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The two-body problem is extensively studied in open systems and asymptotically flat spacetimes.
However, there are many systems where radiation is trapped: they range from radiating charges in cavities
to low-energy excitations of massive degrees of freedom, to anti–de Sitter spacetimes. Here, we study the
problem of motion of a pointlike scalar charge orbiting a massive compact object inside a cavity. We first
show that—assuming circular motion—there are initial conditions for which the scalar self-force vanishes
and the binary is eternal. We then consider the evolution of the system under radiation reaction in a toy
model which we argue captures the essentials of orbiting particles. We show that eternal circular binaries
may exist. We also show that the presence of cavity modes leads to chaos in regimes of strong coupling or
when the system is initialized close enough to a resonance. Our results have implications for physics in
anti–de Sitter spacetimes and possibly for binaries evolving within dark matter haloes, if it consists of
massive fields.
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I. INTRODUCTION

The problem of motion is foundational for any theory
describing a fundamental interaction. In general relativity,
even the two-body problem—the description of the motion
of a system consisting solely on two pointlike sources—is a
formidable challenge [1–3]. It is made difficult for different
reasons, one of them being that dynamical systems emit
gravitational waves, which in asymptotically flat space-
times leads necessarily to an evolution of the system. There
are no astrophysically relevant stationary solutions of the
two-body problem.
However, there are relevant instances of confined sys-

tems. A particularly interesting example is anti–de Sitter
spacetime [4–7], which has attracted considerable attention
after the realization that gravitational physics on the bulk is
dual to a field theory living on the boundary [8]. One can
also consider systems which are mostly governed by
emission of massive fields. Consider for example a binary
of which the components source such a field. For small
orbital frequencies (as compared to the inverse Compton
wavelength of the massive field), the excitations of the field
remain confined. This example is of more than academic
importance, in light of the dark matter challenge. Some
proposals advocate the existence of light fields as a possible
dark matter component [9–16]. A related example concerns
dynamics in extra compactified dimensions [17], where
Kaluza-Klein reduction provides an effective mass to

otherwise massless fields. A similar situation occurs also
in plasma physics: waves with frequency lower than the
plasma frequency are unable to propagate and remain
confined within the plasma [18,19].
Thus, confined systems are important in a number of

setups. Properties of a radiator inside a cavity have been
studied from a quantum and classical perspective [20–22]
when the radiator position is prescribed. It was found that
the radiation can be extremely suppressed or enhanced
depending on the cavity and radiator (in particular, the
relative size between the cavity and the radiation wave-
length is important, and boundary conditions are para-
mount). But the self-consistent evolution of charges in
cavities has not, to the best of our knowledge, been
addressed. How does such a system evolve, if it does,
under radiation reaction or “self-force”? Here, we wish to
take some first steps in this program. We will focus
exclusively on a confined system evolving due to the
coupling to a scalar field. We will start with a binary,
composed of a non-spinning massive compact object at the
center, a small orbiting pointlike scalar charge and a
confining boundary where Dirichlet conditions are
imposed. In regimes where the compact object is very
massive (but not a black hole) we can effectively study this
situation by considering a massive compact object at the
center, with reflective boundary conditions at the surface of
the compact object, located at a fixed distance from the
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Schwarzschild radius. We evaluate the late-time stationary
field configurations and compute the (scalar) self-force on
the particle, and we also comment on the influence of
the initial conditions on the asymptotic state. To actually
evolve the particle under radiation reaction, we find the full
problem to be still too complex, and we substitute it with a
simpler one, which we argue can capture the essentials: a
one-dimensional cavity coupled to a harmonic oscillator.
We show that in general the state of the oscillator drifts
rapidly toward an asymptotic state, and that this drift can be
suppressed by appropriately fixing the initial conditions.
Moreover, we show that there are regions in parameter
space where chaos ensues. The paper is organized as
follows: Sec. II A describes the physical setup we consider,
i.e. a scalar pointlike charge orbiting a massive compact
object within a cavity. The effective source approach to
compute the scalar self-force is reviewed in Sec. II B and
applied in Sec. II C to compute the self-force as well as
other physically meaningful quantities, such as the shift in
the frequency of the innermost stable circular orbit. We
discuss the effect of initial conditions in Sec. II D.
Section III describes a simplified toy model where the
backreaction of the self-force on the orbital motion is taken
into account, which is discussed both perturbatively and
numerically. All of this is combined into Sec. IV, where we
discuss how we can draw conclusions for more realistic
physical setups from the previous discussion. A summary
of our findings and conclusions is presented in Sec. V. In
what follows we setG ¼ c ¼ 1 and greek letters are used to
denote spacetime indices μ ¼ 0;…; 3.

II. A BINARY IN A CAVITY

A. The setup

We will study a binary system composed of a large
massive and compact object, around which a small point-
like object of mass m0 is orbiting on a trajectory zμðτÞ. The
pointlike object carries a scalar charge q under a fieldΦ and
the system is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2k

−
1

8π
gμνΦ;μΦ;ν

�

−m0

Z �
1 −

q
m0

Φ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν _zμ _zν
q

dτ; ð1Þ

where dots are derivatives with respect to the particle’s
proper time, k ¼ 8πG and the above action corresponds to
a stress-energy tensor of the pointlike object

Tμν ¼ m0

Z þ∞

−∞
δð4Þðx − zðτÞÞ_zμ _zνdτ; ð2Þ

and a scalar charge density μ given by

μ ¼ q
Z

dτδð4Þðx − zðτÞÞ; ð3Þ

where δðnÞ denotes the nth dimensional Dirac’s delta. The
equations of motion for such system are given by

□Φ ¼ −4πμ;

m̃ðτÞ du
μ

dτ
¼ qðgμν þ uμuνÞΦ;νðzÞ;

dm̃
dτ

¼ −qΦ;μðzÞuμ; ð4Þ

where the field is evaluated at the trajectory of the charge
zðτÞ, uμ ¼ _zðτÞ is the velocity of the particle, and we have
promoted the mass of the particle to a dynamical quantity,
m̃ðzÞ ¼ m0 − qΦðzÞ. Despite the equations involving
divergences due to the delta contribution localized at the
particle’s trajectory, the evolution is perfectly regular: the
field can be decomposed in a singular and a regular part in
such a way that the latter is the only one responsible for the
evolution of the trajectory of the point particle [23]. In the
following we assume that: (i) the charge to mass ratio of
the particle q=m0 is small, so that the backreaction of the
field on the particle’s trajectory can be studied perturba-
tively, (ii) the scalar field scales as the charge to mass ratio,
in particular, it does not affect significantly the background
metric and (iii) the ratio m0=M between the mass of the
particle and the mass of the central object is small, so that
we can assume the background geometry to be the
Schwarzschild metric:

gμνdxμdxν ¼ −Ndt2 þ dr2

N
þ r2dΩ2

2; ð5Þ

N ¼
�
1 −

2M
r

�
; ð6Þ

with dΩ2 the volume form on the 2-sphere. We will focus
on the case in which the particle moves in a circular orbit at
some radius rorb, the properties of which are dictated by the
gravitational pull of the large central mass and by the scalar
field acting on the particle. Because we are interested in
confined systems, we assume the presence of perfectly
reflective mirrors at radius r1 > 2M and r2 > rorb > r1.
Figure 1 provides a schematic representation of this setup.

B. Effective source

The scalar field is divergent at the position of the charge.
However the self-force acting on the charge due to such a
field is finite and scales as q=m0, which is typically small.
This apparent contradiction can be explained by noting that
the field in a worldtube surrounding the worldline of the
charge can be decomposed into two contributions: a
singular and a regular part [23]. The singular part contains
the divergences due to the delta contribution in Eq. (4), and

JAIME REDONDO-YUSTE et al. PHYS. REV. D 107, 124025 (2023)

124025-2



it does not contribute to the self-force. On the other hand,
the regular part is finite and accounts for the back-reaction
of the field on the particle. From the point of view of the
equations of motion, the singular part ΦS satisfies the
equation with the source term μ, whereas the regular part
ΦR satisfies a homogeneous equation. There have been
several different methods developed to compute this regular
part. One of them is the so-called effective source approach,
also referred to as the puncture method [24,25]. Intuitively,
the idea consists of taking an approximation of the singular
field. Then subtracting that approximation from the field
itself will result in a term that is equal to the regular part of
the field at the location of the particle itself. For general
trajectories in curved spacetimes the structure of this
singular part is complicated. However by choosing appro-
priate local Riemann coordinates [26] it can be expanded as

ΦS ¼
q
ρ
ð1þ Aρþ…Þ; ð7Þ

where A is an arbitrary coefficient and ρ is the affine
distance to the position of the charge. The effective source
method is then based on approximating this by a puncture
field, say,

ΦP ¼ q

�
1

ρ
þ Aijk

ρ3
ΔxiΔxjΔxk

�
≃ΦS; ð8Þ

where Δxi is the coordinate distance in some suitable
coordinates [26] and Aijk are coefficients depending on the
details of the trajectory. Then, we define the approximate
regular field as Φ̃R ¼ Φ −WΦP ≃ΦR, where W is a
window function that satisfies WðρÞ → 0 as ρ → ∞,
WðρÞ → 1, andW0ðρÞ ¼ W00ðρÞ ¼ 0 as ρ → 0. The regular

field now satisfies an inhomogeneous equation of motion
given by:

□Φ̃R ¼ −4πμ −□ðWΦPÞ ¼ Seff ; ð9Þ
where the right hand side is referred to as the effective
source. This approximate regular field coincides with the
actual regular field ΦR at the location of the particle itself,
but it will not be smooth, in general. A second order (in ρ)
puncture field will result in a regular field that is C1 but not
C2 at the location of the charge. However, since the self-
force only depends on local properties of the regular field
around the position of the particle, a puncture capturing the
first two nontrivial orders, such as Eq. (8) is sufficient.

C. Frequency-domain approach to self-force

We start by computing the self-force on a scalar charge q
orbiting aSchwarzschild exterior ofmassM at a circular orbit
with radius rorb. Instead of the usual (ingoing at the horizon
and out-going at the outer region) boundary conditions, we
consider perfectly reflecting boundary conditions at two radii
r1 and r2, satisfying 2M < r1 < rorb < r2. We expand the
regular part of the field (we drop the tilde from now on and
refer to the regular part of the field just as ΦR) as

ΦR ¼
X∞
l¼0

Xl
m¼−l

Z
dω
2π

eiωtϕlmðrÞYlmðθ;φÞ; ð10Þ

whereYlm are the usual spherical harmonics. To simplify the
notation, we will drop the (lm) subindex of the field modes
ϕlm ¼ ϕ. The equation of motion for each mode on the
Schwarzschild background is given by

ϕ;rr þ
�
2

r
þ N;r

N

�
ϕ;r þ

1

N2
ðω2 − VÞϕ ¼ Seff ;

V ¼ N
lðlþ 1Þ

r2
; ð11Þ

where a comma denotes the partial derivative with respect to
the indicated variable. Thepuncture field for circular orbits in
Schwarzschild has been computed to second order in ρ [27]:

ϕP ¼ −
4πq
rorb

Ylmðπ=2; 0Þδðω −mΩÞ gðrÞ
r

; ð12Þ

gðrÞ ¼ 1

ð2lþ 1Þπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rorb − 3M
rorb − 2M

s �
2K þ E − 2K

rorb
ðr − rorbÞ

�

þ jr − rorbj
2rorbðrorb − 2MÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
rorb

s
; ð13Þ

where E andK are complete elliptic integrals of the first and
second kind with argument M=ðrorb − 2MÞ and Ω2 ¼
M=r3orb is the orbital frequency. We will choose a smooth

FIG. 1. Schematic representation of the setup that we consider:
a charge q orbits at a circular orbit of radius rorb a central massive
and compact object. There are two mirrors, generating a cavity,
located at radius r1 (corresponding to the surface of the star or
compact object) and r2.
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window function with compact support, similar to the one
considered in [24], given by

W ¼ θðr − rorb − σÞθðrorb þ σ − rÞ

× exp

�
1 −

�
1 −

�
r − rorb

σ

�
4
�

−1
�
; ð14Þ

where θðrÞ is the Heaviside step function. The regular
field can be obtained then by the method of variation of
parameters. Let ϕþ and ϕ− be the solutions to the homo-
geneous Eq. (11) satisfying ϕþðr2Þ ¼ 0 and ϕ−ðr1Þ ¼ 0.
The particular solution is then

ϕ ¼ cþϕþ þ c−ϕ−; ð15Þ

where the coefficients are

cþ ¼
Z

r

r1

dr
Seffϕ−

Wrðϕþ;ϕ−Þ
; c− ¼

Z
r2

r
dr

Seffϕþ
Wrðϕþ;ϕ−Þ

;

ð16Þ

where Seff is the effective source constructed in Eq. (9) and
Wrðϕþ;ϕ−Þ ¼ ϕþϕ0

− − ϕ0þϕ− is the Wronskian of the
homogeneous solutions. Since the puncture field contains
a δðω −mΩÞ term, only the frequency ω ¼ mΩ will con-
tribute to the Fourier expansion of the field.
However, when the Wronskian of ϕþ and ϕ− vanishes,

the coefficients c� diverge. This happens exactly whenmΩ
is one of the normal mode frequencies of the system,
implying that ϕþ and ϕ− are the same homogeneous
solution. In the case of open boundary conditions this
never happens, because all (quasi) normal mode frequen-
cies have strictly positive imaginary part. However, since
we have a closed system with reflective boundary con-
ditions, we have an infinite family of normal mode
frequencies for each angular mode l, which we label ωln.
The divergence of the coefficients c� is a resonance

effect: the orbit is exciting a normal mode of the cavity. In
Ref. [28] it was shown for a simplified situation that the
energy in the cavity in the resonant regime increases
quadratically with time. In the frequency domain calcu-
lation it is assumed that the particle has been at the same
orbit for a very long (infinite) period of time. Therefore, it is
sensible to expect a divergence in the resonant regime. We
will analyze the two different regimes separately.
Finally, we can decompose the self-force Fa into

spherical harmonic modes, in the same fashion as the field
(10). Each self-force mode, which we label flma ≡ fa can
be computed from the modes of the regular field like [23]

ft ¼ Ωfφ; fr ¼ ϕ;rðrorbÞ; fφ ¼ imϕðrorbÞ: ð17Þ

The self-force fθ can we always be set to zero by a
coordinate redefinition.

1. Nonresonant regime

If mΩ ≠ ωln for all values of −l ≤ m ≤ l and all of the
normal mode frequencies ωln, we can directly integrate
(11) numerically. The behavior of the regularized and
retarded fields is shown in Fig. 2. From the symmetries
of spherical harmonics, the field modes must satisfy the
following parity relation:

ϕlm ¼ ð−1Þmϕ̄l−m; ð18Þ

where the bar denotes complex conjugation. The field
equation (11) is real, as well as the reflective boundary
conditions: therefore each field component ϕlm is also real.
This now guarantees that the above transformation law is
just ϕlm ¼ ð−1Þmϕl−m, which in turn is sufficient to show
that after summing all the m modes the time and azimuthal
angle components of the self-force vanish Ft ¼ Fφ ¼ 0.
This is to be expected: the temporal and angular self-force
components are related to loss of energy and angular
momentum of the charge, respectively. In a closed system,
these quantities are conserved and therefore the self-force
vanishes. The only nontrivial component is the radial self-
force. In Fig. 3 we show that it decays asymptotically like
1=l2. This guarantees that the resulting self-force con-
verges when summing all of the modes.
For circular orbits, the radial component of the self-force

corresponds to a shift in the orbital frequency of the orbit
[29]. While the (long-term average of the) orbital frequency
is a gauge invariant quantity, the parametrization of the
orbit in terms of the radius r is not-gauge invariant [30].
In principle, we could choose a gauge with a modified
radial coordinate r̂ such that Ω ¼ r̂−3=2orb at all orders in
perturbation theory. However, this does not mean that the

FIG. 2. Field in the (1,1) mode for a scalar charge orbiting at
rorb ¼ 6M, with mirrors placed at r1 ¼ 2.02M and r2 ¼ 15M.
The red line is the retarded field, computed from directly
integrating the field equation (4), and the yellow line is the
regularized field. Outside of the window function both field
coincide.
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conservative self-force is meaningless. We will discuss a
gauge invariant consequence later in Sec. II C 3, the ISCO
shift.

2. Resonant regime

As we noted, resonances appear when mΩ ¼ ωln. Since
the normal mode frequencies ωln form a discrete set, a fine
tuning of the orbital radius is required in order to trigger a
resonance. However it is interesting to understand what
happens physically near this resonant regime. Since the
overtone frequencies ωln > ωl0, any given orbit will first
be resonant with the fundamental mode. We have computed
the fundamental mode frequencies by solving Eq. (11) with
a shooting method and observed that at large values of l,
these are well described by a power-law scaling like
ωl0 ∼ l=R, where R ¼ r2 − r1 is the size of the cavity
(a coordinate size, but the estimate holds good when the
inner boundary is not too close to the Schwarzschild
radius). Therefore large cavities are more likely to trigger
resonances, by decreasing the minimum resonant fre-
quency. On the other hand, the maximum orbital frequency
is achieved at the innermost stable circular orbit (ISCO), so
the critical cavity size Rc such that any cavity with R ≥ Rc

allows for resonances will scale as lΩISCO ∼ l
Rc
, or

Rc ∼ 63=2M ∼ 14.7M. The precise value of the cavity size
for which the ISCO is resonant is shown in Fig. 4, for
different angular modes l. As l increases the size of the
cavity asymptotes to the value of Rc ∼ 15M, in excellent
agreement with the estimate.
We can understand the behavior as we approach a

resonance by slowly increasing the size of the cavity for
a fixed orbital radius. The field at the orbital radius for two
different orbits in Fig. 5. We see a number of divergences as
some modes included in the summation become divergent
at different values of the cavity size. We want to emphasize
that this divergence is not physical, but is a smoking gun
that backreaction is important.

3. The ISCO shift

A well-known gauge invariant consequence of the
conservative piece of the self-force is a shift in the
frequency of the ISCO. Recall that the ISCO is defined
as the circular orbit located at a vanishing point of the
restoring radial force upon perturbations onto slightly
eccentric orbits. Under self-force corrections the ISCO
frequency will be modified, and can be expanded as

MΩISCO ¼ MΩð0Þ
ISCO

�
1þ q

m0

CΩ þO
�

q
m0

�
2
�
; ð19Þ

where MΩð0Þ
ISCO ¼ ð6MÞ−2=3 is the uncorrected ISCO fre-

quency, and CΩ the first-order correction, known as the
ISCO shift. This quantity was originally calculated both for
the scalar [29] and for the gravitational case using self-force
results for eccentric orbits [31] and this result was also
reproduced from the first law of binary mechanics [32].

FIG. 3. Radial self-force for different l modes, for a scalar
charge orbiting at rorb ¼ 6M, with mirrors placed at r1 ¼ 2.02M
and r2 ¼ 15M. The dashed line represents the 1=l2 scaling which
ensures the convergence of the sum.

FIG. 4. Size of the cavity R for which the ISCO frequency
becomes resonant with a cavity normal mode with angular
number l. As l increases, the size of the cavity asymptotes to
a constant value, represented with a black dashed line.

FIG. 5. Value of the regularized field at the orbital radius
ΦRðrorbÞ for rorb ¼ 6M (red) and rorb ¼ 10M (yellow), as a
function of the dimensionless combination RΩ, where Ω is the
orbital frequency. We see that when RΩ > 1, divergences due to
orbits become resonant for different angular modes start appear-
ing for both values of rorb.
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The authors of [33] introduced a way of computing the
(gravitational) ISCO shift without studying eccentric orbits,
simply starting from a Hamiltonian that reproduces the
equations of motion of the point particle. We here general-
ize their logic to the scalar case. We notice that the
equations of motion of the particle (4) coincide with the
orbits of the Hamiltonian

H ¼ 1

2m0

gμνpμpν

�
1þ q

m0

ΦðzμÞ
�
−
q
2
ΦðzμÞ; ð20Þ

where gμν is the (inverse) Schwarzschild metric, pμ ¼ muμ
is the particle’s four–momentum and ΦðzμÞ denotes the
field evaluated at the particle’s trajectory. The first term
accounts for the “dressed” mass of the scalar charge
m̃ ¼ m0 − qΦ, and the second term completes the equa-
tions of motion. Note that on-shell, to linear order in
ðq=m0Þ2, the Hamiltonian can be written as a free piece and
an interaction term, as

H ¼ H0 þ
q
m0

H1 þO
�

q
m0

�
2

;

H0 ¼
1

2m0

gμνpμpν;

H1 ¼
1

2m0

gμνpμpνΦðzμÞ −m0

2
ΦðzμÞ≡ −m0ΦðzμÞ; ð21Þ

where the last equality is evaluated on-shell and only valid
to linear order in the perturbative parameter q=m0. In this
situation, one can follow the logic discussed in [33] to
obtain the ISCO shift in terms of the interaction
Hamiltonian H1 and the unperturbed redshift function
z0 ¼ E0 −Ω0L0, where E0 and L0 are the unperturbed
energy and angular momentum of the orbit, respectively.
Therefore it is not hard to check that the ISCO frequency
shift is given by

CΩ ¼ z0H00
1 þ 2z00H

0
1

2z0000
; ð22Þ

where a prime in the above formula denotes derivation with
respect to the orbital frequency Ω, and everything is

evaluated at Ωð0Þ
ISCO. Since the interaction Hamiltonian only

depends on the value of the regularized field at the
worldline of the particle, the calculation is straightforward.
We evaluate ΦRðrISCO � nΔrÞ, where Δr ¼ 0.01M and
n ¼ 0;…; 5 and approximate the derivatives by fitting the
above data to a polynomial with sufficient order. We have
checked that these settings give stable results and that they
reproduce the known value of the ISCO shift CΩ ¼ 0.029
(c.f. [29]) when we consider open outgoing boundary
conditions. We estimate the error by considering the fit
with two polynomials of different order: this uncertainty is
typically small, but becomes larger when approaching

resonant orbits. Figure 6 shows the ISCO shift for different
values of the cavity size. We observe that the shift decreases
as the cavity size grows. However, when the cavity is large
enough, either the unperturbed ISCO frequency becomes
either resonant, or close enough to a resonance, such that
the behavior of the shift becomes oscillatory, and larger
uncertainties arise from the numerical calculation of the
derivatives in the numerator of Eq. (22). Note that even
when R → ∞ the problem is fundamentally different from
that of an open system (with outgoing conditions at large
distances).

D. Laplace transform approach:
Including initial conditions

The field obtained by solving the equation in Fourier
space is not a unique solution: one is free to add a solution
to the homogeneous equation that satisfies both boundary
conditions. The solutions to the homogeneous equation, i.e.
the normal modes of the cavity, do not decay over time
since the system is conservative. These modes can be fixed
by specifying initial conditions for the field configuration.
Therefore they will have a non-negligible impact in the
evolution. This is a crucial differencewith respect to the open
system, since in that case the solutions of the homogeneous
equations would be decaying modes. In order to better
understand the effect of the initial conditions on the evolution
of the binary, we will solve the system using a Laplace
transform, which is able to take these into account by
introducing minimal modifications to the above calculation.
We refer the reader to Appendix B for an illustrative
comparison between the solution in Laplace and Fourier
domain for the case of a 1-dimensional cavity (a vibrating
string).

FIG. 6. Values of the ISCO shift CΩ as a function of the dimen-

sionless combination RΩð0Þ
ISCO. The shaded region takes into

account the uncertainty in the calculation, arising from comput-
ing the derivatives of the field with respect to the orbital radius
numerically. These uncertainties become larger as some of the
orbits used in the calculation become resonant with cavity modes.
The dashed line represents the value of the ISCO shift when
considering open boundary conditions [29].
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The Laplace transform of a field ϕðtÞ is defined as

φðsÞ ¼
Z

∞

0

dtϕðtÞe−st: ð23Þ

Taking the Laplace transform of the Klein-Gordon equation
in the Schwarzschild background (11) yields the equation

φ;rr þ
�
2

r
þ N;r

N

�
φ;r −

1

N2
ðs2 þ VðrÞÞφ ¼ Fðs; rÞ; ð24Þ

where

Fðs; rÞ ¼ SðrÞ
s − iΩ

− sϕ0ðrÞ − π0ðrÞ; ð25Þ

where we denote the initial configuration and momentum
of the field by ϕ0 and π0 respectively, and SðrÞ is the
Laplace transform of the effective source Seff in Eq. (9). We
construct two solutions to the homogeneous equation by
imposing the boundary conditions at r ¼ r1 and r ¼ r2,
and label them by φ1ðs; rÞ and φ2ðs; rÞ, respectively. Now
we can write the solution of the problem as

φðs;rÞ¼
Z

r2

r1

dyFðs;yÞGðs;r;yÞþ
Z

r

r1

dyFðs;yÞHðs;r;yÞ;

ð26Þ

where

Gðs; r; yÞ ¼ φ1ðs; r2Þφ2ðs; yÞ
Wrðs; r2Þ

φ1ðs; rÞ
φ1ðs; r2Þ

;

Hðs; r; yÞ ¼ φ1ðs; yÞφ2ðs; rÞ − φ1ðs; rÞφ2ðs; yÞ
Wrðs; rÞ : ð27Þ

It is easy to check that this satisfies the equation of motion
as well as the boundary conditions. The function H is
holomorphic: when s ¼ iωk is one of the normal mode
frequencies, the Wronskian in the denominator vanishes,
but so does the numerator. However, the function G is
meromorphic: there is an additional zero in the denomi-
nator due to φ1ðr2Þ. Therefore the situation is analogous to
that of a string which we discuss in Appendix B.
We can invert the Laplace transform in the same fashion:

ϕðt; rÞ ¼
Z

r2

r1

dy
Z

t

0

dτfðτ; yÞgðt − τ; r; yÞ; ð28Þ

where in this case we have that

fðt; rÞ ¼ SeffðrÞeiΩt − δðtÞπ0ðrÞ − δ;tðtÞϕ0ðrÞ; ð29Þ

where δ;t denotes the time derivative of the Dirac’s delta.
The contribution from the Laplace transform is obtained by
summing over the simple poles:

gðt; r; yÞ ¼
X
k

eiωktgk; gk ¼
φkðrÞφkðyÞ

Wr;sðs ¼ iωk; r2Þ
; ð30Þ

where we denote by φk the eigenfunctions of the homo-
geneous equation. Now, for a given function uðrÞ, we
define its normal mode components as

uk ¼
1

Wr;sðs ¼ iωk; r2Þ
Z

r2

r1

dyuðyÞφkðyÞ; ð31Þ

Then, the solution is written in a simple form as

ϕ ¼
X
k

ðAkeiωkt þ Bkeiωkt þ Ck½eiΩt − eiωkt�ÞφkðrÞ;

Ak ¼ ϕ0k; Bk ¼
π0k
iωk

; Ck ¼
iSk

ωk −Ω
; ð32Þ

where ϕ0k, π0k, and Sk are the normal mode components of
ϕ0ðrÞ, π0ðrÞ, and SðrÞ as defined in Eq. (31), respectively.
Now the self-force in the t and φ directions would vanish
(on average during an orbital period) if ϕðt; rorbÞ ¼ 0.
There are many ways in which such cancellation can be
achieved, e.g., the following static field configuration:

ϕ0k ¼
iSk

ωk −Ω
; π0k ¼ 0: ð33Þ

This initial field configuration is just a configuration adapted
to the regularized field at the position of the charge. Thisway,
the energy (angularmomentum) that the charge absorbs from
this initial configuration exactly compensates the energy
(angular momentum) emitted. Notice how this condition is
very similar to the one thatwould beobtained by applying the
sameprocedure to a 1-dimensional cavity (a vibrating string),
as is discussed in Appendix B.
Writing this solution, we can also analyze what happens

in the resonant regime. Assume, without loss of generality,
that the system is resonant at the fundamental mode
ω ¼ ω0. Taking the limit Ω → ω0 yields a regular solution

ϕ ¼
X
k≠0

ðAkeiωkt þ Bkeiωkt þ Ck½eiΩt − eiωkt�ÞφkðrÞ

þ S0teiω0tφ0ðrÞ: ð34Þ

The amplitude grows linearly in time due to the resonant
modes in the source term S0 (cf., the case of the vibrating
string in Appendix B). This corresponds to a quadratic
growth in the energy, which is consistent with [28]. For the
resonant case it is not possible to cancel the self-force: even
if we could cancel it over a period, eventually it would be
large enough that averaging over a period would be
meaningless. Since the self-force will also grow linearly
in time, it would be necessary to take into account the
evolution of the orbit.
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III. INCLUDING BACKREACTION:
A TOY MODEL

In the previous analysis, it is implicitly assumed that the
self-force acting on the charge does not modify its
trajectory. However, in a realistic case, the dynamics of
the field and the particle are coupled in a nontrivial way.
Consistently evolving the field and the trajectory of a
radiating particle is a longstanding problem that poses deep
challenges. Briefly speaking, the main issue is that the
coupled systems of equations is ill-posed. Schematically
the problem is the following:

□Φ ¼ Seffðx; _x; ẍ; ⃛x;…Þ; ẍ ¼ ∇Φ: ð35Þ

The source term depends upon derivatives of the accel-
eration. Since there are only second order equations for the
trajectory of the particle, the system, as written, is ill-posed.
This is the same issue already present in the Abraham-
Lorentz equation. Both perturbative and reduction of order
schemes have been proposed to address this problem
[34,35]. The currently standard approach to evolve such
systems is to employ a two-timescale expansion [36,37]
separating orbital and evolutionary timescales. Attempts at
directly solving the self-consistent equations in the time-
domain have only been partially successful [38,39], and
remain an open problem.
Here we do not attempt either approach to solve the

problem. However we expect the self-force to be suffi-
ciently small so that approximations can give reasonably
good results for the setting of our interest. In particular, we
can consider that the charge moves from one circular orbit
to another, having effectively a single degree of freedom:
the orbital frequency Ω. The value of Ω would then evolve
slowly depending on the self-force. More crucially, a
particular characteristic of the system is that, since it is
enclosed on a cavity, it conserves the total energy (and
angular momentum, as well). Therefore we will construct a
toy model which is a Hamiltonian system, such that the
energy conservation is guaranteed, and that captures some
of the physical characteristics of the self-force problem. We
will use this toy model to explore whether there are really
eternal binaries, i.e., configurations such that the orbital
frequency remains bounded within a certain range (e.g., it is
natural to require the frequency to be Ω ≤ ΩISCO).
Moreover we will also use this system to explore what
happens when the system is initialized close to a resonant
orbit, and discuss the regimes in which the orbital motion
will become chaotic.

A. Hamiltonian model

We consider a 1-dimensional cavity of size L, with
canonical variables ðϕ; πÞ coupled to a harmonic oscillator
(with action-angle variables q, p). Their dynamics is
governed by the Hamiltonian:

H ¼ p2

2
þ 1

2L

Z
L

0

dxðπ2 þ ϕ2
;xÞ

−
ϵ

L
cosðq=LÞ

Z
L

0

dx
ϕðxÞ
L

SðxÞ; ð36Þ

where ϵ is a coupling parameter and SðxÞ a coupling
function. The Hamilton equations of the system are just

ϕ;t ¼ π; π;t ¼ ϕ;xx þ
ϵ

L
cosðq=LÞSðxÞ;

q;t ¼ p; p;t ¼ −
ϵ

L2
sinðq=LÞ

Z
L

0

dx
ϕðxÞ
L

SðxÞ: ð37Þ

Notice that the conjugate momentum p is mapped to the
angular frequency of the oscillator, which we sometimes
refer to as Ω. In second order form these equations are
just

ϕ;tt − ϕ;xx ¼
ϵ

L
cosðq=LÞSðxÞ;

q;tt ¼ −
ϵ

L2
sinðq=LÞ

Z
L

0

dx
ϕðxÞ
L

SðxÞ: ð38Þ

Therefore, the oscillation of the cavity is sourced by the
harmonic oscillator, which then experiences a backreac-
tion depending on the cavity configuration. Since the
Hamiltonian does not explicitly depend on time, the
total energy of the system given by H is conserved, as
can also readily be confirmed explicitly from the equations of
motion.

B. Perturbative calculation

In this section we derive some analytical results for the
above system. To take the system to a simple form, we
expand the cavity in its normal modes,

ϕ ¼
X
k

ckϕk; ð39Þ

where the fϕkg are orthonormal and their associated
normal frequencies are ωk. We also expand the momentum
as π ¼ P

k bkϕk. Then, integrating by parts and using the
equations of motion, the Hamiltonian becomes

H¼p2

2
þ 1

2L

X
k

ðb2kþω2
kc

2
kÞ−

ϵ

L
cosðq=LÞ

X
k

ck
L
sk; ð40Þ

where

sk ¼
1

L2

Z
L

0

dxSðxÞϕkðxÞ: ð41Þ

For simplicity we assume that sk ¼ δkk0 for some k0. Then
we have a collection of infinite oscillators with mode
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number k ≠ k0, and two coupled oscillators. The reduced
coupled system is just

H ¼ L2

2
ðb2 þ ω2c2Þ þ p2

2
− ϵc cosðq=LÞ; ð42Þ

where we drop the k0 sub-index for simplicity. We can take
one step further and rewrite the degrees of freedom of the
cavity mode in action-angle variables (of the decoupled
system):

c ¼
ffiffiffiffiffi
2J
ω

r
cosφ; b ¼

ffiffiffiffiffiffiffiffiffi
2ωJ

p
sinφ; ð43Þ

so the Hamiltonian reduces to

H ¼ Hfree þ ϵh; ð44Þ

Hfree¼L2ωJþp2

2
; h¼−

ffiffiffiffiffi
2J
ω

r
cosφcosðq=LÞ: ð45Þ

In what follows, we will set L ¼ 1 for simplicity (we can
recover the length units using the starting Hamiltonian as
guiding principle whenever necessary). The perturbation is
2π-periodic in the angles fφ; qg. Therefore this system is
written in standard form, according to Ref. [40], which
allows us to find a perturbative solution using near-identity
transformations. We denote collectively the angles by qa ¼
ðq1; q2Þ ¼ ðq;φÞ, and the momenta by pa ¼ ðp1; p2Þ ¼
ðp; JÞ. We will find a near-identity transformation that maps
the current canonical degrees of freedom ðpa; qaÞ ↦
ðPA;QAÞ such that the new interaction Hamiltonian is trivial
H ¼ Hfree þOðϵÞ3. The generating functionFðqa; Pa; t̃Þ ¼
qaPa þ ϵF1 þ ϵ2F2 þOðϵ3Þ (where t̃ ¼ ϵt) is obtained
in Appendix C. We consider, for simplicity, that the initial
state is

ðq1; q2; p1; p2Þjt¼0 ¼ ð0; q2ð0Þ;Ω0; p2ð0ÞÞ; ð46Þ

here q2ð0Þ and p2ð0Þ are obtained by applying the inverse of
the transformation (43) to the initial conditions for the cavity,
cð0Þ ¼ y0 and bð0Þ ¼ 0, andΩ0 is the initial frequency of the
oscillator. The solution in the newvariables ðQi; PiÞ is trivial,

PiðtÞ ¼ Pið0Þ þOðϵ3Þ;
Q1ðtÞ ¼ P1ð0ÞtþQ1ð0Þ þOðϵ2Þ;
Q2ðtÞ ¼ ωtþQ2ð0Þ þOðϵ2Þ: ð47Þ

So we only need to use the generating function to obtain the
initial conditions in the transformed variables. The trans-
formation is given by

Pi¼pi−ϵ
∂F1

∂qi
−ϵ2

�
∂F2

∂qi
−

∂
2F1

∂qi∂Pj

∂F1

∂qj

�
þOðϵ3Þ;

Qi¼qiþϵ
∂F1

∂Pi
þϵ2

�
∂F2

∂Pi
−

∂
2F1

∂Pi∂Pj

∂F1

∂qj

�
þOðϵ3Þ: ð48Þ

Using that transformation, it is straightforward to obtain
the initial configuration in the new ðQi; PiÞ variables. The
evolution in the original values is obtained by taking the
inverse transformation, evaluated at the solution (47):

pi¼Piþϵ
∂F1

∂qi
þϵ2

�
∂F2

∂qi
−

∂
2F1

∂qi∂qj

∂F1

∂Pj

�
þOðϵ3Þ;

qi¼Qi−ϵ
∂F1

∂Pi
−ϵ2

�
∂F2

∂Pi
−

∂
2F1

∂Pi∂qj

∂F1

∂Pj

�
þOðϵ3Þ: ð49Þ

We can use the resulting transformed momentum p1 to
connect back to the physical quantities of interest. We are in
particular interested in the asymptotic value of the momen-
tum p1ðt → ∞Þ ¼ Ω∞, which is given by

Ω∞ ¼ lim
t→∞

1

t

Z
t

0

p1ðt0Þdt0: ð50Þ

Now computing this integral is in general complicated: the
near-identity transformation allows us to simplify the sol-
ution in the transformed variables ðQi; PiÞ, but not so much
in the original variables ðqi; piÞ. However, we can use the
fact that the only time-dependence of the momentum p1 is
through the variables Qi, so that p1ðtÞ ¼ p1ðQ1ðtÞ;
Q2ðtÞÞ. Now, when taking the limit as t → ∞, since
QiðtÞ ¼ ωitþ � � �, we can expect that outside of resonant
regimes the system will explore all of the possible configu-
rations in the torus ðQ1; Q2Þ, so that the integral is ergodic. A
critical observation is that the original Hamiltonian is
periodic in the “angle” variables, since this guarantees that
the corresponding momenta (and therefore the frequencies
ωi that determine the evolution of theQi) are fixed. Therefore
we can replace the limit by the average values over the torus
like (see also [41])

Ω∞ ¼
Z

∞

0

dt0
X
mn

p̃mn
1 eiðmω1þnω2Þt; ð51Þ

where ω1 ¼ P1ð0Þ, ω2 ¼ ω and

p̃mn
1 ¼ 1

4π2

Z
dQ1dQ2p1ðQ1; Q2Þe−iðmQ1þnQ2Þ: ð52Þ

Finally doing the time integral means that only the p̃00 term
contributes, so that the final result is

Ω∞ ¼ p̃00
1 ¼ 1

4π2

Z
dQ1dQ2p1ðQ1; Q2Þ: ð53Þ
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This now can be easily evaluated, obtaining

Ω∞ ¼ Ω0 − ϵ
Ω0y0

Ω2
0 − ω2

− ϵ2
1

4Ω0

�
6þ 8y20

−
ω2ð8þ 19y20Þ

ω2 −Ω2
0

þ 10ω2y20ðω2 þΩ2
0Þ

ðω2 − Ω2
0Þ2

�
þOðϵ3Þ:

ð54Þ

This expression captures the main results of the dynamical
evolution of the system: (i) the frequency of the oscillator
drifts from its initial value Ω0 by an amount which is
suppressed by the coupling constant, (ii) the leading order
contribution to the drift is due to the initial content in the
cavity (y0), which would drive the exchange of energy
between cavity and oscillator. If the cavity is initially
unexcited, then the oscillator first needs to populate the
cavity modes to which it couples, and then that same
coupling would drive the drift, but this “self-coupling” only
appears at second order, as expected. (iii) The drift diverges
as Ω0 → �ω, i.e., as we approach a resonant state. Notice
that our perturbative analysis is not valid at resonances: the
near-identity transformation diverges at the resonances [cf.,
Eq (C12)] and therefore cannot be assumed to be close
enough to the identity anymore.
It is interesting to highlight a particularly interesting

setup, which is the case where the cavity contains initially
an excitation which is of the same order of magnitude as
the coupling, y0 ¼ ϵϕ0. In this case, the asymptotic value of
the drift D∞ ¼ Ω∞ −Ω0 is given, up to second order in the
perturbative parameter, by

D∞ ¼ ϵ2
4ϕ0Ω2

0ðω2 −Ω2
0Þ − ω2 − 3Ω2

0

4Ω0ðΩ0 − ωÞ2ðΩ0 þ ωÞ2 : ð55Þ

Therefore it is always possible to find some initial exci-
tation ϕ0 such that the asymptotic value of the drift
vanishes. This “fine-tuned” initial condition is given by

ϕFT
0 ¼ 3Ω2

0 þ ω2

4Ω2
0ðω2 −Ω2

0Þ
: ð56Þ

Interestingly this does not coincide with the fine-tuned
initial condition predicted in Eq. (33). However recall that
the condition obtained depends very precisely on the details
of the coupling term between the cavity and the oscillator
(the particle’s trajectory, in the full self-force case). In this
case, we have considered several simplifications that allow
us to compute the value of the initial configuration modes
of the cavity just in terms of the parameters of the system.
However, both results coincide in requiring that the initial
configuration of the cavity is suppressed by ϵ (by the scalar
charge to mass ratio in the self-force case), and that it
diverges if the system is initialized at a resonance.

C. Numerical solution

The reduced model that we consider to study the back-
reaction allows, in principle, for more complicated source
terms than the one that we have considered for the
perturbative scheme. In fact, the typical structure of the
effective source for the self-force problem is that of a
narrow pulse, which will generally excite a large number of
modes of the cavity. Studying the interplay of different
modes of the cavity coupling to the same oscillator is
challenging, from the analytical point of view. However, we
can explore whether that introduces additional physical
features by solving the system numerically. We refer the
interested reader to Appendix D for a description of the
numerical methods used.
In this section we first test the accuracy of our numerical

scheme by comparing the solution obtained numerically
with the perturbative solution for the case where the
coupling function just couples a single mode. Then we
consider a more realistic case by studying a sinusoidal
coupling, SðxÞ ¼ sin x. Since the normal modes of the
cavity can be written as trigonometric functions, this allows
for a very simple implementation of the interaction term
while producing the desired coupling between several
modes of the cavity.

1. Comparison with perturbative solution

First we choose a source term which is just the
fundamental mode of the cavity, so that we can compare
explicitly our numerical solution with the analytical pre-
dictions using perturbation theory. We evolve the system
numerically and compute the drift at any given time. We
define the local value of the drift as

DðtÞ ¼ 1

t

Z
t

0

ðΩðt0Þ −Ω0Þdt0: ð57Þ

We show its behavior for different values in parameter
space in Fig. 7, where we compare it with the asymptotic
value predicted by Eq. (54). The result clearly shows that
the drift approaches very quickly the value predicted by
perturbation theory, with the difference being of Oðϵ3Þ,
consistently with the fact that the perturbative solution D∞
is only valid to second order.
Second, we test whether the prescription to vanish the

frequency drift (56) actually suppresses the drift. We
represent the evolution of the drift obtained numerically
using y0 ¼ yFT0 as initial condition for different values of
Ω0L. We observe in Fig. 8 that the drift is very suppressed:
the normalized value of DðtÞ=ϵ2 becomes approximately 2
orders of magnitude smaller by fine-tuning the initial
conditions, which is consistent with a residual drift of
order Oðϵ3Þ, since we are setting ϵ ¼ 0.01 in the figure. It
would be sensible to assume that by increasing the
perturbative order we could improve the prescription for
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the fine-tuned initial conditions and suppress the drift
even further.

2. Multiple mode excitation

In the case studied perturbatively the system has only 2
coupled degrees of freedom. However in a more realistic
scenario the interaction term will couple multiple modes of
the cavity to the oscillator. Even though nothing changes
fundamentally for the perturbative analysis, the increased
number of degrees of freedom complicates the calculation.
However, we can explore whether the coupling to multiple
degrees of freedom has any effect in the physics by
numerically solving the equations, with coupling function
SðxÞ ¼ sin x.
First, we observe that as predicted the asymptotic value

of the drift can be made arbitrarily small by fine-tuning the
initial conditions. Let us choose an initial profile given by
the fundamental mode, with amplitude ϕðt ¼ 0Þ ¼ ϵϕ0.
Then, we see the reduction in the asymptotic value of the
drift as a pronounced valley in Fig. 9. The location of this
dip is exactly where predicted by Eq. (54) when we choose
the fundamental mode as coupling function. When we
choose a different coupling function, this peak gets dis-
placed slightly, as one would naturally expect. However,
Eq. (54) is still a reasonable approximation for the initial
conditions necessary to make the asymptotic drift vanish.
So far it would seem that the difference between the two

choices considered here for coupling functions is just
quantitative. Although this is a valid observation, it is only
correct in a particular range of parameter space. We observe
this clearly in Fig. 10. By choosing a coupling function that
excites multiple normal modes of the cavity, there are new
resonances, for example, at Ω0L ¼ 2π, which were absent
both in the perturbative solution or in the numerical

FIG. 7. Evolution of the drift DðtÞ defined in Eq. (57) for
different values of Ω0L (top) with trivial initial conditions
(y0 ¼ 0) and for non-trivial initial conditions (bottom, where
the initial profile for y0ðxÞ is the fundamental mode with
amplitude given by ϕ0), while keeping Ω0L ¼ 1, with respect
to the asymptotic value (54). In both situations we fix the
perturbative parameter ϵ ¼ 0.01.

FIG. 8. Evolution of the driftDðtÞ for different values ofΩ0L as
indicated in the legend, and for the fine-tuned initial conditions
defined in Eq. (56). The dashed lines represent the same situation,
but with trivial initial conditions y0 ¼ 0. We observe that the drift,
which usually enters at Oðϵ2Þ, becomes a higher order effect due
to the initial conditions.

FIG. 9. Asymptotic value of the drift DEq as a function of the
initial configuration of the cavity ϕ0, for Ω0L ¼ 1. The black line
denotes the value predicted by Eq. (54), and the purple and
orange lines consider the fundamental mode or SðxÞ ¼ sin x as
coupling functions, respectively. We set ϵ ¼ 0.01 in this case.
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solution using the fundamental mode as a coupling func-
tion. However we also note that in the range Ω0L ∈ ½0;ω�
both coupling functions result in a qualitatively similar
behavior.
Finally, we want to explore how quickly the system

achieves equilibrium in both cases: for this purpose we
define the equilibrium timescale τEq as the time at which the
frequency completes the first oscillation. We show our
numerical results in Fig. 11, which show a very good
agreement between both coupling functions in the regime
where the coupling to a single mode dominates. We
observe that far from resonances this equilibrium timescale
scales as τEq ∼ 1=Ω0. This can be understood directly from
the method we used to obtain the asymptotic value of the
drift in the perturbative analysis: the transformed canonical

angles Qi evolve with frequencies ωi ¼ ðP1;ωÞ. The
timescale it takes for each angle to cover the whole torus
is therefore on the scale τ ∼ 1=minðωiÞ. To leading order,
P1 ¼ Ω0, so when Ω0L ≪ 1 this will be the frequency
which dominates the timescale of the system, resulting in
the observed scaling. As the system approaches the
resonance, the frequency of the fundamental mode
becomes the one that dominates the analysis. In particular,
exactly at the resonances the trajectories that the system
explores in phase space do not cover the whole torus and
therefore equilibrium is never achieved: this explains the
divergence observed in Fig. 11 at the resonant frequencies.

3. Chaotic orbits

A natural feature of coupled oscillators is the presence of
chaos. This characterizes a regimewhere small variations in
the initial conditions lead to large differences in the
dynamical evolution. In such a regime the system will
need, in general, take an arbitrarily large time to relax to
equilibrium. We will combine observations from the
numerical solution with results from perturbation theory
to characterize the transition toward chaos in the system
considered here.
In order to explore this, we show in Fig. 12 the trajectory

in a projection of phase space (in the momentum plane). By
increasing ϵ=L the system starts to explore a larger portion
of phase space. Eventually, when ϵ ≫ L the system
transitions toward a chaotic regime. In this scenario, the
global amplitude of the oscillations in the momentum
coordinate Ω is comparable to the distance between
resonances of the system, ΔΩ ∼ δω. This motivates a
temptative definition of a critical value for the perturbative
scale ϵ⋆ (at a fixed value of Ω0) such that the system
becomes chaotic. If we assume the validity of Eq. (54)

FIG. 10. Asymptotic value of the drift DEq while changing the
initial frequency Ω0L for the two choices of coupling functions
considered (as indicated in the legend). We represent as dotted
black lines the resonant frequencies, i.e., the normal modes of the
cavity.

FIG. 11. Equilibrium timescale τEq as a function of the initial
frequency Ω0L for both choices of coupling functions (see
legend). When Ω0L ≪ 1, the equilibrium timescales as 1=Ω0

consistently with the perturbative analysis.

FIG. 12. Trajectory in momentum space ðΩ; pÞ for different
values of the perturbation scale ϵ, normalized with the critical
perturbative parameter ϵ⋆ defined in Eq. (59). We observe that
when ϵ > ϵ⋆ the system becomes chaotic, exploring a signifi-
cantly larger fraction of phase space.
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beyond perturbation theory, and letting ϕ0 ¼ 0 for sim-
plicity, we require:

ϵ2

L4

ω2
n þ 3Ω2

0

4Ω0ðΩ2
0 − ω2

nÞ2
¼ ω; ð58Þ

where for this system δω ¼ ω the distance between
resonances coincides with the frequency of the fundamental
mode. In the above expression, ωn is the frequency of the
normal mode closest to Ω0. This implies that

ϵ⋆=L2 ¼ 2
ffiffiffiffiffiffiffiffiffi
Ω0ω

p jΩ2
0 − ω2

njffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
n þ 3Ω2

0

p : ð59Þ

Remarkably, this estimate seems to estimate correctly the
transition toward chaos observed numerically, even when
we consider the excitation of multiple modes by using a
sinusoidal coupling SðxÞ ¼ sin x, as shown in Fig. 12.

IV. CONSEQUENCES FOR BINARY SYSTEMS

The toy model that we have explored in the previous
section, while highly simplified, shares many features with
the self-force problem that we aimed to explore in the first
place. In this section we discuss how the main conclusions
extracted from the toy model hold for the more realis-
tic setup.
First, the system discussed in Sec. II A is conservative. It

is possible to write a Hamiltonian whose orbits coincide
with the trajectories of the particle (20), and the scalar field
can also be described by a Hamiltonian. Ignoring the spin
of the point-particle, its dynamics can be described by a
Hamiltonian in action-angle variables for two oscillators
[36,42]. The main difference, then, is that we replace a
single harmonic oscillator with two more complicated
oscillators. In a similar manner, the scalar field dynamics
is more complicated: on the one hand, each harmonic mode
ðl; mÞ evolves independently in a slightly different way
and is sensitive to a different set of resonant frequencies,
and on the other hand, the wave equation introduces the
Schwarzschild potential. In the linear regime the different
modes do not couple so we can consistently study their
evolution independently. Moreover, as discussed in
Appendix A the dynamics of the field does not depend
crucially on the potential: its effect reduces to changing the
spectrum of normal modes. Our results only depended in
the property that any field configuration can be expanded as
a sum over these normal modes, which form an orthonor-
mal basis. Since this is still valid, the Hamiltonian term
used to describe the one-dimensional vibrating cavity
captures all the relevant physics of a single field mode.
The most relevant difference between the toy model and

the real case lies in the interaction term. We chose a smooth
coupling function with a simple expression. This allowed
for a simple perturbative treatment where we could obtain

the near identity transformation analytically in detail. The
real interaction term would be more complicated, since it
involves the effective source described in previous sections.
However, it can always be written as a functional of the
action-angle variables that describe the particle’s trajectory
and the field configuration variables. In our peturbative
treatment of the toy model we only considered the coupling
between a single normalmodeof the cavity and the oscillator.
In the general case, the particle could couple to several (if not
all) of the modes in the cavity at the same time. However as
we have explored numerically the strength of the coupling is
suppressed by the physical distance between the orbital
frequency Ω and the normal mode frequencies ωln, and
therefore only a few modes will contribute significantly. We
have tested how this assumption modifies the results by
checking numerically the perturbative results in comparison
with a coupling function that introduced a coupling with
different modes, showing that despite some quantitative
differences, the qualitative behavior is the same.
In that sense, we argue that the setup of a point-particle

with a scalar-charge moving along geodesics of a cavity
within the Schwarzschild metric can be effectively captured
by a Hamiltonian which is essentially

h ¼
X
l;m

hlmOscillator þ hlm1d−Cavity þ
q
m0

X
n

hlmInt;n; ð60Þ

where the charge to mass ratio q=m0 plays the role of the
perturbative scale ϵ, and n describes the modes where the
coupling induced by the effective source is relevant. This
Hamiltonian is subject to the same procedure in order to
obtain a near-identity transformation that casts it into a
trivial Hamiltonian in a new set of dynamical variables.
The procedure is particularly lengthy, especially due to the
increased number of variables, but it is fundamentally the
same. In particular one finds that there is a set of canonical
variables ðQi; PiÞ such that Qi ¼ ωiðPiÞtþ � � � for some
momentum-dependent frequencies ωi and Pi ¼ const. As a
consequence, we can apply the same argument as we did
for the toy model and conclude that the asymptotic value of
the frequency of the charge, averaged in time, will be

Ω ¼ Ω0 þ
q
m0

δð1ÞΩþ
�

q
m0

�
2

δð2ÞΩ; ð61Þ

where the first order term describes the exchange of energy
between the initial configuration of the field inside the
cavityΦ0 and the second order term also takes into account
self-interactions. Since these are the asymptotic average
states one should expect that it coincides with the frequency
domain solution described in Sec. II C. In particular, one
can argue that by choosing a (weakly populated) initial
configuration Φ0 ¼ ðq=m0ÞΨ0, it is always possible to
choose this initial configuration such that it cancels out the
δð2ÞΩ term, so that the drift in frequency can be suppressed.
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We conjecture that this argument could extend in higher
order perturbation theory so that the drift can be arbitrarily
suppressed to any order by properly fine-tuning the initial
conditions.
By studying the toy model we have also realized that there

are chaotic configurations, which are related to (i) proximity
resonant orbits and (ii) large couplings. Physicallywe are not
considering the casewhere the couplingq=m0 could be large.
However, if we take into account that every angular mode
acts like its own generalized version of the toymodel that we
discussed, it becomes increasingly harder to avoid initializ-
ing the system close to any resonant orbit. We have already
described how requiring that the system has no resonances
puts a constraint on the possible size of the cavity: in those
situations, the systemwould never become chaotic. Since the
perturbative scheme should produce similar results for the
full case, we can estimate that the asymptotic drift in
frequency is

D∞ ¼ q
m0

c1Φ0 þ
�

q
m0

�
2 c2
ðΩ − ωnÞα

þ…; ð62Þ

where c1 and c2 are some functions of the parameters of the
problem, presumably of order 1, ωn is the closest resonant
frequency and α ≥ 1 is some exponent. Typically, we can
expect that the initial field configuration is suppressed by the
charge to mass ratio, Φ0 ¼ q=m0Ψ0. Then, chaos ensues
once D∞ ¼ Ω − ωn, i.e., when

q
m0

∼ ðΩ − ωnÞα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ c1Ψ0

p
: ð63Þ

Notice that if the initial conditions are fine-tuned to suppress
the drift Ψ0 ¼ −c2=c1, then the region in parameter space
where chaos happens becomes smaller. However, for large
cavities one would naturally expect that the system evolves
through resonant orbits, which trigger the chaotic behavior
regardless of how small is the perturbative parameter. This
could lead in general to escapes (the particle becomes
unbound), or, most likely, to mergers (the particle’s fre-
quency becomes larger than the ISCO frequency).
In the most general cases, a merger could happen

preventing the system from reaching equilibrium. A rough
way to estimate the likelihood of this phenomena is to
compute the total energy contained in the asymptotic field
configurations obtained from the frequency domain calcu-
lations. The energy can be expanded in angular modes as

E ¼
X
l;m

1

2
Elm; Elm ¼

Z
r2

r1

drElm;

Elm ¼
�
ðmΩÞ2 þ Nlðlþ 1Þ

r2

�
ðrϕlmÞ2 þ N2ðr∂rϕlmÞ2:

ð64Þ

The details of the calculation of the energy are discussed
in Appendix E. In Tables I–II we compare the estimation
of this energy with the energy that it would take to
displace the original orbit toward the ISCO orbit ΔE,
defined as

ΔE ¼ jEðrorbÞ − EðrISCOÞj: ð65Þ

We observe that, overall, the energy content in the field
compared to the difference between the orbital energy
and the ISCO energy is large. It is important to remark
that this energy is suppressed by the charge to mass ratio
squared, which we assume to be very small. Moreover
we can observe that this energy content increases with
the size of the cavity: this is to be expected, as in the
limit in which the cavity size is infinite we recover the
asymptotically flat situation in which a merger is inevi-
table. We have estimated the scaling of this quantity as a
function of the cavity size and the distance between the
orbit and the ISCO radius, as

E
ΔE

∼
ðR=MÞα

ððrorb − rISCOÞ=MÞβ : ð66Þ

TABLE I. Values of the energy ratio ðm0=qÞ2E=ΔE between
the late time energy content of the scalar field and the relative
energy between the particle’s orbit and the ISCO, for different
cavity sizes R=M at a fixed orbital radius rorb ¼ 7M, whereΔE is
given by Eq. (65) and measured per unit mass of the particle
m0=M.

R=M ðm0=qÞ2E=ΔE
10 1654.72
12 1754.67
14 1817.61
16 1861.96
18 1895.46
20 1922.08

TABLE II. Values of the energy ratio ðm0=qÞ2E=ΔE between
the late time energy content of the scalar field and the relative
energy between the particle’s orbit and the ISCO, as a function of
the distance between the orbital radius rorb and the ISCO radius,
for a cavity with size R ¼ 12M. As in the previous table, ΔE is
measured per unit mass of the particle m0=M.

ðrorb − rISCOÞ=M ðm0=qÞ2E=ΔE
7 1754.67
8 672.72
9 420.10
10 309.23
11 241.29
12 183.51
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The numerical values of α and β obtained are

α ¼ ð0.20� 0.01Þ;
β ¼ ð1.54� 0.07Þ: ð67Þ

Note that α and β are consistent with 1=5 and 3=2,
respectively. Now, taking into account that (i) the energy
of the scalar field scales as the charge to mass ratio squared
ðq=m0Þ2, see Eq. (64) and (ii) that we havemeasuredΔE per
unit mass of the point particle, we can estimate that the
charge to mass ratio necessary to ensure that there is no
merger before the system relaxes to equilibrium is given by

q
m0

≲
ffiffiffiffiffiffi
M
m0

s �
R
M

�
α=2

�
M

rorb − rISCO

�
β=2

: ð68Þ

As we consider circular orbits closer to the ISCO, a smaller
perturbative parameter q=m0 will be sufficient to perturb the
system. On the other hand, larger cavities can store more
energy, resulting in configurations that could become
unstable even for circular orbits far away from the ISCO.
Finally it is interesting to note that for small mass ratios
m0=M, the charge is more easily displaced due to its own
backreaction, therefore it is sensible to expect that smaller
charge to mass ratios q=m0 would result in larger drifts and,
potentially, unstable configurations. We can estimate the
region in parameter spacewhere a given orbit would become
unstable. This is shown in Fig. 13, where we observe
precisely this scaling. It is important to remark that this
conclusion assumes that the initial field configuration is
trivial. If the system is initialized with a scalar field with an
energy similar to the value of the energy of the late time
asymptotic configuration of the field, the drift induced due to

the energy exchange between the particle and the fieldwould
be smaller. This is to say that by choosing appropriate initial
conditions, the regions with unstable orbits can be made
smaller.

V. CONCLUSIONS

The dynamics of confined systems has shown to lead to
interesting results in the past. The collapse of scalars fields
in anti-de Sitter spacetimes, for example, may lead to black
holes for a large class [43], but not for generic initial data
[44]. Here we focused on the two-body problem and shown
that yet more surprises may be hidden within confined
systems. We show that certain systems on circular orbits
may be eternal, in truly confined systems (such as anti-de
Sitter spacetimes), given appropriate initial conditions (see
also [45]). On the other hand, the presence of “cavity”
modes leads to chaos in regimes of strong coupling or when
the system is initialized close enough to a resonance. These
results are mathematically interesting and relevant to
gravitational systems such as anti–de Sitter spacetimes
and possibly for binaries evolving within dark matter
haloes, if it consists on massive fundamental fields.
We have assumed that the confined system is

conservative, but in the context of massive degrees of
freedom, this assumption is likely to fail, as one cannot
prevent the radiation of gravitational waves. Thus, eternal
binaries are clearly impossible once dissipation is allowed,
but the transition to chaotic motion may still be present in
full generality. Note however, that anti–de Sitter spacetimes
may display all the effects we studied, as it is truly a
confining spacetime, and absorption to the central object
may be prevented if it is an exotic compact object. Even if it
is a black hole, superradiance may prevent leakage through
the horizon [46].
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APPENDIX A: RESULTS IN FLAT SPACE

The fundamental physics describing the self-force of a
charge in a circular orbit in Schwarzschild should not
fundamentally depend on the structure of the metric. In fact
we know that in the limit in which both the orbital radius
and the location of the mirrors are far enough from the
Schwarzschild radius the curvature of the spacetime will be
small enough. In that regime, we expect results obtained by
considering a Minkowski background to apply. These have
the nice property of allowing for a mostly analytical
analysis, as opposed to the situation for Schwarzschild
spacetime. Here we derive the frequency domain self-force
calculation replacing the Schwarzschild background for a
Minkowski one, but keeping the problem otherwise
unchanged.

1. Nonresonant regime

We start by considering the non-resonant regime in
detail. The Minkowski spacetime can be described by
the same fundamental equation (11), but writing fðrÞ ¼ 1

and VðrÞ ¼ lðlþ 1Þ=r2. The homogeneous solutions are
given by:

ϕþð−ÞðrÞ ¼
ffiffiffi
r

p �
Jlþ1=2ðωrÞYlþ1=2ðωr2ð1ÞÞ

þ Jlþ1=2ðωr2ð1ÞÞYlþ1=2ðωrÞ
�
; ðA1Þ

where J and Y are Bessel functions of the first and second
kind. The puncture field is just given by theM → 0 limit of
Eq. (13),

ϕlm
P ¼ Ylmðπ=2; 0Þ

4πqr
2r2orb

jr − rorbj: ðA2Þ

From this puncture field, obtaining the effective source is
straightforward, and we can then solve for the field in
exactly the same way as its done in the main text. In Fig. 14
we show, for comparison, the (11) mode obtained for
Schwarzschild and Minkowski, keeping the rest of the
parameters identical. We observe that in the region where
the only contribution is due to the homogeneous solution
the two solutions are most similar. This is true despite
considering a case in which the particle is exploring the
strong field regime of the geometry. We observe clearly,
though, that the field close to the particle behaves in a very
different manner. This is due to the tail terms in (13) which
are dominating in this regime.

2. Resonant regime

We can characterize explicitly the location of the
resonances for the Minkowski cavity. For simplicity, set
r1 ¼ 0 and r2 ¼ R. Then the inner solution is given by

J−ðrÞ ¼
ffiffiffi
r

p
Jlþ1=2ðωrÞ; ðA3Þ

and the Wronskian is just

Wrðϕþ;ϕ−Þ ¼
2

π
Jlþ1=2ðωRÞ: ðA4Þ

The normal modes are located at the zeros of the
Wronskian. Therefore the frequencies of the normal modes
can be characterized by

ωln ¼
jlþ1=2n

R
: ðA5Þ

We can estimate from this expression the minimum cavity
size needed for a given frequency Ω to be resonant. The
fundamental Bessel zero jl1 ∼ lþOðlÞ1=3 [47]. Then,
writing lΩ ¼ ωl1 yields, for very large l:

Rc ¼
1

Ω
: ðA6Þ

Notice how this result coincides with the approximate
scaling obtained for Schwarzschild.

APPENDIX B: THE VIBRATING STRING

The vibrating string is a simpler toy model that still
captures most of the characteristics of the system that we

FIG. 14. Regular field at the (1,1) mode for a Schwarzschild
cavity (yellow) and a Minkowski cavity (red), with mirrors placed
ar r1 ¼ 2.02M and r2 ¼ 15M and the particle orbiting at
rorb ¼ 6M. In the Minkowski cavity, even though M ¼ 0 we
choose the same configuration of mirrors and orbital radius (and
frequency) as in Schwarzschild. We observe that the asymptotic
behavior of the fields outside the region of the window function is
most similar. The field close to the particle behaves in a very
different way, due to the tail terms included in the puncture field
for the Schwarzschild particle.
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are studying. In this section we will revisit this problem and
solve it carefully using both the frequency domain and the
Laplace transform approach. We observe explicitly that for
closed systems the frequency domain calculation needs to
be complemented with the excitation coefficients of the
normal modes of the cavity at a given time. While in open
systems the (quasi)normal modes decay over time and
therefore, after waiting a long enough period of time, the
system achieves equilibrium, this is not the case for closed
systems. A similar situation was observed recently for open
systems with long-lived modes in [48].
In the following, we will be discussing a string with

length L, which is forced with a frequency Ω at a particular
point x ¼ x0. Its equation of motion is given by

−y;ttþy;xx¼δðx−x0ÞcosðΩtÞ; yð0Þ¼yðLÞ¼0: ðB1Þ

1. Frequency domain approach

Taking the Fourier transform of the above equation
yields the inhomogeneous equation

ψ ;xx þ ω2ψ ¼ δðx − x0Þδðω −ΩÞ; ðB2Þ

where ψðxÞ is the Fourier transform of the string amplitude
y. It is not hard to check that the solution to this equation is
given by

ψ ¼ δðω −ΩÞ
ω sinðωLÞ ½sinðωxÞ sinðωðL − x0ÞÞθðx0 − xÞ

þ sinðωx0Þ sinðωðL − xÞÞθðx − x0Þ�; ðB3Þ

where θðxÞ is the Heaviside step function. When trans-
forming back to time domain we arrive at the solution

yFD ¼ cosðΩtÞ
Ω sinðΩLÞ ½sinðΩxÞ sinðΩðL − x0ÞÞHðx0 − xÞ

þ sinðΩx0Þ sinðΩðL − xÞÞHðx − x0Þ�: ðB4Þ

The string then oscillates with a single frequency Ω, which
coincides with the driving frequency (which we assume to
not be resonant for simplicity, i.e., Ω ≠ nπ=L for n ∈ Z).
Adding any linear combination of homogeneous solutions
(of normal modes) would still be a solution to the problem.
However, the frequency domain calculation is not inform-
ative about the excitation coefficients of these normal
modes. In order to obtain these we need to consider a
slightly different approach.

2. Laplace transform

Studying the Laplaced transform system will allow
us to obtain the excitation coefficients in terms of the

characteristics of the initial conditions. In order to allow for
more generality, we consider an arbitrary source profile SðxÞ.

φ;xx − s2φ ¼ SðxÞ s
s2 þΩ2

− suðxÞ − vðxÞ; ðB5Þ

where yðt ¼ 0; xÞ ¼ uðxÞ and y;tðt ¼ 0; xÞ ¼ vðxÞ are the
initial displacement and velocity, respectively. We can
directly write the solution to this equation with Dirichlet
boundary conditions as

φ ¼
Z

L

0

dyFðs; yÞGðs; x; yÞ þ
Z

x

0

dyFðs; yÞHðs; x; yÞ;

ðB6Þ
where

Fðs; xÞ ¼ SðxÞ s
s2 þΩ2

− suðxÞ − vðxÞ;

Gðs; x; yÞ ¼ 1

2s
esx − e−sx

e−sL − esL

�
esðL−yÞ − e−sðL−yÞ

�
;

Hðs; x; yÞ ¼ 1

2s

�
esðx−yÞ − e−sðx−yÞ

�
: ðB7Þ

Since both G and H are solutions of the homogeneous
equation with respect to the variable x, it is easy to check that
this is indeed a solution to the Laplace transformed equation.
Notice that Hðs; x; yÞ is holomorphic in s,1 whereas
Gðs; x; yÞ is meromorphic: it has simple poles at the normal
modes of the cavity sk ¼ iωk ¼ ikπ=L for k a nonzero
integer number. Transforming back to time domain now is
more complicated than in the frequency domain case.
However, it is still possible to obtain simple analytical
solutions in this case. In the more general case, where the
structure of the poles is less clear, numerical approaches to
the inverse Laplace transform are also possible.
In order to analytically invert the Laplace transform we

will make use of the convolution theorem. Then, we can
write the solution as

yðt; xÞ ¼
Z

L

0

dy
Z

t

0

dτfðτ; yÞgðt − τ; x; yÞ; ðB8Þ

where fðt;xÞ¼L−1½Fðs;xÞ� and gðt;x;yÞ¼L−1½estGðs;xÞ�.
There is no contribution from the second term in (B6) since
the inverse transform of H vanishes. The first term is
straightforward:

fðt; xÞ ¼ SðxÞ cosðΩtÞ − δðtÞvðxÞ − δ;tðtÞuðxÞ: ðB9Þ

The second term involves computing the Bromwich inte-
gral. However since all the poles are simple, we can write

1The apparent singularity at s ¼ 0 is regularized by the term
between brackets, as can be seen by simply applying L’Hopital’s
rule.
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the integral as the sum over the residues using Cauchy’s
theorem:

gðt; x; yÞ ¼ −
X

k∈Z−f0g

1

Lωk
sinðωkxÞ sinðωkyÞ sinðωktÞ:

ðB10Þ

Finally computing the convolution integral and defining the
normal mode coefficients of any function AðxÞ as

Ak ¼
1

L

Z
L

0

dyAðyÞ sinðωkyÞ ðB11Þ

yields the result

yðt; xÞ ¼
X

k∈Z−f0g

�
uk cosðωktÞ þ

vk
ωk

sinðωktÞ

þ Sk
cosðΩtÞ − cosðωktÞ

Ω2 − ω2
k

�
sinðωkxÞ: ðB12Þ

It is clear from this expression that there are initial
configurations fung such that the average displacement
during a driving period (i.e., all of the normal mode
contributions, except for the one associated to the driving
frequency), vanish. It is enough to choose

uk ¼
Sk

Ω2 − ω2
k

; vk ¼ 0; ðB13Þ

to obtain this behavior, see Fig. 15. The string displacement
has a single frequency peak at the orbital frequency Ω for
the fine tuned initial conditions, whereas if the initial
condition is just zero there are multiple peaks at the normal
modes that are excited by the source. Finally, the solution
obtained through the Laplace transform has a regular limit
at the resonances. Just taking the Ω → ωk limit yields

yðt; xÞ ¼
X

k∈Z−f0;krg

�
uk cosðωktÞ þ

vk
ωk

sinðωktÞ

þ Sk
cosðΩtÞ − cosðωktÞ

Ω2 − ω2
k

�
sinðωkxÞ

−
Skr
ωkr

t sinðωkr tÞ sinðωkrxÞ: ðB14Þ

We observe that the resonant mode kr grows linearly in
time. Since the energy in the string is quadratic in the
amplitude, this means that the energy would grow quad-
ratically too, consistently with [28].

APPENDIX C: NEAR-IDENTITY
TRANSFORMATION

In this Appendix we construct the near-identity trans-
formation that will help us solve perturbatively the toy
model described in the main text. We follow Chapter 5 of
[40]. In particular, we consider a Hamiltonian

h ¼ p2
1

2
þ ωp2 − ϵ

ffiffiffiffiffiffiffiffiffiffi
2sp2

ω

r
cos q1 cos q2: ðC1Þ

We write this now in terms of the canonical variables
(ðq1; q2; p1; p2Þ ¼ ðq;φ;Ω; JÞ in the previous notation),
and ω is the (constant) frequency of the normal mode of the
cavity that couples to the oscillator. We will decompose
each variable into its average part f̄ and its oscillatory part
f̌, where

f̄ ¼ 1

ð2πÞ2
Z

dq1dq2f; ðC2Þ

and f̌ ¼ f − f̄. The goal is to find a generating function,
which we expand as

Fðqi; Pi; t̃Þ ¼ qiPi þ ϵðF̄1 þ F̌1Þ þ ϵ2F2 þOðϵÞ3: ðC3Þ

such that the transformed Hamiltonian is trivial. This
transformed Hamiltonian, in general, is given by

H ¼ h − ϵ
∂F
∂t̃

¼ H0 þ ϵH1 þ ϵ2H2 þOðϵÞ3; ðC4Þ

where t̃ ¼ ϵt is a slow time. This variable is introduced to
make sure that the solution is valid up to the given order in ϵ
at all times. Notice that a naive perturbative analysis would
yield a solution which is only valid up to 0 < t < 1=ϵ (to
first order). The first order contribution to the new
Hamiltonian is given by

H1 ¼ ȟ1 þ ωj
∂F1

∂qj
; ðC5Þ

FIG. 15. Fourier transform ỹ of the displacement of the string at
x ¼ 0.3L for a sinusoidal source with Ω ¼ 0.3 and L ¼ 1. We
consider both trivial (uðxÞ ¼ 0) and fine-tuned [uðxÞ as given in
Eq. (B13)] initial conditions.

JAIME REDONDO-YUSTE et al. PHYS. REV. D 107, 124025 (2023)

124025-18



where ωj ¼ ðp1;ωÞ is just the derivative of the unperturbed
angle variables. Notice that the secular part of F1 does not
enter in this term since the system is Hamiltonian. Now
requiring that this vanishes yields the following condition
for the oscillatory part of F1:

F̌1 ¼ −
�Z

dτȟ1ðPi;ωisÞ
�
kωiτ¼qi ; ðC6Þ

which for our case is simply written as

F̌1 ¼
ffiffiffiffiffiffiffiffiffiffi
2sP2

ω

r
P1 sin q1 cos q2 − ω cos q1 sin q2

P2
1 − ω2

: ðC7Þ

The second order contribution to the Hamiltonian in our
case is now

H2 ¼
∂F1

∂t̃
þ ωj

∂F2

∂qj
− Z;

Z ¼ 1

2

∂ωj

∂pk

∂F̌1

∂qj

∂F̌1

∂qk
− ωk

∂
2F̌1

∂qk∂Pj

∂F̌1

∂qj
: ðC8Þ

We also want to cancel this term. We can use the secular
part of F1 to cancel the secular contribution to this
Hamiltonian, and the oscillatory part of F2 ¼ F̌2 to cancel
the oscillatory part. Summing up, these are the two
conditions that we need to satisfy:

ωj
∂F2

∂qj
¼ −

∂F̌1

∂t̃
þ Ž;

∂F̄1

∂t̃
¼ Z̄: ðC9Þ

In order to solve these equations, we first write down the
average and oscillatory parts of Z explicitly:

Z̄ ¼ −
s½ðP2 − ωÞω2 þ P2

1ðP2 þ ωÞ�
4ðP1 − ωÞ2ωðP1 þ ωÞ2 ;

Ž ¼ s
4ωðP2

1 − ω2Þ2 ½c1cos
2q1cos2q2

þc2sin2q1sin2q2 þ c3 sinð2q1Þ sinð2q2Þ�;
c1 ¼ ω2ðP2 − ωÞ þ P2

1ðP2 þ ωÞ − 4½P2
1ðP2 þ ωÞ�;

c2 ¼ −4P2ω
2;

c3 ¼ P1½ωðω − 2P2Þ − P2
1�: ðC10Þ

The second of the equations can be solved immediately,
since Z̄ does not depend on time, so

F̄1 ¼ Z̄ t̃ : ðC11Þ

and we can directly solve the first equation:

F2 ¼
s

8P1ω
2ðP1 − ωÞ3ðP1 þ ωÞ3 ½d1 sinð2q1Þ

þ d2 sinð2q2Þ þ d3 sinð2q1Þ cosð2q2Þ
þ d4 cosð2q1Þ sinð2q2Þ�;

d1 ¼ ωðP2 þ ωÞðP2
1 − ω2Þ2;

d2 ¼ −P1ðP2 þ ωÞðP2
1 − ω2Þ2;

d3 ¼ −P2
1ω½ð3P2 − 2ωÞω2 þ P2

1ðP2 þ 2ωÞ�;
d4 ¼ ω½P4

1 þ 3P2
1P2ωþ ðP2 − ωÞω3�: ðC12Þ

This completely characterizes the near-identity transforma-
tion. Notice that a second-order accurate solution in the
momenta does not require us to fix the secular part of F2,
which we set to zero for simplicity.

APPENDIX D: NUMERICS

We solve the system in first order form (37) numerically
using the method of lines. We implement an overall fourth
order discrete scheme using summation by parts operators as
well as fourth order Kreiss-Oliger dissipation. The integrals
are evaluated using Simpson’s method: despite a lower
accuracy than other adaptive integration schemes, this allows
for a faster implementation than methods requiring extrapo-
lation.The time-integration is implemented via a fourth-order
Runge-Kutta scheme with an adaptive step-size. With this
setup we are able to evolve the system in a stable fashion.
Since the relaxation to equilibrium of the system happens
very quickly it is not necessary for our purposes to implement
time integrators adapted to energy conservation (such as
symplectic ones).

FIG. 16. Relative difference between the evolution of the
frequency using three different resolution scales h ¼
10h0; 4h0; 2h0 respectively, with the evolution of the frequency
using a discretization scale of h0 ¼ 5 × 10−3L. Increasing the
resolution decreases the relative difference, consistently with
fourth order convergence.
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We study the convergence by comparing the relative
difference between a run with a very high resolution h0 ¼
5 × 10−3L in the spatial discretization with three worse
resolutions. We show in Fig. 16 that increasing the
resolution improves uniformly the agreement. This guar-
antees the convergence of our numerical scheme.

APPENDIX E: ENERGY IN THE CAVITY

In this Appendix we estimate the energy contained in the
scalar field configuration obtained from the Frequency
Domain calculation. This is an interesting way of estimate
the final state of the system: whether in the process of
approaching equilibrium the charge was merged into the
central compact object before achieving equilibrium. The
energy density of the field is given by

ρ ¼ T00 ¼ N
2

�
1

N
ð∂tΦÞ2 þ Nð∂rΦÞ2

þ 1

r2
ð∂θΦÞ2 þ 1

r2sin2θ
ð∂φΦÞ2

�
: ðE1Þ

We will use the spin raising and lowering operators ð and ð̄
[49], which act on spin-weighted spherical harmonics as

ðYðsÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
Yðsþ1Þ
lm ;

ð̄YðsÞ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
Yðs−1Þ
lm ; ðE2Þ

where (s) is the spin weight of the spherical harmonics.
When acting on a quantity with spin weight s ¼ 0 the spin
raising and lowering operators are just given by

ðS ¼ ∂θSþ i
sin θ

∂φS; ðE3Þ

so we can write the above energy density as

ρ ¼ N
2

�
1

N
ð∂tΦÞ2 þ Nð∂rΦÞ2 þ 1

r2
ðΦð̄Φ

�
: ðE4Þ

We integrate the energy density on the cavity to obtain the
total energy

E ¼
Z

r2

r1

r2dr
Z
S2
ρ ¼ Et þ Er þ EAng: ðE5Þ

The temporal part taking into account that in the asymptotic
stationary state each field oscillates with a frequency mΩ is
given by

2Et ¼
X

l;m;L;M

Z
r2

r1

r2dr∂tϕlm
∂tϕ

LM

Z
S2
YlmYLM

¼
X
l;m

ðmΩÞ2
Z

r2

r1

drðrϕlmÞ2; ðE6Þ

where we have used the orthonormality of the spherical
harmonics and the parity of the field. Using similar argu-
ments, the radial contribution to the energy is

Er ¼
1

2

X
l;m

Z
drðrN∂rϕlmÞ2: ðE7Þ

Finally the angular part is given by

2EAng ¼
X

l;m;L;M

Z
r2

r1

r2dr
N
r2

ϕlmϕLM

Z
S2
ðYlmð̄YLM

¼
X

lðlþ 1Þ
Z

r2

r1

drNϕ2
lm: ðE8Þ

Putting everything together, the total energy is

E ¼ 1

2

X
l;m

Z
r2

r1

drElm;

Elm ¼
�
ðmΩÞ2 þ Nlðlþ 1Þ

r2

�
ðrϕlmÞ2 þ N2ðr∂rϕlmÞ2:

ðE9Þ

We can compute this energy for the stationary configura-
tions obtained from the frequency domain approach. We
evaluate the radial integral numerically, first obtaining a
sufficiently smooth interpolator for the field. In order to
ensure mode convergence, we excise a region around the
particle of radius rext ∝ σ, where σ is the width of the
Gaussian window function used to describe the puncture
field. This way, we effectively remove the contribution to
the energy contained in the cavity due to the local field. In
Fig. 17 we show that it is necessary to exclude a region of a
radius of rext ≥ 3σ in order to achieve convergence of the
mode sum of the energy.

FIG. 17. Energy of the modes Elm as a function of the angular
number l, for different values of the extraction radius rext.
Clearly, the convergence is faster as the radius of the excision is
larger. We find that extracting at rext ¼ 3σ provides a quick
convergence and stable results.
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