs ðϕlm;ϕl�1m;ϕl�2m; � � �Þ.
In the same manner as for the Schwarzschild black hole

(Sec. III), the pair of the lowest multipole and an originally
“unphysical” mode, i.e., ðϕsm;ϕs−1mÞ, gives rise to a
constant in the radial direction,

Psm ≔
�
z − 1

z

�
−imχ

Δs=2Dsϕsm: ð5:16Þ

For general multipoles, one can also obtain radial
constants by mapping ϕlm into a lowest multipole ϕ̃sm ≔
Dsþ1 � � �Dl−1Dlϕlm:

Plm ≔
�
z − 1

z

�
−imχ

Δs=2Dsϕ̃sm: ð5:17Þ

The quantity Plm can be interpreted as the radially
conserved quantity associated with the supersymmetric
structure of the static scalar field in AdS2.
For the case of m ≠ 0, ϕlm of jmj > l can be generated

by the ladder operator. In terms of the original perturbation
field to the Kerr black hole, the combination of the radial
function of jmj > l with the corresponding angular func-
tion is singular with respect to the angular variables. This
means that the structure generated by the ladder operator
(5.8) with m ≠ 0 and the constant Plm are not prescribed
under the regularity condition to the angle for the original
perturbation field. Although the structure is nothing else
but a reflection of the mathematical property of the current
four-dimensional system, the interpretation is controversial
(see discussion in Refs. [33,42,55]). On the other hand,
for m ¼ 0, no such solutions are generated. Therefore, the
structure generated by the ladder operator (5.8) with m ¼ 0
and the radially conserved quantity Pl0 are prescribed
under the regularity condition to the angle for the original
perturbation field.

In the following, we show no static response, i.e.,
vanishing of both Love and dissipation numbers, of the
Kerr black hole for the axisymmetric field (m ¼ 0) with
the radially conserved quantity Pl0. We also discuss the
vanishing Love numbers of the Kerr black hole with the
nonzero dissipation numbers for the nonaxisymmetric
fields (m ≠ 0) in terms of the constant in the radial
direction, Plm, even though that is not prescribed under
the regularity condition to the angle. We leave a further
discussion on the geometrical interpretation of the afore-
mentioned structure of the nonaxisymmetric perturbation
field in outlook.

D. No static response for axisymmetric fields (m= 0)

We show the vanishing of the Love and dissipation
numbers of the Kerr black holes for the axisymmetric mode
(m ¼ 0) from the radially conserved quantities Psm¼0 in
Eq. (5.16) and Plm¼0 in Eq. (5.17). For a given spin weight
s, we have two linearly independent asymptotic solutions
of Eq. (5.7) at z ¼ 1 and z ≫ 1, respectively:

ϕðs¼0Þ
l0

���
z→1

∼ const:; lnðz − 1Þ;

ϕðs¼1;2Þ
l0

���
z→1

∼ ðz − 1Þs=2; ðz − 1Þ−s=2; ð5:18Þ

and

ϕl0

���
z≫1

∼ zl; z−l−1: ð5:19Þ

The Love and dissipation numbers can be read off from the
asymptotic behaviors at large distances under the require-
ment of the smoothness of Δ2Φl0 at z ¼ 1 [22,24]:

ϕðs¼0Þ
l0

���
z→1

∼ const:; ϕðs¼1;2Þ
l0

���
z→1

∼ ðz − 1Þs=2: ð5:20Þ

The other asymptotic solution, i.e., ϕðs¼1;2Þ
l0

���
z→1

∼

ðz − 1Þ−s=2, has a logarithmic contribution in the sublead-
ing term, leading to the blowups of the second-order

derivative of Δ2Φðs¼1;2Þ
l0 at the horizon.

We show the vanishing of the Love and dissipation
numbers by using the radially conserved quantities Psm¼0

and Plm¼0 of Eqs. (5.16) and (5.17), respectively, in the
same manner as in the Schwarzschild black hole case in
Sec. IV: for the axisymmetric scalar field (m ¼ 0, s ¼ 0),
the system (5.7) and the ladder operator (5.8) are the same
forms as those for the Schwarzschild black hole, i.e.,
Eqs. (3.8) and (3.14) with s ¼ 0, respectively, implying

that ϕð0Þ
l0 satisfying the condition (5.20) is purely growing at

large distances z ≫ 1. Thus, we immediately conclude that
the scalar-field Love and dissipation numbers vanish for all

the axisymmetric modes ϕð0Þ
l0 , i.e., κ

ð0Þ
l0 ¼ 0.
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For the vector (s ¼ 1) and tidal fields (s ¼ 2), the
asymptotic behaviors of ϕl0 in Eq. (5.19) and the ladder
operator (5.8) at large distances z ≫ 1 are the same forms
as those for the Schwarzschild black hole, i.e., Eqs. (4.6)
and (4.7), implying that the radially conserved quantity
Plm¼0 vanishes for the purely growing solution
ϕl0jz≫1 ∼ zl, while does not for the purely decaying
solution ϕl0jz≫1 ∼ z−l−1. Furthermore, for the lowest
multipole mode, the quantity Psm¼0 of Eq. (5.16) vanishes
for ϕs0 satisfying the condition (5.20) at z ¼ 1, while Ps0
can have a nonzero value for the other asymptotic solution
at z ¼ 1. These imply that ϕs0 satisfying the condition
(5.20) is purely growing at large distances; therefore, the
Love and dissipation numbers for ϕs0 vanish, i.e., κs0 ¼ 0.
For general multipoles, one can also show that the radially
conserved quantity Plm¼0 of Eq. (5.17) vanishes for ϕl0
with the condition (5.20) at z ¼ 1, while does not for the
other asymptotic solution at z ¼ 1, implying the vanishing
of the spin-s-field Love and dissipation numbers for all the

axisymmetric modes ϕl0, i.e., κ
ðsÞ
l0 ¼ 0.

E. Discussion: Nonaxisymmetric field case (m ≠ 0)

We discuss the vanishing of the Love numbers for the
nonaxisymmetric modes (m ≠ 0) in terms of the radial
constants, Psm and Plm in Eqs. (5.16) and (5.17). Although
the structure generated by the ladder operator and the
constant Plm are not prescribed under the regularity
condition to the angle in terms of the perturbation field
to the Kerr background, we show the vanishing of the Love
numbers in the following.
We introduce a new variable,

FlmðzÞ ≔ Δs=2

�
z

z − 1

�
imχ

ϕlm: ð5:21Þ

The asymptotic behaviors of Flm at z ¼ 1 and z ≫ 1 are,
respectively, given by

Flm

���
z→1

∼ const:; ðz − 1Þ−2imχþs; ð5:22Þ

and

Flm

���
z≫1

∼ zlþs; z−lþs−1: ð5:23Þ

The requirement of the smoothness ofΔ2Φlm at z ¼ 1 as in
Refs. [22,24] corresponds to

Flm

���
z→1

∼ const:; ð5:24Þ

whose asymptotic behavior at large distances z ≫ 1 deter-
mines the Love and dissipation numbers [23,25,33,55].
We first discuss the lowest multipole case ϕsm. The

constant in the radial direction, Psm of Eq. (5.16), can be
rewritten in terms of Fsm as

Psm ¼ zðz − 1Þ d
dz

Fsm þ ½2imχ − sð2z − 1Þ�Fsm: ð5:25Þ

It follows from the asymptotic behaviors of Fsm given in
Eq. (5.22) that Psm is nonzero for Fsm satisfying the
condition (5.24) and vanishes identically for the other
solution in Eq. (5.22) from the constant in the radial
direction. Furthermore, both the asymptotic solutions at
large distances z ≫ 1, i.e., those of Eq. (5.23), lead to
nonzero Psm, implying that Fsm satisfying the condition
(5.24) behaves as

Fsmjz≫1 ∝ z2s½1þOð1=zÞ þ κsmz−2s−1ð1þOð1=zÞÞ�;
ð5:26Þ

for a nonzero coefficient κsm. Note that Psm corresponds to
an overall factor of Fsm satisfying the condition (5.24) and
is proportional to the tidal moment [14,15].
The vanishing of the spin-s-field Love number can

be shown as follows. The nonzero Psm implies that Fsm
is a 2sth order finite polynomial of z − 1, i.e., Fsm ¼P

2s
j¼0 αjðz − 1Þj, which satisfies the boundary condition

(5.24).10 With the explicit forms of αj, one can show that
the polynomial is proportional to a hypergeometric series
that defines the Gaussian hypergeometric function [70]:

Fsm ∝ 2F1ð−2s; 1; 1 − sþ 2imχ; 1 − zÞ; ð5:27Þ

where 2F1ð; ; ; 1 − zÞ is the Gaussian hypergeometric
function around z ¼ 1. Performing the transformation for

2F1 [70],

2F1ðα; β; γ; 1 − zÞ ¼ ΓðγÞΓðβ − αÞ
ΓðβÞΓðγ − αÞ z

−α
�
2F1

�
α; γ − β; α − β þ 1;

1

z

�
þ κzα−β2F1

�
β; γ − α; β − αþ 1;

1

z

��
; ð5:28Þ

with

κ ¼ ΓðβÞΓðα − βÞΓðγ − αÞ
ΓðαÞΓðγ − βÞΓðβ − αÞ ; ð5:29Þ

10Substituting Fsm ¼ P∞
j¼0 αjðz − 1Þj into Eq. (5.25), one

obtains a recurrence relation ðjþ 1 − sþ 2imχÞαjþ1 ¼ −ðj −
2sÞαj with α0 ¼ Psm=ð2imχ − sÞ, which implies αj≤2s ≠ 0 and
αj≥2sþ1 ¼ 0 if Psm ≠ 0.
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and

α ¼ −2s; β ¼ 1; γ ¼ 1 − sþ 2imχ; ð5:30Þ

one can see that the asymptotic behavior of Fsm at large
distances takes the form of Eq. (5.26) because

2F1ð; ; ; 1=zÞjz≫1 ¼ 1þOð1=zÞ. In particular, we further
rewrite Eq. (5.29) to [70]

κ ¼ κsm ≔ −imχ
ð−1Þs

2ð2sþ 1Þ!
Ys
j¼1

½j2ð1 − χ2Þ þm2χ2�;

ð5:31Þ

which gives an analytic expression for the dissipation
number [23,25,55], explicitly showing the vanishing of
the spin-s-field Love number for the lowest multipole, i.e.,

Re½κðsÞsm� ¼ 0.
We next discuss the higher multipole case. The ladder

operator Dk− in Eq. (5.8) keeps the asymptotic behavior of
ϕlm at z ¼ 1 unchanged. This implies that ϕlm compatible
with the condition (5.24) can have nonzero Plm of
Eq. (5.17), while the other solution hasPlm ¼ 0. In addition,
the fact that the ladder operator Dk− maps the asymptotic
solutions of ϕlm compatible with Eq. (5.23) at z ≫ 1 into
those with l → l − 1 implies that Plm is nonzero for them.
Therefore, Flm with the condition (5.24) behaves as

Flm

���
z≫1

∝ zlþs½1þOð1=zÞ þ κlmz−2l−1ð1þOð1=zÞÞ�;
ð5:32Þ

for a nonzero coefficient κlm. Note that Plm for Flm
satisfying the condition (5.24) is an overall factor and is
proportional to the tidal moment [14,15].
The constant Plm (5.17) implies that Flm can be

expressed as an ðlþ sÞth order finite polynomial of
z − 1. The explicit form is proportional to a hypergeometric
series that defines the Gaussian hypergeometric function
around z ¼ 1 [70]:

Flm ∝ 2F1ð−l− s;lþ 1− s; 1− sþ 2imχ; 1− zÞ: ð5:33Þ

Thus, the transformation for the Gaussian hypergeometric
function as in Eq. (5.28) implies that the asymptotic
behavior of Flm at large distances takes the form of
Eq. (5.32) [70]:

κlm ≔
Γð−2l− 1ÞΓðlþ 1− sÞΓðlþ 1þ 2imχÞ

Γð−l− sÞΓð2lþ 1ÞΓð−lþ 2imχÞ ;

¼ −imχ
ð−1Þsðlþ sÞ!ðl− sÞ!

2ð2lÞ!ð2lþ 1Þ!
Yl
j¼1

½j2ð1− χ2Þ þm2χ2�;

ð5:34Þ

which gives the analytic expression for the dissipation
numbers, showing the vanishing of the spin-s-field Love

numbers for all the multipoles [23,25,55], i.e., Re½κðsÞlm� ¼ 0.

F. Remark: Another perspective from an alternative
equation

We remark here the vanishing of the Love numbers of the
Kerr black holes in terms of an alternative equation instead
of the Teukolsky equation (5.1). It is conjectured in
Ref. [71] that the radial Teukolsky equation is isospectral,
namely, having the same spectra as the following equation:

Δ
z2

d
dz

�
Δ
z2

dΦðsÞ
lmðz;ωÞ
dz

�
þ
h
ð2MωÞ2 − VðsÞ

lmðzÞ
i

×ΦðsÞ
lmðz;ωÞ ¼ 0; ð5:35Þ

with

VðsÞ
lmðzÞ ¼

Δ
z2

�
4a2ω2 þ 4aωðm − aωÞ

z

þ sAlm þ sðsþ 1Þ − aωð2m − aωÞ
z2

−
s2 − 1

z3

�
;

ð5:36Þ
where M and a are mass and spin parameter of the Kerr
black hole, ω is a frequency of the linear fields, sAlm is a
separation constant of the spin-weighted spheroidal har-
monics, and Δ and z are given by Eqs. (5.2) and (5.3),
respectively. In Ref. [71], it is suggested that the variable

ΦðsÞ
lm is generated from the Newman-Penrose scalar by a

highly nontrivial integral transformation [72].
Equation (5.35) can be reduced to the same form as the

static Regge-Wheeler equation (3.1) smoothly in the static
limit ω → 0:

Δ
z2

d
dz

�
Δ
z2
dΦðsÞ

lm

dz

�
−
Δ
z2

�
lðlþ 1Þ

z2
−
s2 − 1

z3

�
ΦðsÞ

lm ¼ 0:

ð5:37Þ
We can find the static limit leads to a surprising feature, i.e.,
the disappearance of m in the master equation. It should be
noted, however, that for the validity of taking the static
limit, the further investigation on the integral transforma-
tion in Ref. [72] is needed.
If the conjecture above holds even for ω → 0 and a

physical boundary condition at the horizon z ¼ 1 is

ΦðsÞ
lm

���
z→1

∼ const, the alternative equation (5.37) may pro-

vide another symmetric perspective of the vanishing of
the spin-s-field Love numbers of the Kerr black hole
as follows: by introducing a new variable defined by

ϕðsÞ
l ðzÞ ¼ ΦðsÞ

lm=z as in Eq. (3.3), one can show the
existence of a hidden supersymmetric structure in a
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completely parallel manner as in the Schwarzschild black

hole case and the variable ΦðsÞ
lm thus has no decaying terms

at large distances under the requirement ofΦðsÞ
lmjz→1∼const.

VI. SUMMARY AND DISCUSSION

We have investigated the underlying symmetric structure
leading to the vanishing of spin-s-field Love numbers of the
Schwarzschild and Kerr black holes in terms of spacetime
symmetry in a unified manner for the static perturbations.
This is the first attempt to explain their no static response,
i.e., vanishing of both Love and dissipation numbers, in a
unified manner based on a symmetric approach from a
geometrical point of view. We have also discussed the
vanishing Love numbers of the Kerr black hole with the
nonzero dissipation numbers for the nonaxisymmetric
perturbations in terms of a radial constant found in a
parallel manner as the axisymmetric field case.
The key observation is that the static spin-s field

perturbation to both the Schwarzschild and Kerr black
holes can be reduced with the harmonic decomposition into
a set of infinite static scalar fields in AdS2. Here, the
emergence of the AdS2 geometry is not derived from the
enhancement of the isometry of the background spacetime
itself. A slowly varying perturbation to the Schwarzschild
black hole can also be reduced into a set of infinite time-
dependent scalar fields in AdS2 in a parallel manner.
The hidden supersymmetric structure exists for a static

spin-s field perturbation. In the reduced system of scalar
fields in AdS2, each scalar field is associated with its pair,
implying that all multipole modes of the perturbation can
be regarded as symmetric partners which can be understood
from the property of the supersymmetry algebra. The
generator of the supersymmetric structure is constructed
from a closed conformal Killing vector field of AdS2.
Consequently, a radially conserved quantity exists. In
particular, the no static response, i.e., the vanishing of
both the spin-s-field Love and dissipation numbers of the
Schwarzschild black hole, can be understood from this
conserved quantity in a unified manner. This is also the case
of the Kerr black hole for the axisymmetric perturbation.
In terms of the nonaxisymmetric perturbation field to the

Kerr black hole, the structure generated by the ladder
operator is not prescribed under the regularity condition to
the angular variables. Although its interpretation is con-
troversial [33,42,55], we have shown the vanishing of the
Love numbers with the nonzero dissipation numbers by
using the radial constant found in a parallel manner as the
axisymmetric field case. It should be emphasized that the
aforementioned structure is nothing else but a reflection of
the mathematical property of the current four-dimensional
system even though the singular solutions and regular ones
are connected by the ladder operator. We have left further
discussions on (1) the geometrical interpretation of the
structure in the nonaxisymmetric perturbation field on the

Kerr background; (2) whether or not the singular behavior
is indeed problematic; (3) the connection to Love symmetry
[42], in outlook.
The construction of the ladder operator is coordinate-

independent. We then stress that the analysis with the
ladder operator chose a specific coordinate but used a
geometrically meaningful one: the conserved quantities are
associated with the direction generated by the closed
conformal Killing vector field.
We comment on previous works that have independently

studied the relation between the vanishing of Love numbers
and hidden symmetries. While the generators of those
hidden symmetries appear to come from geometrical
[33,55] or algebraic properties [40–42], they would have
deeper connection with the hidden effective AdS2 geom-
etry. We particularly mention that our ladder operator
includes (1) the generators of the ladder symmetry dis-
cussed in Ref. [33], which arise from an isometry of the
Euclidean AdS3 at least for scalar fields and are heuristi-
cally constructed for spin-1,2 fields, (2) the generator in
given Ref. [41], which is constructed in terms of the
SLð2;RÞ symmetry. Our result supports the claim, “the
Love symmetry exactly reduces to the SLð2;RÞ isometry of
the AdS2 near horizon black hole geometry” in Ref. [42].
Our work can have several future extensions. First, it is

interesting to analyze the vanishing of the Love numbers of
the Kerr black hole in terms of the alternative equa-
tion (5.35) in Sec. V. Next, we expect that the vanishing
of Love numbers of other kinds of black holes, e.g., the
Schwarzschild black hole in the Brans-Dicke theory, the
Reissner-Nordström black hole in the Einstein-Maxwell
theory [20,28] etc., can also be understood in terms of
another “hidden” symmetry. In our forthcoming paper, we
show more than a few black holes with zero Love numbers
exist either beyond general relativity or in nonvacuum from
hidden symmetries. For testing theories of gravity by future
gravitational-wave observations, we need deeper theoreti-
cal understanding on a system with or without nonzero
Love numbers in advance.
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APPENDIX A: POLAR-TYPE STATIC
TIDAL-FIELD PERTURBATION TO
SCHWARZSCHILD BLACK HOLES:

CONSTRUCTION AND TIDAL
LOVE NUMBERS

Here, we show no static response for the polar-type
perturbation with the aid of the Chandrasekhar transfor-
mation [61]. Static polar-type perturbations Φþ

l ðzÞ are
governed by the Zerilli equation in the static limit [60,62],

Δ
z2

d
dz

�
Δ
z2

dΦþ
l

dz

�
− Vþ

l ðzÞΦþ
l ¼ 0; ðA1Þ

where

Vþ
l ðzÞ ≔

Δ
z2

�
9þ 9λzþ 3λ2z2 þ λ2ðλþ 2Þz3

z3ðλzþ 3Þ2
�
; ðA2Þ

with λ ¼ l2 þ l − 2. Here, the index l ¼ 2; 3;… is that of
multipole modes.

1. Construction of polar-type static tidal fields

We generate polar-type perturbations Φþ
l from an axial-

type perturbation Φ−
l ðzÞ which satisfies the static Regge-

Wheeler equation,

Δ
z2

d
dz

�
Δ
z2
dΦ−

l

dz

�
− V−

l ðzÞΦ−
l ¼ 0; ðA3Þ

with

V−
l ðzÞ ≔

Δ
z2

�
lðlþ 1Þ

z2
−

3

z3

�
; ðA4Þ

which is the same as Eq. (2.5). We perform the
Chandrasekhar transformation [61],

Φ−
l → Φ̃þ

l ¼ DþΦ−
l ; ðA5Þ

where

Dþ ≔
Δ
z2

d
dz

þ Δ
z3ð1þ λz=3Þ þ

λðλþ 2Þ
6

: ðA6Þ

Then, one can show that Φ̃þ
l satisfies the following

equation,

Δ
z2

d
dz

�
Δ
z2
dΦ̃þ

l

dz

�
− Vþ

l Φ̃
þ
l ¼ 0: ðA7Þ

This is nothing else but the static Zerilli equation (A1).
Thus, the function Φ̃þ

l describes a polar-type static tidal-
field perturbation.

2. No static response: Quadrupole case l= 2

We show the vanishing of the quadrupole tidal Love and
dissipation numbers for the polar-type perturbation from
the axial-type one. The general solution of the axial-type
perturbation with l ¼ 2 is given in Eq. (2.12), i.e.,

Φ−
2 ¼ C1z3 þC2

3þ 4zþ 6z2 þ 12z3 þ 12z4 ln ð1− 1=zÞ
12z

;

ðA8Þ

where C1, C2 are constants. Acting the operator Dþ in
Eq. (A6), we obtain

Φ̃þ
2 ¼ C1

zð−3þ 6z2 þ 4z3Þ
3þ 4z

þ C2

zð13þ 24zþ 12z2 − 12z3 − 3ð3 − 6z2 − 4z3Þ ln ð1 − 1=zÞÞ
9þ 12z

: ðA9Þ

This is indeed a solution of the static Zerilli equation (A1)
with l ¼ 2. Equation (A9) shows that the term of C2 is
logarithmically divergent in the horizon limit z → 1; to
eliminate that term, we impose C2 ¼ 0, thereby obtaining

Φ̃þ
2 ¼ C1

zð−3þ 6z2 þ 4z3Þ
3þ 4z

: ðA10Þ

It follows that the solution Φ̃þ
2 in Eq. (A10) is regular at the

horizon z ¼ 1 and is purely growing at large distances

z ≫ 1, i.e., Φþ
2 jz≫1 ∼ z3. Thus, the quadrupolar tidal Love

and dissipation numbers for the polar-type perturbation
vanish. One can show that this is also the case of higher
multipoles in the same manner.

APPENDIX B: REDUCTION OF A SLOWLY
VARYING PERTURBATION

We reduce a slowly varying spin-s field perturbation into
a time-dependent scalar field in AdS2, which satisfies the
equation of motion with the same form as Eq. (3.8).
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This implies that the time-dependent spin-s field also has
supersymmetric structure. Let us consider a time-dependent
spin-s field perturbation that satisfies the Regge-Wheeler
equation [59]:

− ∂
2
tΦlðt; zÞ þ

Δ
z2

∂z

�
Δ
z2

∂zΦlðt; zÞ
�

−
Δ
z2

�
lðlþ 1Þ

z2
−
s2 − 1

z3

�
Φlðt; zÞ ¼ 0: ðB1Þ

Now, we assume that the time dependence of the pertur-
bation is weak: the timescale of the change of the field is
much longer than the black hole radius, i.e., j∂tΦlj−1 ≫ 1.
We further focus on a “near zone” such that the time
dependence of the field is still weak at a distant region
from the black hole horizon, i.e., 1 < z ≪ j∂tΦlj−1. We
then have

z4

Δ
∂
2
tΦl ¼ 1

Δ
∂
2
tΦl þ z2∂2tΦl þ z∂2tΦl þ ∂

2
tΦl þ

1

z
∂
2
tΦl

≃
1

Δ
∂
2
tΦl; ðB2Þ

where ≃ means an equality within the approximations z ≪
j∂tΦlj−1 and j∂tΦlj−1 ≫ 1. This corresponds to the near-
zone approximation [66,67]. Using this property, we obtain
an equation for the slowly varying spin-s field perturbation
in the near zone 1 < z ≪ j∂tΦlj−1 from Eq. (B1):

−
1

Δ
∂
2
tΦlþ z2∂z

�
Δ
z2
∂zΦl

�
−
�
lðlþ 1Þ− s2− 1

z

�
Φl ¼ 0:

ðB3Þ

We redefine the variable Φl in Eq. (B3) as

ϕlðt; zÞ ¼
Φl

z
: ðB4Þ

One can then obtain

�
□AdS2 −

�
lðlþ 1Þ − s2

z

��
ϕl ¼ 0: ðB5Þ

Here, the d’Alembertian □AdS2 is given by

□AdS2 ¼ −
1

Δ
∂
2
t þ ∂zðΔ∂zÞ; ðB6Þ

which is the same as Eq. (3.6), and is based on the line
element of AdS2,

gAdS2ab dxadxb ¼ −Δdt2 þ 1

Δ
dz2; ðB7Þ

which is the same as Eq. (3.4). Thus, the slowly varying
spin-s field perturbation can be reduced to a set of infinite
time-dependent scalar fields in AdS2. As can be seen from
the fact that Eq. (B5) is the same form as Eq. (3.8), one
can define the ladder operator (3.9) and can show a hidden
symmetric structure in a completely parallel manner as the
static-field case.

APPENDIX C: LADDER OPERATORS FROM
SPACETIME CONFORMAL SYMMETRY AND

APPLICATION TO PERTURBATIONS
TO SCHWARZSCHILD-TANGHERLINI

BLACK HOLES

We here derive a ladder operator from spacetime
conformal symmetry of AdS2. In particular, we show that
the systems (3.8) and (5.7) naturally appear under the
requirement of the existence of a ladder operator for a scalar
field in general systems. We further discuss the application
to a slowly varying scalar field perturbation to the
Schwarzschild-Tangherlini black holes [56].

1. Generic time-dependent scalar field in AdS2

We consider a time-dependent scalar field in AdS2,
which satisfiesh

□AdS2 −
�blðblþ 1Þ þ P

�i
Ψl̂ ¼ 0; ðC1Þ

where l̂ is a non-negative real-valued constant. Note that l̂
is not necessarily an integer. Here, we have defined the
d’Alembertian in AdS2, □AdS2 , which corresponds to
Eq. (3.6) in the ðt; zÞ coordinates. For later convenience,
we introduce a new real-valued parameter k such that

kðkþ 1Þ ¼ l̂ðl̂þ 1Þ: ðC2Þ

Solving this quadratic equation for k, we obtain

kþ ¼ −l̂ − 1; k− ¼ l̂; ðC3Þ

where we have assigned k� on the solutions so that
kþ < k−. Note that k� is an integer if and only if l̂ is
an integer. In terms of k�, Eq. (C1) can be rewritten ash

□AdS2 −
�
k�ðk� þ 1Þ þ P

�i
Ψl̂ ¼ 0: ðC4Þ

2. Conditions for commutation relations holding

We first require a commutation relation:h
□AdS2 − P;Dk�

i
¼ −2k�Dk� þ 2Q

h
□AdS2 − ðk�ðk� þ 1Þ þ PÞ

i
; ðC5Þ
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where Dk� is a derivative operator, and Q is a function in
AdS2. Acting this commutation relation on a smooth
function Ψl̂ leads to

h
□AdS2 − ððk� − 1Þk� þ PÞ

i
Dk�Ψl̂

¼ ðDk� þ 2QÞ
h
□AdS2 − ðk�ðk� þ 1Þ þ PÞ

i
Ψl̂: ðC6Þ

One can see that when Ψl̂ is a solution of Eq. (C4), the
right-hand side vanishes, obtaining

h
□AdS2 − ððk� − 1Þk� þ PÞ

i
Dk�Ψl̂ ¼ 0: ðC7Þ

Noting that ðkþ− 1Þkþ ¼ ðl̂þ 1Þðl̂þ 2Þ and ðk− − 1Þk− ¼
ðl̂− 1Þl̂, this is an equation of motion for a scalar field
Dk�Ψl̂ with a shifted parameter l̂ → l̂� 1, implying that
the operator Dk� generates another scalar field Dk�Ψl̂ with
l̂ → l̂� 1 keeping the potential function P unchanged.
Now, we seek for ladder operators Dk� and potentials P

such that the commutation relation (C5) holds. We begin
with introducing a form of a first-order differential operator,

Dk� ¼ Va∇a þK; ðC8Þ
where Va and K are a vector field and a function in AdS2,
respectively. Then, the left-hand side of the commutation
relation (C5) is calculated to

h
□AdS2 − P;Dk�

i
¼ 2ð∇aVbÞ∇a∇b þ

�
□AdS2V

b þ VaRab þ 2∇bK
�
∇b þ□AdS2Kþ Va∇aP; ðC9Þ

where Rab is the Ricci tensor of AdS2. Here, we have assumed that the commutation relation acts on a smooth function. The
right-hand side is calculated to

−2k�Dk� þ 2Q
h
□AdS2 − ðk�ðk� þ 1Þ þ PÞ

i
¼ 2Q□AdS2 − 2k�Va∇a þ

h
−2k�K − 2Qðk�ðk� þ 1Þ þ PÞ

i
: ðC10Þ

With these explicit forms, the commutation relation (C5) is
divided into the following three conditions:

∇aVb þ∇bVa ¼ 2Qgab; ðC11Þ

□AdS2V
a þ RabVb þ 2∇aK ¼ −2k�Va; ðC12Þ

□AdS2Kþ Va∇aP ¼ −2k�K − 2Q½k�ðk� þ 1Þ þ P�:
ðC13Þ

Let us investigate these conditions one by one. We focus
on the case Q ≠ 0.11 Then, Eq. (C11) corresponds to a
conformal Killing equation. Taking the trace of Eq. (C11),
we obtain

Q ¼ 1

2
∇aVa: ðC14Þ

For the conformal Killing vector field Va in two dimen-
sions, we have

□AdS2Va þ RabVb ¼ 0: ðC15Þ

Therefore, Eq. (C12) is reduced to

∇aK ¼ −k�Va: ðC16Þ

Acting ϵab∇a with the Levi-Civita tensor ϵab from the left-
hand side leads to

ϵab∇a∇bK ¼ −k�ϵab∇aVb: ðC17Þ

The left-hand side vanishes, thereby yielding a condition,

∇aVb ¼ ∇bVa: ðC18Þ

This means that the conformal Killing vector fields Va

are “closed.” In AdS2, there exist three independent closed
conformal Killing vector fields. Then, the conditions
(C11)–(C13) reduce to

∇aVb ¼
1

2
ð∇cVcÞgab; ðC19Þ

which is the closed conformal Killing equation, and

∇aK ¼ −k�Va; ðC20Þ

which is the same as Eq. (C16), and

□AdS2Kþ Va∇aP ¼ −2k�K − ð∇aVaÞ½k�ðk� þ 1Þ þ P�:
ðC21Þ

Because Va ¼ ∇aQ in AdS2, Eq. (C20) can be solved as

11For the case Q ¼ 0, Eq. (C11) corresponds to a Killing
equation. All the Killing vector fields are not compatible with
the conditions (C12) and (C13) for the time-independent
potential PðzÞ.
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K ¼ −k�Q −
c0
2k�

; ðC22Þ

where c0 is a constant. We thus obtain the general form of
the ladder operator,

Dk� ¼ LV −
k�
2

�
2Qþ c0

k2�

�
; ðC23Þ

where the first term of the right-hand side is the Lie
derivative with respect to the closed conformal Killing
vector field. We also obtain the general form of P from
Eq. (C21),

P ¼ c0Qþ cp
VaVa ; ðC24Þ

where cp is a constant. Note that cp can depend on the
coordinate value which is perpendicular to the integral
curve of Va. Equation (C24) shows that the functional form
of the potential P is strongly restricted, i.e., P depends
on the closed conformal Killing vector field Va and two
parameters c0 and cp.

3. Ladder operators from spacetime conformal
symmetry

We here introduce the coordinate system ðt; zÞ; then, the
line element of AdS2 is described by

gAdS2ab dxadxb ¼ −Δdt2 þ 1

Δ
dz2; Δ ¼ zðz− 1Þ; ðC25Þ

which is the same as Eq. (3.4). Hereafter, we assume that P
is a function of z. From the conditions (C19)–(C21),
we derive ladder operators and possible potential forms.
Although there exist three independent closed conformal
Killing vector fields satisfying Eq. (C19), we use here
solely:

Va ∂

∂xa
¼ zðz − 1Þ ∂

∂z
: ðC26Þ

Note that the assumption of the time independence of the
potential forces one to choose the closed conformal Killing
vector field (C26) only. The other closed conformal Killing
vector fields are not compatible with the conditions (C20)
and (C21); however, if we admit a time dependence of the
potential, a ladder operator can be constructed in the almost
parallel manner as in the present subsection.
In the current coordinate system, K in Eq. (C22) takes

the form,

K ¼ −
k�
2

�
2z − 1þ c0

k2�

�
; ðC27Þ

which leads to the operator,

Dk� ¼ zðz − 1Þ∂z −
k�
2

�
2z − 1þ c0

k2�

�
: ðC28Þ

Equation (C24) leads to

P ¼ c0ð2z − 1Þ þ 2cp
2zðz − 1Þ : ðC29Þ

Thus, the ladder operator (C28) exists in the system,

�
□AdS2 −

�
k�ðk� þ 1Þ þ c0ð2z − 1Þ þ 2cp

2zðz − 1Þ
��

Φl̂ ¼ 0:

ðC30Þ

If we assign c0 ¼ −cp, the effective potential is regu-
larized at z ¼ 1, leading to

�
□AdS2 −

�
k�ðk� þ 1Þ − cp

z

��
Φl̂ ¼ 0; ðC31Þ

which admits the ladder operator,

Dk� ¼ zðz − 1Þ∂z −
k�
2

�
2z − 1 −

cp
k2�

�
: ðC32Þ

In particular, if k� in Eq. (C3) is defined from bl ¼
lðl ¼ s; sþ 1; sþ 2 � � � ; s ¼ 0; 1; 2Þ, and cp ¼ s2, the
system (C31) and the operator (C32) correspond to
Eqs. (3.8) and (3.14), respectively.
If we choose c0 ¼ −2imχs, cp ¼ −ð4m2χ − s2Þ=4, andbl ¼ lðl ¼ s; sþ 1; sþ 2; � � �Þ, the system (C30) becomes

�
□AdS2 −

�
k�ðk� þ 1Þ − 4m2χ2 − s2

4zðz − 1Þ

þ imχs
1 − 2z
zðz − 1Þ

��
Φl̂ ¼ 0; ðC33Þ

which is the same as Eq. (5.7). We also have the ladder
operator,

Dk� ¼ zðz − 1Þ d
dz

−
k�
2

�
2z − 1 − i

2mχs
k2�

�
; ðC34Þ

which corresponds to Eq. (5.8).

4. Application: Perturbations to the Schwarzschild-
Tangherlini black hole

We discuss the application of the above ladder operators
to a problem of a slowly varying perturbation to the
Schwarzschild-Tangherlini black hole in (nþ 2) dimen-
sions, which is described by [56]
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ds2 ¼ −
�
1 −

1

ẑn−1

�
dt2 þ 1

1 − 1
ẑn−1

dẑ2 þ ẑ2dΩ2
n; ðC35Þ

where ẑ is a dimensionless areal coordinate and dΩ2
n is the

line element of the unit sphere in n dimensions.
Let us first consider the four-dimensional case n ¼ 2,

i.e., the Schwarzschild black hole case. As seen in
Appendix B (see also Sec. III), the slowly varying
spin-s field perturbation can be reduced to a set of infinite
time-dependent scalar fields satisfying an equation [see
Eqs. (B5) and (3.8)], which take the form of Eq. (C31) with
cp ¼ s2, z ¼ ẑ, and bl ¼ l. Then, the ladder operators
in Eq. (C32) with cp ¼ s2 shift the multipole index l
into l� 1.
Let us next consider the higher-dimensional case n ≥ 3.

A slowly varying scalar field perturbation can be reduced
to a set of infinite time-dependent scalar fields satisfying
an equation that takes the form of Eq. (C31) with cp ¼ 0,

z ¼ ẑn−1, and bl ¼ l=ðn − 1Þ (cf., discussion around
Eq. (4.48) in Ref. [42]). Then, the ladder operators (C32)
with cp ¼ 0 shift the multipole index bl into bl� 1. Thus, in
the higher dimensions, the ladder operator relates a mode
with a given l with not all modes but with another
mode with l ∝ n − 1 for the Schwarzschild-Tangherlini
black hole.

APPENDIX D: NO STATIC RESPONSE FOR
POLAR-TYPE PERTURBATIONS FROM THE
HIDDEN SUPERSYMMETRIC STRUCTURE

Here, we show no static response for the polar-type tidal
field perturbation in terms of the radially conserved
quantity associated with a symmetric structure. We map
the polar-type perturbation into the axial-type one with the
Chandrasekhar transformation [61] and then analyze the
problem by following the strategy in Sec. IV.

1. Construction of axial-type static tidal fields

In the parallel manner as in Appendix A, we generate
axial-type perturbations Φ−

l from a polar-type perturbation
Φþ

l with the Chandrasekhar transformation [61],

Φþ
l → Φ̃−

l ¼ D−Φþ
l ; ðD1Þ

where

D− ≔
Δ
z2

d
dz

−
Δ

z3ð1þ λz=3Þ −
λðλþ 2Þ

6
; ðD2Þ

with λ ¼ l2 þ l − 2. One can then show that the function
Φ̃−

l satisfies the static Regge-Wheeler equation (A3).
Introducing a new variable,

ϕ̃lðzÞ ≔
Φ̃−

l

z
; ðD3Þ

the static Regge-Wheeler equation for Φ̃−
l leads to

�
□AdS2 −

�
lðlþ 1Þ − 4

z

��
ϕ̃l ¼ 0: ðD4Þ

This is the same form as Eq. (3.8).

2. No static response from the hidden
supersymmetric structure

We construct a radially conserved quantity for ϕ̃l in the
same manner as in Sec. IV:

Yþ
l ≔ z2D3 � � �Dl−1Dlϕ̃l; ðD5Þ

which satisfies

d
dz

Yþ
l ¼ 0: ðD6Þ

In the same manner as in Sec. IV, one can show that the
regular solution at the horizon connects to the purely
growing solution at large distances in terms of the radially
conserved quantity Yþ

l , showing the vanishing of the tidal
Love and dissipation numbers for the polar-type tidal field
perturbation for all l.
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