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We consider rotating charged black holes with a scalar dilaton field and surrounded by plasma, with the
purpose of studying their shadows. The corresponding metric has been previously obtained in the literature
from the static solution by using the Newman-Janis algorithm. Assuming a well-known form for the
pressureless and nonmagnetized plasma distribution, which is suitable for the separation of the Hamilton-
Jacobi equation for light, we derive an expression that determines the shape of the shadow. We present
some examples of contours and we analyze their observable properties as functions of the charge and the
dilaton coupling. We find that the presence of plasma introduces a dependency on the frequency, with the
shadow becoming smaller as the frequency decreases.
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I. INTRODUCTION

In the last few years, it has been observed for the first
time that black holes cast shadows on their surroundings, as
predicted by the theory of general relativity [1–3]. The
Event Horizon Telescope (EHT) Collaboration has pro-
duced reconstructed images of both the supermassive black
hole M87* at the center of the elliptical galaxy M87 [4] as
well as Sgr A*, the black hole at the center of our galaxy [5];
they show a dark region surrounded by a bright ring of
light, which for Sgr A* has a diameter of ∼50 μas. These
observations are consistent with the well-known theoretical
scenario in which the trajectories of light rays emitted by
the accretion disk of the black hole are deflected by its
strong gravitational field, forming a region in a distant
observer’s sky from which no light arrives. The size and
shape of the shadow depend on the various parameters
characterizing the black hole and the observer, which for
the Kerr solution in general relativity are the mass and the
angular momentum of the black hole as well as the
inclination angle of the observer. Modified theories of
gravity or theories in which general relativity is coupled to
additional fields can produce a shadow that is modified
with respect to the Kerr shadow, possibly depending on
additional parameters. This has motivated the study of
black hole shadows as a way of distinguishing Einstein
gravity from its alternatives; see Ref. [6] for a review of
analytical studies of black hole shadows and Ref. [7] for a

thorough testing of alternative geometries against the EHT
image of Sgr A*. There have been many publications
exploring the present and future possibilities for observing
black hole shadows [8,9], as well as using them to constrain
values of physical parameters [10] and to test alternative
theories of gravity [11]. Among the many other interesting
works in the literature we can mention Refs. [12–14]
concerning shadows in Einstein gravity and Refs. [15–19]
in theories of modified gravity.
One of these alternatives is the Einstein-Maxwell-dilaton

(EMD) gravity, in which a scalar field ϕ (the dilaton) is
coupled to the electromagnetic field Fμν through a term
expð−2λϕÞF2 in the action, with λ a coupling constant.
When λ ¼ 1 this theory arises as a low energy limit of
string theory, though here we consider a generalization of
this limit, where the dilaton is allowed an arbitrary coupling
parameter. Due to the presence of the dilaton, charged black
holes in string theory do not approach the Reissner-
Nordström solution of general relativity at low ener-
gies [20], which in turn can lead to an observable difference
between the shadows of charged black holes for both
theories [21]. The static black hole solution in this theory is
well known [20,22], and its shadow is studied in Ref. [23].
However, finding a rotating solution has proven signifi-
cantly more difficult; closed form solutions are only known
for λ ¼ 0 (which is simply Einstein-Maxwell theory) and
λ ¼ ffiffiffi

3
p

, corresponding to the Kaluza-Klein action [24,25].
Therefore, it is necessary to turn to the Newman-Janis
algorithm (NJA) [26] in order to generate rotating metrics
from static solutions—or rather, the so-called modified
Newman-Janis algorithm [27], which removes some of the
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ambiguity present in the original method. We follow
Ref. [28], in which the modified algorithm is used to
obtain a rotating solution for arbitrary λ. It has been
shown [29] that any metric obtained through the modified
NJA admits a separable Hamilton-Jacobi equation for light
rays, and thus allows for the analytic calculation of the
black hole shadow.
It is expected that astrophysical black holes are sur-

rounded by a plasma medium, and there has been much
interest in studying how the properties of the shadow
change in the presence of the plasma; see for example
Refs. [30,31]. It has also been shown that if the density of a
pressureless and nonmagnetized plasma obeys a certain
condition [29], then the Hamilton-Jacobi equation for light
rays is still separable. The properties of the shadow in this
case are chromatic, since the effect of the plasma on the
propagation of light depends on the frequency. For low
enough frequencies, the black hole develops a “forbidden
region” which light cannot penetrate, leading to a dramatic
decrease of the shadow size [32]. In this work, we arrive at
an expression for the contour of the shadows of the rotating
black holes obtained from the static solutions of EMD
gravity through the modified NJA and surrounded by a
plasma obeying the separability condition. We then adopt a
simple plasma model and we present the shadow and its
geometric properties for various values of the coupling
parameter of the theory and the photon frequency, as well
as the angular momentum and charge of the black hole. The
paper is organized as follows: in Sec. II, we briefly present
Einstein-Maxwell-dilaton theory and discuss its static and
rotating black hole solutions. In Sec. III, we introduce the
Hamilton-Jacobi equation for light rays in a plasma and
find the contour of the black hole shadow, of which we
show some examples in Sec. IV. Finally, in Sec. V we
conclude and discuss our results. Throughout this work we
adopt units such that G ¼ c ¼ ℏ ¼ 1.

II. EINSTEIN-MAXWELL-DILATON GRAVITY

We consider the theory defined by the action [20,22]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ð∇ϕÞ2 − e−2λϕFμνFμνÞ; ð1Þ

where R is the scalar curvature associated to the metric
tensor gμν and λ is an arbitrary coupling parameter between
the electromagnetic field tensor Fμν and the dilaton field ϕ.
Note that changing the sign of λ is equivalent to changing
the sign of ϕ, so we can take λ ≥ 0 without loss of
generality. When λ ¼ 0 the action reduces, up to an
unimportant overall factor of 1=16π, to the usual
Einstein-Maxwell action together with a minimally coupled
scalar field. As mentioned before, this action is part of the
low-energy limit of string theory when λ ¼ 1. The field
equations resulting from Eq. (1) read

∇μðe−2λϕFμνÞ ¼ 0; ð2Þ

∇2ϕþ λ

2
e−2λϕFμνFμν ¼ 0; ð3Þ

Rμν ¼ 2∇μϕ∇νϕþ 2e−2λϕ
�
FμαFν

α −
1

4
gμνFαβFαβ

�
: ð4Þ

A. Static solution

The static and spherically symmetric solution to EMD
gravity with an arbitrary coupling parameter λ has the
form [20,22]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ hðrÞdΩ2; ð5Þ

with

fðrÞ ¼
�
1 −

r1
r

��
1 −

r2
r

�ð1−λ2Þ=ð1þλ2Þ
ð6Þ

and

hðrÞ ¼ r2
�
1 −

r2
r

�
2λ2=ð1þλ2Þ

; ð7Þ

where r1 and r2 are two parameters related to the mass M
and charge Q of the black hole by

M ¼ r1
2
þ
�
1 − λ2

1þ λ2

�
r2
2

ð8Þ

and

Q2 ¼ r1r2
1þ λ2

: ð9Þ

The dilaton and the Maxwell fields are given by

e2ϕ ¼
�
1 −

r2
r

�
2λ=ð1þλ2Þ

ð10Þ

and

Ftr ¼
Q
r2
: ð11Þ

Equations (8) and (9) can be inverted to give the radii r1 and
r2 in terms of the mass and charge:

r1 ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − λ2ÞQ2

q
; ð12Þ

r2 ¼
1þ λ2

1 − λ2

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − λ2ÞQ2

q �
; ð13Þ
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these equations are quadratic, and the signs have been
chosen to give positive solutions. Note that the radii are
real, and thus the metric (5) is well defined, only if
ð1 − λ2ÞQ2 ≤ M2. This condition is automatically satisfied
if λ ≥ 1, but if λ < 1 it places an upper limit

Q2 ≤
1

1 − λ2
M2 ð14Þ

on the charge. If the above condition is met, the spacetime
may still contain a naked singularity. For λ ¼ 0, the
solution reduces to the Reissner-Nordström metric of
general relativity, which has a pair of horizons at r� ¼
r1;2 and a point singularity at r ¼ 0. For any λ > 0 the
horizons are still located at r� ¼ r1;2 but the geometry at
r ¼ r2 becomes singular, so we demand that r1 > r2 in
order to avoid a naked singularity [20]. In terms of the
charge and mass, this translates into the condition

Q2 ≤ ð1þ λ2ÞM2 ð15Þ

for an event horizon to exist.

B. Rotating EMD black holes

As mentioned above, rotating solutions to EMD gravity
are only known in closed form for λ ¼ 0 and λ ¼ ffiffiffi

3
p

[24];
the former case is the Kerr-Newman solution, while the
latter is the rotating black hole in Kaluza-Klein theory. The
Newman-Janis algorithm provides a way to generate
rotating metrics from a static “seed” metric through a
complexification of the coordinates; it was originally used
to show how the Kerr metric can be obtained from the
Schwarzschild metric and to subsequently produce for the
first time the Kerr-Newman solution of general relativity
coupled to Maxwell electrodynamics [26]. However, the
algorithm has two drawbacks. The first one is that it
requires one to guess the appropriate complexification of
the metric functions [27], and no prescription or reasoning
is given. The other drawback is that, outside general
relativity, the metric produced by the algorithm will not
satisfy the same field equations as the seed metric. In
general, it requires a modified energy-momentum tensor
with respect to the original spacetime, usually with the
addition of extra fluids or fields [33,34]. In fact, applying
the NJA to the static solution (5) with λ ¼ 1 produces the
previously found Kerr-Sen metric [35,36], which is not a
solution of the equations of motion (2)–(4) unless an extra
field, the axion, is added to the action. The modified
NJA [27] is an alternative to overcome these problems, in
which no guesswork is necessary but instead an overall
function multiplying the metric is left undetermined;
physical arguments can help to provide a criterion for
choosing a specific function. It has been adopted in many
articles appearing in the literature in recent years, see, e.g.,
Ref. [29] and references therein. In what follows, we will

use the results obtained in Ref. [28], where the modified
NJA is used to produce a rotating black hole metric starting
from the static seed solution (5) for arbitrary values of λ.
The line element in Boyer-Lindquist coordinates [28] is
given by1

ds2 ¼ −
HΔ
Σ

dt2 þ Σ sin2 θ
H

�
dφ −

aσ
Σ

dt
�

2

þH
Δ
dr2 þHdθ2; ð16Þ

where a ¼ J=M is the angular momentum per unit mass,

H ¼ hþ a2cos2θ; ð17Þ

Δ ¼ fhþ a2 ¼ r2 − ðr1 þ r2Þrþ r1r2 þ a2; ð18Þ

σ ¼ hð1 − fÞ; ð19Þ

Σ ¼ ðhþ a2Þ2 − a2Δsin2θ; ð20Þ

and the functions fðrÞ and hðrÞ are as in Eqs. (6) and (7). In
the derivation of this metric, the overall multiplying
function was chosen so that to have a null cross term of
the Einstein tensor [28], that is Grθ ¼ 0. As a consequence,
it is a physically acceptable solution of the field equations,
because the energy-momentum tensor can be written in the
form [27]

Tμν ¼ ϵeμt eνt þ pre
μ
reνr þ pθe

μ
θe

ν
θ þ pφe

μ
φeνφ; ð21Þ

where ðet; er; eθ; eφÞ is an orthonormal tetrad for which er
and eθ are proportional to the ∂r and ∂θ basis vectors. This
means that the source term Tμν can be interpreted as an
imperfect fluid rotating about the z axis [27]. This geometry
has two horizons located at the roots of ΔðrÞ, given by

r� ¼ r1 þ r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 − r2Þ2 − 4a2

p
2

: ð22Þ

For λ ¼ 0, the EMD solution reduces to the Kerr-Newman

geometry of general relativity, with two horizons at r� ¼
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
and a ring shaped singularity located

at r ¼ 0 and θ ¼ π=2. When λ > 0, the location of the
singularity is more complicated than in the static case now
depending, besides λ, M, and Q, also on a and θ [28]. In
order that the horizons exist and to avoid having a naked
singularity, we require

r1 − r2 ≥ 2jaj ð23Þ

1We only consider in this work the normal black holes
introduced in Ref. [28], in which phantom black holes are also
studied.
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instead of r1 − r2 > 0 as in the static case. Rewriting this
condition in terms of the mass and charge using Eqs. (12)
and (13) we arrive at

Q2 ≤ ðM − jajÞ½ð1þ λ2ÞM þ ð1 − λ2Þjaj�: ð24Þ

For λ ≤ 1 this can only be satisfied if jaj=M ≤ 1, while
for λ > 1 there is a second branch of solutions with
jaj=M ≥ ðλ2 þ 1Þ=ðλ2 − 1Þ, in addition to those with
jaj=M ≤ 1; we will not consider these higher values of
jaj, since they have not been observed in astrophysical
black holes and the two spaces of solutions are discon-
nected. For further details about the rotating EMD space-
time, see Ref. [28].

III. BLACK HOLE SHADOW
IN A PLASMA ENVIRONMENT

We consider the simple case of a cold (i.e., pressureless)
and nonmagnetized plasma, in which the motion of light is
described by the Hamiltonian [37]

Hðx; pÞ ¼ 1

2
ðgμνðxÞpμpν þ ω2

pðxÞÞ ð25Þ

where ωp is the plasma electron frequency, given in terms
of the electron density NeðxÞ by

ω2
p ¼ 4πe2

me
Ne; ð26Þ

with e and me the electron charge and mass, respectively.
Equivalently, one can define a refractive index n depending
on the photon frequency ω [38] by

n2 ¼ 1 −
ω2
p

ω2
: ð27Þ

Light rays correspond to the solutions of the Hamilton
equations with H ¼ 0. The metric (16), being stationary
and axisymmetric, is independent of the coordinates t and
φ, and we also assume that the same is true for the plasma
frequency ωpðxÞ. We then immediately have two conserved
quantitiesω0 ≡ −pt and pφ along photon trajectories; since
the metric is asymptotically flat, ω0 is the frequency of the
photon at infinity. In flat spacetime, light cannot propagate
through a plasma if its frequency is low enough; similarly, it
can be shown [32,39] that for the Hamiltonian (25) the
condition

ω2
0 ≥ −gttω2

pðr; θÞ ð28Þ

should be satisfied to allow light with frequency ω0 to exist
at a given spacetime point.

The standard method to integrate the equations of motion
was first introduced by Carter [40] for the Kerr metric, and
it involves finding an additional constant of motion by
separating variables in the Hamilton-Jacobi equation

H
�
x;
∂S
∂x

�
¼ 0: ð29Þ

It was later extended to more general scenarios; the
conditions for the equation to be separable in an arbitrary
stationary and axisymmetric spacetime with a nonmagne-
tized plasma were found in Ref. [41]. More importantly for
this work, it was also previously shown [29] that the
Hamilton-Jacobi equation is always separable for a metric
obtained through the modified Newman-Janis algorithm as
long as the plasma frequency has the form

ω2
p ¼ frðrÞ þ fθðθÞ

H
; ð30Þ

where H is the metric function (17) and fr and fθ are
functions of their respective coordinates.. Substituting the
inverse metric and the plasma frequency into the
Hamiltonian (25) and proposing an ansatz

S ¼ −ω0tþ pφφþ SrðrÞ þ SθðθÞ ð31Þ

for the action, after some algebra we arrive at the equality

ðS0θÞ2 þ
�
aω0 sin θ −

pφ

sin θ

�
2

þ fθ

¼ 1

Δ
½ω0ðhþ a2Þ − apφ�2 − ΔðS0rÞ2 − fr: ð32Þ

Since the left-hand side is only a function of θ and the right-
hand side only a function of r, both sides must be equal to a
constant K, known as the Carter constant [40]. Putting
together the expressions pμ ¼ ∂S=∂xμ for the momenta
and _xμ ¼ gμνpν for the velocities, where a dot denotes a
derivative with respect to an affine parameter, we can bring
the equations of motion to first order:

H_t ¼ hþ a2

Δ
PðrÞ − a2sin2θω0 þ apφ; ð33Þ

H _φ ¼ a
Δ
PðrÞ − aω0 þ

pφ

sin2θ
; ð34Þ

ðH_rÞ2 ¼ RðrÞ; ð35Þ

ðH _θÞ2 ¼ ΘðθÞ; ð36Þ

where
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RðrÞ ¼ PðrÞ2 − ΔðK þ frÞ; ð37Þ

ΘðθÞ ¼ K −
�
aω0 sin θ −

pφ

sin θ

�
2

− fθ; ð38Þ

PðrÞ ¼ ω0ðhþ a2Þ − apφ: ð39Þ

It is straightforward to verify that our results agree with
those derived in Refs. [29,41].
Of particular interest among the possible trajectories are

the spherical photon orbits: solutions with constant r,
which satisfy RðrÞ ¼ R0ðrÞ ¼ 0. The black hole shadow
is defined as the set of directions in an observer’s sky
which, when continued into the past along light rays,
intersect the event horizon. The trajectories that make up its
contour are asymptotic to the unstable spherical photon
orbits, and therefore have the same conserved quantities as
them. The equations RðrÞ ¼ R0ðrÞ ¼ 0 are quadratic in pφ

and K, so it is possible to solve them analytically as
parametric functions of r; the solutions, also called the
critical values of the constants of motion, are

apφ

ω0

¼ hþ a2 −
Δh0

Δ0

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δ0f0r
ω2
0h

02

s !
; ð40Þ

K ¼ Δω2
0h

02

Δ02

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δ0f0r
ω2
0h

02

s !
2

− fr: ð41Þ

It is straightforward to adapt the argument given in
Ref. [32], that only the plus sign in these solutions is
physically relevant, under the condition that the plasma
frequency has fθ ≥ 0 and frðrÞ ¼ Crk, with C ≥ 0 and
0 ≤ k ≤ 2. The particular case of plasma that we will
consider below does satisfy this condition, so we will take
the plus sign in Eqs. (40) and (41). On any trajectory,
Eq. (36) implies thatΘmust be nonnegative. If for a given r
the critical values of pφ and K are substituted into the
definition (38) of Θ, the inequality ΘðθÞ ≥ 0 gives the
range of θ for the chosen photon orbit. In particular,
the range of radii at which spherical orbits exist is given
by those r for which, after substituting the critical con-
served quantities, the inequality ΘðθÞ ≥ 0 has solutions.
The set of all points through which spherical photon orbits
pass is called the photon region.
As explained above, the contour of the black hole

shadow as seen by a distant observer consists of light rays
which asymptotically approach the spherical photon orbits,
and thus share their constants of motion. A given ω0 and a
pair ðpφ; KÞ satisfying Eqs. (40) and (41) describe a single
photon orbit, and the outgoing light ray with the same
conserved quantities corresponds to one direction in the sky
of the observer. The set of these directions as r ranges over
the photon region is the contour of the shadow. To relate the

conserved quantities to directions in the sky, we take the
observer to be stationary at an inclination angle θ ¼ θo and
at a very large distance ro from the black hole, taking
advantage of the fact that the spacetime is asymptotically
flat, and use the orthonormal tetrad

et̂ ¼ ∂t; ð42Þ

er̂ ¼ ∂r; ð43Þ

eθ̂ ¼
1

ro
∂θ; ð44Þ

eφ̂ ¼ 1

ro sin θo
∂φ; ð45Þ

with the tetrad components of the four-momentum of a
photon given in terms of the coordinate components by

pt̂ ¼ ω0; ð46Þ

pr̂ ¼ pr; ð47Þ

pθ̂ ¼ pθ

ro
; ð48Þ

pφ̂ ¼ pφ

ro sin θo
: ð49Þ

We additionally assume that the plasma frequency goes to
zero at infinity, so that photons propagate in a vacuum
when they arrive at the observer. We can then define the
celestial coordinates

α ¼ −ro
pφ̂

pt̂

����
ro→∞

; ð50Þ

β ¼ −ro
pθ̂

pt̂

����
ro→∞

; ð51Þ

where αmeasures distances perpendicular to the spin of the
black hole, while β is parallel to it; the origin of the
coordinates corresponds to the optical axis. Finally, using
pθ ¼ ∂S=∂θ to write pθ̂ in terms of the conserved quan-
tities, we arrive at the expressions

α ¼ −
pφ

ω0 sin θo
; ð52Þ

β ¼ � 1

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

�
aω0 sin θo −

pφ

sin θo

�
2

− fθðθoÞ
s

: ð53Þ

Not all spherical photon orbits actually correspond to
directions in the sky if the observer is not equatorial: the
constants pφ and K must be such that the square root in
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Eq. (53) is real. For a given ω0, taking the critical constants
of motion (40) and (41) as functions of r and replacing
them into Eqs. (52) and (53) gives a parametric curve
ðαðrÞ; βðrÞÞ tracing the contour of the shadow. The range of
r is limited by the values r� for which βðr�Þ ¼ 0. Note that
we must include both signs in the expression for β,
corresponding to the upper and lower halves of the shadow.

IV. SHADOWS AND OBSERVABLES

As we have done in previous works [42,43] and
following Ref. [16], for a given black hole shadow we
define three geometrical quantities, called observables: the
area of the shadow, its oblateness, and the position of the
centroid.2 These provide a convenient way of studying how
the size, the shape, and the position of the shadow changes
with the metric parameters, or of determining them from a
hypothetical observation. For a given plasma distribution,
the black hole shadow considered here is determined by
five parameters: the mass, the spin, and the charge of the
black hole, the dilaton coupling, and the observer inclina-
tion angle. If two of these are found from astrophysical
observations—for example, the mass, and the spin or the
inclination angle—then the other three parameters can be
obtained from the observables, assuming enough exper-
imental precision. Additional observables could also be
defined [44], but we have chosen these three for simplicity.
The area can be calculated by

A ¼ 2

Z
βdα ¼ 2

Z
r−

rþ
βðrÞjα0ðrÞjdr; ð54Þ

with the factor of 2 compensating for the fact that one
must choose one sign for β in Eq. (53). The oblateness is
defined as

D ¼ Δα
Δβ

; ð55Þ

where Δα and Δβ are the diameters of the shadow in the
horizontal and vertical directions, respectively; it measures
the deviation from circularity, with a circular shadow
having D ¼ 1. Finally, the centroid of the shadow is
horizontally displaced with respect to the optical axis, with
its position given by

αc ¼
2

A

Z
αβdα ¼ 2

A

Z
r−

rþ
αðrÞβðrÞjα0ðrÞjdr: ð56Þ

In order to produce particular examples of shadow
images, we have to choose a plasma distribution.

FIG. 1. Shadow of a rotating EMD black hole with a=M ¼ 0.9 and Q=M ¼ 0.4 for an equatorial observer.

FIG. 2. Photon region (light gray) and forbidden region (dark
gray) around a rotating EMD black hole with a=M ¼ 0.9, λ ¼ 1,
and Q=M ¼ 0.4, for photons with ω2

c=ω2
0 ¼ 14. The size of the

forbidden region increases rapidly as the frequency decreases.

2Other observables have also been introduced in the literature,
e.g., Refs. [12].
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Following our previous works [39,45], we adapt the density
profile originally derived for the case of dust at rest at
infinity falling into a Kerr black hole [46]. The electron
density in that case goes as r−3=2, but a purely radial profile
is not of the form (30) and thus does not allow the
separation of the equations of motion. We therefore take

ω2
p ¼ ω2

c
M

ffiffiffi
r

p
H

ð57Þ

to be our plasma distribution, where ωc is a constant; it is
separable, and goes as r−3=2 for r ≫ a. Another subtlety is
that this solution was derived for the Kerr spacetime; we
have to assume that using the EMD metric (16) does not
significantly alter the plasma distribution.

In Fig. 1 we show the shadow contours for black holes
with a=M ¼ 0.9 and Q=M ¼ 0.4, over a few values of λ
and the photon frequency ω0 and as seen by an observer
with θo ¼ π=2. The value of Q=M was chosen to be close
to the extremal value (24) over the range of parameters
considered, in order that the effect of the electromagnetic
and dilaton fields be as large as possible. The most obvious
property of the shadow is that its size decreases as the
frequency decreases—drastically so for higher values of λ.
This can be traced back to condition (28), which dictates
the regions where light rays of a given frequency may
travel; in particular, it can be seen that as the frequency
decreases a forbidden region forms around the poles, as
shown in Fig. 2. The deformation and horizontal displace-
ment characteristic of rotating black hole shadows are also
present. Decreasing the frequency tends to compensate for

FIG. 3. The area A, the oblatenessD, and the horizontal displacement αc of the shadow for various values ofQ and λ, for photons with
ω2
c=ω2

0 ¼ 0. Top: the observables as functions ofQ for fixed values of λ. Bottom: the observables as functions of λ for fixed values ofQ.

FIG. 4. Same as in Fig. 3, with ω2
c=ω2

0 ¼ 7.
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these effects, leading to a more circular and centered
shadow.
The behavior of the shadow as the parameters of the

metric are changed is more easily seen by plotting the three
observables A, D, and αc as in Figs. 3, 4, and 5, where they
are shown as functions of Q=M and λ for three different
frequencies. As in the Kerr-Newman case, the shadow size
and its oblateness decrease with Q=M, while the horizontal
displacement of its centroid increases. In Fig. 3 it can be
seen that in the absence of plasma (which is equivalent to
the limit of infinite frequency, i.e., ω2

c=ω2
0 ¼ 0), higher

values of λ reduce the gravitational effect of the electric
charge, bringing the shadow closer to its Kerr shape and
size. More explicitly, for a given Q=M, the presence of the
dilaton makes the shadow become larger and more circular,
as well as moving closer to the optical axis. This is
expected, since it can be shown that with a fixed value
of Q=M, the metric approaches to the Kerr metric in the
limit that λ goes to infinity.3 However, this deviation is
small for the values of λ considered, and as the frequency is
lowered it is rapidly overshadowed by the presence of the
plasma. In Fig. 4, in which ω2

c=ω2
0 ¼ 7, the shadow area

and displacement become increasing functions of the
coupling for a fixed charge, while the oblateness becomes
less sensitive to it. Decreasing the frequency further to
ω2
c=ω2

0 ¼ 14, as in Fig. 5, shows that the behavior of all
three observables is inverted with respect to the vacuum
case: the area, which is already very close to zero, decreases
as the coupling becomes stronger. A larger λ also leads to a
less circular and more displaced shadow, though the
variations are very small.

V. DISCUSSION

The shadow of a black hole can be a useful probe of the
spacetime curvature in the strong gravity region close to
the event horizon, and it has gained relevance since the
observation of two supermassive black holes by the
EHT [4,5]. In this work, we have explored the shadow
of black holes in a generalized Einstein-Maxwell-dilaton
theory with a coupling parameter λ [20,22], relying on the
modified Newman-Janis algorithm to produce a rotating
counterpart from the static solution [28]. The rotating
metric given by the algorithm requires a modified
energy-momentum tensor with respect to the original
spacetime [28]. A particular case of interest, when
λ ¼ 1, is the metric corresponding to the Kerr-Sen solution
of Einstein-Maxwell-dilaton-axion gravity [35,36]. We
have also included the presence of a very simple plasma
model as a way to approximate the chromatic (i.e.,
frequency-dependent) effects that might be present in the
vicinity of an astrophysical black hole. Other important
processes like scattering, emission or absorption are not
taken into account, which should be included in a more
realistic study.
The plasma model has been adapted from the solution

corresponding to presureless dust falling into a Kerr black
hole [46]; the specific form of the plasma distribution has
been chosen so that the Hamilton-Jacobi equation for light
rays is separable, and thus the shadow can be found by
using the standard method of finding the spherical photon
orbits. Our main results are Eqs. (40) and (41), giving the
constants of motion of these orbits, from which the shadow
can be easily plotted by using Eqs. (52) and (53), as we
have done in Sec. IV. In our examples, we have considered
fixed values for the rotation parameter a=M and the
observer inclination θo, since their effect on the shadow
size and shape is already well-known. We have found that,
as in other spacetimes with plasma [39,45], the photon

FIG. 5. Same as in Fig. 3, with ω2
c=ω2

0 ¼ 14.

3A change of coordinates bringing the singularity to r ¼ 0 is
needed to show this.
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frequency ω0 is the parameter that has the largest impact on
the shadow shape and size: light below a certain frequency
cannot approach the black hole and thus produces no
shadow, and the area of the shadow decreases rapidly as
the frequency approaches its threshold value from above.
The qualitative behavior of the shadow when increasing the
values of Q=M is similar to the Kerr-Newman case. In
addition, for a given value of Q=M, the presence of the
dilaton has a frequency dependent effect on the shadow. For
high frequencies, a higher coupling leads to a larger shadow
as compared to the Kerr-Newman case. The shadow is also
more circular and is positioned closer to the optical axis. On
the other hand, at lower frequencies, below a scale set
roughly by the characteristic plasma frequency ωc, increas-
ing the coupling makes the shadow smaller, more elliptical
and less centered.
The results of this work can be applied to the entire range

of photon frequencies, from very high frequencies where
the effect of the plasma is negligible down to its minimum
value, where a forbidden region surrounds the black hole
completely and the shadow disappears. In the vicinities of

the supermassive black holes Sgr A* and M87* the effects
of the plasma start to become relevant at wavelengths
greater than around 10 cm [47], that is, ωc=2π is around
3 GHz, while the EHT operates at 1.3 mm, so that
ω0=2π ≈ 230 GHz. The image resolution is not yet suffi-
cient to observe the small change in the shadow area or any
of the other two observables produced by the plasma at this
low value of ω2

c=ω2
0. The expected variation of the shadow

size and shape due to the presence of the electromagnetic
and dilaton fields is also within experimental uncertainty,
so that it is not yet possible to constrain the values of the
dilaton coupling or the electric charge by using the already
observed black hole shadows. Discerning the influence of a
plasma or the electromagnetic and dilaton fields on the
shadow seems to be out of reach for the present and near
future facilities.

ACKNOWLEDGMENTS

This work has been supported by CONICET and
Universidad de Buenos Aires.

[1] J. Bardeen, Black Holes, in Proceedings of École d’été de
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