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We investigate whether photon ring observations in black hole imaging are able to distinguish between
the Kerr black hole in general relativity and alternative black holes that deviate from Kerr. Certain aspects
of photon rings have been argued to be robust observables in very-long-baseline interferometry black hole
observations which carry imprints of the underlying spacetime. The photon ring shape, as well as its
Lyapunov exponent (which encodes the narrowing of successive photon subrings), are detailed probes of
the underlying geometry; measurements thereof have been argued to provide a strong null test of general
relativity and the Kerr metric. However, a more complicated question is whether such observations of the
photon ring properties can distinguish between Kerr and alternative black holes. We provide a first answer
to this question by calculating photon rings of the Johannsen, Rasheed-Larsen, and Manko-Novikov black
holes. We find that large deviations from Kerr and large observer inclinations are needed to obtain
measurable differences in the photon ring shape. In other words, the Kerr photon ring shape appears to be
the universal shape even for deviating black holes at low inclinations. On the other hand, the Lyapunov
exponent shows more marked variations for deviations from the Kerr metric. Our analysis lays out the
groundwork to determine deviations from the Kerr spacetime in photon rings that are potentially detectable
by future observing missions.

DOI: 10.1103/PhysRevD.107.124026

I. INTRODUCTION AND SUMMARY

The event horizon telescope (EHT) has recently given us
a first glimpse at the black holes in the centers of the M87
galaxy [1] and our Milky Way, Sgr A* [2], and how they
influence the emission from the surrounding plasma with
their strong gravity.
The EHT images show a bright ring of light surrounding a

darker depression. This depression is sometimes called the
black hole “shadow”: the absence of light in the image due to
the black hole absorbing any light that travels too close to it.
The shadow’s size and shape encodes properties of the
black hole such as its mass and angular momentum, and so
measuring it precisely could in principle give constraints on

these black hole properties. However, the black hole shadow
is not a direct observable [3,4]: the dark depression can be
somewhat obscured in the actual image due to light coming
from matter that orbits and surrounds the black hole (e.g.
an accretion disc). The black hole shadow is also a highly
degenerate object, so its measurement does not uniquely fix a
black hole’s parameters but only identifies patches of the
allowed parameter space. Moreover, the shadow is not even a
truly universal quantity, since its size depends on the
particular emission that illuminates the black hole [3].1

In general, the physics that produces emission from the
region nearby a black hole is extremely complicated. The
plasma comprising the black hole’s accretion disc and its jet
(if present) emits photons that eventually may reach our
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1The shadow is also a term that is sometimes used rather
ambiguously [3]. (We thank S. Gralla for pointing this out.) To
avoid confusion, we will use the unambiguous term “critical
curve” in our paper to describe the curve on the viewer screen
corresponding to exactly bound photon orbits; see Sec. II D.
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telescopes. There are many uncertainties and unknowns in
the details of the plasma emission that determine many of
the features of the final image that is observed. To extract
detailed information about the black hole geometry, the key
is to identify observables that are largely independent of the
details of the emitting plasma, but nevertheless sensitive to
the geometry in which the photons travel.
Aspects of the black hole photon ring have been

argued to provide such universal observables that are
largely independent of emission details but sensitive to
geometry [5]. The photon ring is precisely the bright ring of
light in black hole images [5–8]. In fact, if viewed with high
enough resolution and observed wavelength, this photon
ring can be seen to consist of an infinite series of subrings.
The nth subring consists of photons that have traveled n
half-orbits around the black hole. Each consecutive subring
appears brighter,2 but also exponentially narrower, than the
previous one. The nth photon subring for n “large enough”
should be largely independent of the emitting plasma
details [5], providing an exciting window into the space-
time geometry of the black hole.
Gralla, Lupsasca, and Marrone (GLM) [9] argued that a

hypothetical but feasible Earth-orbit satellite very-long-
baseline interferometry (VLBI) observation of M87* could
resolve its n ¼ 2 photon ring. This particular subring is an
observational “sweet spot”. The lower-order (n < 2) rings
still show dependence on the plasma emission details;
n ¼ 2 is thought to be the first subring to be largely
independent of the plasma, but still feasible to observe [5,9].
GLM showed that the shape of this n ¼ 2 photon ring is
fixed for the Kerr black hole, and could be measured
extremely precisely by such an experiment, providing a
strong null test of general relativity.
The intensities of successive photon subrings—or,

equivalently, their widths—decrease exponentially accord-
ing to the photon ring Lyapunov exponent γ, which is
intimately tied to the details of the geometry. These
successive ring intensities provide a strong and universal
signature on long interferometric baselines [5]. Measuring
successive subring intensities or widths for M87* would
then be an intricate probe of the Kerr geometry; however,
such detailed ring measurements would require an
extremely long baseline which is well beyond the reach
even of the feasible Earth-orbit missions proposed by
GLM. Another approach, taken by the authors of [10],
is to look at autocorrelations in brightness fluctuations of
the ring emission. This does not require the ring to be
resolved, and these peaks encode the black hole parameters
through (among others) the Lyapunov exponent.
The discussion of the n ¼ 2 photon ring shape, first by

GLM [9] and later expanded by these authors and others

(see e.g. [11–13]), focuses on the interferometric signal
produced by the shape of the n ¼ 2 photon ring for Kerr.
Similarly, the Lyapunov exponent has been discussed at
length for Kerr [5]. These discussions clearly show that
measurement of these quantities can provide a precise null
test of the Kerr metric and thus of general relativity.
However, it remains unclear how much these quantities
can be expected to differ in corrections or alternatives to
Kerr. The fundamental question thus stands: Can photon
ring observables be used to efficiently distinguish between
Kerr and deviations from Kerr? This question has largely
been left unanswered, and we aim to provide a first
preliminary answer with this paper.
We will consider three different black hole geometries

that have a smooth Kerr limit. This allows us to study the
dependence of both the photon ring shape and Lyapunov
exponent on the Kerr-deviating parameters of these black
holes. Specifically, we consider the Johannsen [14],
Rasheed-Larsen [15,16], and Manko-Novikov [17] black
holes. Each of these has different characteristics and so
provides complementary ways of deviating from Kerr. The
Johannsen metric is a parametrized extension of Kerr that is
constructed to remain stationary, axisymmetric, and inte-
grable (i.e. admits a Carter-like constant), but it is not
necessarily a solution to any theory with matter [14]. The
Rasheed-Larsen metric is a black hole with electric and
magnetic charges which moreover breaks the equatorial
symmetry (top-down reflection symmetry) that Kerr
enjoys3; it is a solution to Einstein gravity coupled to a
dilaton and gauge field. The Rasheed-Larsen solution also
preserves integrability for null geodesics. Finally, the
Manko-Novikov solution is a metric which breaks both
equatorial symmetry and geodesic integrability; it is a
vacuum solution of the Einstein equations which implies
part of its horizon is singular in accordance with black hole
uniqueness theorems.
All three of the considered black holes can have large

spins J=M2 ∼ 1, which is important to launch powerful jets
[22]. In addition, we will present each of these black holes’
gravitational multipoles [23]—these are asymptotic, gauge-
invariant observables that quantify the (asymptotic)
deviation with respect to Kerr.
We use our flexible object-oriented ray tracer (FOORT)

[24] to numerically integrate null geodesics in these
black hole spacetimes and extract photon ring data.
Synthetic image creation with numerical ray tracing
is a standard technique that is used by the EHT
Collaboration [1,2] and others [9], although we do not
require realistic photon emission profiles for our purposes.
We will show four-color screen “images” of these black
holes throughout the paper. For such images, we follow

2Each nth subring contributes approximately the same bright-
ness to the image; since the subrings (usually) overlap, this leads
to the higher order subrings appearing brighter.

3See e.g. [18–21] for earlier discussions on how breaking
equatorial symmetry can lead to observable signals in black hole
imaging or gravitational waves.
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each geodesic backward in time from the camera until it
reaches an outer “celestial sphere” and assign a color to the
geodesic according to the quadrant of the celestial sphere it
originated from. To determine which photon subring a
geodesic belongs to, we additionally keep track of the
number of passes through the equatorial plane that the
geodesic makes.
We summarize our main results immediately below in

Sec. I A. In Sec. II, we briefly review the three black holes
we consider—the Johannsen, Rasheed-Larsen, and Manko-
Novikov black holes—and briefly discuss their critical
curves. Section III focuses on the GLM-proposed meas-
urement of the n ¼ 2 photon ring shape [9] of these black
holes, and how it can differ from the Kerr shape. Section IV
investigates the Lyapunov exponent for these black holes in
an analytical way.
Many details of calculations have been deferred to

appendixes for readability. Appendix A contains more
information on the Manko-Novikov black hole;
Appendix B contains detailed calculations of the critical
curves and Lyapunov exponents. Appendix C describes our
ray-tracing code and method of identifying the photon
rings, while Appendix D contains additional information
about the ray-traced photon rings and their shapes. Finally,
Appendix E describes our ray-tracing numerical approx-
imations to the Lyapunov exponent.

A. Summary and conclusions

We consider the Johannsen, Rasheed-Larsen, and
Manko-Novikov black holes (introduced in Section II).
In particular, we have calculated and analyzed the shape of
their n ¼ 2 photon ring and/or critical curve (Sec. III) and
the Lyapunov exponent for the Johannsen and Rasheed-
Larsen black holes (Sec. IV).
The shape of the Kerr black hole (for most of its

parameter space) is a circlipse [9,25]. One of our main
findings in Sec. III is that this shape is a rather robust
feature of all black holes we consider, as long as the
inclination θ0—i.e. the angle between the observer and the
black hole spin axis—remains small. Roughly, the smaller
the deviation from Kerr, the closer to edge-on (i.e. when the
black hole spin axis is perpendicular to the line of sight) the
viewer needs to be in order for deviations to the circlipse
shape function to be noticeable. At around θ0 ≈ 17° (which
is the derived viewing angle for M87* from observations of
the large-scale jet [26]), the deviation from Kerr necessary
for a deviation from the circlipse shape to be discernible is
rather large. For example, for the Johannsen metric, at
θ0 ≈ 17°, we require the dimensionless deviation parameter
α22 ≳ 2.5 for the photon ring shape to deviate noticeably
from the circlipse (see Fig. 5); this is already a rather large
deviation from Kerr (see e.g Fig. 4). In addition, we find
that the shape of the Rasheed-Larsen photon ring is always
indistinguishable from the Kerr circlipse, at all inclinations.
It would be interesting to investigate if it can be proven

generically that the circlipse is the universal low-inclination
photon ring shape for axisymmetric black holes.
Our conclusion is that the photon ring shape is only a

good distinguishing observable that can separate Kerr from
other black hole metrics when the observer inclination is
relatively large and/or the deviation of these other metrics
from Kerr is large (in which case we could have reasonably
expected to see deviations in other observations already).
The Lyapunov exponent is certainly a better distinguish-

ing feature that can differentiate other black holes from
Kerr, as we show in Sec. IV (although it is less established
how the Lyapunov exponent could be measured in prac-
tice). We show that the Lyapunov exponent is significantly
influenced by every and any deviation to Kerr.
Our analysis is but a first step in understanding what

possible beyond-Kerr signatures could appear in the photon
rings of black hole imaging with VLBI. There are many
more detailed follow-up questions to ask along these
lines. Can we differentiate different black holes (either
with photon ring shape or Lyapunov exponent) using
Bayesian model selection? Do the photon rings have
measurably different features if the imaged object does
not have a horizon, but instead is an ultracompact,
horizonless object such as a fuzzball [19,27,28]? We leave
answering these questions for future work.

II. BLACK HOLES AND CRITICAL CURVES

We focus on three different stationary and axisymmetric
black holes that each have a smooth limit to Kerr. All three
of these black holes have different physical properties
which give them varying observational features to look for.
The Johannsen metric is a stationary, axisymmetric

deviation of Kerr that preserves the integrability of geo-
desics (by ensuring a Carter-like constant exists); however,
this metric is not the solution of any (known) theory of
gravity coupled to matter. The Rasheed-Larsen metric can
be thought of as a generalization of Kerr with electric and
magnetic charges, distinct from Kerr-Newman by the
presence of a nontrivial scalar in addition to the gauge
field; furthermore, null geodesics remain integrable in this
metric. Finally, the Manko-Novikov metric is constructed
as a vacuum solution to general relativity by adding
multipole “bumps” to Kerr; it (necessarily) has a singularity
on part of its horizon, but has the interesting feature of
breaking integrability for (all) geodesics.
In this section, we review each of these three black

holes in turn. As a point of comparison to Kerr, we
give each black hole’s gravitational multipole moments
Ml; Sl [23,29–31]. These multipoles are an infinite series
of gauge-invariant quantities that characterize the metric4—
and so for our purposes, characterize the black holes’

4In an appropriate coordinate system, these can be read off
from the asymptotic expansion of the metric, i.e. schematically
gtt ∼

P
l Ml=rlþ1 and gtϕ=ðr2 sin2 θÞ ∼

P
l Sl=r

lþ1 [23,30].
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(asymptotic) deviation from Kerr, which has multipoles
Ml þ iSl ¼ MðiaÞl.
We conclude this section by reviewing the calculation of

the critical curve (or “shadow boundary”) for the Johannsen
and Rasheed-Larsen metric, and discuss the influence of
the different metric parameters. Four-color screen images
of examples of these black holes are given in Sec. III B.

A. Johannsen metric

The Johannsen metric is constructed as a stationary and
axisymmetric generalization of the Kerr metric that keeps a
Carter-like constant [14]. This ensures that the geodesic
equations are still integrable, facilitating an analytic treat-
ment. The metric is given by5

ds2 ¼ − Σ̃ Δ−a2A2ðrÞ2sin2θ
NðrÞ dt2 þ Σ̃

ΔA5ðrÞ dr
2 þ Σ̃dθ2 − 2aΣ̃sin2θ ðr2þa2ÞA1ðrÞA2ðrÞ−Δ

NðrÞ dtdϕ

þ Σ̃sin2θ ðr2þa2Þ2A1ðrÞ2−a2Δsin2θ
NðrÞ dϕ2;

ð2:1Þ

where

A1ðrÞ ¼ 1þ α13

�
M
r

�
3

; Σ̃ ¼ r2 þ a2cos2θ þ ϵ3
M3

r
;

A2ðrÞ ¼ 1þ α22

�
M
r

�
2

; NðrÞ ¼ ½ðr2 þ a2ÞA1ðrÞ − a2A2ðrÞsin2θ�2;

A5ðrÞ ¼ 1þ α52

�
M
r

�
2

; Δ ¼ r2 − 2Mrþ a2. ð2:2Þ

This new metric depends on four additional parameters
with respect to Kerr: α13, α22, α52, and ϵ3. We will set
ϵ3 ¼ 0 as this parameter is only of interest for massive
particle trajectories.6

The Johannsen metric is asymptotically flat and reduces
to Kerr when all deviation parameters α13, α22, α52, ϵ3
vanish. The event horizon of this black hole is still the
same as that of the Kerr metric, rH ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Demanding that the metric is regular outside of the horizon
restricts the parameters as

α52 > −
r2H
M2

; ϵ3 > −
r3H
M3

; α13 > −
r3H
M3

; ð2:3Þ

together with the requirement that

α13 ≠
a2rðr2 þ α22M2Þ sin2 θ − r3ðr2 þ a2Þ

M3ðr2 þ a2Þ ð2:4Þ

everywhere outside the horizon. In the case that only one of
the deviation parameters is nonzero, as we will take in this
paper, we find that this last condition reduces to

α22 <
r4H

a2M2
or α13 > −

r4H
2M4

: ð2:5Þ

The Johannsen black hole has precisely the same
gravitational multipoles as Kerr:

M2n ¼ Mð−a2Þn; M2nþ1 ¼ 0;

S2nþ1 ¼ Mað−a2Þn; S2n ¼ 0; ð2:6Þ

which implies the black hole cannot be distinguished
from Kerr by asymptotic observations of the metric
alone.

B. Rasheed-Larsen black hole

The Rasheed-Larsen black hole can be obtained by
a Kaluza-Klein reduction of five-dimensional Einstein
gravity [15,16]. Contrary to the Johannsen metric, this
black hole solution is obtained from an actual physical
theory in four dimensions, with the Lagrangian

L ¼ 1

16πGN

Z
d4x

�
R − 2∂μΦ∂

μΦ −
1

4
e−2

ffiffi
3

p
ΦFμνFμν

�
;

ð2:7Þ

where R is the Ricci scalar, Φ is the dilaton field and Fμν is
associated with the electromagnetic gauge field Aμ.
The Rasheed-Larsen black hole is a solution to (2.7)

given by

5We consider only the first nonzero correction in the deviation
functions.

6This can be seen from the fact that Σ̃ couples only to μ in (B5).
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ds2 ¼ −
H3ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p ðdtþBÞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p �
dr2

Δ
þ dθ2 þ Δ

H3

sin2θdϕ2

�
: ð2:8Þ

The functions H1; H2; H3;Δ, and 1-form B are given by

H1 ¼ r2 þ a2cos2θ þ rðp − 2mÞ þ p
pþ q

ðp − 2mÞðq − 2mÞ
2

−
p

2mðpþ qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 − 4m2Þðp2 − 4m2Þ

q
a cos θ; ð2:9Þ

H2 ¼ r2 þ a2cos2θ þ rðq − 2mÞ þ q
pþ q

ðp − 2mÞðq − 2mÞ
2

þ q
2mðpþ qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq2 − 4m2Þðp2 − 4m2Þ

q
a cos θ; ð2:10Þ

H3 ¼ r2 þ a2 cos2 θ − 2mr; ð2:11Þ

Δ ¼ r2 þ a2 − 2mr; ð2:12Þ

B ¼ ffiffiffiffiffiffi
pq

p ðpqþ 4m2Þr −mðp − 2mÞðq − 2mÞ
2mðpþ qÞH3

a sin2 θdϕ:

ð2:13Þ

The solution depends on four parameters a, m, p, q. These
are related to the physical quantities of the metric: mass
(M), angular momentum (J), and electric and magnetic
charges (Q and P) as

M ¼ pþ q
4

; J ¼
ffiffiffiffiffiffi
pq

p ðpqþ 4m2Þ
4mðpþ qÞ a; ð2:14Þ

Q2 ¼ qðq2 − 4m2Þ
4ðpþ qÞ ; P2 ¼ pðp2 − 4m2Þ

4ðpþ qÞ : ð2:15Þ

The event horizon of the Rasheed-Larsen black hole is
located at

rH ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
; ð2:16Þ

which implies the bound a2 ≤ m2. The other parameters
need to satisfy p; q ≥ 2m, where equality corresponds to
the vanishing of the electric and/or magnetic charges. The
case p ¼ q ¼ 2m corresponds to the chargeless Kerr limit
(in which the mass is given by m).
Interestingly, the Rasheed-Larsen black hole only admits

integrable geodesic equations for null geodesics due to the
existence of a conformal Killing tensor [32]; see also
Appendix B 2.
The multipoles of the Rasheed-Larsen black hole were

calculated in [29,30]

Ml ¼
Xl
k¼0

�
l
k

�
M̃k

�
−
M̃1

M̃0

�l−k
;

Sl ¼
Xl
k¼0

�
l
k

�
S̃k

�
−
M̃1

M̃0

�l−k
; ð2:17Þ

where

M̃2n ¼
�
pþ q
4

�
ð−a2Þn; M̃2nþ1 ¼

�
a
8m

p − q
pþ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − 4m2Þðq2 − 4m2Þ

q �
ð−a2Þn;

S̃2n ¼ 0; S̃2nþ1 ¼
�
a
4m

ffiffiffiffiffiffi
pq

p ðpqþ 4m2Þ
pþ q

�
ð−a2Þn: ð2:18Þ

Note that when a ≠ 0; p; q > 2m and p ≠ q, the Rasheed-
Larsen metric has S2n;M2nþ1 ≠ 0, which indicates a break-
ing of equatorial symmetry that is not present in Kerr.
When p ¼ q ¼ 2m, the metric reduces to Kerr; however,
note that the equal charge case p ¼ q > 2m does not
correspond to Kerr-Newman [16].

C. Manko-Novikov black hole

The Manko-Novikov metric is constructed as a solution
to the vacuum Einstein equations in four dimensions [17];
it can be thought of as deforming the Kerr black hole

by multipole bumps. Since it is a vacuum solution,
the uniqueness theorems imply it must be singular; in
particular, the event horizon has a singularity (only) at the
equator.
The Manko-Novikov metric can be written in Boyer-

Lindquist coordinates as

ds2¼−fðdt−ωdϕÞ2þe2γρ2

fΔ
dr2þe2γρ2

f
dθ2þΔsin2θ

f
dϕ2:

ð2:19Þ
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The functions ρ, Δ are given by

ρ2 ¼ ðr −MÞ2 − k2 cos2 θ; Δ ¼ r2 − 2Mrþ a2;

ð2:20Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The event horizon is at

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð2:21Þ

The functions γ, f, ω depend on the mass and rotation
parametersM, a as well as an octopole-bump parameter α3
in a highly nontrivial way—see Appendix A. When α3 ¼ 0,

the metric is simply Kerr. (The generic Manko-Novikov
black hole depends on an infinite series of such parameters,
one for each multipole that can be added.)
As opposed to the Johannsen and Rasheed-Larsen

black holes presented above, this metric no longer
permits separability of the (null) geodesic equations.
This breaking of integrability leads to chaotic phenomena
in its image, and the critical curve (if it is even well defined)
cannot be determined analytically. (See also below in
Sec. III B 3.)
The first few nonzero multipoles of the Manko-Novikov

metric are

M0 ¼ M; M2 ¼ −Ma2; M3 ¼ −α3ðM2 − a2Þ2; M4 ¼ Ma4;

S1 ¼ Ma; S3 ¼ −Ma3; S4 ¼ −2a½α3ðM2 − a2Þ2�: ð2:22Þ

From these expressions, it is clear that the dimensionless
parameter α3 controls the deviations from Kerr by turning
on the equatorial symmetry-breaking multipole moments
M3 and S4 (and will also feature in higher-order odd-parity
multipole moments).

D. Black hole critical curves

In an image of a black hole, there will always be a central
area with little to no brightness. In the case of a theoretical
uniformly illuminated black hole, this is an entirely black
shape that is sometimes called the shadow of the black hole
(although see footnote 1). The outer boundary of this
shadow is the critical curve, and is determined by the
exactly bound photons of the black hole. The critical curve
can also be thought of as the n → ∞ limit of the photon
rings. In the case of the (circular) Schwarzschild black hole,
the critical curve has radius

ffiffiffiffiffi
27

p
M [33] from the point of

view of an observer at infinity.
The critical curve can be analytically derived for metrics

where null geodesics are separable. In this section, we
review this method for stationary and axisymmetric sepa-
rable metrics (following [33]) and their application to the
critical curves for the Johannsen and Rasheed-Larsen black
holes (first studied in respectively, [34,35]). The Manko-
Novikov metric does not have separable null geodesics and
so does not allow such a treatment.
Consider a photon following a null geodesic with

4-momentum pμ, satisfying pμpμ ¼ 0. Stationarity and
axisymmetry of the metric imply that the photon energy
E≡ −pt and azimuthal angular momentum L≡ pϕ are
conserved quantities. An observer at distance r0 can set up
a frame of reference given by an orthonormal tetrad feðμÞg,
where (μ) is a label and not an index. The photon’s velocity
as measured by this observer is then pðtÞ ¼ −eμðtÞpμ and

pðiÞ ¼ eμðiÞpμ for i ∈ fr; θ;ϕg. When the observer is at a

large distance r0 → ∞ the photon is characterized alter-
natively by the impact parameters

α ¼ lim
r0→∞

− r0
pðϕÞ

pðtÞ ; β ¼ lim
r0→∞

r0
pðθÞ

pðtÞ : ð2:23Þ

For both black holes of interest, the impact parameters are
given by

α ¼ −
λ

sin θ0
; β ¼ pθjθ0 ; ð2:24Þ

where λ≡ L=E is the energy-rescaled angular momentum,7

and θ0 is the observer’s angle of inclination with respect to
the black hole’s angular momentum. The separable null
geodesic equations demand that

p2
r ¼ RðrÞ; p2

θ ¼ ΘðθÞ; ð2:25Þ
for a particular angular potential ΘðθÞ and radial potential
RðrÞ. The angular potentials for the Johannsen and
Rasheed-Larsen black holes are (see Appendix B)

ΘJohðθÞ ¼ ηþ a2 cos2 θ − λ2 cot2 θ; ð2:26Þ

ΘRLðθÞ ¼ ΘJohðθÞ − a
ðp − qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − 4m2Þðq2 − 4m2Þ

p
2mðpþ qÞ

× cos θ; ð2:27Þ
whereas the radial potentials are

RJohðrÞ≡ A2
5ðrÞΔ2p2

r

¼ A5ðrÞ
h
A1ðrÞða2 þ r2Þ − A2ðrÞaλ

i
2
− ΔχA5ðrÞ;

ð2:28Þ

7For null geodesics, only the energy-rescaled quantities are
relevant.
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RRLðrÞ≡ Δ2p2
r ¼ −Δ½χ þ T þ TrðrÞ þ 2λfðrÞ� þ a2λ2:

ð2:29Þ

These potentials depend on a constant η, which can be
physically interpreted as the square of the angular momen-
tum in the θ-direction of the photon when it passes through
the equatorial plane θ ¼ π=2. Therefore, the geodesics that
we consider have η ≥ 0, with equality holding for geo-
desics that are confined to the equatorial plane; η is
precisely related to the Carter-like constant for these
separable black holes. The precise definition of η as well
as the auxiliary functions T; Tr; f are given in Appendix B.
Photons can only arrive at the distant observer if they

travel on geodesics that are not bound. Geodesics are
characterized by their constants of motion, meaning that the
impact parameters (2.24) only make sense for λ, η asso-
ciated with unbound geodesics. Constants of motion related
to geodesics that fall into the black hole correspond to
impact parameters at which no photon will be detected. No
light will arrive on the observer screen for this set of impact
parameters. The critical curve is the boundary of this
region: it is defined by the impact parameters for bound
geodesics. In the parameter space of impact parameters,
these separate the geodesics that fall into the black hole
from those that escape to infinity.
A bound null geodesic orbits at a fixed radial co-

ordinate for radii within a certain interval.8 The radial

potential for a geodesic on a bound orbit of radius rB must
satisfy

RðrBÞ ¼ R0ðrBÞ ¼ 0: ð2:30Þ

These equations can be solved to determine η and λ in terms
of rB, see Appendix B 1.
The range of allowed values for the radial coordinate is

determined by demanding that the angular potential ΘðθÞ is
positive somewhere in the interval ½0; π�, i.e. there are
values for θ at which the momentum in the θ-direction is
real. The angular potential of bound geodesics depends on
the radius of the bound orbit rB through the constants of
motion η, λ.
Note that an observer located at an inclination θ0 can

only observe photons that travel on geodesics for which
Θðθ0Þ ≥ 0 [see (2.24)]. In the case of the Johannsen (or
Kerr) metric, the range of bound orbit radii rB for which
this holds is largest for an observer in the equatorial plane.
The range of rB for off-equatorial observers is contained
within this maximal range. This means that an equatorial
observer probes the largest part of the black hole spacetime.
In the case of the Rasheed-Larsen metric, this is no longer the
case, as the spacetime is no longer symmetric with respect to
θ ¼ π

2
. However, there is still an observer inclination angle θ00

which corresponds to observing a maximal range in rB. For
further discussion, see Sec. IVA 1.
We present examples of critical curves for the Johannsen

and Rasheed-Larsen black holes in Figs. 1 and 2. We have
also verified their correctness by comparing them with ray-
traced images.

FIG. 1. Influence of changing the different parameters of the Johannsen metric on the black hole critical curve. The spin parameter is
a=M ¼ 0.7. Only one deviation parameter in each figure is nonzero; αij ¼ 0 corresponds to the Kerr black hole. The parameter α52 has
no effect on the critical curve so is not shown. The observer is located in the equatorial plane.

8This was shown for Kerr in [36], and we assume this holds for
the Johannsen and Rasheed-Larsen spacetimes as well. Given that
the resulting critical curves define convex, connected regions,
there is no evidence our analysis misses any other bound orbits.

BLACK HOLE PHOTON RINGS BEYOND GENERAL RELATIVITY PHYS. REV. D 107, 124026 (2023)

124026-7



For the Johannsen metric (Fig. 1), the effect of changing
the spin parameter is the same as for Kerr—increasing spin
compresses the critical curve on one side. The parameter
α52 can be seen not to have any influence on the critical
curve, so we fix α52 ¼ 0. The other two deviation param-
eters have an observable effect; α13 mostly changes the
overall size of the critical curve, whereas α22 compresses
the critical curve in one direction, much like the effect of
increasing the spin parameter. We also show the critical
curve for parameter values close to the bounds (2.5).
Rasheed-Larsen black hole critical curves are plotted in

Fig. 2. We again see the typical one-sided compression of
the critical curve when the spin parameter a is increased

(see upper left panel). The parameter m influences the
overall size, whereas increasing the charge while keeping
the mass fixed decreases the size of the critical curve (see
upper right panel)—as usual for charged black holes.
Finally, changing the ratio p=q between the two kinds
of charge parameters has a small influence on the size of the
shadow as well, and the results are symmetric in p, q.

III. PHOTON RING SHAPE

Although the shape and size of the critical curve may be
intrinsically linked to the specific geometry of the black
hole, they are not true observables, as mentioned in the

FIG. 2. Influence of changing the different parameters of the Rasheed-Larsen metric on the black hole critical curve, as measured by an
equatorial observer. The standard parameters are a=M ¼ 1=3, m=M ¼ 2=3, p=M ¼ q=M ¼ 2. In the two left panels we change a and
m, and in the top right panel we change m=p while keeping a=m and p fixed. The bottom right panel shows the influence of changing
p=q, keeping a, m fixed. The two parameter values that correspond to Kerr black holes are indicated.
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Introduction. However, the successive photon rings do
approach the critical curve—closer for every successive
n. Therefore, from about n ≳ 2, the photon ring curves
approximate the critical curve very well.
As mentioned in the Introduction, GLM argued [9] that

measuring the shape of the n ¼ 2 ring can provide a precise
null test of the Kerr metric. In particular, the projected
diameter of the shape of the Kerr critical curve (and the
n ¼ 2 photon ring) is to a very good approximation fit by a
so-called circlipse [9,25], which can be thought of as a
superposition of a circle and an ellipse. GLM projected that
measurements of the n ¼ 2 ring could be fit to a circlipse to
an incredible 0.04% precision at relatively low inclinations
θ0 ≤ 30°. The precise method of extracting the shape of the
photon ring from the actual interferometric measurements
of the image visibility amplitude (i.e. the Fourier transform
of the actual image) is explained in [9] (see also [11]).
In Sec. III A we introduce the precise definition of

projected diameter (i.e. the measurable component of the
photon ring shape), the circlipse function, and our method
of generating and analyzing the photon ring shapes.
In Sec. III B, we analyze the critical curve and n ¼ 2

photon ring shape at low inclinations for the three different
black hole metrics at hand, and discuss the circlipse fit for
their projected diameters.

A. Methodology

We summarize our method of generating the n ¼ 2 ring
and critical curve projected diameter dðφÞ here. In all cases
except the Manko-Novikov metric, the critical curve can be
analytically calculated; see Sec. II D. We use numerical ray
tracing of null geodesics in black hole backgrounds to
generate a collection of Cartesian coordinates ðx; yÞ for the
n ¼ 2 photon ring. We use the ray tracer FOORT [24];
see Appendix C for additional information on FOORT
and Appendix D for more details on the extraction of the
n ¼ 2 ring.

1. Projected diameter

Given a collection of points ðx; yÞ describing a curve (i.e.
the n ¼ 2 ring or the critical curve), we can parametrize
every point on this curve by the standard polar angle θ ¼
tan−1ðy=xÞ, giving us a parametrized shape ðxðθÞ; yðθÞÞ.
We then define the angle φ through the normal at every
point on the curve as [25]

tanφðθÞ ¼ −
x0ðθÞ
y0ðθÞ ; ð3:1Þ

giving the projected position function as

fðφÞ ¼ xðφÞ cosφþ yðφÞ sinðφÞ; ð3:2Þ

and finally the projected diameter is simply

dðφÞ ¼ 1

2
ðfðφÞ þ fðφþ πÞÞ: ð3:3Þ

The angle φ is periodic with a range from 0 to 2π and the
projected diameter satisfies dðφþ πÞ ¼ dðφÞ. By conven-
tion, φ ¼ 0 and φ ¼ π are on the equatorial plane, so an
equatorially symmetric closed curve will also satisfy

dðφÞ ¼ dðπ − φÞ: ð3:4Þ

Following [9], we will consider datapoints for dðφÞ at the
equidistant 35 points φ ¼ 5°;…; 175°.9 To mimic obser-
vational noise, we also consider a “noisy” version of this
dataset, where we artificially add a random Gaussian noise
to the 35 datapoints with deviation σ given by

σ ¼ 4.45026 × 10−4 × μ; ð3:5Þ

where μ ¼ hdðφÞi is the average projected diameter over
the 35 datapoints. This is the same noise as the forecast
of [9] exhibits (where σ ¼ 0.017 μas and μ ≈ 38.2 μas).
In principle, one should infer the photon ring diameter
at a given angle φ from the periodicity of the visibility
amplitude on long baselines, in which case the periodicity
would give a definite value for the ring diameter lying
within the range of diameters contained within the lensing
band.10 The mock “noise” that we are adding to our data
points can be thought as mimicking the intrinsic error in
this interferometric measurement that comes from the finite
ring thickness; our assumption is that this error is compa-
rable in scale to that found in [9].
The resulting dðφÞ dataset can then be fit to the circlipse

function [9,25]

dcirclipseðφÞ ¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 cos

2ðφ − φ0Þ þ R2
2 sin

2ðφ − φ0Þ
q

:

ð3:6Þ

This function depends on the three physical parameters R0,
R1, R2, and an offset angle φ0, which is degenerate with the
orientation of the camera [9]. As measure for the precision
of the fit, we consider, as in [9], the normalized root-mean
square deviation of the fit

RMSDfit ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdobs − dfitÞ2i

p
hdfiti

; ð3:7Þ

where dfit is the best-fit circlipse of (3.6) for the data-
points dobs.
An example of our procedure is shown in Fig. 3 for

Kerr with a=M ¼ 0.94, viewed at θ0 ¼ 17° inclination.

9In [9], also φ ¼ 0° is used; we exclude this point as it is too
sensitive to numerical errors inherent in our method.

10We thank A. Lupsasca for emphasizing this point to us.
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According to [9], RMSDfit for the best-fit circlipse model to
the actual forecasted observational data for the n ¼ 2
photon ring is 0.04%. Our procedure generates data for
the n ¼ 2 ring and critical curve that has RMSDfit ¼
0.002%, and the corresponding mock noisy data has
RMSDfit ¼ 0.046%, which indeed matches the forecasted
precision of [9]. Note that an analogous fit with RMSDfit ≈
0.04% for the noisy data is obtained at all inclina-
tions θ0 ≤ 35°.
At higher inclinations, the circlipse function still fits the

Kerr critical curve projected diameter very well [25]. The
RMSD errors for the best-fit circlipse increase only
mildly—for a=M ¼ 0.99 at θ0 ¼ 90°, we find RMSDfit ¼
0.073%; 0.081% for respectively the original and mock-
noisy data, again very much in agreement with the fit errors
found in [25] (i.e. RMSDfit ¼ 0.06%).

B. Results

Here, we present an analysis of the critical curves and/or
n ¼ 2 photon ring projected diameters for the Johannsen,

Rasheed-Larsen, and Manko-Novikov black holes intro-
duced above. We will present results for low inclinations
θ0 ≲ 30°, although we will often focus on θ0 ¼ 17° (i.e. the
observationally inferred inclination for M87*).

1. Johannsen

The only parameter that affects the photon ring or critical
curve shape measurably is the parameter α22,

11 so we focus
only on changing this parameter.
For all the Johannsen metrics we consider, there is no

measurable difference in the shape analysis between critical
curve and curve of the n ¼ 2 photon ring; for simplicity,
we focus on the critical curve as it can be determined
analytically (see Sec. II D.)

FIG. 3. Our procedure of determining the n ¼ 2 ring or critical curve shape for Kerr with a=M ¼ 0.94 and θ0 ¼ 17°. The critical curve
is fit in (c) and (d), but the fit for the n ¼ 2 data is analogous. The RMSD of the original data fit is RMSDfit ¼ 0.002% and for the mock
noisy data fit is RMSDfit ¼ 0.046%.

11The size of the critical curve or photon ring is affected
significantly by α13 as well, but this does not show up in an
analysis of only the shape. The parameter α52 does not influence
the critical curve at all. See Sec. II D.
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Consider a=M ¼ 0.94, α13 ¼ α52 ¼ ϵ3 ¼ 0. When
α22 ¼ 0, this is simply a Kerr black hole shown in
Fig. 3. We show the four-color screen image for α22 ¼
3.65 in Fig. 4; this is close to the upper bound (2.5), which
is α22 ≤ 3.66172.
The projected diameter for the critical curve of this

Johannsen black hole (with α22 ¼ 3.65) at inclination
θ0 ¼ 15° is shown in the upper panels of Fig. 5. The
circlipse fit is now significantly worse than for Kerr, with
RMSDfit ¼ 0.22% for both the original and mock-
noisy data.
It is illustrative to show the evolution of the fit error

RMSDfit of the best-fit circlipse function for different
values of α22 at fixed inclination θ0 ¼ 17°, and also the
evolution for different inclinations for fixed α22 ¼ 3.65, see
the lower panels of Fig. 5. The Kerr circlipse remains a
good fit for the projected diameter for low inclinations and
low α22. The higher the inclination, the smaller the value of
α22 that is necessary to achieve an RMSD that is higher than
that of Kerr. Around θ0 ¼ 35° (for α22 ¼ 3.65), the RMSD
is still only about ten times worse than for Kerr, i.e. only
RMSDfit ∼ 0.4%. It is clear that the projected diameter for
the Johannsen metric generally only deviates modestly
from the circlipse function.

2. Rasheed-Larsen

We consider the following configuration (given in units
of the black hole’s mass):

m ¼ 0.36M; a ¼ 0.30M;

p ¼ 3.06M; q ¼ 0.94M; ð3:8Þ

which corresponds to the physical charges

J ¼ 0.3M2; P ¼ 1.3M; Q ¼ 0.15M: ð3:9Þ

The metric breaks equatorial symmetry; in particular the
lowest-order odd-parity multipoles (that vanish for Kerr)
are [see (2.17)]

S2
M3

¼ −0.06;
M3

M4
¼ 0.02: ð3:10Þ

This choice of parameters comes close to maximizing
the equatorial symmetry-breaking multipole S2=M3, so it
represents in some sense a (near-)maximal deviation from
Kerr that can be achieved with the Rasheed-Larsen black
hole. However, note that since null geodesics are still
integrable, the critical curve is still equatorially symmetric
[37]; see Fig. 6.
The configuration (3.8) is also used in forthcoming

general-relativistic magnetohydrodynamic (GRMHD) sim-
ulations of plasma accretion onto a Rasheed-Larsen black
hole, and the resulting photon rings based on the emission
from the fluid [38]; our analysis provides a useful point of
comparison to the more detailed analysis therein.
Since the metric is not equatorially symmetric, but the

critical curve still is, an interesting question is whether
the breaking of equatorial symmetry can be apparent in the
n ¼ 2 ring. With the naked eye, there certainly does not
seem to be any hint of this symmetry breaking in the n ¼ 2
ring, see Fig. 7. Our analysis below confirms the lack of
signature from the symmetry breaking quantitatively; the
n ¼ 2 ring is already too “close” to the critical curve to
show any measurable deviation to the critical curve’s
equatorial symmetry.
The projected diameters for the critical curve and n ¼ 2

photon ring at inclination θ0 ¼ 15° are fit very well by the

FIG. 4. Four-color screen image of the Johannsen black hole with a=M ¼ 0.94 and α22 ¼ 3.65, at inclinations θ0 ¼ 90° and θ0 ¼ 15°.
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circlipse curve function (3.6); see the top four panels
of Fig. 8. The corresponding RMSDs are RMSDfit ¼
0.0015% and RMSDfit ¼ 0.031%, respectively for the
original and mock-noisy data of the critical curve, and
RMSDfit ¼ 0.006% and RMSDfit ¼ 0.051% for the origi-
nal and mock-noisy data of the n ¼ 2 ring.
Clearly, at θ0 ¼ 15°, the critical curve and n ¼ 2 ring

cannot distinguish between the Rasheed-Larsen and
Kerr black holes. In the bottom two panels of Fig. 8,
we show that this is also true at other inclinations.12 It is
simply not possible to distinguish between Kerr or
Rasheed-Larsen using only the shape of the critical curve
or n ¼ 2 ring.

3. Manko-Novikov

In the analysis of the Manko-Novikov black hole, we
will consider a=M ¼ 0.94 and turn on the dimensionless
asymmetry parameter to α3 ¼ 13.

Null geodesics for the Manko-Novikov black hole are not
separable or integrable, so the usual semi-analytical way of
determining a critical curve as in Sec. II D is not applicable.
Indeed, the lack of integrability leads to chaotic lensing
phenomena [27,39,40], so that it is not even clear whether
the notion of a critical curve (or photon ring) is well-defined
for images of such objects; see the four-color screens in
Fig. 9. Nevertheless, for relatively low inclinations θ0 ≲ 35°,
the photon rings can still be extracted from these images
and their outer boundaries are to a very good approximation
still connected, smooth curves. For higher inclinations, the
photon ring starts to show “holes” and other disconnected
phenomena, which are typical features for non-integrable
metrics (see e.g. [39–41]; this was also noticed for the
Manko-Novikov metric when the quadrupole (M2) bump is
nonzero [42]); see Fig. 9. As can also been seen in Fig. 9, the
Manko-Novikov metric breaks equatorial symmetry.
The projected diameters for the n ¼ 2 photon ring at

inclination θ0 ¼ 15° are still fit very well by the circlipse
function (RMSDfit ¼ 0.054%; 0.077% for original and
mock-noisy data, respectively); see the top panels of
Fig. 10. However, at higher inclinations, the deviation
from the circlipse quickly becomes more visible and the fit
becomes worse; see the bottom panel of Fig. 10. Once

FIG. 5. The circlipse fit for the Johanssen black hole with a=M ¼ 0.94. For α22 ¼ 3.65, the top two panels illustrate the circlipse fit for
the projected diameter dðφÞ for the original data (upper-left) and mock-noisy data (upper-right); the line gives the best-fit circlipse
function. The lower panels show the fit uncertainty RMSDfit for the circlipse fit for varying α22 and fixed θ0 ¼ 17° (lower-left), and for
fixed α22 ¼ 3.65 and varying θ0 (lower-right). The red dots and line indicate the circlipse fit RMSD for the original data; the blue dots
and line indicate the RMSD for the mock-noisy data. The green line indicates the pure Kerr baseline of RMSDfit ¼ 0.04%.

12Note that Fig. 8 shows the critical curve at all inclinations;
we only show the results for the n ¼ 2 ring at inclination θ0 ≤ 35°
to avoid the possible numerical issues described in Appendix D 2.
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again, it is hard to distinguish the deviating black hole
geometry from its Kerr limit at low inclinations.
Our analysis in Sec. III shows that the circlipse shape of

the photon ring (and critical curve) is universal over a wide
range of deviations from Kerr. A large inclination angle
and/or a large deviation from Kerr is needed to have a
measurable difference from the Kerr shape. Of course, such
large deviations from Kerr would presumably show up
(or have shown up already) in other observations as well.
We can conclude that the photon ring does not distinguish
very well between Kerr and other black holes. As we will
see in the next section, the Lyapunov exponent is a more
promising observable to see deviations from Kerr.

IV. PHOTON RING THICKNESS AND LYAPUNOV
EXPONENT

The previous section shows how difficult it is to
disentangle Kerr black holes from their more general
counterparts, based on the shape of the critical curve or
photon rings. Therefore, this section addresses an observ-
able that could potentially help to distinguish the different
metrics; the Lyapunov exponent reflects the relative width
(or total intensity) of subsequent photon rings, and strongly
depends on the details of the metric. Furthermore, the
Lyapunov exponent varies along the black hole critical
curve, so that it represents an entire function worth of
values that can be tested.

FIG. 6. Four-color screen images of the Rasheed-Larsen black hole with parameters given by (3.8), at inclinations θ0 ¼ 90° and
θ0 ¼ 15°. The critical curve is equatorially symmetric, but the image breaks this symmetry. This asymmetry is very slight and is most
visible in the zoomed-out image at θ0 ¼ 90° [with screen size ð100MÞ2 instead of ð15MÞ2].
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Consider a bound photon orbit at radius rB. A nearly-
bound photon, initially at radius rB þ δr0, will orbit around
the black hole a number of times and evolve to radius
rB þ δrn [5]:

δrn ¼ eγnδr0; ð4:1Þ

where n is the number of half-orbits (defined below) the
photon travels on. The exponent γ is called the Lyapunov
exponent. Equation (4.1) holds as long as the photon
remains on an orbit that is nearly bound, and is no longer
true once the photon is well separated from the original
bound orbit and flies off to infinity. The successive
photon rings around the black hole, which correspond
to photons travelling on an increasing number of orbits
before escaping the black hole environment, then also
decrease in width exponentially according to the
Lyapunov exponent [5]:

δRnþ1

δRn
≈ e−γ for n ≫ 1: ð4:2Þ

Just like for the critical curve, the Lyapunov exponent
can be calculated analytically for metrics that admit
separable null geodesics. We review this calculation in
Sec. IVA and apply it to the Johannsen and Rasheed-
Larsen metrics; in Sec. IV B we discuss the resulting
Lyapunov exponents for these black holes. Note that
since integrability of the null geodesic equations is
necessary to calculate the analytic Lyapunov exponent,
the formalism does not apply to the Manko-Novikov
metric.
In Sec. IV C we briefly show how this analytic Lyapunov

exponent can be extracted (approximately) from ray-traced

images, deferring details to Appendix E. The work in this
section is an extension of the results in the master’s
thesis [43].

A. Analytic formula for the Lyapunov exponent

In this section we review the derivation of the analytic
expression for the Lyapunov exponent (4.9), following the
method of [5].
When null geodesics are separable, we can define a

radial potential RðrÞ and angular potential ΘðθÞ as dis-
cussed in Sec. II D. We can then write

�r
1ffiffiffiffiffiffiffiffiffiffi
RðrÞp dr

dσ
¼ �θ

1ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ

dσ
: ð4:3Þ

The signs on both sides depend on the photon trajectory,
and can change along the trajectory. We can then integrate
this expression over the geodesic path from ðti; ri; θi;ϕiÞ to
ðtf; rf; θf;ϕfÞ,Z

�
rf

ri

�r
1ffiffiffiffiffiffiffiffiffiffi
RðrÞp dr ¼

Z
�

θf

θi

�θ
1ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ð4:4Þ

where the slash denotes integration along the geo-
desic (meaning that the signs can change along the
integration).
A photon on a bound geodesic at constant radius rB

satisfies (2.30). The motion in the θ-direction is constrained
between turning points θ�, i.e. the zeroes of the angular
potential. We say that the photon on the bound geodesic has
completed one orbit when it makes one full oscillation in
the θ-direction.
For a photon on a nearly bound geodesic at a radius

rB þ δr0, after n half-orbits, the angular integral will be
equal to nGθ where Gθ is the angular integral over one
single half-orbit,

Gθ ¼
Z

θþ

θ−

1ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ: ð4:5Þ

Meanwhile, the photon has advanced to the radius
rB þ δrn. We can approximate the radial potential of this
nearly bound photon as

RðrÞ ≈ 1

2
R00

BðrBÞðr − rBÞ2; ð4:6Þ

where R00
BðrBÞ is the second derivative of the radial

potential evaluated on the radius of the bound orbit.
This allows us to approximate the radial integral as

Z
rBþδrn

rBþδr0

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

R00
BðrBÞ

s
ln

�
δrn
δr0

�
: ð4:7Þ

FIG. 7. The critical curve (black) and n ¼ 2 ring (red) of the
Rasheed-Larsen black hole with parameters (3.8) at inclination
θ0 ¼ 15°.
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Combining the radial and angular parts gives us

1

n
ln

�
δrn
δr0

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R00

BðrBÞ
2

r
GθðrBÞ: ð4:8Þ

Comparing this with (4.1), we conclude that the Lyapunov
exponent is given by

γðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
R00ðrÞ
2

r
GθðrÞ: ð4:9Þ

We dropped the subscript B here, but it should be noted
that the constants of motion λ, χ in R are implicitly
determined by the condition (2.30).
Just like the black hole critical curve, the Lyapunov

exponent is obtained from the conserved quantities asso-
ciated with bound null geodesics, and therefore is imprinted
with the spacetime metric properties. This implies the
Lyapunov exponent is also parametrized by the radial
coordinate in the interval where bound orbits exist. We
can therefore associate a Lyapunov exponent value for

FIG. 8. The circlipse fit illustrated for the Rasheed-Larsen black hole with parameters (3.8). We fit the critical curve (left panels) and
n ¼ 2 ring (right panels). The top four panels show the projected diameters and circlipse fit at θ0 ¼ 15°. The bottom two panels show the
fit uncertainty RMSDfit at varying inclination θ0. The red dots and line indicate the circlipse fit RMSD for the original data; the blue dots
and line indicate the RMSD for the mock-noisy data. The green line indicates the pure Kerr baseline of RMSDfit ¼ 0.04%. The critical
curve is fit all the way to θ0 ¼ 90° (bottom-left panel), showing that the Rasheed-Larsen black hole always approaches the circlipse
shape as well as Kerr does.
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every point on the critical curve. We introduce polar
coordinates on the screen:

R ¼ r−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
; cosϕR ¼ α=r0

R
; ð4:10Þ

where α, β are the impact parameters defined in (2.24). The
Lyapunov exponent can then be parametrized as a function
of the viewscreen polar angle ϕR, i.e. γðϕRÞ, making the
map between values of the Lyapunov exponent values and
the critical curve explicit. The Lyapunov exponent γðϕRÞ
for the Kerr black hole, for various values of a=M, is shown
in Fig. 11.

1. Lyapunov exponent as a function of inclination angle

The relation (4.9) does not depend on the coordinates
of the observer. This makes sense, since γ is a property of
the bound null geodesics in the photon sphere which is
independent of any observer. On the other hand, the range
of r values that contributes to the critical curve on the
observer screen is dependent on the observer’s inclination
θ0 (through the condition thatΘðθ0Þ ≥ 0). This range of r is
“smeared out” over the black hole critical curve; every
point on the critical curve corresponds to a different bound
orbit radius. The same bound orbit radius determines the
Lyapunov exponent at that point on the critical curve.
Therefore, the information in the function γðϕRÞ for an off-
equatorial observer will always be “contained” within the

FIG. 9. Four-color screen images (left) of the Manko-Novikov black hole with a=M ¼ 0.94 and the deviation parameter α3 ¼ 13, and
its n ¼ 2 photon ring (right), at inclinations θ0 ¼ 90° (top) and θ0 ¼ 15° (bottom).
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function γðϕRÞ as determined by an equatorial observer.13

This is shown in Fig. 11 by means of the dashed lines,
which indicate which part of the function γðϕRÞ as
determined by the equatorial observer is seen by an
observer at an inclination θ0 ¼ 17°.
The position of these boundaries can be determined

analytically; we will illustrate this for the Kerr metric.
Consider two observers at a distance r0, one in the
equatorial plane and the other one at an inclination θ�.
For the inclined observer, the geodesics that hit the
horizontal axis on the observer screen at β ¼ 0 obey the
relation

ðλ�Þ2 ¼ η� tan2 θ� þ a2 sin2 θ�: ð4:11Þ

Since λ� is a quantity associated with the geodesic itself and
not with the observer, we can use this expression to

determine where the equatorial observer registers this
geodesic on their screen. Using the expressions (4.10)
with θ0 ¼ π=2, we find that a geodesic subject to (4.11) hits
the screen of the equatorial observer at

R� ¼ r−10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1þ sin2θ�Þ þ η�sec2θ�

q
;

ϕ�
R ¼ arccos

�
−

λ�

R�r0 sin θ�

�
:

We can then rewrite the second relation as

sin

�
π

2
−ϕ�

R

�
¼�sinðθ�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

a2sin2θ�

a2ð1þ sin2θ�Þþ η�sec2θ�

s
:

ð4:12Þ

If we assume that the second term in the square root is
small, we can approximate

sin

�
π

2
− ϕ�

R

�
≈� sinðθ�Þ;

with the result that

FIG. 10. The circlipse fit for the n ¼ 2 rings of the Manko-Novikov black hole with parameters a=M ¼ 0.94. The top two panels show
the projected diameter and circlipse fit for α3 ¼ 13 at inclination θ0 ¼ 15°. The bottom panel shows the fit uncertainty RMSDfit of the
circlipse fit for varying α3 and fixed θ0 ¼ 17°. The red dots and line indicate the circlipse fit RMSD for the original data; the blue dots
and line indicate the RMSD for the mock-noisy data. The green line indicates the pure Kerr baseline of RMSDfit ¼ 0.04%. Data points
off the chart are RMSDfit ¼ 16.1%; 22.0% (original) and RMSDfit ¼ 16.2%; 22.0% (mock-noisy) for respectively θ0 ¼ 30°; 35°.

13Actually, this is only true for spacetimes that are symmetric
with respect to θ ¼ π

2
. An observer at this inclination observes the

“maximal range” of radial coordinates. For spacetimes that do not
have this symmetry, there is a different inclination angle θ� that
maximizes the range of r over which the angular potential is
positive for bound orbits. For the cases we studied, this angle
turned out to deviate only mildly from θ ¼ π

2
, much like the

analysis in Appendix D 2.
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ϕ�
R ≈

�
π

2
� θ�

�
mod π; ð4:13Þ

so an observer at inclination θ� sees only a fraction ∼2θ�=π
of the function γðϕRÞ that an equatorial observer sees.
This approximation (4.13) is better14 for values of the spin
close to zero or observers close to the poles, where it
becomes exact. In the example of Fig. 11, this approxi-
mation tells us that the observer at θ0 ¼ 17° observes the
part of the plot for the equatorial observer that is contained
between approximately 73° and 107°.

B. Results

The discussion of Sec. IVA applies for any stationary,
axisymmetric metric with separable null geodesics. We
have applied this formalism to the Johannsen and Rasheed-
Larsen black holes; details are presented in Appendix B 1.
For the Johannsen metric, the integral Gθ can be

analytically calculated in terms of an elliptic function. In
the case of the Rasheed-Larsen metric, the angular integral
has to be calculated numerically, as well as its turning
points θ�.
We plot the Lyapunov exponent γðϕRÞ for the Johannsen

and Rasheed-Larsen black holes in Figs. 12 and 13, as
measured by an observer in the equatorial plane. For the
Johannsen black hole (Fig. 12), varying the spin parameter

FIG. 11. Influence of the spin a on the Lyapunov exponent of a
Kerr black hole critical curve. The figure also shows how the
curve measured by an observer at θ0 ¼ 17° (bottom) is contained
within the curve measured by an equatorial observer (top).

FIG. 12. Influence of changing the different parameters of the
Johannsen metric on the Lyapunov exponent, as measured by an
equatorial observer. The spin parameter is a=M ¼ 0.7 and only
the deviation parameter mentioned in each figure is nonzero.
Note that αij ¼ 0 corresponds to Kerr in each figure.

14We have explicitly checked this approximation for a range of
parameters. The largest deviation we have encountered between
the exact value for ϕ�

R and the approximation (4.13) was on the
order of 2°.

SEPPE STAELENS et al. PHYS. REV. D 107, 124026 (2023)

124026-18



a=M has an analogous effect as for Kerr (see Fig. 11). It is
interesting to see that the parameter α52 does influence γ,
and therefore the photon rings, even though the critical
curve is not affected by this parameter. Note that some of
the curves in the plots for α22 and α13 are seen to diverge
rapidly; this happens when the values for these parameters
are close to the bounds given in (2.5).
For the Rasheed-Larsen metric (Fig. 13), the parameters

a and m have a fairly complementary effect (see upper-left
and lower-left panels): if the ratio a=m approaches 1, the
curve develops a strong dip, and gives lower values overall.
This is again roughly the same effect as seen in Kerr and

Johannsen when varying spin. If we keep the ratio a=m
fixed, increasingm with respect to p and q (see upper-right
panel) alters the overall curve, where we recover the Kerr
limit for the limiting cases p ¼ q ¼ 2m. The effect of
increasing the imbalance between the charges (i.e. chang-
ing p=q, see lower-right panel) is to raise the overall curve
while keeping its form roughly the same, and the results are
symmetric in p, q.
In general, it is clear that the Lyapunov exponent varies

strongly with the metric parameters. Measuring this expo-
nent precisely at different polar angles would be a rigid test
of the no-hair theorem, and could in principle distinguish

FIG. 13. Influence of changing the different parameters of the Rasheed-Larsen metric on the Lyapunov exponent, as measured by an
equatorial observer. The standard parameters are a=M ¼ 1=3; m=M ¼ 2=3; p=M ¼ q=M ¼ 2. In the two left panels we change a and
m, and in the top right panel we change m=p while keeping a=m and p fixed. The bottom right panel shows the influence of changing
p=q, keeping a, m fixed. The two parameter values that correspond to Kerr black holes are indicated.
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Kerr from other black holes. This remains true at relatively
low inclinations (e.g. θ0 ¼ 17°); even though observations
at such inclinations only probe a part of the full function
γðϕRÞ (see Fig. 11), this can still often suffice to distinguish
Kerr from other black holes.

C. On measuring the Lyapunov exponent in practice

From the discussion above, it is clear that the Lyapunov
exponent depends strongly on the metric parameters and
can identify deviations from Kerr. However, there are a
number of important issues with this analysis which we
touch upon here.
First of all, there is the question of measuring the

Lyapunov exponent in practice. One possibility in principle
is to compare the widths (or intensities) of successive photon
rings [5]. However, an accurate measurement of widths of
photon subrings (even for n ¼ 2) currently seems unfeasible
in the near future. A more exciting, realistic possibility may
come from a recent proposal that the brightness autocorre-
lations of the photon ring—which are in principle measur-
able with (an upgraded version of) EHT—would encode
information on the Lyapunov exponents and other photon
trajectory critical exponents [10].
Besides the question of practical observability, there are

also two issues with the analytical Lyapunov exponent:
(1) The analytic Lyapunov exponent, as calculated and

discussed above, can only be determined for metrics
that allow for integrable geodesic equations.

(2) The Lyapunov exponent is calculated as an approxi-
mation, using the first nontrivial order of the radial
potential for geodesics that are only slightly deviating
away from a bound orbit [see (4.6)]. It is not clear how
good this approximation is, and in particular—even if
a hypothetical precise measurement of successive
photon ring widths or intensities can be made—
whether (4.2) will indeed be satisfied for the Lyapu-
nov exponent calculated in this approximation.

The first question is relevant for e.g. the Manko-Novikov
black hole we have discussed. It would seem that both the
notions of critical curve and of photon ring as closed,
connected objects break down for this black hole. Indeed,
losing integrability for null geodesics invariably gives rise
to chaotic phenomena in the image in general [27,39,40]. It
would be interesting to investigate how such chaotic
“photon ring-breaking” features could translate into meas-
urable interferometric signatures that can be looked for in
observations (see also [27] for related discussions on
chaotic image features and their observability).
The second issue, i.e. how well the calculated analytical

Lyapunov exponent actually corresponds to the widths of
successive photon subrings, seems to be largely unexplored
territory—this is mostly due to the prohibitively high
resolutions needed to resolve subrings with n≳ 2 in
ray-traced images [13], and the uncertainty in the (claim
of the in-)dependence of the underlying emission

mechanisms and how well they are resolved in GRMHD
simulations.
We take a first step towards addressing this issue in the

analysis of Appendix E. We use FOORT [24] to obtain ray-
traced images at a high resolution, from which we extract
the photon rings that are resolved in width.15 We compare
the ratios of these widths to give a numerical estimate of the
Lyapunov exponent for low-order rings. Our overall con-
clusion is that the relation (4.2) is not yet satisfied for the
lowest-order rings, and that numerical noise (i.e. uncer-
tainties on the small widths) is quick to dominate the
estimate for increasing n. Using images that zoom in on the
edge of the critical curve allows us to make better estimates
(based on n ¼ 4, 5 ring widths) that come close(r) to the
theoretical predictions. However, even for these rings, there
is still a clear difference between the “measured” Lyapunov
exponent prediction and the “theoretical” value from the
calculations of the previous sections.
Our analysis in this section shows that the Lyapunov

exponent is quite sensitive to metric deviations. Precise
measurements of this observable could then be a strong
differentiator between Kerr and other alternative black
holes. A thorough study of the Lyapunov exponent and
its measurability should also take into account the differ-
ence between the calculated analytical value and the value
that can be extracted in practice from the particular
observation (such as pointed out in this subsection for
the observation of successive subring widths). We leave
more comprehensive studies of the observability of the
Lyapunov exponent to future work.
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APPENDIX A: DETAILS OF THE
MANKO-NOVIKOV BLACK HOLE

The Manko-Novikov metric is originally given by the
Weyl-Papapetrou line element in prolate spheroidal coor-
dinates:

ds2 ¼ −fðdt − ωdϕÞ2 þ k2

f
e2γðx2 − y2Þ

�
dx2

x2 − 1
þ dy2

1 − y2

�

þ k2

f
ðx2 − 1Þð1 − y2Þdϕ2: ðA1Þ

In this metric, k is a real constant and f, γ, ω are functions
that depend only on the coordinates x, y. We only consider
an octupole deformation, of which the strength is charac-
terised by a parameter α3. The series of auxiliary functions
that go into (A1) are then given by

f ¼ e2ψ
A
B
; ω ¼ 2ke−2ψ

C
A
− 4k

α

1 − α2
;

e2γ ¼ e2γ
0 A
ðx2 − 1Þð1 − α2Þ2 ; ψ ¼ α3

P3

R4
;

and further

γ0 ¼ 1

2
ln

x2 − 1

x2 − y2
þ 2α23

P2
4 − P2

3

R8
þ α3

X3
l¼0

�
x − yþ ð−1Þ3−lðxþ yÞ

Rlþ1
Pl

�
;

A ¼ ðx2 − 1Þð1þ ãbÞ2 − ð1 − y2Þðb − ãÞ2;
B ¼ ½xþ 1þ ãbðx − 1Þ�2 þ ½ð1þ yÞãþ ð1 − yÞb�2;
C ¼ ðx2 − 1Þð1þ ãbÞ½b − ã − yðãþ bÞ� þ ð1 − y2Þðb − ãÞ½1þ ãbþ xð1 − ãbÞ�;

ã ¼ −α exp
�
2α3

�
1 − ðx − yÞ

X3
l¼0

Pl

Rlþ1

��
;

b ¼ α exp

�
2α3

�
−1þ ðxþ yÞ

X3
l¼0

ð−1ÞlPl

Rlþ1

��
;

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
:

The Pl are the Legendre polynomials evaluated at xy=R, i.e.
Pl ¼ Plðxy=RÞ. The expressions above correct two typos16
in [17], which were also noticed in [44]. Finally, the
parameters α, k are related to the mass and angular
momentum J ¼ Ma as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; α ¼ k −M

a
: ðA2Þ

The Manko-Novikov metric as described above can be
brought to Boyer-Lindquist coordinates by the following
transformation [42]:

x ¼ r −M
k

; y ¼ cos θ: ðA3Þ

The result of this transformation is the line element (2.19).

APPENDIX B: BLACK HOLE CRITICAL CURVE
AND LYAPUNOV CALCULATIONS

In this Appendix, we present more details on the
calculations of the analytic critical curves presented in
Sec. II D, and the analytic Lyapunov exponents presented
in Sec. IVA.

1. Johannsen metric

The constants of motion determined by the bound
geodesic condition (2.30) with (2.28) are

16One is in the expression for M2: [17] writes α2 at the end,
which should be α2. The other is in the expression (13) of [17]:
the −1 and ð−1Þn at the end of the expressions should not be
taken into the sum.
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λ ¼ ½Mða2 − r2Þ þ rΔ�A1 þ ða2 þ r2ÞΔA0
1

aðM − rÞA2 þ aΔA0
2

; ðB1Þ

χ ¼ Δ½ða2 þ r2ÞðA2A0
1 − A1A0

2Þ þ 2rA1A2�2
½ðM − rÞA2 þ ΔA0

2�2
: ðB2Þ

Separability of the geodesic equations.—We start by
demonstrating the separability of the geodesic equations.
Starting from the Hamilton-Jacobi equation

−
∂S
∂τ

¼ 1

2
gαβ

∂S
∂xα

∂S
∂xβ

; ðB3Þ

assuming a Hamilton-Jacobi function of the form

S ¼ 1

2
μ2τ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ðB4Þ

where μ is the mass of a test-particle on a geodesic.
Plugging the metric (2.1) into (B3), we find that

−Σ̃μ2 ¼ −
1

Δ
½−A1ðrÞðr2 þ a2ÞEþ aA2ðrÞL�2

þ ΔA5ðrÞp2
r þ

1

sin2 θ
½L − aE sin2 θ�2 þ p2

θ; ðB5Þ

where we identified ∂Sr
∂r ≡ pr;

∂Sθ
∂θ ≡ pθ. Using the expres-

sion (2.2) for Σ̃, we see that this equation can be separated
in r and θ, so that we can introduce a constant k to find

ΔA5ðrÞp2
r ¼ −

�
r2 þ ϵ3

M3

r

�
μ2 þ 1

Δ
½A1ðrÞðr2 þ a2ÞE

− aA2ðrÞL�2 − k; ðB6Þ

p2
θ ¼ k − a2μ2 cos2 θ − csc2 θ½L − aE sin2 θ�2: ðB7Þ

These expressions give the potentials (2.26) and (2.28), in
which we have used the energy-rescaled constants of
motion χ ≡ k

E and λ≡ L
E, and set μ ¼ 0 for null geodesics.

Alternatively, we also use η ¼ χ − ðλ − aÞ2 for the
Johannsen metric.
Analytic solution of angular integral.—We follow the

method of [45] to calculate the integral (B11).
Using the expression (2.26) for the angular potential

of the Johannsen metric, we make a change of variables
u ¼ cos2 θ to find

ΘðuÞ ¼ a2

1 − u
ðuþ − uÞðu − u−Þ; ðB8Þ

where

u� ¼ Δθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

θ þ
η

a2

r
; Δθ ¼

1

2

�
1 −

ηþ λ2

a2

�
: ðB9Þ

Using (B1) and (B2), this becomes an analytic expres-
sion for u� in terms of the radial coordinate r. When17

η > 0 both roots are real. Furthermore, u− < 0 < uþ ≤ 1.
Therefore, we have θ� ¼ cos−1 ð∓ ffiffiffiffiffiffi

uþ
p Þ. One can now

calculate that

Gθ ¼
1ffiffiffiffiffi
a2

p
Z

uþ

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðuþ − uÞðu − u−Þ

p ; ðB10Þ

and upon making the substitution u ¼ uþt2, we find

Gθ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

−a2u−
p K

� ffiffiffiffiffiffi
uþ
u−

r �
: ðB11Þ

This is given in terms of a complete elliptic integral of the
first kind:

KðkÞ ¼
Z

1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p : ðB12Þ

Note that the argument for the elliptic function K in (B11)
is imaginary, as u− < 0. However, the corresponding
integral, and so the value of Gθ, remains real.

2. Rasheed-Larsen black hole

Separability of the geodesics equations for null
geodesics.—Again, we will show that the Hamilton-
Jacobi equation (B3) is separable. However, this time
the separability is only true in the case of null geodesics
(μ ¼ 0) [32]. Assuming (B4), we get the equation

−μ2
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
¼ E2

B2H2
3csc

2θ − ΔH1H2

ΔH3

þ 2EL
BH3csc2θ

Δ

þ L2
H3csc2θ

Δ
þ Δp2

r þ p2
θ; ðB13Þ

where we identified ∂Sr
∂r ≡ pr;

∂Sθ
∂θ ≡ pθ. The goal is to show

that this equation is separable in r, θ. The term on the left-
hand side depends on r, θ in a nonseparable way, meaning
that we need μ ¼ 0, i.e. massless particles, if we want
separability. The terms on the right-hand side are separable:

(i) The first term on the right-hand side is separable, as
we find that

B2H2
3 csc

2 θ − ΔH1H2

ΔH3

¼ TrðrÞ þ TθðθÞ þ T;

ðB14Þ

17We already mentioned that η ≥ 0. However, for η ¼ 0, the
geodesic is bound to the equatorial plane, meaning that the
angular integral is poorly defined. The result for the Lyapunov
exponent will, however, be well defined in the limit η → 0.
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where the auxiliary functions on the right-hand side are given by

T ¼ −2m2 −
3

2
pqþmðpþ qÞ; ðB15Þ

4m2ðpþ qÞ2ΔTrðrÞ ¼ ð2m − p − qÞr − r2 − pqf−a2ð4m2 þ pqÞ2 þm2ððp − 2mÞ2ðq − 2mÞ2
þ 4ðpþ qÞð4m2 þ pqÞrÞg; ðB16Þ

TθðθÞ ¼
ðp − qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − 4m2Þðq2 − 4m2Þ

p
2mðpþ qÞ a cos θ − a2 cos2 θ: ðB17Þ

(ii) The second term is easily seen to be separable, as the
θ-dependence of B3 [see (2.13)] gets canceled by the
csc2 θ. We denote this term as

fðrÞ ¼ B3 csc2 θ
Δ

: ðB18Þ

(iii) The third term is also separable, as we can calculate
that

H3 ¼ Δ − a2 sin2 θ;

such that

H3 csc2 θ
Δ

¼ csc2 θ −
a2

Δ
: ðB19Þ

The conclusion is that the Hamilton-Jacobi equation is
indeed separable for null geodesics, meaning that we can
introduce a constant k such that

p2
θ ¼ k − L2 csc2 θ − E2TθðθÞ; ðB20Þ

Δp2
r ¼ −ðkþ TÞ − E2TrðrÞ − 2ELfðrÞ þ a2

Δ
L2: ðB21Þ

These expressions define the potentials (2.27) and (2.29),
in which we have used the energy-rescaled constants of
motion χ ≡ k

E and λ≡ L
E. Alternatively, we also use

η ¼ χ − λ2.

APPENDIX C: RAY TRACING WITH FOORT

In this paper, we use the flexible object-oriented ray
tracer (FOORT) developed by two of the authors [24].
Whereas most ray tracers are written with specifically the
Kerr metric in mind, FOORT was constructed in the first
place to provide a flexible but fast framework for ray
tracing geodesics in arbitrary spacetimes. The flexibility of
FOORT allows us to implement the various metrics in this
paper as well as easily adjust the geodesic integration to
keep track of various diagnostic quantities along the

geodesic trajectory—such as the number of passes through
the equator that the geodesics make.
The specific implementation details of FOORT will be

presented elsewhere [24]; we present here only the features
that are most important for our analysis. The ray tracing
camera is placed at r ¼ 1000M, whereM is the mass of the
black hole being considered, and r is the Boyer-Lindquist-
type coordinate (i.e. the radial coordinate which is pre-
sented for each metric in this paper). The null geodesics are
then traced backwards from the camera position towards
the object, following them until they either disappear into
a horizon or escape outside the celestial sphere at
r ¼ 1000M. We keep track of the quadrant of the celestial
sphere in which the geodesic escapes, giving rise to four-
color screen pictures such as Fig. 3. We also keep track of
the number of passes the geodesic makes through the
equator, which tells us which order n photon ring the
geodesic belongs to (see below). We use FOORT’s adaptive
mesh for deciding which pixels to ray trace, which allows
us to achieve effective resolutions up to 191372 pixels18 on
a ð15MÞ2-size viewscreen by only integrating ca. 1M
pixels. This resolution is more than sufficient for our
purposes; for example, the resulting (outer) n ¼ 2 photon
ring that is extracted contains approximately a factor of 3–5
more than the number of pixels used in our analysis (see
below in Appendix D 1). Integrating all pixels on the
viewscreen typically only takes Oð10Þ min per image
on an average personal laptop due to the adaptive mesh
and an efficient C++ implementation that takes advantage
of OpenMP parallelism to speed up the calculations.
Identifying photon rings.— The nth photon ring is

usually defined as the collection of photons that have
completed n half-orbits around the black hole before
escaping. More precisely, one defines the nth lensing band
as the collection of photons that have passed through the

18We use an initial square equally spaced grid of 3002 pixels.
FOORT then iteratively decides which “squares” of four pixels to
subdivide in half (i.e. into nine pixels for each subdivided square).
With a maximum subdivision level of 7, the resulting row and
column size is ðð300 − 1Þ × 62Þ þ 1 ¼ 19137, where the �1
takes into account the edge pixels (and the initial grid has
subdivision level 1) [24].
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equatorial plane (θ ¼ π=2) at least nþ 1 times (before
either escaping to infinity or crossing the horizon) [9]. The
nth photon ring then lies entirely inside the nth lensing
band; in particular, for a thin disc of isotropic emission on
the entire equatorial plane, the nth photon ring will
precisely fill the nth lensing band.
One can distinguish (at least in principle, given high

enough resolution) the n ¼ 0, n ¼ 1, n ¼ 2 peaks in
brightness within the photon ring. This is intuitively clear:
each time a geodesic passes through the equatorial plane, it
“picks up” an additional photon and thus increases its
brightness in the final image. This peaked brightness
profile provides a distinct interferometric signal in the
Fourier transform of the (brightness) image, which is
what the VLBI experiments such as the EHT actually
measure [5,46]. The periodicity of the Fourier-transformed
signal at a given angle and at a certain baseline in this
Fourier transform precisely gives the projected diameter of
the n ¼ 2 photon ring; this is how the projected diameter
and thus the shape of the n ¼ 2 photon ring is argued to be
in principle observable with (near-)future VLBI experi-
ments [9,11,13].
With FOORT, we identify the nth lensing bands by

keeping track of the number of passes through the
equatorial plane that each geodesic takes. As thickness
of the nth photon ring, we simply take the thickness of this
nth lensing band (in pixels). To define the shape of the nth
photon ring, we consider the pixels on the outer bounding
curve of the nth lensing band.

APPENDIX D: ADDITIONAL INFORMATION
ON THE RING DATA GENERATION

1. From photon ring curve to projected diameter

Since the n ¼ 2 ring has a finite size in this image,
when determining the n ¼ 2 ring shape, we take the
outermost boundary of the n ¼ 2 photon ring pixels;
note that this choice is arbitrary as the size of the n ¼ 2
ring is insignificant compared to the length scale of the
ring itself [9]. We truncate this collection further to about
5000–8000 points for manageability. The critical curve, if
we consider it, is always computed semianalytically as
discussed in Sec. II D.
We then extract the projected diameter (3.3) from the

photon ring or critical curve as a function of the φ angle
(3.1) in the following way. Instead of building an inter-
polating function ðxðθÞ; yðθÞÞ so that (3.1) can be used, we
use a simple linear regression on a number of neighboring
points to determine the local tangent to the ring—the φ
angle is then (by definition) the angle that the vector normal
to this tangent makes with the x axis. The optimal number
of neighboring points for this linear regression is about
10—i.e. roughly 0.1% of the total pixels in the ring; we find
this gives the most optimal balance between smoothness
and accuracy. Once the angle φ has been determined at

every point on the curve, we simply calculate the projected
position fðφÞ using (3.2) and dðφÞ using (3.3). This
generates a large amount of data points ðφ; ðdðφÞÞ. We
then truncate this collection to the collection of 35 data-
points for φ ¼ 5°;…; 175°, where in practice we take as the
datapoint the point in our original collection with φ closest
to the sought-after value. We exclude φ ¼ 0° as it is often
the least well-behaved and most prone to extraneous
numerical errors—this is due to the ring pixels being more
sparse for the part near the equator.

2. Finding the rings in equatorially
asymmetric spacetimes

The nth photon subring for Kerr is defined as the
collection of photons that have passed through the equa-
torial plane n times (or, equivalently, made n half-complete
oscillations in the θ direction) [5]. To determine the subring
that a given pixel in an image of a Kerr black hole belongs
to, we can then simply keep track of the number of times
the corresponding null geodesic passes through the equa-
torial plane θ ¼ π=2.
The same methodology easily generalizes to any equa-

torially symmetric metric. However, when the metric is no
longer equatorially symmetric (e.g. the Rasheed-Larsen or
Manko-Novikov black holes), although one can still keep
track of the number of equatorial passes, it is not clear this
is the correct way to “count” the photon subring that the
pixel belongs to. Indeed, the idea behind this counting is
that a null geodesic belonging to the nth subring picks
up n photons from an isotropically emitting optically thin
equatorial accretion disc. If the metric is no longer
equatorially symmetric, the equator is no longer a stable
place where the particles in this hypothetical accretion disc
can orbit. Instead, this (thin) accretion disc should have a
nontrivial profile θðrÞ (expressed in some asymptotic
Boyer-Lindquist or spherical coordinates) which only
asymptotically satisfies limr→∞ θðrÞ ¼ π=2; the behavior
closer to the horizon will be nontrivial [47].
To model this profile θðrÞ for the equatorially asym-

metric metrics used in this paper (Rasheed-Larsen and
Manko-Novikov), we can consider three different defini-
tions of the “accretion disc plane” θðrÞ through which null
geodesics have to pass n times in order to be counted as part
of the nth subring:
(1) θðrÞ ¼ π=2, which assumes that the deviation from

equatorial symmetry does not significantly change
the equilibrium disc position.

(2) θðrÞ is determined at a given r ¼ r0 by demanding
that there exists a circular timelike geodesic at this
constant r0 and θðr0Þ that is corotating with the
black hole.

(3) θðrÞ is determined at a given r ¼ r0 by demanding
that there exists a circular timelike geodesic at this
constant r0 and θðr0Þ that is contrarotating with the
black hole.
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In the two latter cases, θðrÞ will cease to exist for small
enough r close to the horizon. We illustrate these surfaces
in Fig. 14 for the Rasheed-Larsen and Manko-Novikov
black holes that feature in Sec. III.
We confirmed that all three of these θðrÞ accretion disc

planes give equivalent results for the photon rings. To do
this in practice, FOORT can be configured to only register
an equatorial pass once a certain threshold ϵ has been
passed beyond the equator, i.e. jθ − π=2j > ϵ. After chang-
ing ϵ (whose default value is ϵ ¼ 0.01) such that ϵ >
maxfjθðrÞ − π=2jg (i.e. ϵ ¼ 0.026 for Rasheed-Larsen and
ϵ ¼ 0.187 for Manko-Novikov), we find that the analysis
of Sec. III in completely unchanged (in particular, Figs. 8
and 10 are unchanged), which confirms that the precise

location of the accretion disc plane is irrelevant for the
photon ring images.
Our conclusion is that extracting the photon rings using

equatorial passes remains correct for the equatorial asym-
metric black holes and parameters we have considered.

APPENDIX E: NUMERICAL ESTIMATES
OF THE LYAPUNOV EXPONENT

The relation (4.2) is an approximation that is expected to
be valid in the large-n limit. In this Appendix, we
investigate how well the relative widths of the photon
subrings obey this relation when n is small. We extract
estimates for the Lyapunov exponent based on ray-traced

FIG. 14. The three possible accretion disc planes θðrÞ as defined in the text, for the Rasheed-Larsen black hole with parameters (3.8)
and the Manko-Novikov black hole with a=M ¼ 0.94 and α3 ¼ 13. The red line is θ ¼ π=2 (definition 1); the blue line is definition 2,
and the green line is definition 3. Note that the Rasheed-Larsen horizon is at rH ≈ 0.55M, and the Manko-Novikov horizon is at
rH ≈ 1.995M. All lines converge to the asymptotically flat value limr→∞ θðrÞ ¼ π=2.

FIG. 15. (left) Ray-traced image of a Johannsen black hole with nonzero parameters a=M ¼ 0.7, α13 ¼ 2, as seen by an equatorial
observer. (right) Ray-traced image of a Rasheed-Larsen black hole with parameters (3.8), as seen by an equatorial observer. The color
denotes the number of equatorial passes that a geodesic has experienced; the absolute value of the number of passes, while a negative
number indicates the geodesic terminated inside the horizon.
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images of the Johannsen and Rasheed-Larsen black holes,
by comparing the relative widths from the photon rings.
Note also that the method presented in Sec. IVA to

calculate the analytic Lyapunov exponent only works for
metrics that have integrable geodesic equations. Therefore,
the work in this section is also relevant to assess the
feasibility of numerically determining the Lyapunov expo-
nent for more complicated metrics that have nonintegrable
geodesic equations19 like the Manko-Novikov metric (2.19).

We use FOORT to obtain ray-traced images of the black
hole metrics. Fig. 15 shows two examples of the number
of equatorial passes that a geodesic (characterized by its
impact parameters) experiences. From such images, we
extract the thickness of each resolvable ring at angles
ϕR ∈ ½5°; 15°;…; 155°; 165°�.20 The thickness is obtained
by considering a straight line from the center of the black
hole at the given angle, and interpolating the number of
equatorial passes from the neighboring pixels (using the
same resolution for the line as the pixel grid). An example
is shown in Fig. 16.

FIG. 16. Example of an interpolated line at angle 150°. The left image corresponds to the Rasheed-Larsen black hole of Fig. 15. (right)
Number of equatorial oscillations (vertical) per pixel along the line (horizontal). A low resolution is used to make this plot, but for the
analysis the number of pixels on the line is on the order of ∼60 000.

FIG. 17. Estimates for the Lyapunov exponent as function of the on-screen angle for the Kerr metric with a=M ¼ 0.7 as determined by
an equatorial observer.

19Of course, this is based on the assumption that such a
Lyapunov exponent even exists, as the relation (4.1) is also
determined theoretically. However, it is in any case still sensible
to compare the widths of different photon rings.

20We avoid ϕR ≈ 0°; 180° as there are numerical artifacts at
those angles due to the view screen being placed on the equator.
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The Lyapunov exponent can be estimated from the
ratios of successive ring widths determined by the method
above,

γ̂n ¼ − ln
wnþ1

wn
: ðE1Þ

It is illustrative to consider the measurement error of this
estimate by accounting for the resolution of the image. As
explained before, the resolution of pixels on the line is the
same as the resolution of the image itself. The width of the
nth and (nþ 1)th ring are determined as wn ¼ xn − xn−1
and wnþ1 ¼ xnþ1 − xn, where xn is the outermost pixel on

FIG. 18. Estimates for the Lyapunov exponent as function of the on-screen angle for the Johannsen metric with nonzero parameters
a=M ¼ 0.7; α13 ¼ 2 as determined by an equatorial observer.

FIG. 19. Estimates for the Lyapunov exponent as function of the on-screen angle for the Rasheed-Larsen metric with parameters (3.8)
as determined by an equatorial observer.
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the line that has performed n equatorial passes. For
each xn, the measurement error due to the resolution is
δxn ¼ 1 pixel. The measurement error on the Lyapunov
exponent is then

δγ̂n ¼ δxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w2
n
þ 2

w2
nþ1

þ 2

wnwnþ1

s
: ðE2Þ

Note that, as the error δxn is always equal to 1, extracting
estimates from zoomed-in images will decrease the error, as
the ring widths (in terms of number of pixels) are larger.
The estimates for the Lyapunov exponent, based on

different rings in the images in Fig. 15, are shown in
Figs. 17–19. The error is smaller for estimates based on
low-n rings, as they are wider so that the estimate suffers
less from the resolution. We note that in both cases, the
numerical estimate based on the lowest-order rings over-
estimates the theoretical Lyapunov exponent, but still
generally follows the theoretical Lyapunov function shape.
As expected, the estimates based on the smaller rings show
larger measurement errors and appear to be more scattered.
Note that not all of the error bars include the theoretical
prediction. The estimates γ̂3 (top right in Fig. 19) does still

roughly follow the general functional shape of γðϕRÞ.
Finally, we notice that generically, estimates close to
ϕR ≈ 0°; 180° are worse; the region around the equator is
more sensitive to numerical issues, as can also be seen in
Fig. 15. It is interesting to note that the estimates for the
Johannsen and Rasheed-Larsen black holes considered in
Figs. 18 and 19 differ significantly from the estimates for
the Kerr black hole. Even though the theoretical values are
not accurately recovered, the shape of the curve as
determined by the point estimates resembles the one
obtained from theory, meaning that these estimates can
really distinguish non-Kerr effects. This remains true for
observers at e.g. lower inclinations θ0 ¼ 17°—these only
have access to a smaller “window” of γðϕRÞ (see Fig. 11),
but this nevertheless contains enough information to dis-
tinguish deviations from the Kerr Lyapunov values.
Given that the rings decrease exponentially in width,

an extremely high resolution is needed to see high-n rings.
To resolve these rings, we use images that zoom in on
parts of the critical curve edge at a given angle. Figure 20
shows estimates based on a zoomed-in image (by a
factor 600) around the critical curve edge at the fiducial
angle ϕR ¼ 122.75°. This image resolves rings up to

FIG. 20. Estimates for the Lyapunov exponent as a function of the on-screen angle around 122.75° for the Rasheed-Larsen metric with
parameters (3.8) as determined by an equatorial observer.
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n ∈ f4; 5; 6; 7g. The lowest-order rings in the image now
give consistent estimates around this angle that differ only
by about 0.02 from the theoretical value; the higher-order
ring widths approach the theoretical value better. (However,

note that the error bars still do not encompass the analytic
value.) Note also that the estimates based on the subsequent
rings stay fairly consistent and are mostly limited by the
resolution.
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