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We consider 4-dimensional spacetime manifolds that are piecewise Lorentzian, where the Lorentzian
components of the manifold are separated by codimension-one planes (spacelike or timelike) on which the
metric is degenerate. Such manifolds are of interest because they enlarge the smooth and nonsingular
solution space of the Einstein equations. Planes of degeneracy that are perpendicular to each other can exist
simultaneously. We describe various solutions of this type to the vacuum equations G,, =0 and

%

G, +Ag, =0, and to G, = 8xGT,, for a perfect fluid. Novel examples include static gravitational

lumps of finite curvature and a spacetime that responds to a cosmological constant via oscillations in time
and/or space. A spacelike degeneracy plane can be used to avoid the big bang singularity, as we have

further described elsewhere.

DOI: 10.1103/PhysRevD.107.124024

I. INTRODUCTION

A basic premise of general relativity is that spacetime is a
4-dimensional Lorentzian manifold, implying that the
metric is smooth and nondegenerate everywhere. On the
other hand some of the solutions of general relativity that
are of the most fundamental interest are plagued by a
curvature singularity. We feel that this predicament pro-
vides sufficient motivation to step somewhat outside the
realm of general relativity. In particular we shall study
manifolds that are not Lorentzian everywhere, with the
intention of determining whether the enlarged solution
space can more readily avoid curvature singularities. We
shall show that this is indeed the case, and that there is a
large class of such solutions. These solutions to the Einstein
equations can be described as being piecewise Lorentzian.
These are new solutions that lie outside the usual scope of
solutions in general relativity, as reviewed for example
in [1].

Our class of metrics involve one or more smooth
functions that each depend on a single coordinate. First
derivatives of these functions appear in the metric. These
metrics have the novel property that the resulting Riemann
curvature tensor, and thus also an Einstein tensor, does not
involve higher than first derivatives. Another unusual and
related property is that these metric functions continue to be
arbitrary after solving the Einstein equations. Some of the
arbitrariness is related to a form invariance of the metrics
under certain coordinate transformations as we shall
explain. Some choices of the metric functions may give
known solutions of general relativity. But if a metric
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function has a local extremum then the metric becomes
degenerate on a 3-dimensional hypersurface, and we move
outside the realm of general relativity. These hypersurface
can be spacelike or timelike (with normals that are timelike
or spacelike respectively). When spacelike they correspond
to all of space at a given instant in time, and when timelike
they appear as a static plane of two spatial dimensions. In
either case we refer to them as degeneracy planes. There
can be an arbitrary number of planes with the same
orientation, and planes of orthogonal orientation can be
present simultaneously.

An example of one of these new solutions involving
spacelike degeneracy planes was recently presented in [2],
in the context of cosmology. The universe can move from
contraction to expansion, or vice versa, without a singu-
larity, for nonvanishing scale factor and without exotic
matter. The whole spacetime is geodesically complete.

When an infinite set of degeneracy planes are equally
spaced along some coordinate then this will correspond
to a metric that is periodic in that direction. In the context
of solutions to G, + Ag,, = 0, this is of interest because
it corresponds to a different way for spacetime to respond
to a cosmological constant. These oscillations can have
such short time or length scales so as to be effectively
unobservable, leaving a spacetime that appears to be flat.
We shall see that these oscillations can be occurring
with respect to 1, 2, 3 or 4 spacetime directions
simultaneously.

Another novel type of solution is one that looks like a
gravitational lump. This is a nonsingular static solution that
is asymptotically flat and that has spherically symmetric
curvature invariants. The metric itself is not spherically
symmetric and it involves three perpendicular and
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intersecting degeneracy planes at fixed x, y and z respec-
tively. These solutions exist as vacuum solutions to
G,, =0 or as perfect fluid solutions to G,, = 8zGT,,.
In the latter case the standard energy conditions are
satisfied but the pressure p = wp must be mildly negative
with —% <w<0.

With the motivation to increase the smooth and non-
singular solution space of the Einstein equations via
piecewise-Lorentzian manifolds, and with the knowledge
that there are physically interesting examples of such
solutions, we thus proceed to study some of the details of
this class of metrics. We describe the metrics and their
symmetries in the next two sections. In the subsequent
three sections we describe the various solutions. In the

final section we step back and comment on some of the
|

physics of the degeneracy planes, such as the behavior of
geodesics.

II. THE CLASS OF METRICS

Our class of metrics is as listed below. We have
Cartesian-like coordinates 7, x, y, z and dimensionless
coordinates are defined as 7 = t/¢,x = x/¢,y = y/{, 7 =
z/¢ for some length scale #. The metrics involve one or
more of the functions a(x), b(¥), ¢(Z), d(7) and one or more
of the constants A, B, C, D. We require that these functions
and constants be positive. They are also all dimensionless.
There are also one or two constant exponents « and v. Upon
inspection of these metrics the reader will notice the
patterns that distinguish the different types.

ds? = —Xdf* + Ad'(X)*T"dx* + Zdy? + Zd7?

ds* = —=Dd'(1)*L4df> + Zdx? + Zdy* + Zdz*

ds* = =X'dt* + Ad'(X)*Z4dx? + Bb'(y)*Zdy* + X'dz?

ds*> = =Dd'(7)?Z4dt* + Ad'(X)*Z4dx* + Z'dy? + Z'd7?

ds* = —X'df* + Ad'(%)*Z"dx? + Bb'(y)>Ztdy* + Cc'(z)*Z4d7?

ds> = —=Dd'(1)?Z"dt* + Ad'(X)*Z4dx> + Bb'(7)*Z"dy* + X'dz?

Type la
Y =a(x)
Type 1b
¥ =d(7)
Type 2a
= = a(®) + b(5)
Type 2b
X =a(x)+d)
Type 3a
=a(x)+b(y) +c(2)
Type 3b
E=a(x)+b(y)+d(7)
Type 4

ds* = —=Dd'(1)*Z"dt* + Ad'(X)*Z4dx*> + Bb'(¥)*Z"dy* + Cc'(2)?Z4d7?

Y =a(x) + b(y) + c(z) +d(7)
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The presence of the derivatives' indicate that the func-
tions a, b, ¢, d cannot be constants. With derivatives in the
metrics, the Christoffel symbols can and do depend on
second derivatives. Thus the calculation of the Riemann
tensor can involve third derivatives, but such terms and
terms with second derivatives all cancel, leaving the
components of the Riemann tensor to depend on just first
derivatives.

For Type 1 the Einstein tensor is diagonal, but it is not
automatically diagonal for the other types. The off-diagonal
elements are proportional to 2u — v + 2 for Type 2 and to
u? + 2vu — v* + 2u + 2o for Type 3 and to 2 + u for Type
4. Requiring that these expressions vanish leaves one
degree of freedom for Type 2 and Type 3, as is the case
for Type 1, while Type 4 has no remaining freedom. Once
the Einstein tensor is diagonal then both it and the metric
tensor depend on the same squares of first derivatives in the
same components. Using the freedom in the choice of the
exponents # and v can then yield solutions.

These are solutions for any (nonconstant) choice of the
functions a, b, ¢, d. But the meaning of this should be
considered in the context of coordinate transformations.
Our class of metrics maintain their form under coordinate
transformations such as ¥ = (X, ), for some one-to-one
function f, for each coordinate on which the metric
depends. That is, the effect of such a coordinate trans-
formation is to simply replace a(X) by @pew(Xnew) =
a(f(Xpew)) in the transformed metric, with analogous
replacements possible for b, ¢ and d. This form invariance
is related to the presence of the squares of derivatives in the
metric, where the derivatives in the new metric are with
respect to the new barred coordinates.” This freedom to
trade a(Xx) for a,ey (¥pew) (and similarly for (), ¢(z), d(7))
via a coordinate transformation makes it less peculiar for
there to be solutions for any choice of a, b, ¢, d.

But not all aspects of the functions a, b, ¢, d can be altered
by these coordinate transformations. Of interest to us are
any local extrema of these functions, since these mark the
degeneracy planes. Both the number of these extrema and
the values of the metric functions at these extrema are left
invariant by the coordinate transformations. These quantities
are free to choose, and each such choice corresponds to a
physically different spacetime.

III. SYMMETRIES

Symmetries of a metric are described in terms of
isometries and homotheties [1], and Table I lists the
associated Killing and homothetic vectors for our class
of metrics for u # —2 and arbitrary v. Whereas a Killing

'Primes denote derivatives with respect to the barred argument
of the function.

The transformation of the derivatives absorbs the multipli-
cative factors in the coordinate transformation of the metric
tensor.

vector £ is defined by a vanishing Lie derivative of the
metric L:g,, = 0, any homothetic vector ¢ in the table
satisfies

Lo =22+ w)gu.  Log"=-22+u)g”. (1)

It also turns out that

where X is defined according to the metric type.
Homothetic vectors in general satisfy
LR

= O? [’é'(v/)Rﬂa/}y) = 09 (3)

afy
where the latter is also true for more covariant derivatives.
These results depend on the canonical placement of indices
as shown. Since R, is obtained by contracting an upper
and lower index on R¥ 5, we also have LR, = 0, and
then also for the Einstein tensor £:G,, = 0.

Curvature invariants can be constructed by taking some
numbers of Riemann tensors and covariant derivatives, with
all indices different and in canonical placement, along with
some number N; of inverse metrics, such that all indices
can be contracted. For example consider curvature invar-
iants constructed from one, two or three Riemann tensors
or, for example, from three Riemann tensors and two
covariant derivatives. We have N; = 1, 2, 3, 4 respectively.
From (1) and (3), the number N; determines the trans-
formation property of the curvature invariant,

L[curvature invariant]

= —2N;(2 + u)[curvature invariant]. (4)

We note that X2~ has the same transformation property as
the inverse metric, given (2). Thus we may expect that any
curvature invariant will have a simple dependence on X as
follows:

[curvature invariant] m (5)
This turns out to be the case by direct calculation.
Curvature invariants depend on the functions a, b, ¢, d
only in this way and derivatives of these functions do not
appear.

Curvature invariants are constant in the special case of
u = —2, according to (5). In fact we have solutions of the
equation G, + Ag,, =0 in this case (with v =-2
required as well for Type 2 and 3 metrics). This equation
does not allow g, to transform in a (nontrivial) homothetic
way since both G, and A do not, and this ties in with the
absence of a homothetic vector when u = —2 according
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TABLE 1. A listing of the Killing and homothetic vectors for each metric type when u # —2. The bars on the
dimensionless coordinates X, y, Z, 7 are suppressed in this table.

Type la Killing 0,0y, 0,,y0, + 10y, 20, + 19,, yo, — 20,
Homothetic (14 u)td, + 25250, + (1 + u)yd, + (1 + u)z0,
Type 1b Killing 0y, 0y, 0, Y0, — X0y, 20y — X0, y0. — 20,
Homothetic 2989, + (14 u)xd, + (1 + u)yd, + (1 + u)zo,
Type 2a Killing 0y, 02 20; + 102, (55 95 = (57 Oy
Homothetic Q@+ u—v)0, + 2550, + 2520, + 2+ u - v)z0,
Type 2b Killing 0y, 0,70y — ydz, >6 (,) 0,
Homothetic 2409, + 2580, + 2+ u— v)yd, + 2+ u = v)z0,
Type 3a Killing 9p 707 O = w5y O iy O = 70z 0o
Bh(z), XC><(Z)5 + L(b)/?ga( )a 4 Aa xc)/z b(})az
Homothetic 2+ u—v)d, + 25509, + 2520, + 250,
Type 3b Killing 0-. 57057 9% ~ 7 O w5y O — ) 9=
Bb(y;}zt/;a(w 0, — Dd(f)J(rt;b( y) 0, + Aa(zcl)j(D)d(t) 9,
Homothetic 2400, + 25550, + 25550, + 2+ u— v)z0,
Type 4 Killing Six not shown
Homothetic ’)at+2 <)a +2b(y)0 +2 ()0

d
270) )

b'0) ()

to (1). For these solutions to G, + Ag,, = 0 the number of
Killing vectors is 10.

Finally we note that the discussion in this section only
applies away from the degeneracy planes; on these planes a
derivative vanishes and some of the Killing or homothetic
vectors become ill-defined. A component of the metric
vanishes and the remaining symmetries are those of the
lower-dimensional metric.

IV. TYPE 1
We start by recovering some standard solutions of
general relativity. For the Type la metric, with u = =2,
the choice
o?
alX) =—, a=2VAZ, (6)
X
yields
o
ds* = — (—di* + dx* + dy* + dz?). (7)
X

With x > 0 this is the standard half covering of the anti—de
Sitter (AdS) surface in 5D, as defined by X7 + X3 + X3 —
T? — T3 = —a?. a is the radius of curvature.

For the Type 1b metric, also for u = -2, the choice
_ o>
d(7) = 7 a= 2VD?, (8)
yields
o2
ds*> = 7 (=df* + dx* + dy* + dz?). 9)

With ¢ > 0 this is the standard half covering of the de Sitter
(dS) surface in 5D, as defined by X? + X3 + X3 + X3 —
T3 = o?. If we instead take d(7) = ¢/ then we get

ds? = —di? + e2/%(dx? + dy* + d2?), (10)

another flat slicing of the dS surface.

These examples involve functions a and d that have
certain properties, such as their domain and ranges and that
they are one-to-one. But these particular properties are not
necessary for the Type 1 metrics to provide solutions of
Einstein equations. All that is needed is the choice of u. To
see this more clearly we give the nonzero elements of the
Einstein tensor,
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3 d(x)?
Type la: G, =220 G, =
ype la. Gy, 477 a(3)? 1

3 d(1)?
Type 1b: G, = =2 G —G
YPE I T T

There are no second derivatives and the squares of first
derivatives occurs in the same components as they do in the
metric. For the choice u = —2 it is then simple to see a
solution to G,, + Ag,, = 0 for the Type la metric when
A = =3/a? for a in (6), and for the Type 1b metric when
A =3/a? for a in (8). Other than being positive, the
functions a(x) or d(7) are not constrained.

We can thus consider functions a(x) or d(7) having local
extrema and thereby describe a piecewise-Lorentzian
manifold. The curvature invariants are still the same as
for the standard AdS or dS solutions above, but the global
properties certainly differ. An interesting case is when a(x)
or d(7) are oscillating and periodic. We shall say more
about this case in the final section. Our results for the Type
2, 3 and 4 metrics in the next section indicate that this type
of picture can be extended to multiple dimensions
simultaneously.

Away from u = -2, the Type 1b metric provides
solutions to G,, = 8xGT,, for a perfect fluid. These
solutions are the topic of [2] where cosmologies of the
bounce and oscillating types are presented, as well as
various generalizations.

V. TYPES 2, 3, 4

A. Vacuum solutions to G,, +Ag,, =0

The vacuum equations G, + Ag,, = 0 are solved by
the Type 2 and Type 3 metrics when # = v = —2 and by the
Type 4 metric when u = —2. These solutions have the
expected geometric properties in terms of the curvature
invariants

: 3
R, = Ag,, = —mgn(q);g,w, o =%/|ql,
12 24
R = —sign(q) — . R e R == (12)
a a

and by having 10 Killing vectors. The Weyl tensor vanishes
in all cases. ¢ is defined for the different types as

A+B

Type 2a ¢ — — 13
ype 2a g =—r (13)

Type 2b g = — 14
ype 2b g =~ (14)

AB + AC + BC

T S Bt M 1
ype 3a g BC (15)

(14+2u) 1
=Gy = -G = WW,
(I4+2u) 1
yy:Gzz:szd(?)””’ (11)
[
AD +BD - AB
Type 3b g = ~ ABD (16)
ABD + ACD + BCD — ABC
Type 4 g = T kA . (17

ABCD

When g > 0 (or ¢ < 0) we have the AdS (or dS) geometry
with radius of curvature a. Since the constants A, B, C, D
are all positive, we see that g for Types 2b, 3b and 4 can be
positive or negative while ¢ is strictly positive for Types 2a
and 3a. The functions a, b, ¢, d are still free to choose.
Once again they can be oscillatory, corresponding to
oscillations along 2, 3 or 4 space and/or time directions
simultaneously. ¢ sets the length scale or the timescale of
the oscillation, and # in turn is related to the cosmological
constant.

B. Vacuum solutions to G, =0

The vacuum equations G, = 0 are solved by the Type 2
metrics when u = —1/2 and v = 1. The curvature invar-
iants are

2

3q
Rynpa R’ = Cppppe O = 404%3°

(18)

For Type 2a, £ = a(X) + b(¥) and the value of ¢ is given in
(13), while for Type 2b, X = a(X) + d(7) and the value of ¢
is given in (14).

The vacuum equations G,,, = 0 are solved by the Type 3
metrics when u =4 and v = —2. Here the curvature
invariants are

2
RHvpo — Cﬂvpacﬂvpg o 192q

R - bﬁ4212 :

(19)

HUPC

For Type 3a, X = a(x) + b(y) + ¢(Z) and the value of ¢ is
given in (15), while for Type 3b, X = a(X) + b(y) + d(7)
and the value of ¢ is given in (16).

These Type 2 and 3 vacuum solutions are of Petrov type
D. The relation of the power of X in (18) and (19) to the
value of u agrees with the homothety arguments in Sec. III.
The curvature invariants avoid singularities as long as the
range of X does not include zero. When the functions a, b,
¢, d are oscillatory, the curvature invariants are oscillatory
along two dimensions (Type 2) or three dimensions (Type
3). For the Types 2b and 3b, one of these dimensions
is time.
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For Type 3a it is interesting to consider functions a, b, ¢
that are not oscillating, and in particular when they are such
that ¥ = 5 + x> + 3% + z* for a constant s > 0. Then the
invariants in (19) are o (s + 7*)~!? in spherical coordi-
nates. The solution rapidly approaches asymptotic flatness
and there is no curvature singularity at the origin. This is the
spherical gravitational lump mentioned in the Introduction.
The metric itself lacks spherical symmetry, as illustrated by
the volume element,

V=g= % VABC|xyz|(s + 7). (20)

The analogous example for Type 2a is £ = s + x> + y°
which gives a lump of cylindrical geometry of infinite
extent in the z direction. The corresponding Type 3b
and Type 2b solutions are time dependent lumps with
curvature invariants smoothly turning on and then off as a
function of time; one is a spatially infinite tube while the
other is a spatially infinite wall. One can also make the
choice £ = s + ¥ + y* + 7* for the Type 3a solution of
G,, + Ag,, = 0, butin this case the invariants are of course
constant.

C. Perfect fluid solution

The Type 3a metric provides a perfect fluid solution to
G,, = 8xGT,. In this case the energy density depends on
the spatial coordinates,

1 u(d—u) 1
BT E 2
> = a(x) + b(3) + c(2). (21)

p(%,3.2) S

The value of ¢ is given in (15). We see that p > 0 for
0 <u < 4. But there are two possible values of the
equation state parameter in p = wp because there are
two possible values of v for a given u that produce a
diagonal Einstein tensor,

v=u+1+V2u®+4u+1. (22)

Correspondingly
|

24 3u+2V2ut +4u+1
w = .

yy— (23)

The plus branch has w varying monotonically in 1 <
w < oo as u varies in 0 < u < 4. This violates the dominant
energy condition. u =4 gives v =12, p =0 and p > 0,
while u = 0 gives v =2, p = p = 0 and a flat spacetime.
This branch also has a w = 1/3 solution (u = —%, v = g)
but then p < 0.

The minus branch is more interesting. Now the standard
energy conditions are satisfied as w varies monotonically in
0>w> —1lasuvariesin 0 < u < 4. u = 4 gives back the
Type 3a vacuum solution in Sec. VB while u = 0 gives
v =0, p = p = 0 and a flat spacetime. The minus branch
at u = —2 produces the Type 3a AdS solution in Sec. VA.

The curvature invariants including R are in general
nonvanishing, but we just give the following result, which
is particularly simple and is true for both branches,

G u*(2 +u)?

Clll//)rfcﬂy[m = 3 f424+2u (24)
For these perfect fluid solutions, both oscillating

solutions and asymptotically-flat solutions can again be
considered.

VI. VARIATIONS

One of the defining characteristics of our class of
diagonal metrics is that some of the components involve
a square of a derivative. We can keep this basic structure
intact while allowing more choice for the power of X that
appears in each component. This will typically reduce the
symmetries, but additional solutions emerge. The Riemann
tensor still has no more than first derivatives. This type of
variation for the Type 1 metrics leads us into an extension
of the Kasner metrics as discussed in [2]. In the remainder
of this section we consider this type of variation for the
Type 2, 3 and 4 metrics.

A. More vacuum solutions to G,, =0

A variation of the Type 2 metrics leads to solutions to the
vacuum equations G,, =0 that still have a degree of
freedom in the choice of the exponents. That is, the
following metrics are solutions for any choice of u,

ds? = =342 +Aal()—c)22u(u—2)/2dx2 T Bbl()—])Zzu(u—Z)/ZdyZ 4 ZZ—udZZ’

S = a(®) + b(3).

(25)

ds? = _Dd/(;)Zzu(u—2)/2dt2 + Aa/()—c)Zzu(u—Z)/ZdXZ 4 Zudy2 + Z2—udz2’

S = a(®) + d(7).

(26)
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The values of the curvature invariant R, ,,R**° = C,,,,C*"*? for these two metrics are, respectively,

(A+B)u?(2 —u)*(4 = 2u + u?)
4BZA2bﬁ4z4—2u+u2

. S=a(®) +b(), (27)

(A=D)*u?(2 — u)*(4 —2u + u?)
4D2A2f424_2"+u2

. S=a®) +d). (28)

Since 4 — 2u + u?> > 0, these vacuum solutions are nonsingular as long as there are no points where £ = 0. Results are
symmetric under interchange of u# with 2 — u. u = 1 gives back the Type 2a and 2b vacuum solutions in Sec. V B while
u =2, 0 gives flat space. u = 4, -2 gives a solution with four Killing vectors, as with # = 1, while solutions for other
values of u have three Killing vectors. A homothety vector exists in all cases and can be used to obtain the power of X in the
curvature invariants as before.

B. More perfect fluid solutions

A variation of the Type 2a and 3a metrics leads to additional perfect fluid solutions to G,, = 8zGT,, as follows:
ds? = —32-ugs? +Aa’()"c)22”(“_2>/2dx2 + Bb/()—))2zudy2 + Zu(u—z)/2dz27
z = a(x) +b(y), (29)
ds? = —32-u s +Aa/()—c)22u(u—2)/2dx2 4 Bb/(}—))Zzudy2 4 CC/(Z)ZZM(”_Z)/Zdzz,
Z = a(x) + b(y) + c(2). (30)
The energy density is

1 u(3u’® —16u* + 12u+16) 1

P = 5 ( ) 2+u’ (31)
8rGC 16B z
where X = a(X) + b(y) or X = a(X) + b(y) + ¢(z) respectively. For both cases
2—u

= s = . 32
p=wp,  w=oo (32)

p is positive in the ranges 2 < u < 4 and —% < u < 0. For the first range w varies in 0 > w > —%, while for the second
oo > w > 1. These ranges match those found for the perfect fluid solution in Sec. V C. The curvature invariants are more
complicated and have various terms with different dependence on X, as may be expected since no homothety vector exists.

C. Nonconformally-flat Einstein spaces

There is a variation of the Type 2, 3 and 4 metrics that produces a different type of solution, namely solutions to
G,, + Ag,, = 0 that are not conformally flat (nonvanishing Weyl tensor). These solutions give rise to

12¢, 38443
RW - _791“” RMV/)UR#UM - o4 2

2
+ Cﬂv/mcmp °, C CHre = 1926]3

Hvpo - W (33)

The invariants are not constant. The following metrics produce such solutions, where we also give the values of ¢, ¢, and
¢z appearing in (33).

ds? = =34 + Ad/(X)°Z72dx® + Bb (3)*Z4dy? + £*d7?
1

1 1
2 = X y = — = — = — 4
a@) +0(3).  @=4.  @©=5.  @=o (34)
ds? = —Dd'(1)*272df* + Ad' (x)*Z4dx® + Z4dy? + Z4d7?
B} 1 1 1
Y = a(x) +d(7), =—-—, ==, == 35
a(x) + d(7) a1 D 2= =7 (35)
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ds® = —Dd'(1)?Z*df*> 4+ Ad'(3)*Z2dx? + Z*dy* + =*dZ?

Y =a(x) +d(1),

q1 =

1 1 1

ds* = —Z*df? + Ad' (%)*Z72dx? + Bb'(y)?Z*dy?* + Cc'(2)*24dZ?

T =a(x)+ b(y) + c(z),

q1 =

ds® = —=Dd'(1)’272dr* + Ad'(3)°Z*dx> + BV (3)°Z*dy? + T*dz?

Z=a(x) +b(y) +d(),

q1 =

ds* = —Dd'(1)*Z4df* + Ad'(%)*Z2dx* + Bb' (y)*Z4dy? + =*dz?

Y = a(x) + b(F) + d(7),

q1 = — 7

ds> = —=Dd'(1)?Z72dr* + Ad' (x)*Z*dx* + Bb' (y)*Z*dy?* + Cc'(z)*24dz?

2 =a(x)+b(y) +c(z) +d(7),

91 = — 51>

ds* = —Dd'(1)*Z*dr* 4+ Ad'(X)*Z™2dx* 4+ B (3)*Z'dy* 4+ Cc/(2)*24dz?

Y =a(x)+ b(y) + c(z) +d(7),

These metrics are of Petrov type D and they have
four Killing vectors and no homothety vector. Since
ChupeC*?° x 712, these nonconformally-flat Einstein
spaces are nonsingular as long as there are no points where
2 =0.

As another possible variation we could consider off-
diagonal metrics, for instance with off-diagonal compo-
nents having mixed products of first derivatives. There are
solutions of this type, but we find that these solutions can
be brought back into diagonal form via a coordinate
transformation.

VII. PHYSICS TOPICS

We have studied piecewise-Lorentzian manifolds involv-
ing three-dimensional hypersurfaces on which one compo-
nent of the metric vanishes. The metric on and near these
degeneracy planes is otherwise finite and smooth. More
than one component of the metric vanishes at intersections
of the degeneracy planes (in particular for solutions of Type
2, 3 and 4). The primary physical characteristic of these
hypersurfaces is that all curvature invariants on and near
them are finite. Then new classes of solutions to the
Einstein equations can be constructed where the curvature
invariants are everywhere finite. In this paper we have
presented a variety of such solutions, either vacuum
solutions or solutions sourced by a smooth matter distri-
bution satisfying the standard energy conditions. Rather

q1 =

A’ (]2227 613:5 (36)
L m=g =l (37)
%, 612:%7 613=% (38)

5 =g m=tl (39)
b =g g =t tEC (40)
P T (41)

|
than summarizing these solutions here, let us turn to the
physical implications of the degeneracy planes.

In [2] we discussed the propagation of a particle through
a spacelike degeneracy plane by considering the geodesics.
For a particle travelling in the positive x direction we
obtained the quantities dx/dA and dt/di by standard
methods. From those results we get the apparent speed

dx

E‘x —g,,o<|t—t0| (42)

of a particle that is close in time to the plane situated at
t = ty. This results in

x() — xo o sign(t — 1) (t — ty)?, (43)

and so the apparent speed is instantaneously zero when the
particle crosses the plane at x(7y) = x,. For a timelike
degeneracy plane we have

dx 1 1
— X X
dt v 9xx |)C - X0|

(44)

of a particle that is close to the plane situated at x = x,.
This results in

x(t) — xo o sign(r — t9) /|t — 1o],

(45)
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and so the apparent speed is instantaneously infinite when
the particle crosses the plane at x(7) = xo. In both cases
x(t) is continuous.

In [2] we also found that solutions of the scalar wave
equation were well behaved around a spacelike degeneracy
plane such that the scalar g0, ¢d, ¢ remained finite. This is
also true for a timelike degeneracy plane.

How could piecewise-Lorentzian manifolds be involved
in the description of the real world? Some of our solutions
have the form of localized gravitational lumps, nonsingular
solutions that are asymptotically flat. The vacuum solutions
may be more interesting since the perfect fluid solutions
require negative pressure. Although these solutions have
spherically symmetric curvature invariants, they still dis-
play nontrivial structure asymptotically, as seen by the
volume element in (20). This is a consequence of the
degeneracy planes that extend out to infinity. How such an
object could be singly produced by some local mechanism
is not obvious.

The appearance of piecewise-Lorentzian manifolds in a
cosmological context seems to be more promising. In [2]
we showed that a spacelike degeneracy plane represents a
turning point for the cosmological scale factor, and thus it
can model a nonsingular bounce cosmology with normal
matter. Typically a violation of the null energy condition is
required for a nonsingular bounce cosmology (for a review
see Ref. [3]). The only other proposal we are aware of that
does not require such a violation is found in [4], and this is
also based on a metric defect that involves degeneracy. In
other respects this construction differs from ours.

We have been describing the hypersurfaces as degen-
eracy planes, but the degeneracy property of the metric is
coordinate dependent. By changing the coordinate system,
the degeneracy of the metric can be traded for a nonsmooth
but continuous behavior of the metric, as a hypersurface
is crossed. We know how to construct the coordinate

transformation that can accomplish this globally for sol-
utions of Type 1, as described in [2] for Type 1b. Thus the
hypersurface is the location of a type of defect whose
description is coordinate dependent. This is in contrast to
the finiteness and the continuity of the curvature invariants,
since these are physical properties that are independent of
the coordinate system.

Let us return to the vacuum solutions of Type la or 1b
that occur in the presence of a cosmological constant. These
solutions can exhibit periodic oscillations that occur in
space or time respectively. We may change coordinates
such that the metric degeneracy is traded for nonsmooth
behavior. Then the metric component that previously
periodically vanished is transformed into a constant, either
—1 or +1 as appropriate, and the function d(¢) or a(x) is
now a piecewise function switching between increasing and
decreasing exponentials. The range of these functions
matches the range of the original oscillations. There can
be a reflection symmetry around each transition point. We
thus have an infinite set of transitions in a layered structure
that is perpendicular to either a space or time dimension. As
we have mentioned, the nontrivial structure may be
occurring on such short length or time scales so as to be
effectively hidden from us.

A nonsmooth Z,-symmetric transition would conven-
tionally be described as an orbifold, as occurs for example
along a fifth dimension in models of the Randall-Sundrum
type. An orbifold normally requires specifying a brane with
an appropriate tension situated at the point of nonsmooth
behavior. In contrast for piecewise-Lorentzian manifolds
no such externally added brane is needed; in our case the
nonsmooth metric is obtained via a coordinate transforma-
tion of a smooth and oscillating metric that is sourced only
by a cosmological constant. This indicates that another use
of piecewise-Lorentzian manifolds may be in the formu-
lation of higher-dimensional models.
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