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We consider the motion of a point particle with spin in a stationary spacetime. We define, following
Witzany et al. [Classical Quantum Gravity 36, 075003 (2019)] and later Ramond [arXiv:2210.03866], a
12-dimensional Hamiltonian dynamical system whose orbits coincide with the solutions of the Mathisson-
Papapetrou-Dixon equations of motion with the Tulczyjew-Dixon spin supplementary condition, to linear
order in spin. We then perturb this system by adding the conservative pieces of the leading order
gravitational self-force and self-torque sourced by the particle’s mass and spin. We show that this perturbed
system is Hamiltonian and derive expressions for the Hamiltonian function and symplectic form. This
result extends a previous result for spinless point particles [F. M. Blanco and E. E. Flanagan, Phys. Rev.
Lett. 130, 051201 (2023)].

DOI: 10.1103/PhysRevD.107.124017

I. INTRODUCTION

In recent years, the detection of coalescences of binary
black hole systems has started a new era of gravitational wave
astronomy [1–3]. The coming years will bring many more
detections with the next generation ground based detectors
Cosmic Explorer [4] and the Einstein Telescope [5], the
space based detector LISA [6], and potentially pulsar timing
arrays [7]. The observation of gravitational waves requires
precise waveform templates, which for binary coalescences
can be obtained through a variety of different approximation
methods valid in different regimes. Some of the techniques
that have been used to understand the dynamics of black hole
binaries are numerical relativity [8], the post-Newtonian
approximation [9–12], the post-Minkowskian approximation
[13] for which amplitudemethods from quantum field theory
are useful [14], the small mass ratio approximation [15,16],
and the effective one-body framework which synthesizes
information from the other approaches [17,18].
A theoretical issue that arises in the study of binary

dynamics is whether the motion forms a Hamiltonian
dynamical system when gravitational wave dissipation is
turned off. This has been established to various orders in the
post-Newtonian and post-Minkowskian approximations (see
Ref. [19] and references therein). For nonspinning particles,
it has also been established to first order in the small mass
ratio approximation [20]. The small mass ratio approxima-
tion consists of an expansion in the ratio ϵ ¼ μ=M of themass
μ of the secondary object to themassM of the primary object.
The gravitational field of the secondary acts as a perturbation
to the background geometry, which can be expanded in
powers of ϵ. The interaction between the secondary and
its own gravitational field gives rise to an acceleration

with respect to the background geometry, described by the
gravitational self-force [21,22]. The self-force itself can be
divided into conservative and dissipative pieces. The former
is derived from the time symmetric piece of the Green
function while the latter comes from its time antisymmetric
piece and is responsible for the dissipation that drives the
slow inspiral. In previous work [20], we showed that the
conservative piece of the first order self-force gives rise to
Hamiltonian dynamics, and derived an explicit expression
for the Hamiltonian. The goal of this paper is to extend that
result to include the leading spin effects of the secondary.
The motion of a point particle with spin in general

relativity, neglecting self-gravity, is described by the
Mathisson-Papapetrou-Dixon equations [23–25]. A variety
of Hamiltonian formulations of the dynamics in the test
body limit have been given in [26–29]. Many of these
formulate the dynamics as a constrained Hamiltonian
system. We will follow an approach developed by
Witzany et al. [26] and later generalized by Ramond [27]
which yields an unconstrained Hamiltonian system on a
12-dimensional space. Going beyond the test body limit
to include self-gravity and working to leading order in
spin, the motion is described by a first order self-force
which depends on mass and spin, and by a first order self-
torque [30]. Specifically the self-force has terms of order
Oðμ2Þ, OðSÞ, and OðμSÞ, where μ is mass and S spin, and
the self-torque scales as OðμSÞ. We will show that this
dynamical system is also Hamiltonian, and we will derive
the explicit form of the Hamiltonian.
The various spin-related conservative effects that arise in

the dynamics of two-body systems are listed in Table I,
which includes the scaling of the interaction energy and
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accumulated orbital phase with the parameters of the
system. Effects which were previously known to admit
Hamiltonian formulations include geodesic motion, the
first order point-particle self-force [20], and the leading
[26,27] and subleading [29] spin-curvature couplings. The
effect for which we give a new Hamiltonian formulation is
the self-interaction associated with spin, and it is listed in
the last row. It consists of two different pieces which enter
at the same order [30]. First, the regularized self-field of the
secondary has a contribution of order ∼μ=M, and the spin-
curvature coupling force as well as the spin parallel
transport get corrections due this metric perturbation.
Second, there is a contribution to the regularized self-field
of order ∼S=M2, and the gradient of this field gives a
correction to the self-force.
For extreme mass ratio inspirals with near maximal spin

S ∼ μ2, the accumulated phase shift over an inspiral due to
the spin related self-interaction scales as μ=M ≪ 1, as
shown in Table I. Hence the Hamiltonian we derive will
not be relevant for computations of waveforms for LISA,
for which post-1-adiabatic waveforms which include all
the Oð1Þ effects in the accumulated phase will suffice.
However, it may yield useful information for the effective
one body framework [17,18] (since our calculation vali-
dates the Hamiltonian dynamics assumption) and thereby
aid waveform modeling for comparable mass binary
systems for LIGO. We also note that our analysis does
not include second order point-particle self-force effects,
and subleading spin-curvature effects, even though they
enter at the same order as the spin self-interaction effect
when S ∼ μ2 as shown in Table I. It would be interesting to
extend our analysis to include these effects.
The organization of this paper is as follows. In Sec. II we

review the dynamics of a test spinning particle up to linear

order in spin, given by the Mathisson-Papapetrou-Dixon
equations. We specialize to the Tulczyjew-Dixon spin
supplementary condition and review the Hamiltonian
formulation of the resulting dynamical system. The exist-
ence of two Casimir invariants makes the Poisson brackets
degenerate. By passing to the submanifold of the phase
space on which the Casimirs are constant, we obtain a true
Hamiltonian dynamical system with nondegenerate
Poisson brackets, following Witzany et al. [26] and
Ramond [27]. In Sec. III we define pseudo-Hamiltonian
dynamical systems and review a general result in the theory
of these systems that gives sufficient conditions for a
pseudo-Hamiltonian system to be Hamiltonian [20]. We
derive in Sec. IV a pseudo-Hamiltonian formulation of the
dynamics of a spinning point particle including self-force
effects. This is obtained by replacing the metric in the test-
particle Hamiltonian by an effective metric, which includes
perturbations proportional to the particle’s mass and spin.
Last, in Sec. V we apply the result from Sec. III to obtain a
Hamiltonian description of the motion of a spinning
particle.
Throughout this paper we use geometric units

with G ¼ c ¼ 1.

II. HAMILTONIAN DESCRIPTION OF THE
MOTION OF A SPINNING TEST PARTICLE

The motion of an extended body in general relativity,
neglecting self-gravity, can be reduced to the motion of a
point particle of mass μ endowed with a series of mass and
current multipole moments [41–44]. If we restrict ourselves
to the pole-dipole approximation, where only the mass
and spin are included, the dynamics are given by the

TABLE I. A summary of different conservative effects in the dynamics of binary systems with spinning components in general
relativity, in the small mass ratio limit μ ≪ M, where M is the mass of the primary and μ the mass of the secondary. The effects can be
distinguished by the scaling of the associated interaction energy with the parameters of the system. The first column lists the effects and
the second the interaction energies, where ϵ ¼ μ=M is the mass ratio and S is the spin of the secondary. The third column lists the total
phase shift caused by the effect that is accumulated during the dissipative self-force driven inspiral through the relativistic regime. The
second entry in each box is the result specialized to an order unity dimensionless spin parameter S=μ2 ∼ 1 for the secondary. Some
previous discussions of these effects in the literature are listed in the fourth column. The fifth column specifies if a Hamiltonian
formulation of the effect was previously known and gives references. Finally the last column indicates which effects are included in the
analysis of this paper.

Name of effect
Interaction
energy

Accumulated
phase shift in inspiral

Papers that
discuss effect

Previously known
Hamiltonian?

Included
in this paper?

Geodesic motion ∼μ ∼ 1
ϵ

✓ ✓

First order conservative self-force ∼μϵ ∼1 [31] ✓ [20] ✓
Second order conservative self-force ∼μϵ2 ∼ϵ [32–36]
Leading spin-curvature coupling ∼ S

M ∼ μϵ ∼ S
μ2
∼ 1 [23–25,28,37–40] ✓ [26,27] ✓

Subleading spin-curvature coupling ∼ S2

μM2 ∼ μϵ2 ∼ S2

μ3M ∼ ϵ [29] ✓ [29]

First order conservative spin-induced
self-force and self-torque

∼ Sμ
M2 ∼ μϵ2 ∼ S

μM ∼ ϵ [30,39,40] ✓
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well-known Mathisson-Papapetrou-Dixon (MPD) equa-
tions [23–25]

∇u⃗pμ ¼ −
1

2
RμναβuνSαβ; ð1aÞ

∇u⃗Sαβ ¼ 2p½αuβ�: ð1bÞ

Here

dxμ

dτ
¼ uμ ð2Þ

is the 4-velocity of the particle, Sαβ is its spin tensor, pμ is
its 4-momentum, ∇u⃗ ¼ uα∇α is the covariant derivative
with respect to proper time τ, and Rμναβ is the Riemann
tensor. The set of Eqs. (1) and (2) comprises 14 equations
for 17 independent unknowns xμðτÞ, uμðτÞ, pμðτÞ, and
SαβðτÞ. Hence the dynamical system is not yet completely
specified. This incompleteness arises because of the free-
dom to choose different definitions of the center-of-mass
worldline xμðτÞ of the extended body [37,38]. A definition
can be chosen by imposing a so-called spin supplementary
condition of the form

SαβVβ ¼ 0 ð3Þ

for some timelike vector Vβ.
In this paper, we use the Tulczyjew-Dixon spin supple-

mentary condition [25,42]

Sαβpβ ¼ 0; ð4Þ

which reduces the MPD equations to [40]

dxμ

dτ
¼ 1

μ
gμνpν −

1

2μ3
RσραβSσμpρSαβ þOðS4Þ; ð5aÞ

∇u⃗pμ ¼ −
1

2μ
RμναβSαβpν þOðS3Þ; ð5bÞ

∇u⃗Sαβ ¼ −
1

μ
u½αSβ�σuρSμνRσρμν þOðS4Þ: ð5cÞ

Here we have dropped terms cubic and higher order in spin
and have defined the particle mass

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβpαpβ

q
: ð6Þ

The dynamics to leading order in spin is obtained by
dropping all of the terms quadratic in spin in Eq. (5) and
keeping only the term in the momentum evolution equa-
tion (5b) which is linear in spin [27,40]. This term
corresponds to the leading spin-curvature coupling effect

listed in Table I. In this approximation the MPD equa-
tions (5) reduce to

dxμ

dτ
¼ 1

μ
gμνpν; ð7aÞ

∇u⃗pμ ¼ −
1

2μ
RμναβSαβpν; ð7bÞ

∇u⃗Sαβ ¼ 0: ð7cÞ

We note that the spin supplementary condition (4) is not
preserved by the dynamics (7). This arises because we are
working to linear order in spin. In this paper we shall adopt
Eq. (7) as the definition of the dynamical system we are
working with, even though this definition is formally
inconsistent with the spin supplementary condition from
which it was derived. The inconsistency is higher order in
spin and so can be safely ignored for our purposes.
Let Γs denote the phase space consisting of the bundle

over spacetime with coordinates ðxμ; pν; SαβÞ. As is well
known, there exist a Hamiltonian function and a Poisson
bracket structure on Γs that give rise to the dynamical
system (7) [26–29,45,46]. The Poisson brackets are

fxμ; xνg ¼ 0; ð8aÞ

fxμ; pνg ¼ δμν ; ð8bÞ

fpμ; pνg ¼ −
1

2
RμναβSαβ; ð8cÞ

fxμ; Sαβg ¼ 0; ð8dÞ

fSαβ; pμg ¼ −Γα
μρSρβ − Γβ

μρSαρ; ð8eÞ

fSμν; Sαβg ¼ 2gμ½βSα�ν − 2gν½βSα�μ; ð8fÞ

and the Hamiltonian H0 is

H0ðx; p; SÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνpμpν

p
: ð9Þ

It will be convenient to make a change of coordinates on
phase space to simplify the form (8) of the Poisson brackets
[47]. We choose an arbitrary orthonormal basis e⃗Λ ¼ eαΛ∂α
for 0 ≤ Λ ≤ 3, with e⃗Λ · e⃗Σ ¼ ηΛΣ, the Minkowski metric
with signature ð−1; 1; 1; 1Þ. We use uppercase Greek
indices for orthonormal basis indices and lowercase
Greek indices for spacetime indices. We define the dual
basis eΛ ¼ eΛμdxμ by eΛμe

μ
Σ ¼ δΛΣ, and the components of

the spin connection by

ωαΛΣ ¼ eΛρ∇αe
ρ
Σ: ð10Þ
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We define new phase space coordinates ðxα; πα; SΛΠÞ by

πα ¼ pα −
1

2
ωαΛΣeΛμeΣνSμν; ð11aÞ

SΛΣ ¼ eΛμeΣνSμν: ð11bÞ

In these new coordinates the only nonvanishing Poisson
brackets are

fxμ; πνg ¼ δμν ; ð12aÞ

fSΘΠ; SΓΛg ¼ 2ηΘ½ΛSΓ�Π − 2ηΠ½ΛSΓ�Θ: ð12bÞ

Substituting the coordinate change (11) into the
Hamiltonian (9) and linearizing in spin gives the form of
the Hamiltonian in these coordinates:

H0ðx; π; SÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p þ gμνπμωνΘΠSΘΠ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p : ð13Þ

It will also be convenient to define a new mass parameterm
related to the norm of the new momentum 4-vector

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβπαπβ

q
; ð14Þ

which is related to our previously defined mass (6) by
m ¼ μþOðSÞ. In the following sections we will expand
the Hamiltonian of the system in powers of m and S, by
counting factors of πμ and SΛΠ. Using this counting the first
term in the Hamiltonian (13) is OðmÞ while the second one
is OðSÞ.
Although the Hamiltonian function (13) and Poisson

structure (12) give rise to the dynamical system (7) on Γs,
the dynamical system is not Hamiltonian since the Poisson
structure (12) is degenerate. The degeneracy is due to
the existence of two Casimir invariants1 [26,27]

S2� ¼
1

8
ϵΓΣΞΠSΓΣSΞΠ; ð15aÞ

S2∘ ¼
1

2
ηΓΣηΞΠSΓΞSΣΠ; ð15bÞ

which satisfy

fS2�; Fg ¼ fS2∘ ; Fg ¼ 0 ð16Þ

for any function F on phase space. Denoting by yA abstract
coordinates on Γs, the Poisson structure can be written as a
tensor ΩAB, and its degeneracy implies that a symplectic

formΩAB satisfyingΩABΩBC ¼ δAC does not exist. Thus, Γs

is a Poisson manifold but not a symplectic manifold.
We can overcome this difficulty and obtain a true

Hamiltonian description of the dynamics as follows,
following [26,27]. Fix values S2∘ and S2� of the Casimirs,
and consider the corresponding submanifold Γ of Γs.
Denote by QA abstract coordinates on Γ and by yA ¼
yAðQBÞ the embedding map. There exists an invertible
Poisson structure ΩAB on Γ whose pushforward

ΩAB ¼ ∂yA

∂QA

∂yB

∂QBΩ
AB ð17Þ

to Γs coincides with the Poisson structure (12). It follows
that the dynamical vector field vA ¼ ΩAB

∂BH0 on Γs is the
pushforward vA∂yA=∂QA of the Hamiltonian vector field
vA ¼ ΩAB

∂BH̄0 on Γ, where H̄0 is the pullback of H0 to Γ
(below we will drop the bar). Thus, the dynamics restricted
to Γ is Hamiltonian and Γ is a symplectic manifold.
We will restrict attention to submanifolds Γ of Γs for

which

S2∘ ≥ 0; S2� ¼ 0: ð18Þ

The conditions (18) will be satisfied at some point along the
trajectory if there exists a timelike vector fβ for which

Sαβfβ ¼ 0 ð19Þ

at that point [27]. Then the conditions (18) will be satisfied
at all points along the trajectory, since the quantities S2∘ and
S2� are conserved by the dynamics by Eq. (16). Our spin
supplementary condition (4) satisfies the criterion (19).
Although this condition is not preserved by the dynamical
evolution (7), as noted above, if we choose initial data that
satisfy the spin supplementary condition, then the con-
ditions (18) will be satisfied all along the trajectory. Thus,
without loss of any physical generality, we can restrict
attention to submanifolds Γ satisfying (18) [26,27].
We now review the construction of the nondegenerate

Poisson structure ΩAB on Γ [27]. We define coordinates
fxμ; πμ; σ; ρσ; ς; ρςg on Γ by the relations

S23 ¼ X cos σ; ð20aÞ

S31 ¼ X sin σ; ð20bÞ

S12 ¼ ρσ; ð20cÞ

S01 ¼ Yρσ sin ς cos σ þ Yρς cos ς sin σ þ XZ cos σ; ð20dÞ

S02 ¼ Yρσ sin ς sin σ − Yρς cos ς cos σ þ XZ sin σ; ð20eÞ

S03 ¼ Zρσ − XY sin ς; ð20fÞ
1The quantities S2� and S2∘ are intended to be interpreted the

same way as the square of a 4-momentum; that is, they can have
either sign despite the notation as a square.
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with

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2ς − ρ2σ

q
; Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

S2∘
ρ2ς

−
S2�
ρ4ς

s
; Z ¼ S2�

ρ2ς
: ð21Þ

We define a Poisson structure by

fσ; ρσg ¼ 1; ð22aÞ

fς; ρςg ¼ 1; ð22bÞ

fxμ; πνg ¼ δμν ; ð22cÞ

with all other brackets vanishing. This is equivalent to the
symplectic form Ω ¼ dρσ ∧ dσ þ dρς ∧ dςþ dπμ ∧ dxμ.
One can check that the pushforward of the Poisson
structure (22) using the embedding (20) and (21) gives
the Poisson structure (12).
To summarize, the Hamiltonian system on the 12-

dimensional phase space Γ is given by the Poisson brackets
(22) and by the Hamiltonian (13) expressed in terms of the
coordinates fxμ; πμ; σ; ρσ; ς; ρςg using the map (20)
and (21).

III. GENERAL RESULT FOR PSEUDO-
HAMILTONIAN DYNAMICAL SYSTEMS

In this section we define a class of dynamical systems
called pseudo-Hamiltonian dynamical systems, and we
review a general result for these systems [20] which will
be the foundation for the result of this paper derived in
Sec. V below. A pseudo-Hamiltonian dynamical system
(see [20] for details) consists of a phase space Γ, a closed,
nondegenerate two-form ΩAB, and a smooth pseudo-
Hamiltonian function H∶Γ × Γ → R, for which the
dynamics are given by integral curves of the vector field

vA ¼ ΩAB ∂

∂QBHðQ;Q0ÞjQ0¼Q: ð23Þ

We now specialize to pseudo-Hamiltonian systems
which are perturbations of Hamiltonian systems, with
symplectic form and pseudo-Hamiltonian

ΩAB ¼ Ω0AB; ð24aÞ

HðQ;Q0Þ ¼ H0ðQÞ þ εH1ðQ;Q0Þ þOðε2Þ: ð24bÞ

Here ε is a formal expansion parameter. The pseudo-
Hamiltonian perturbation H1 is defined in terms of a
function G∶Γ × Γ → R via

H1ðQ;Q0Þ ¼
Z

∞

−∞
dτ0G̃ð0; Q; τ0; Q0Þ; ð25Þ

where we have defined

G̃ðτ; Q; τ0; Q0Þ ¼ G½φτðQÞ;φτ0 ðQ0Þ�: ð26Þ

Here φτ∶ Γ → Γ is the Hamiltonian flow associated with
the zeroth order Hamiltonian system that takes any
point τ units along the corresponding integral curve.
Writing QA for abstract coordinates on Γ, the flow satisfies
the relations

φτ∘φτ0 ¼ φτþτ0 ; ð27aÞ

d
dτ

����
τ¼0

φA
τ ðQÞ ¼ ΩAB

0 ∂BH0: ð27bÞ

The function G is assumed to satisfy the conditions

GðQ;Q0Þ ¼ GðQ0; QÞ; ð28aÞ

G̃ðτ; Q; τ0; Q0Þ → 0 as τ or τ0 → �∞: ð28bÞ

In Ref. [20] we showed that any pseudo-Hamiltonian
dynamical system of the form (23) and (24) can be recast as
a Hamiltonian system, with Hamiltonian and symplectic
form

H̃ðQÞ ¼ H0ðQÞ þ εH̃1ðQÞ þOðε2Þ; ð29aÞ

Ω̃AB ¼ Ω0
AB þ εΩ̃1

AB þOðε2Þ: ð29bÞ

Here the perturbation to the Hamiltonian is

H̃1ðQÞ ¼
Z

dτ0G̃ð0; Q; τ0; QÞ; ð30Þ

and the perturbation to the symplectic form is

Ω̃1
ABðQÞ ¼

�
∂

∂QA

∂

∂QB0

Z
dτdτ0χðτ; τ0ÞG̃ðτ;Q; τ0;Q0Þ

�
Q0¼Q

;

ð31Þ
where χðτ; τ0Þ ¼ ½sgnðτÞ − sgnðτ0Þ�=2.
A more convenient representation of the Hamiltonian

system (29) can be obtained by performing a linearized
diffeomorphism on phase space [20]. Under such a
diffeomorphism parametrized by a vector field ξA, the
perturbations to the Hamiltonian and symplectic form
transform as

H̃1 → H1 ¼ H̃1 þ LξH0; ð32aÞ
Ω̃1AB → Ω1AB ¼ Ω̃1AB þ ðLξΩ0ÞAB: ð32bÞ

We choose the linearized diffeomorphism to be

ξA ¼ 1

2
ΩAB

0

�
∂

∂QB0

Z
dτ

Z
dτ0χG̃ðτ; Q; τ0; Q0Þ

�
Q0¼Q

: ð33Þ
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This yields for the new symplectic form perturbation

Ω1AB ¼ 0; ð34Þ

and the new Hamiltonian

HðQÞ ¼ H0ðQÞ þ εH1ðQÞ þOðε2Þ; ð35Þ

with

H1ðQÞ ¼ 1

2

Z
dτ0G̃ð0; Q; τ0; QÞ; ð36Þ

which differs from (30) by a factor of 1=2.

IV. PSEUDO-HAMILTONIAN DESCRIPTION OF
THE MOTION OF A SELF-GRAVITATING

SPINNING PARTICLE

In this section we cast the motion of a spinning particle
including the leading order self-force and self-torque as a
pseudo-Hamiltonian dynamical system of the type dis-
cussed in the previous section. This will allow us to use the
general result discussed there to deduce that the motion is
Hamiltonian.
We start by reviewing the similar pseudo-Hamiltonian

formulation of the motion of a spinless point particle
including the leading order self-force [20]. For the zeroth
order geodesic motion we use phase space coordinates
QA ¼ ðxμ; pμÞ with symplectic form Ω0 ¼ dpμ ∧ dxμ and
Hamiltonian H0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxÞpμpν

p
. For the first order

motion, consider a particle at location xμ
0
with initial

4-momentum pμ0 . Writing Q0 ¼ ðx0; p0Þ, we denote by
φτ0 ðQ0Þ ¼ ½xμ̄ðτ0Þ; pμ̄ðτ0Þ� the geodesic with initial data
Q0, where τ0 is proper time. From this geodesic we can
compute the Lorenz gauge metric perturbation

hμνR ðx;Q0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0pμ0pν0

q
×
Z

dτ0Gμνμ̄ ν̄
R ½x; x̄ðτ0Þ�pμ̄ðτ0Þpν̄ðτ0Þ: ð37Þ

Here the symmetric Green function Gμν μ̄ ν̄
R is the retarded

Green function regularized according to the Detweiler-
Whiting prescription [15,48]. The forced motion of the
particle is then equivalent at linear order to geodesic motion
in the metric gμν þ hR μν, where Q0 is held fixed when
evaluating the geodesic equation and then evaluated at
Q0 ¼ Q [16,48]. We can therefore obtain a pseudo-
Hamiltonian description of the dynamics by replacing
the metric gμνðxÞ in the Hamiltonian with gμνðxÞ þ
hR μνðx;Q0Þ and expanding to linear order. We can also
specialize to including just the conservative piece of the
self-force, by replacing the regularized retarded Green

function Gμν μ̄ ν̄
R with the average Gμν μ̄ ν̄ of the retarded

and advanced Green functions, regularized in the same
way, and replacing the metric perturbation hR μν with its
conservative piece hμν.
Turn now to the corresponding story for spinning point

particles. For the zeroth order motion we use phase space
coordinates QA ¼ ðxμ; πμ; σ; ρσ; ς; ρςÞ on Γ defined in
Eq. (20), with symplectic form (22) and Hamiltonian
(13). This motion is described by the equations of motion
(7) and is zeroth order in self-gravity, but contains effects
first order in spin.
For the first order motion, consider a particle at location

xμ
0
with initial 4-momentum pμ0 and initial spin SΛ

0Σ0
[here

the spin variable SΛ
0Σ0

should be understood to be a
shorthand for the four variables σ; ρσ; ς; ρς defined in
Eq. (20)]. Writing Q0 ¼ ðxμ0 ; πμ0 ; SΛ0Σ0 Þ, we denote by

φτ0 ðQ0Þ ¼ ½xμ̄ðτ0Þ; πμ̄ðτ0Þ; SΛ̄ Σ̄ðτ0Þ� the solution to the zeroth
order motion and spin evolution (7), where τ0 is proper
time. We can compute from this zeroth order motion a
metric perturbation as follows. Inserting the stress energy
tensor of a spinning point particle given by Eq. (9) of
Ref. [30] into the linearized Einstein equation gives the
Lorenz gauge metric perturbation

hμνR ðx;Q0Þ ¼
Z

dτ0Gμν μ̄ ν̄
R ½x; x̄ðτ0Þ� pμ̄ðτ0Þpν̄ðτ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gλ̄ σ̄pλ̄pσ̄

q

−
Z

dτ0∇ρ̄G
μν μ̄ ν̄
R ½x; x̄ðτ0Þ�pμ̄ðτ0ÞeΛ̄ ν̄e

ρ̄
Σ̄S

Λ̄ Σ̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gλ̄ σ̄pλ̄pσ̄

q :

ð38Þ

Here barred indices indicate quantities that are evaluated at
xμ̄ðτ0Þ, and ∇ρ̄ acts only on the second argument of the

Green function. The factor of
ffiffiffiffiffiffiffiffiffi
−p⃗2

p
could be evaluated

either at xμ or at xμ̄, since it is conserved by the dynamics
(7); we choose the latter for later convenience. Now it is
known that the self-forced and self-torqued motion of the
spinning particle is given at linear order by evaluating the
equations of motion (7) in the metric gμν þ hR μν, where Q0

is held fixed when evaluating the equations and then
evaluated at Q0 ¼ Q [30]. It follows that we can obtain
a pseudo-Hamiltonian description of the dynamics by
making the replacements

gμνðxÞ → gμνðxÞ þ hR μνðx;Q0Þ; ð39aÞ

eμΛ → eμΛ −
1

2
eνΛg

σμhRνσðx;Q0Þ ð39bÞ

in the Hamiltonian (13) and expanding to linear order. Here
the perturbation to the orthonormal basis is chosen to
maintain orthonormality. Note that in order to apply the
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result of Sec. III, we must use the form (13) and (22) of the
dynamical system for which the symplectic form is con-
stant and so not modified by the substitutions (39), rather
than the original form (8) and (9). This is because the result
requires that the symplectic form be unperturbed;
cf. Eq. (24a).
To complete the pseudo-Hamiltonian formulation of the

dynamics, we need to write the pseudo-Hamiltonian in
terms of the phase space variables ðxμ; πν; SΛΣÞ. We start by
writing the metric perturbation (38) in terms of the new
momentum variable (11a) and expanding to linear order in
spin, which gives

hαβR ðx;Q0Þ ¼ hαβRðmÞðx;Q0Þ þ hαβRðSÞðx;Q0Þ; ð40Þ

where

hαβRðmÞðx;Q0Þ ¼
Z

dτ0Gαβμ̄ ν̄½x; x̄ðτ0Þ� πμ̄ðτ
0Þπν̄ðτ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ̄ σ̄πρ̄πσ̄
q ; ð41aÞ

hαβRðSÞðx;Q0Þ ¼
Z

dτ0Gαβμ̄ ν̄½x; x̄ðτ0Þ�πμ̄ων̄Θ̄Π̄S
Θ̄Π̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gρ̄ σ̄πρ̄πσ̄
q

−
Z

dτ0∇ρ̄Gαβμ̄ ν̄½x; x̄ðτ0Þ�πμ̄ðτ
0ÞeΘ̄ ν̄e

ρ̄
Π̄S

Θ̄Π̄ðτ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρ̄ σ̄πρ̄πσ̄

q

þ1

2

Z
dτ0Gαβμ̄ ν̄½x; x̄ðτ0Þ�πμ̄πν̄π

ρ̄ωρ̄ Λ̄Θ̄S
Λ̄Θ̄

½−gσ̄ λ̄πσ̄πλ̄�3=2
:

ð41bÞ

Below we will need the metric perturbation hμνR accurate to
OðmÞ and OðSÞ, and we can neglect Oðm2Þ, OðmSÞ, and
OðS2Þ contributions. Hence in the expressions (41) it is
sufficient to use the geodesic worldline rather than
the solution to Eq. (7) which incorporates OðSÞ correc-
tions to the worldline. We next make the replacements
(39) in the Hamiltonian (13). This yields the pseudo-
Hamiltonian

HRðQ;Q0Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p þ gμνπμωνΘΠSΘΠ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p −
hμνR ðx;Q0Þπμπν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p −
hμνR ðx;Q0ÞπμωνΘΠSΘΠ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p þ
gμνπμeαΘe

β
Πh

R
ν½α;β�S

ΘΠ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνπμπν

p
−
1

4

hμνR ðx;Q0ÞπμπνπρωρΛΘSΛΘ

½−gσλπσπλ�3=2
; ð42Þ

where we used that the perturbation to the spin connection
is δωμΛΠ ¼ eαΛe

β
Πhμ½α;β�.

As an aside, we can verify as follows that the pseudo-
Hamiltonian (42) with symplectic form (22) gives the
correct dynamics for a spinning particle under the effect
of the first order gravitational self-force. Using Eq. (23)
we obtain for the equations of motion ∇u⃗uμ ¼ aμ and
∇u⃗Sμν ¼ Nμν, where the self-acceleration aμ and self-
torque Nμν are given by

aμ ¼ −
1

2
½gμλ þ uμuλ�½2hRλρ;σ − hRρσ;λ�uρuσ

−
1

2m
Rμ

αβγ

�
1 −

1

2
hRðmÞ
ργ uρuγ

�
uαSβγ

þ 1

2m
½gμν þ uμuν�½2hRðmÞ

νðα;βÞγ − hRðmÞ
αβ;νγ�uαSβγ; ð43aÞ

Nμν ¼ uðρSσÞ½μgμ�λ½2hRðmÞ
λρ;σ − hRðmÞ

ρσ;λ �; ð43bÞ

and where the metric perturbation hRμν has been evaluated at
Q0 ¼ Q after the derivatives have been taken. These
equations agree with those of Ref. [30]. They can also
be obtained by making the substitutions (39) in the
equations of motion (7). As discussed in the
Introduction, we keep only terms of order Oðm2Þ, OðSÞ,

and OðmSÞ in the self-force, and OðmSÞ in the self-torque,
which explains why we have replaced hμνR with hμνRðmÞ
[cf. Eq. (41a)] in some of the terms in (43).

V. HAMILTONIAN FORMULATION OF THE
CONSERVATIVE MOTION OF A

SELF-GRAVITATING SPINNING PARTICLE

In this section we show that the motion of a spinning
point particle under the action of the first order conservative
self-force is Hamiltonian, by combining the pseudo-
Hamiltonian formulation of the motion derived in
Sec. IV with the general result of Sec. III. To do this we
need to read off the function GðQ;Q0Þ on phase space
defined by Eqs. (25) and (26), and to verify that it satisfies
the required properties (28).
We start by specializing to the conservative sector of the

dynamics. As described after Eq. (37) above in the non-
spinning case, this is achieved by replacing in the pseudo-
Hamiltonian (42) the regularized retarded Green function
Gμν μ̄ ν̄

R with the average Gμν μ̄ ν̄ of the retarded and advanced
Green functions, regularized in the sameway, and replacing
the metric perturbation hR μν with its conservative piece hμν.
Note that this Green function obeys the symmetry property

Gμνα0 β0 ðx; x0Þ ¼ Gα0 β0 μνðx0; xÞ: ð44aÞ
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Next, by comparing the pseudo-Hamiltonian given by Eqs. (40) and (42) with the general form given by Eqs. (24b), (25),
and (26), we obtain for the function GðQ;Q0Þ on phase space

GðQ;Q0Þ ¼ 1

4
NN0½−2πμπνπρ0πσ0Gμνρ0σ0 ðx; x0Þ − 2πμπνSΘ

0Π0
πρ0ωσ0Θ0Π0Gμνρ0σ0 ðx; x0Þ − 2πρ0πσ0SΘΠπμωνΘΠGμνρ0σ0 ðx; x0Þ

þ 2πμπνπρ0eΘ0σ0eλ
0
Π0SΘ

0Π0∇λ0Gμνρ0σ0 ðx; x0Þ þ 2πρ0πσ0πμeΘνeλΠS
ΘΠ∇λGμνρ0σ0 ðx; x0Þ

− N02πμπνπα0πβ0πρ0ω
ρ0
Θ0Π0SΘ

0Π0
Gμνα0β0 ðx; x0Þ − N2πα0πβ0πμπνπρω

ρ
ΘΠS

ΘΠGμνα0β0 ðx; x0Þ�; ð45Þ

where

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβπαπβ

q ; N0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gρ0σ0πρ0πσ0

q : ð46Þ

Because of the symmetry property (44a) of the Green
function, the function (45) satisfies the required symmetry
property (28a). It also satisfies the required asymptotic
conditions (28b) for the reasons discussed in Ref. [20].
It now follows from the result reviewed in Sec. III that

the dynamical system (43) admits a Hamiltonian descrip-
tion. The Hamiltonian function is given by Eqs. (13), (26),
(35), (36), and (45), and the symplectic form is given by
(22), in phase space coordinates given by Eq. (33).

VI. CONCLUSIONS

We have shown that the conservative dynamics of the
two-body problem in general relativity is Hamiltonian to
the first subleading order in the mass and spin of the
secondary. This result may yield useful information for the
effective one body framework and thereby aid waveform
modeling for comparable mass binary systems for LIGO.
Extending this result to the second-order Oðm2Þ point-
particle self-force is a direction that is currently being
explored.
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