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Primordial black holes (PBHs) forming out of the collapse of enhanced cosmological perturbations
provide access to the early Universe through their associated observational signatures. In particular,
enhanced cosmological perturbations collapsing to form PBHs are responsible for the generation of a
stochastic gravitational-wave background (SGWB) induced by second-order gravitational interactions,
usually called scalar induced gravitational waves (SIGWs). This SGWB is sensitive to the underlying
gravitational theory; hence it can be used as a novel tool to test the standard paradigm of gravity and
constrain possible deviations from general relativity. In this work, we study the aforementioned GW signal
within modified teleparallel gravity theories, developing a formalism for the derivation of the GW spectral
abundance within any form of gravitational action. At the end, working within viable fðT;ϕÞ models
without matter-gravity couplings, and accounting for the effect of monoparametric fðTÞ gravity at the level
of the source and the propagation of the tensor perturbations, we show that the respective GW signal is
indistinguishable from that within GR. Interestingly, we find that in order to break the degeneracy between
different fðTÞ theories through the portal of SIGWs one should necessarily consider nonminimal matter-
gravity couplings at the level of the gravitational action.

DOI: 10.1103/PhysRevD.107.124019

I. INTRODUCTION

Primordial black holes (PBHs), first introduced in the
early 1970s [1–3], have gained lot of attention within the
scientific community since they can naturally address a
number of fundamental issues of modern cosmology. In
particular, they can potentially account for a part or the
totality of dark matter [4,5] and explain the large-scale
structure formation through Poisson fluctuations [6,7]. At
the same time, depending on their mass they can give rise to
a very rich phenomenology from the early universe up to
late times [8].
Meanwhile, PBHs are connected with numerous

gravitational-wave (GW) signals [9,10]. Since the detection
of the first GWsignal in 2015, there has been a lot of progress
in the literature connecting PBHs with the GWs. More

specifically, there have been extensively studied GWs from
PBH merging events [11–15], GWs which are induced from
enhanced scalar perturbations collapsing to PBHs due to
second-order gravitational interactions [16–18] [See [19] for
a recent review] as well as GWs induced by Poisson PBH
energy density perturbations themselves [20–22].
In particular, the portal of scalar induced gravitational

waves (SIGWs) constitutes an active field of research since
they can give us access to the thermal history of the
Universe [23–26] and in particular on the conditions that
prevailed in the early Universe, namely during cosmic
inflation [16,17,27–30] and reheating [31] during which
all the known particles are considered to have been
produced. Interestingly enough, through the portal of
SIGWs one can have access to very small scales which
are poorly constrained and are otherwise inaccessible with
cosmic microwave background (CMB) and large scale
structure (LSS) probes [19] while very encouragingly, the
typical frequency of such primordial GWs lie well within
the frequency detection band of future GW detectors such
as the Einstein Telescope (ET) [32], the Laser Inferometer
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Space Antenna (LISA) [33,34] and the Square Kilometer
Arrays (SKA) [35].
Up to now, the majority of the works in the literature

investigated the aforementioned GW signal within the
context of general relativity (GR). However, there are
many theoretical as well as phenomenological reasons
which point toward a different gravity paradigm in order
to account indicatively for the renormalizability issues of
classical gravity [36,37] and explain the two phases of the
Universe’s accelerated expansion, namely the early-time,
inflationary one [38,39], and/or the late-time, dark-energy
one [40–42]. In view of these arguments, SIGWs are
promoted as a novel portal to test and constrain the
underlying gravity theory.
Recently, there has been an increased scientific activity

toward this direction through the study of primordial
SIGWs within curvature formulations of gravity [43–54].
In the present work, we study for the first time to the best of
our knowledge the primordial SIGW portal within the
context of a torsional formulation of gravity where the
gravitational Lagrangian is promoted to an integral of a
function of the torsion scalar T containing potentially
couplings between the gravity and the matter sectors of
the Universe [42,55–81]. In particular, by studying the
effect of modified teleparallel gravity theories at the level of
the source and the propagation of the SIGWs we examine
under which conditions one can detect a distinctive
deviation from the case of classical gravity.
The paper is structured as follows: In Sec. II we review

the fundamentals of the torsional formulation of gravity
studying its background and perturbation behavior and
specifying as well viable fðT;ϕÞ gravity models within
which we study the SIGW signal. Then, in Sec. III we
present the basics of the SIGWs by studying at the same
time the effect of modified teleparallel gravity (MTG)
theories at the level of the source and the propagation of the
GWs. Furthermore, we deduce the necessary conditions so
as to see a distinctive SIGW signature within MTG theories
compared to classical gravity. Finally, Sec. IV is devoted to
conclusions.

II. GENERAL FRAMEWORK OF MODIFIED
TELEPARALLEL GRAVITY THEORIES

A. Teleparallel gravity

Teleparallel gravity (TG) is an alternative formulation of
gravity based on torsion [82–84]. The dynamical variable
of TG is the tetrad field, eAðxμÞ and it connects the spacetime
metric gμν and the Minkowski tangent space metric
ηAB ¼ diagð−1; 1; 1; 1Þ through the following relation:

gμν ¼ eAμeBνηAB; ð1Þ

where Greek and Latin indices run in coordinate and tangent
space respectively and eAμ are the tetrad components which

satisfy the orthonormality conditions eAμeνA ¼ δνμ and
eAμe

μ
B ¼ δAB, with eμB being the inverse components.

Due to relation (1), the tetrad fields are only determined
up to transformations of the six-parameter Lorentz group.
To ensure the covariance of the theory one needs to
introduce a Lorentz or spin connection [85], which can
be written as

ωA
Bμ ¼ ΛA

DðxÞ∂μΛB
DðxÞ; ð2Þ

with ΛA
DðxÞ being a local (point-dependent) Lorentz

transformation [86]. TG is characterized by the choice to
formulate gravity in a particular class of frames (called
proper frames) for which the spin connection is flat, i.e.
ωA

Bμ ¼ 0. This choice is facilitated by the local Lorentz
invariance of TG. The corresponding spacetime-indexed
connection which is the so-called Weitzenböck connec-
tion [55] is the following:

Γρ
μν ¼ eAρð∂μeAν þ ωA

BμeBνÞ ⇒ Γ
wλ

νμ ≡ eλA∂μe
A
ν : ð3Þ

The action functional of TG is defined by

S ¼ −
M2

Pl

2

Z
d4xeT; ð4Þ

with e ¼ detðeAμÞ ¼ ffiffiffiffiffiffi−gp
and M2

Pl ≡ ð8πGÞ−1 being the
reduced Planck mass. The torsion scalar T is defined by

T ¼ SρμνTρ
μν; ð5Þ

with Tρ
μν being the components of the torsion tensor

defined by

Tρ
μν ≡ eAρ½∂μeAν − ∂νeAμ þ ωA

BμeBν;−ωA
BνeBμ� ð6Þ

and Sρμν being the so-called superpotential which reads as

Sρμν ≡ 1

2
ðKμν

ρ þ δμρTθν
θ − δνρTθμ

θÞ; ð7Þ

with Kμν
ρ standing for the contortion tensor defined by

Kμν
ρ ≡ −

1

2
ðTμν

ρ − Tνμ
ρ − Tρ

μνÞ: ð8Þ

The Weitzenböck connection of TG and the Levi-Civita
connection of GR, Γ̄ρ

μν, are related as follows

Γρ
μν ¼ Γ̄v

μν þ Kρ
μν: ð9Þ

Consequently, it can be shown that

T ¼ −R − 2e−1∂μðeTνμ
νÞ; ð10Þ
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with R being the curvature scalar of the Levi-Civita
connection [87]. Therefore, TG and GR are equivalent
theories at the level of the field equations.
However, when one extends TG by introducing a non-

minimally coupled matter field, for instance a scalar
field [88–92], or by adding into the action nonlinear terms
in the torsion scalar T, as for example in fðTÞ grav-
ity [57,58,93,94], one obtains new classes of modified
gravity theories with interesting phenomenology which are
not equivalent to their corresponding curvature based
counterparts [42].
In the following, we shall briefly present the generation

of primordial density fluctuations in the framework of
generalized teleparallel scalar-torsion gravity theories
following [95].

B. Generalized scalar-torsion gravity

1. Field equations

By extending the gravitational sector to an arbitrary
function of T and ϕ, the corresponding action functional of
the generalized scalar-torsion gravity is given by [88–92]

S ¼
Z

d4xe½fðT;ϕÞ þ PðϕÞX�; ð11Þ

with X being the so-called canonical kinetic term defined
by X ≡ −∂μϕ∂μϕ=2. Teleparallel gravity with a scalar
field potential VðϕÞ is recovered when fðT;ϕÞ ¼
−M2

PlT=2 − VðϕÞ.
The corresponding field equations are obtained by

varying this action with respect to the tetrad field eAμ [96]:

f;TGμν þ Sμνρ∂ρf;T þ 1

4
gμνðf − Tf;TÞ

þ P
4
ðgμνX þ ∂μϕ∂νϕÞ ¼ 0; ð12Þ

where a comma denotes partial differentiation, here with
respect to T. These equations have been expressed in a
general coordinate basis with Gμ

ν ¼ eAμGA
ν being the

Einstein tensor andGA
μ≡e−1∂νðeeAσSσμνÞ−eAσTλ

ρσSλρμ þ
eBλSλρμωB

Aρþ1
4
eAμT.

It is important to point out that the action (11) is not
locally Lorentz invariant [97,98]. One can easily see this by
performing an infinitesimal Lorentz transformation to the
tetrads as follows: e0 Aμ ¼ eAμ þ ξB

AeBμ, with ξAB ¼ −ξBA.
The effect of this transformation on the action is

δS ¼
Z

d4xe∂ρf;TS
ρ
μνe

μ
Ae

ν
Bξ

AB: ð13Þ

Now if one demands that this action is invariant, that is
δS ¼ 0 for arbitrary ξAB, the following equation needs to be
satisfied

∂ρf;TS½μν�ρ ¼ 0: ð14Þ

Thus, since Eq. (14) is not satisfied in general, the action
(11) is not Lorentz invariant locally. For the special case of
TG, f ∼ T ⇒ ∂ρf;T ¼ 0, therefore (14) is satisfied.

2. Cosmological framework

To apply this general formulation into a cosmological
setting, one needs to impose the standard flat, homo-
geneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) geometry

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð15Þ

which corresponds to the following tetrads

eAμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; ð16Þ

with aðtÞ being the scale factor. By substituting the tetrad
field (16)1 into the field equations (12) one obtains the
following background equations

fðT;ϕÞ − PðϕÞX − 2Tf;T ¼ 0; ð17Þ

fðT;ϕÞ þ PðϕÞX − 2Tf;T − 4 _Hf;T − 4H _f;T ¼ 0; ð18Þ

−P;ϕX − 3PðϕÞH _ϕ − PðϕÞϕ̈þ f;ϕ ¼ 0; ð19Þ

where H ≡ _a=a is the Hubble parameter and a dot denotes
derivative with respect to t. Additionally, from Eq. (5) one
obtains T ¼ 6H2.
In order to describe slow-roll inflation, one needs to

introduce the following slow-roll parameters

ϵ≡ −
_H
H2

; δPX ≡ −
PðϕÞX
2H2f;T

; δf;T ≡
_f;T

f;TH
; ð20Þ

such as that from Eqs. (17) and (18) one can write ϵ as

ϵ ¼ δPX þ δf;T : ð21Þ

Furthermore, it is useful to split the parameter δf;T as

δf;T ¼ δf _H þ δfX; ð22Þ

1It is worth noting that due to the violation of local Lorentz
invariance in general MTG theories [97], there is the following
complication: the gravitational field equations and their tetrad
solutions become dependent on the corresponding spin connec-
tion. Consequently, one needs a way to retrieve the corresponding
spin connection associated with each tetrad field in order to
properly solve the field equations. For our FLRW setting, it has
been shown that our chosen tetrad (16) is a proper tetrad, which
implies that its corresponding spin connection is the vanishing
spin connection leading to physically meaningful results [99].
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by defining

δf _H ≡ f;TT _T
Hf;T

; δfX ≡ f;Tϕ _ϕ

Hf;T
: ð23Þ

Therefore, from expressions (20) and (21), one can obtain
the following relations

δf _H ¼ −
2μ

1þ 2μ
ðδPX þ δfXÞ; ð24Þ

δf;T ¼ 1

1þ 2μ
ðδfX − 2μδPXÞ; ð25Þ

ϵ ¼ 1

1þ 2μ
ðδPX þ δfXÞ; ð26Þ

where we have defined μ≡ Tf;TT=f;T in analogy with the
deviation parameter of the (curvature based) modified
gravity theories [100].

C. Scalar perturbations

In order to describe scalar perturbations, it is convenient
to employ the Arnowitt-Deser-Misner (ADM) decomposi-
tion of the tetrad field [101] where

e0μ ¼ ðN; 0Þ; eAμ ¼ ðNa; haiÞ;
e0μ ¼ ð1=N;−Ni=NÞ; eaμ ¼ ð0; haiÞ; ð27Þ

with N being the lapse function and Ni the shift vector,
which is defined by Ni ≡ haiNa and hai being the induced
tetrad field satisfying the orthonormality condition,
i.e. hajhai ¼ δij.
Choosing to work within the uniform field gauge, or

otherwise called comoving gauge, i.e., δϕ ¼ 0, a conven-
ient ansatz for the lapse function, the shift vector and the
induced tetrad fields is

N¼1þA; Na¼a−1e−Rδai∂iψ ; hai¼aeRδajδji; ð28Þ

which gives rise to the corresponding perturbed met-
ric [102]

ds2 ¼ −½ð1þ AÞ2 − a−2e−2Rð∂ψÞ2�dt2
þ 2∂iψdtdxi þ a2e2Rδijdxidxj: ð29Þ

Now one needs to expand the action (11) up to second
order in the perturbation variables of the perturbed tetrad
(28). In order to accomplish this, one needs to address the
fact that the action is not Lorentz invariant locally. The
standard procedure for that essentially consists in adding
the additional six Lorentz degrees of freedom, which arise
because of the Lorentz violation, directly into the perturbed
tetrad field (28) [103,104]. Afterwards, once a particular

perturbed tetrad frame is chosen, these extra modes can be
absorbed into Goldstone modes of the Lorentz symmetry
breaking, by performing a Lorentz rotation of the tetrad
field [105,106]. After this procedure, a new massive term is
generated and the corresponding action is

Sð2Þ ¼ 1

2

Z
dτd3x½ðv0Þ2 − ð∂vÞ2 −M2v2�; ð30Þ

where we defined the usual Mukhanov-Sasaki (MS)
variable

v≡ zR; with z2 ≡ 2a2Qs and Qs ≡ PX
H2

; ð31Þ

where the prime denotes differentiation with respect to the
conformal time τ defined by dτ≡ dt=a. The M is an
effective mass parameter defined by

M2 ≡ a2m2 −
z00

z
; ð32Þ

where m2 ¼ 3H2ηR and ηR is given by

ηR ¼ m2

3H2
¼ δf;T

�
1þ

�
1þ δfX

δPX

�
δf;T
δf _H

�
: ð33Þ

The parameter m is a new explicit mass term, which arises
due to the effects of local Lorentz-symmetry breaking
mentioned earlier.
By varying the action (30) and using the Fourier

expansion of the MS variable

vðτ;xÞ ¼
Z

d3k
ð2πÞ3 vkðτÞe

ik:x; ð34Þ

one obtains the following field equation

v00k þ ðk2 þM2Þvk ¼ 0; ð35Þ

which is the corresponding Mukhanov-Sasaki equation
within the modified teleparallel gravity setup. Given now
that the MS variable v is related to the comoving curvature
perturbationR as v ¼ zRwhere z is given by Eq. (31), one
can rewrite Eq. (35) in terms of the comoving curvature
perturbation R as follows2:

R00
k þ 2

z0

z
R0

k þ ðk2 þ a2m2ÞRk ¼ 0: ð36Þ

2In our numerical implementation, we used the e-fold number
N defined as N ≡ ln a as our time variable.
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D. Tensor perturbations

To describe the tensor perturbations we shall adopt again
the uniform field gauge, δϕ ¼ 0, so from our earlier ADM
decomposition of the tetrad field from Eq. (27) we get
that [95,101]

N ¼ 1; Na ¼ 0; hai ¼ a

�
δai þ

1

2
γai

�
: ð37Þ

Then we can define the induced 3-metric

gij ¼ ηabhaihbj ¼ a2
�
δij þ hij þ

1

4
γkiγ

k
j

�
; ð38Þ

where we defined the spatial tensor modes by

hij ¼
1

2
ηabðδaiγbj þ δbjγ

a
jÞ ¼

1

2
ðγij þ γjiÞ; ð39Þ

with γaj ¼ γijδ
a
i. It is illustrating to decompose the

tensor γij into its symmetric and antisymmetric part
γij ¼ γði;jÞ þ γ½i;j�. The symmetric part hij ¼ γði;jÞ is gauge
invariant [107] and satisfies the transverse and traceless
conditions, i.e. ∂

ihij ¼ hii ¼ 0, while the antisymmetric
part matches the gauge degrees of freedom in the local
Lorentz invariant theory. We now need to substitute the
tetrad fields (37) into the action (11) and expand to second
order in the tensor modes. For this purpose, one can neglect
the γ2 term since it contributes only in cubic calculations of
the Lagrangian [108].
Consequently, the respective second-order gravitational

action for the tensor perturbations can be recast as:

Sð2ÞT ¼
Z

dτd3xa2QT ½ðh0λÞ2 − ð∂hλÞ2�; ð40Þ

with QT being defined by QT ≡ −f;T=2 and λ ¼ ðþÞ or
ð×Þ accounting for two polarization states of the tensor
modes. At the end, minimizing the aforementioned second-
order action for the tensor modes and Fourier transforming
hλ one obtains the following equation of motion for hλk

hλ;00k þ 2Hð1 − γTÞhλ;0k þ k2hλk ¼ 0; ð41Þ

with

γT ≡ −
f0T

2HfT
: ð42Þ

E. Specific f ðT;ϕÞ gravity models

For concreteness, we will work with specific fðT;ϕÞ
gravity models with canonical kinetic terms, namely with
PðϕÞ ¼ 1, and without explicit nonminimal matter-gravity
couplings, i.e. with f;Tϕ ¼ 0. Therefore, we shall work

with models of the form fðT;ϕÞ ¼ fðTÞ þ X − VðϕÞ. In
the following we provide the monoparametric fðTÞ gravity
models that we will use.

1. Power-law model

The power-law model [57] (hereafter f1 model), in
which

fðTÞ ¼ −
M2

Pl

2
ðT þ αTβÞ; ð43Þ

with

α ¼ ð6H2
0Þ1−β

ΩF0

2β − 1
; ð44Þ

where ΩF0 ¼ 1 −Ωm0 −Ωr0. According to observational
constraints for β one has that −0.3 < β < 0.3 [109–111]
and the GR case is recovered for β → 0.

2. Exponential model

The exponential model (hereafter f2) [109]:

fðTÞ ¼ −M2
Pl=2½T þ αT0ð1 − e−T=ðβT0ÞÞ�; ð45Þ

with

α ¼ ΩF0

1 − ð1þ 2
βÞe−

1
β

: ð46Þ

The β parameter is observationally constrained within the
range 0.02 < β < 0.2 [109–111] and GR is recovered
for β → 0þ.
The respective background and perturbation equations

for the fðTÞ models mentioned above are shown in
Appendices A and B.

F. Inflation realization

Regarding the choice of the inflationary potential we will
work with inflationary setups with inflection points giving
rise to an ultra slow-roll (USR) phase. In particular, during
this USR phase, the nonconstant mode of the curvature
perturbations, which would otherwise decay exponentially
in the slow-roll regime, in the USR phase will grow
enhancing in this way the curvature power spectrum at
specific scales which can potentially collapse forming
PBHs. For concreteness, we will work within α-attractor
inflationary models [112] naturally motivated by super-
gravity setups [113]. In particular, we will work with the
chaotic inflationary model which reads as
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VðϕÞ ¼ V0

�
tanh

�
ϕffiffiffiffiffiffi
6α

p
�
þ Aϕ sin

�
tanh

�
ϕffiffiffiffiffiffi
6α

p
�
=fϕ

��
2

;

ð47Þ

as well as with the polynomial inflationary superpotential
given by

VðϕÞ ¼ V0

�
c0 þ c1 tanh

�
ϕffiffiffiffiffiffi
6α

p
�
þ c2tanh2

�
ϕffiffiffiffiffiffi
6α

p
�

þ c3tanh3
�

ϕffiffiffiffiffiffi
6α

p
��

2

: ð48Þ

Regarding the values of α, V0, Aϕ, fϕ, c0, c1, c2, c3 we
used the fiducial values used in [112] giving rise to an
enhanced power spectrum at very small scales compared
to the ones probed by CMB measurements. These fidu-
cial values are given in the following Table I in units
of MPl.
At the end, as it was checked numerically, our quanti-

tative results discussed in Sec. III C 1 turn to be indepen-
dent of the choices of the aforementioned inflationary
parameters.

III. SCALAR INDUCED GRAVITATIONAL
WAVES IN f ðT;ϕÞ GRAVITY

In the previous section we have considered only the first-
order scalar and tensor perturbations. Here, we perturb
the tensor part of the metric up to second order in order to
extract the second order tensor perturbations induced by first
order scalar perturbations working in terms of metric
variables instead of the tetrad fields,3 which simplifies a
lot the derivation of the tensor power spectrum and the GW
signal.

A. The scalar induced tensor perturbations

Working thereforewithin theNewtonian gauge framewith
Φ ¼ Ψ,4 the perturbed Friedmann-Lemaître-Robertson-

Walker metric [40,114–117], the perturbed metric can be
written as5

ds2 ¼ a2ðηÞ
�
−ð1þ 2ΦÞdη2

þ
�
ð1 − 2ΦÞδij þ

hij
2

�
dxidxj

�
; ð49Þ

whereΦ is the first order scalar perturbation, usually called as
Bardeen potential, and hij is the second-order tensor per-
turbation. Let us highlight here that we do not include in the
analysis the contribution from the first order tensor pertur-
bations since we focus on gravitational waves generated by
scalar perturbations at second order.
Working now in the Fourier space, the equation of

motion for the tensor perturbations hk can be recast in
the following form: [114–116]

hλ;00k þ 2Hð1 − γTÞhλ;0k þ k2hλk ¼ 4Sλk; ð50Þ

where λ ¼ ðþÞ; ð×Þ and the source term Sλk reads as:

Sλk ¼
Z

d3q

ð2πÞ3=2 e
λðk; qÞFðq; jk − qj; ηÞϕqϕk−q; ð51Þ

with eλðk; qÞ≡ esijðkÞqiqj and the polarization tensors eðþÞ
ij

and eð−Þij being defined as

eðþÞ
ij ðkÞ≡ 1ffiffiffi

2
p ½eiðkÞejðkÞ − ēiðkÞējðkÞ�; ð52Þ

eð×Þij ðkÞ≡ 1ffiffiffi
2

p ½eiðkÞējðkÞ þ ēiðkÞejðkÞ�; ð53Þ

where eiðkÞ and ēiðkÞ are two three-dimensional vectors
which together with k=k form an orthonormal basis. In
Eq. (51), the Fourier component of the Bardeen potential
has been written as ΦkðηÞ ¼ TΦðxÞϕk with x ¼ kη, where
ϕk is the value of Φ at some reference initial time x0, here
considered as the horizon crossing time, and TΦðxÞ is a
transfer function, defined as the ratio of the dominant mode
of Φ between the times x and x0. Regarding the time

TABLE I.

α Aϕ fϕ V0 c0 c1 c2 c3

1 0.130383 0.129576 2 × 10−10 0.16401 0.3 −1.426 2.20313

3It is important to note that all the equations for the evolution of
the scalar and tensor perturbations are independent of the choice of
the formulation of the gravity theory, namely either in terms of the
metric or in terms of the tetrad fields. Equivalently, we could have
chosen to use appropriate tetrad fields that correspond to the line
element (49) as for instance is done in [59,87].

4We can make this approximation since the anisotropic stress
Π is negligible for the time period we investigate; hence from
the field equations Eq. (12) [See also [42] for more details],
ð1þ FTÞðΨ −ΦÞ ¼ 8πGp̄Π ⇒ Φ ≈ Ψ, where FT ≡ fðTÞ − T.

5We need to stress here that the gauge dependence of the tensor
modes disappears in the case of scalar induced gravitational waves
generated during a radiation-dominated era, as the onewe focus on
here, due to diffusion damping which exponentially suppresses the
curvature perturbations in the late-time limit [118–121].
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evolution of ΦkðηÞ this will be given from the time-time
perturbed field equation within the torsional formulation of
gravity, which in the absence of entropic perturbations
reads like in GR [122] as

Φ00
k þ

6ð1þ wÞ
1þ 3w

1

η
Φ0

k þ wk2Φk ¼ 0: ð54Þ

Finally, the function Fðq; jk − qj; ηÞ is defined in terms of
the transfer function as

Fðq; jk−qj;ηÞ≡2TΦðqηÞTΦðjk−qjηÞ

þ 4

3ð1þwÞ ½H
−1qT 0

ΦðqηÞþTΦðqηÞ�

× ½H−1jk−qjT 0
Φðjk−qjηÞþTΦðjk−qjηÞ�:

ð55Þ

Now, Eq. (50) can be solved by virtue of the Green’s
function formalism with hsk being read as

hλkðηÞ ¼
4

aðηÞ
Z

η

ηd

dη̄Gλ
kðη; η̄Þaðη̄ÞSλkðη̄Þ; ð56Þ

where the Green’s function Gλ
kðη; η̄Þ is the solution of the

homogeneous equation

Gλ;00
k ðη; η̄Þ − 2HγTG

λ;0
k ðη; η̄Þ

þ
�
k2 −

a00

a
þ 2H2γT

�
Gλ

kðη; η̄Þ ¼ δðη − η̄Þ; ð57Þ

with the boundary conditions limη→η̄ Gλ
kðη; η̄Þ ¼ 0 and

limη→η̄G
λ;0
k ðη; η̄Þ ¼ 1.

At the end, one can extract the tensor power spectrum
PhðkÞ defined as the equal time correlation function of the
tensor perturbations as follows:

hhλk1ðηÞh
ρ;�
k2
ðηÞi≡ δð3Þðk1 − k2Þδλρ

2π2

k31
PðλÞ

h ðη; k1Þ; ð58Þ

where λ ¼ ð×Þ or (þ). After a long but straightforward
calculation and accounting for the fact that on the super-
horizon regimeΦ ¼ 2R=3 [123], whereR is the comoving
curvature perturbation, PhðkÞ can be recast as [116,117]

PðλÞ
h ðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2ðu; v; xÞPRðkvÞPRðkuÞ; ð59Þ

with

Iðu; v; xÞ ¼
Z

x

x0

dx̄
aðx̄Þ
aðxÞ kGkðx; x̄ÞFkðu; v; x̄Þ: ð60Þ

B. The gravitational wave spectral abundance

Finally, defining the effective energy density of the
gravitational waves in the subhorizon region where one
can use the flat spacetime approximation and where
Eq. (50) reduces to a free-wave equation, one can straight-
forwardly show (See [124,125] for more details) that the
GW spectral abundance ΩGW defined as the GW energy
density contribution per logarithmic comoving scale, will
read as

ΩGWðη; kÞ≡ 1

ρ̄tot

dρGWðη; kÞ
d ln k

¼ 1

24

�
k

HðηÞ
�

2

PðλÞ
h ðη; kÞ; ð61Þ

with the bar standing for an averaging over the subhorizon
oscillations of the tensor field, which is done in order to
only extract the envelope of the GW spectrum at those
scales.
One then can account for the Universe expansion and

derive the GW energy density contribution today. In order
to achieve that, one writes

ΩGWðη0; kÞ ¼
ρGWðη0; kÞ
ρcðη0Þ

¼ ρGWðη�; kÞ
ρcðη�Þ

�
a�
a0

�
4 ρcðη�Þ
ρcðη0Þ

¼ ΩGWðη�; kÞΩð0Þ
r

ρr;�a4�
ρr;0a40

; ð62Þ

where the index 0 denotes our present time and η� is a
reference time usually taken as the horizon crossing time
when one considers that an enhanced energy perturbation
with a characteristic scale k collapses to form a PBH. For
the above expression, we accounted for the fact that
ΩGW ∼ a−4. Then, using the fact that the energy density
of radiation reads as ρr ¼ π2

15
g�ρT4

r and that the temperature

of the radiation bath, Tr, scales as Tr ∝ g−1=3�S a−1, one
acquires that

ΩGWðη0; kÞ ¼ Ωð0Þ
r

g�ρ;�
g�ρ;0

�
g�S;0
g�S;�

�
4=3

ΩGWðη�; kÞ; ð63Þ

where g�ρ and g�S stand for the energy and entropy
relativistic degrees of freedom.

C. Teleparallel gravity modifications
of the gravitational wave signal

Having extracted before the SIGW signal within modi-
fied teleparallel theories of gravity we investigate here the
relevant modifications of fðTÞ theories at the level of the
source and the propagation of the GWs which can
potentially render the GW distinctive with respect to the
one within classical gravity.
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1. The effect at the level of the gravitational wave source

Regarding the effect of the underlying modified tele-
parallel gravity theory at the level of GW source, it will be
encapsulated in the curvature power spectrum, which
actually constitutes the source of the SIGWs as it can be
inferred from Eqs. (59) and (61).
Working within the framework of the monoparametric

fðTÞ models introduced previously we solve numerically
the Mukhanov-Sasaki equation and extract the curvature
spectrum at the end of inflation on superhorizon scales,
which is actually what will induce the tensor power
spectrum seen in Eq. (59). For our numerical applications
we choose to work within the framework of α attractor
inflationary potentials introduced in Sec. II E and which
present an inflection point behavior necessary for the
enhancement of the curvature perturbations on small scales.
In Fig. 1 we show the curvature power spectrum for the

case of the modulated chaotic inflationary potential (47)

and the two power-law and the exponential fðTÞmodels by
varying the modified gravity parameter β within its
observationally allowed range. In Fig. 2 we show the
respective PRðkÞ for the case of the polynomial super-
potential (48). As it can be observed for both figures, the
curvature power spectrum derived within modified tele-
parallel gravity theories is practically indistinguishable
from that of classical gravity with the relative difference
of PRðkÞ with respect to the one of GR being of the order
10−18, namely

				P
fðTÞ
R ðkÞ − PGR

R ðkÞ
PGR

R ðkÞ
				 ∼ 10−18: ð64Þ

At this point, we need to highlight that we derived the
curvature power spectrum within mono-parametric fðTÞ

FIG. 1. In the top panel we show the curvature power spectrum
PRðkÞ for the power-law fðTÞ model for various values of the β
parameter while in the bottom panel we show PRðkÞ for the
exponential fðTÞ model. The black dashed line stands for PRðkÞ
within GR. For all curves we work with the modulated chaotic
inflationary potential (47).

FIG. 2. In the top panel we show the curvature power spectrum
PRðkÞ for the power-law fðTÞ model for various values of the β
parameter while in the bottom panel we show PRðkÞ for the
exponential fðTÞ model. The black dashed line stands for PRðkÞ
within GR. For all curves we work with the polynomial super-
potential (48).
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gravity theories without nonminimal matter-gravity cou-
plings. One in general would expect a different behavior in
the case where there is a nonminimal coupling between the
gravity and the matter sector, namely when f;Tϕ ≠ 0. This
intuitive physical condition can be analytically derived
from extracting PRðkÞ within the slow-roll regime and
checking which are the necessary conditions for the
curvature power spectrum within teleparallel gravity to
be distinctive from that within GR.
For this reason, let us derive here the PRðkÞ at linear

order in the slow roll regime, namely when ϵ, η ≪ 1, within
the framework of fðTÞ gravity theories.6 After appropriate
approximations (see [127] for more details), we can write

jRkj ≃
H

2
ffiffiffiffiffiffiffiffiffiffi
k3Qs

p
�

k
aH

�3
2
−ν̃

≃
Hk

2
ffiffiffiffiffiffiffiffiffiffiffiffi
k3Qsk

p
�
1þ ηR ln

�
k
aH

��
; ð65Þ

where Hk and Qsk are the values of H and Qs evaluated at
horizon crossing time, namely when k ¼ aH. Finally, the
curvature power spectrum can be recast as

PRðkÞ≡ k3

2π2
jRkðτÞj2≃

H2
k

8π2Qsk

�
1þ2ηR ln

�
k
aH

��
: ð66Þ

Given that ηR ∼OðϵÞ, one finds that the local Lorentz
violation gives rise to a slight logarithmic time-dependence
of the curvature perturbation and its power spectrum on
superhorizon scales. Finally, the scale-dependence of the
curvature power spectrum is quantified in the scalar
spectral index ns defined by

ns − 1≡ d lnPRðkÞ
d ln k

				
k¼aH

¼ −2ϵ − ηþ 2ηR; ð67Þ

from which we see the deviation from GR due to the
presence of the term 2ηR, which carries the effects of the
local Lorentz violation.
Finally, one can show that ηR can be recast in the

following form:

ηR ¼ ðδfX − 2μϵÞ
�
1 −

1þ 2μ

ð1þ 2μÞϵ − δfX

δfX − 2μϵ

2μ

�
: ð68Þ

Interestingly, for δfX ¼ 0, i.e. in the absence of matter-
gravity coupling, ηR ¼ −4μϵ ≪ 1, since ϵ < 1 and μ ¼
Tf;TT=f;T ≪ 1 for viable fðTÞmodels [109] andQsk ¼ ϵk.
Thus, in the absence of matter-gravity coupling one obtains

that PfðTÞ
R ðkÞ ≃ PGR

R ðkÞ and consequently can claim
that there will be essentially no distinctive deviation
between fðTÞ and GR at the level of the curvature power
spectrum.
One therefore should introduce a matter-gravity coupling

at the level of the Lagrangian in order to detect a potential
deviation from GR at the level of PRðkÞ constituting the
source of the SIGWs.

2. The effect of the gravitational-wave propagation

We now study the effect of the underlying teleparallel
gravity theory at the level of the GW propagation. To do so,
one should essentially investigate the behavior of the
Green’s function, Gkðη; ηÞ, which can be viewed as the
propagator of the tensor perturbations as it can be seen
from Eq. (56).
In particular, one must identify the dominant terms in the

evolution equation for the Green’s function Eq. (57), which
we write as follows

Gλ;00
k ðη; η̄Þ − 2HγTG

λ;0
k ðη; η̄Þ

þ
�
k2 −

a00

a
þ 2H2γT

�
Gλ

kðη; η̄Þ ¼ δðη − η̄Þ; ð69Þ

and take the ratios between the GR terms and the new fðTÞ
terms multiplied by the γT function.
At the end, following the same reasoning as in [122] and

accounting for the fact that the γT function in the case of no
nonminimal matter-gravity coupling is a negative decreas-
ing function of time, we derive the maximum deviation
from GR by extracting the ratios between the GR and fðTÞ
terms at a time during radiation domination when the γT
function acquires its maximum value. Being quite
conservative, we choose this time as the standard matter-
radiation equality time at redshift zeq ¼ 3387. Finally, we
find that independently of the value of the fðTÞ gravity
parameter β one obtains that

				 G00
kðη; η̄Þ

2HγTG0
kðη; η̄Þ

				 ≃ 1

2HγT

				
η¼ηeq

≫ 1 and

k2

2H2γT

				
k¼kevap;η¼ηeq

≫ 1; ð70Þ

where kevap is the comoving scale exiting the Hubble radius
at PBH evaporation time, thus being the largest scale
considered here.

6Strictly speaking, Eqs. (65) and (66) are partially valid within
the ultra slow-roll inflationary regime, since they are not valid at
all scales. In particular, during USR inflation curvature pertur-
bations do not freeze out at horizon exit time and therefore
Eqs. (65) and (66) cannot be evaluated at horizon crossing time
but rather only after USR inflation ends. In our case, we derive
PRðkÞ at the end of inflation, so to that end, Eqs. (65) and (66)
extracted within the SR regime can be used as a first approxi-
mation for the curvature power spectrum. See [126] for a more
detailed discussion.
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In summary, we can safely argue that the modifications
of any modified teleparallel gravity theory with no non-
minimal gravity-matter coupling at the level of the GW
propagation equation (69) are negligible. As a conse-
quence, one concludes that

GfðTÞ
k ðη; η̄Þ ≃ GGR

k ðη; η̄Þ; with f;Tϕ ¼ 0: ð71Þ

One then needs to introduce a coupling between gravity
and matter in order to see a distinctive deviation from GR.

IV. CONCLUSIONS

Primordial black holes are of great significance, since
they can naturally address many issues of modern cosmol-
ogy, among them the dark matter problem and the gen-
eration of large-scale structures. Interestingly, they are
associated with numerous GW signals from GWs from
PBH mergers up to primordial GWs of cosmological origin
related to their formation.
In particular, the enhanced cosmological perturbations

which collapse to form PBHs can induce a stochastic
gravitational-wave background due to second-order gravi-
tational interactions. This GW portal was mainly studied
within classical gravity while in some early works in this
research area it was shown that it can as well serve
as a novel probe to test and constrain alternative gravity
theories.
In this work, we studied the aforementioned GW signal

within the context of modified teleparallel gravity theories
where the gravitational Lagrangian is a function of the
torsion scalar T. Interestingly enough, we showed that in
the absence of explicit nonminimal couplings between
gravity and matter sectors, the effect of the underlying
modified theory of gravity at the level of the source and the
propagation of the GWs is practically negligible, leading to
an indistinguishable SIGW signal compared to that within
GR. Additionally, we would like to mention here that a
similar indistinguishable GW signal compared to GR was
found as well regarding the GW portal associated to
PBH Poisson fluctuations within teleparallel theories of
gravity [122].
Finally, it is important to highlight that one needs to

introduce a nonminimal matter-gravity couplings in order to
observe a distinctive SIGW signal compared to GR.
Furthermore, it would be illuminating to extract the induced
GW signal within other modified gravity theories, namely
within fðRÞ and fðQÞ gravity theories, in order to poten-
tially test and constrain the underlying theory of gravity.
These studies will be performed in upcoming projects.
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APPENDIX A: THE POWER-LAW f ðTÞ MODEL

1. Background equations

For the power-law fðTÞ model (43), after assuming
homogeneity and isotropy of the scalar field (hence
X ¼ _ϕ2=2) and working with the e-fold number defined
as the logarithm of the scale factor, i.e. N ≡ ln a,
Eqs. (17)–(19) become

TM2
Pl

2
þ TβM2

Plαð2β − 1Þ
2

−
H2ϕ02

2
− V ¼ 0; ðA1Þ

TM2
Pl

2
þ TβM2

Plαð2β − 1Þ
2

þH2ϕ02

2
− V − 2ϵH2M2

Pl

− 2ϵH2M2
Plαβ½Tβ−1 þ ðβ − 1ÞHTβ−2T 0� ¼ 0 ðA2Þ

ϕ00 þ ð3 − ϵÞϕ0 þ V;ϕ=H2 ¼ 0; ðA3Þ

where 0 denotes derivative with respect to the e-fold
number, ϵ ¼ −H0=H, T ¼ 6H2 and T 0 ¼ 12HH0.

2. Mukhanov-Sasaki equation

We need to solve these equations together with the
Mukhanov-Sasaki Eq. (36). Working again with the e-fold
number as time variable one obtains from Eq. (36) that

R00 þ
�
1 − ϵþ 2

z0

z

�
R0 þ

�
k2

H2a2
þ m2

H2

�
R ¼ 0; ðA4Þ

with

z0

z
¼ 1þ ϕ00=ϕ0; ϵ ¼ ϕ02=ð2M2

plÞ
1þ αβð2β − 1ÞTβ−1 : ðA5Þ

The expression for m2 will read as

m2 ¼ 3H2ηR ¼ −72H4
αβðβ − 1Þð6H2Þβ−2ϵ
1þ αβð6H2Þβ−1 : ðA6Þ

APPENDIX B: THE EXPONENTIAL f ðTÞ MODEL

1. Background equations

For exponential model (45), following the same pro-
cedure as before (hence X ¼ _ϕ2=2) and working with the
e-fold number as the time variable equations (17)–(19)
become
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3H2M2
Pl − 3H2

0M
2
Plα

�
1 − e

− H2

βH2
0

�
þ 6H2M2

Plα

β
e
−H2

βH2
0

−
ϕ02H2

2
− V ¼ 0 ðB1Þ

3H2M2
Pl − 3H2

0M
2
Plα

�
1 − e

− H2

βH2
0

�
þ 6H2M2

Plα

β
e
−H2

βH2
0

þ ϕ02H2

2
− V − 2ϵH2M2

Pl

�
1þ α

β
e
−H2

βH2
0

�

þ 4H2M2
Ple

−H2

βH2
0
αϵH2

β2H2
0

¼ 0 ðB2Þ

ϕ00 þ ð3 − ϵÞϕ0 þ V;ϕ

H2
¼ 0: ðB3Þ

2. Mukhanov-Sasaki equation

Once again, regarding the MS equation one should
solve the following equation for the comoving curvature
perturbation R:

R00 þ
�
1 − ϵþ 2

z0

z

�
R0 þ

�
k2

H2a2
þ m2

H2

�
R ¼ 0; ðB4Þ

with

z0

z
¼ 1þ ϕ00=ϕ0; ϵ ¼ ϕ02=ð2M2

plÞ
1þ αβð2β − 1ÞTβ−1 ;

m2 ¼ −12H2
ϵαH2e

−H2

βH2
0

β2H2
0

�
1þ α

β e
−H2

βH2
0

� : ðB5Þ
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