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The effects of anisotropy on the fluid pulsation modes when adopting the so-called Cowling
approximation and the tidal deformability of strange-quark stars are investigated by numerically integrating
the hydrostatic equilibrium, nonradial oscillation, and tidal deformability equations, all of which are
modified from their standard form to include the anisotropic effects. The fluid matter inside compact stars is
described by the MIT bag model equation of state. For the anisotropy profile, we consider a local
anisotropy that is both regular at the center and null at the star’s surface. We find that the effect of
anisotropy is reflected in the fluid pulsation modes and tidal deformability. Finally, we analyze the
correlation between the tidal deformability of the GW170817 event and anisotropy.
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I. INTRODUCTION

With all of the recent detections of gravitational signals
coming from the mergers of binary systems reported by the
LIGO/Virgo Collaboration (LVC) [1–10], we can say that
we live at the beginning of a new golden age in general
relativity: the age of gravitational-wave astronomy. In this
sense, it is essential to invest our best efforts in order to
study new quantitative, qualitative, and even exotic physi-
cal characteristics that could be present in future multi-
messenger observations.
Among these phenomena, it is well known that compact

stars can be present as components of binary systems. Thus,
the behavior of a compact star before, during, and after the
merger cannot be ignored. For example, when when binaries
are very close to each other, tidal interactions play an
important role [10], and this could be a natural route to
obtain information about the equation of state (EOS) from the
signals emitted during the merger of two compact stars.

The theoretical methods of asteroseismology are used to
investigate the oscillation frequencies of stars. This theory
is a powerful tool that gives us a firm path in the search for
traces of physics inside compact stars [11–14]. In this way,
the oscillation frequencies of such stars, namely, f- and
p-modes [15,16], would give us information about the
composition and internal structure of such spherical objects
(see, e.g., Refs. [17–21] and references therein).
An important aspect to be analyzed in the study of

compact objects is the tidal deformability [22–26]. As
previously mentioned, this parameter gives us information
about the EOS hidden in the signals emitted by compact
stars. Moreover, nowadays, using dimensionless tidal
deformability, we can place some limits on the theory
using the observational data of the event GW170817.
In this regard, we investigate the nonradial oscillation

modes and tidal deformability of anisotropic strange-quark
stars. As reported, theoretical evidence indicates that anisot-
ropies can emerge in highly dense media, such as that
appearing in phase transitions [27], the pion condensed
phase [28], a solid or superfluid nucleus [29,30], or in the
presence of superfluid 3He-A [31]. Since establishing a
connection between the internal composition of the compact
star and the results reported by observation has been the
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purpose of many works, the tidal deformability results found
in this work are analyzed in light of the deformability
parameter obtained from the eventGW170817; seeRef. [32].
This article is structured as follows. In Sec. II we present

the Einstein field equation, energy-momentum tensor,
stellar structure equations, nonradial oscillation equations,
and tidal deformability equations and their boundary
conditions. In Sec. III we show the numerical method
employed, the EOS, the anisotropic profile, and the scaling
solution for nonradial oscillation equations and tidal
deformability equations. Moreover, we plot the change
of the oscillation frequency and tidal deformability against
anisotropy. Finally, we conclude in Sec. IV. Throughout the
paper, in order to simplify our equations and also for
numerical reasons, we employ the units G ¼ 1 ¼ c.

II. GENERAL-RELATIVISTIC FORMULATION

A. Einstein field equation

We start by writing the Einstein field equation in the
presence of an anisotropic fluid:

Gμ
φ ¼ 8πTμ

φ; ð1Þ

where the greek indexes μ, φ, etc., go from 0 to 3, Gμ
φ is the

Einstein tensor, and Tμ
φ represents the energy-momentum

tensor which is given by

Tμ
φ ¼ ðρþ ptÞuμuφ þ ptg

μ
φ − σkμkνgνφ; ð2Þ

with ρ, pt, and σ ¼ pt − pr are, respectively, the energy
density, tangential pressure, and anisotropic pressure
parameter, where pr is the radial pressure. In addition,
uφ is the four-velocity of the fluid, kφ denotes the radial unit
vector, and gμφ is the metric tensor. These four-vectors must
satisfy the following conditions:

kφkφ ¼ 1; uφkφ ¼ 0; uφuφ ¼ −1: ð3Þ

B. Static background equations

The unperturbed spherically symmetric line element, in
Schwarzschild-like coordinates, is expressed in the form

ds2 ¼ −e2Φdt2 þ e2Ψdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð4Þ

where the metric functions Φ ¼ ΦðrÞ and Ψ ¼ ΨðrÞ
depend on the radial coordinate r alone.
Considering the spacetime metric (4) and the potential

metric

e−2Ψ ¼
�
1 −

2m
r

�
; ð5Þ

the non-null components of the field equations (1) can be
placed into the form

m0 ¼ 4πρr2; ð6Þ

p0
r ¼ −ðpr þ ρÞ

�
4πrpr þ

m
r2

�
e2Ψ þ 2σ

r
; ð7Þ

Φ0 ¼ −
p0
r

ρþ pr
þ 2σ

rðρþ prÞ
: ð8Þ

The function mðrÞ is the mass enclosed within the sphere
radius r. Equations (6) and (7) represent, respectively, the
mass conservation and the hydrostatic equilibrium equation
[33,34] modified from the original form to include the
anisotropic factor [35]. This set of equations is known as
the stellar structure equations. A prime ð0Þ over a functions
represents a derivative with respect to r.
To obtain the stellar equilibrium configurations, we

integrate Eqs. (6)–(8) from the origin up to the radial
coordinate where the radial pressure vanishes. In other
words, the solution starts at the center of the star (r ¼ 0),
where

mð0Þ ¼ 0; Ψð0Þ ¼ 0; Φð0Þ ¼ Φc; ρð0Þ ¼ ρc; ð9Þ

and the stellar surface (r ¼ R) is determined by

prðRÞ ¼ 0: ð10Þ

In addition, at r ¼ R, the interior spacetime metric connects
smoothly with the Schwarzschild vacuum exterior solution,
so that

e2Φ ¼ e−2Ψ ¼ 1 −
2M
R

; ð11Þ

where M is the total mass of the star.

C. Nonradial oscillation equations within
the Cowling approximation

In non-radial oscillations of compact stars, the Cowling
formalism [36,37] is often used to calculate the oscillation
frequencies (see, for example, Refs. [38,39]). This method
provides a good precision of the oscillation frequencies
obtained from by relativistic numerical approach. In fact, in
typical stellar models, discrepancies of less than 20% and
10% for the f- and p1-modes are found between these
methods, respectively [40]. This good precision justifies its
use to study, for example, the fluid pulsation mode of
neutron stars in the presence of slow [41] and rapid rotation
rates [42], crust elasticity [43], internal anisotropy [44], and
d dimensions [45].
To investigate pulsation modes of anisotropic strange

stars, the metric functions are kept fixed in the Cowling
approximation, i.e., δgμν ¼ 0 [39]. In addition, the equa-
tions describing the fluid pulsation are obtained by per-
turbing the conservation equation of the energy-momentum
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tensor (2). Hence, we obtain δð∇μTμνÞ ¼ 0. Projecting this
relation both along the four-velocity uν and orthogonally by
employing the operator Pν

μ ¼ δνμ þ uνuμ, we get, respec-
tively,

uν∇νδρþ∇νð½ðρþ ptÞδνμ − σkνkμ�δuμÞ
þ ðρþ ptÞaνδuν −∇νuμδðσkνkμÞ ¼ 0; ð12Þ

ðδρþ δptÞaμ þ ðρþ ptÞuνð∇νδuμ −∇μδuνÞ
þ∇μδpt þ uμuν∇νδpt − Pν

μ∇αδðσkαkνÞ ¼ 0; ð13Þ

with aμ ¼ uν∇νuμ being the four-acceleration.
We take the Lagrangian fluid vector components into

account in the form

ξi ¼
�
e−ΨW;−V∂θ;−

V
sin2θ

∂ϕ

�
Ylm

r2
; ð14Þ

with W ¼ Wðt; rÞ and V ¼ Vðt; rÞ being functions of
the coordinates t and r, and Ylm ¼ Ylmðθ;ϕÞ are the
spherical harmonics. In such a way, the perturbation of
the four-fluid through the Lagrangian perturbation vector
δuμ ¼ ð0; δur; δuθ; δuϕÞ can be expressed as

δuμ ¼
�
0; e−Ψ∂tW;−∂tV∂θ;−

∂tV
sin2θ

∂ϕ

�
Ylme−Φ

r2
: ð15Þ

Considering uμ ¼ ðe−Φ; 0; 0; 0Þ, kμ ¼ ð0; e−Ψ; 0; 0Þ,
σ ¼ σðpr; μÞ, Wðt; rÞ ¼ WðrÞeiωt, and Vðt; rÞ ¼ VðrÞeiωt
in Eqs. (12) and (13), we arrive at the following system of
equations:

W0 ¼ dρ
dpr

�
ð1þ XÞ

�
1þ ∂σ

∂pr

�
−1 ω2r2V

e2Φ−Ψ þΦ0W
�

− X
��

1þ dρ
dpr

�
2W
r

þ lðlþ 1ÞeΨV
�

− lðlþ 1ÞeΨV; ð16Þ

V 0 ¼ V

�
−

σ0

ρþ pr þ σ
−
�
dρ
dpr

þ 1

��
Φ0 þ 2

r

�
X

1þ X

þ 2

r
∂σ

∂pr
þ
�
1þ ∂σ

∂pr

�
−1
�
∂
2σ

∂p2
r
p0
r þ

∂
2σ

∂pr∂μ
μ0
��

þ 2VΦ0 −
�
1þ ∂σ

∂pr

�
1

1þ X
eΨW
r2

; ð17Þ

where we have defined X ¼ σ=ðρþ prÞ and, following
Ref. [44], we consider δσ ¼ ð∂σ=∂prÞδpr, with δμ ¼ 0
ðμ ¼ 2m=rÞ, and ω represents the oscillation eigenfre-
quency. These two differential equations are reduced to
those found in Ref. [39] taking σ ¼ 0.
To solve Eqs. (16) and (17) from the center (r ¼ 0)

toward the stellar surface (r ¼ R), we need to impose

boundary conditions. Thus, at r ¼ 0 we consider that the
functions W and V assume the respective forms

W ¼ Crlþ1; V ¼ −C
rl

l
; ð18Þ

with C representing a dimensionless constant. Moreover, at
r ¼ R (where pr ¼ 0) we find

½1þ X �ω
2V

e2Φ
þ
�
1þ ∂σ

∂pr

��
rΦ0

2
− X

�
2W
eΨr3

¼ 0: ð19Þ

Hereafter, to compare our results with those shown in the
literature (e.g., Refs. [44,46]), we restrict our results to the
quadrupolar modes (l ¼ 2).

D. Tidal deformability

The theory of tidal Love numbers is frequently studied
within the context of binary compact star systems. In this
scheme, the gravitational effects caused by one star
can result in the deformation of its companion. Such
deformation, produced by an external field, can be mea-
sured through the tidal deformability parameter λ. This
parameter can be expressed as follows:

λ ¼ −
Qij

ϵij
; ð20Þ

with Qij and ϵij representing the quadrupole moment and
an external tidal field; see Refs. [24,26,47]. The relation
that directly connects the tidal deformability parameter and
the quadrupolar Love number k2 is given by

k2 ¼
3

2
λR−5: ð21Þ

Furthermore, the dimensionless tidal deformability Λ,
as a function of the Love number k2, follows from the
following relation:

Λ ¼ 2k2
3C5

; ð22Þ

where C ¼ M=R represents the compactness parameter. k2
can also be written in terms of C. Thus, we have

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ CðyR − 1Þ − yR�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ� þ 4C3½13 − 11yR

þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ� þ 3ð1 − 2C2Þ
× ½2 − yR þ 2ðyR − 1Þ� lnð1 − 2CÞg−1; ð23Þ

with the function yR ¼ yðr ¼ RÞ. In addition, the function
yðrÞ satisfies the Riccati differential equation
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y0rþ y2 þ yðC0r − 1Þ þ C1r2 ¼ 0; ð24Þ

where

C0 ¼
2m
r2

e2Ψ þ 4πe2Ψðpr − ρÞrþ 2

r
; ð25Þ

C1 ¼ 4πe2Ψ
�
4ρþ 4pr þ 4pt þ

pr þ ρ

Ac2s
ðc2s þ 1Þ

�

−
6

r2
e2Ψ − 4Φ02; ð26Þ

with c2s ¼ dpr
dρ and A ¼ dpt

dpr
. Comparing Eqs. (25) and (26)

with the forms presented in Refs. [48,49], we see that our
C0 and C1 are in agreement and contradiction, respectively,
with those presented in these two works. Note that the
first-order differential equation (24) is derived from
the second-order differential equation for the function H
in the quadrupolar case (l ¼ 2), Eq. (A11), by using
y¼ rH0=H. Moreover, if we consider pt ¼ pr (i.e., A¼1),
Eq. (24) is reduced to the isotropic case (see Ref. [25]).
In particular, for strange-quark stars—where the energy

density at the star’s surface is finite and non-null—a
correction term is required in the calculation of yR.
Thus, due to this energy discontinuity yR is [26,50–53]

yR → yR −
4πR3ρs

M
; ð27Þ

where ρs represents the energy density difference between
the internal and external regions.

III. RESULTS

A. Numerical method

To investigate the influence of anisotropy in the oscil-
lation spectrum and tidal deformability of strange stars—
once defined the EOS and the anisotropic profile—the
stellar structure equations (5)–(7), the nonradial oscilla-
tion equations (16) and (17), and the tidal deformability
equations (22)–(26) are integrated from the center (r ¼ 0)
to the star’s surface (r ¼ R).
To study both the fluid perturbation modes and the tidal

deformability, we first integrate Eqs. (5)–(8) from the
center to the star’s surface using the fourth-order Runge-
Kutta method, for different values of κ and ρc. Once we
determine the parameters pr, pt, ρ, m, and Φ, Eq. (8) is
solved using the shooting method. This integration begins
by considering a proof value of Φc; if after the numerical
integration the equality shown in Eq. (11) is not attained,
Φc is corrected until it satisfies this condition.
The numerical solution of the nonradial oscillations and

tidal deformability equations are described below:
(1) The fluid perturbation modes equations [Eqs. (16)

and (17)] are integrated from the center to the star’s

surface. The process begins by taking into account
the correct value of Φc in the stellar structure
equations for particular values of κ and ρc and the
test value of ω2. If the numerical integration of
the equality (19) is not reached,ω2 is corrected in the
next integration until this condition is satisfied.

(2) The tidal deformability equations [Eqs. (22)–(26)]
are integrated along the radial coordinate r which
goes from 0 to R. It starts employing the correct
value of Φc in the stellar structure equations for a
particular value of κ and ρc.

B. Equation of state and anisotropic profile

To depict the strange-quark fluid that makes up the
compact object, the MIT bag model EOS is employed. This
EOS describes a fluid containing only up, down, and
strange quarks that have no mass and no interaction,
confined by a bag constant B. For the anisotropic fluid
analyzed here, we assume that the radial pressure and the
energy density are related by the equality

pr ¼
1

3
ðρ − 4BÞ: ð28Þ

This EOS is widely employed by different authors since
Witten proposed that strange matter can be the ground state
of strongly interacting matter and it could appear in
compact stars [54]. In Ref. [55] this hypothesis was verified
for a bag constant in the range of 57 to 94 MeV=fm3.
Following Ref. [56], we employ B ¼ 60 MeV=fm3.
For the anisotropic pressure profile, inspired by

Refs. [44,56–60], we use the quasilocal form σ ¼
σðpr;ΨÞ. It depends on quantities that provide information
on both the state of the fluid and the geometry at a particular
interior point of the spacetime. Thus, we consider the
anisotropic profile

σ ¼ κprð1 − e−2ΨÞ; ð29Þ

where κ is a dimensionless anisotropic constant. The
relation (29) was used, for instance, to investigate the
influence of the anisotropy on the radial oscillation of
polytropic stars [57,58] and strange stars [56], the nonradial
oscillation of neutron stars [44], magnetic field structure
[59], and slowly rotating neutron stars [60].

C. Scaling solution of nonradial oscillation equations
and tidal deformability equations

In the literature, it has been reported that when a linear
EOS is used to describe the fluid of a star, e.g., the MIT bag
model EOS, both the stellar structure and radial oscillation
equations admit a scaling law for several star properties
[54,56,61]. This means that if a star’s properties are known
for a given B, these properties can be found for another
value B0.
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For stellar structure, nonradial oscillation, and tidal
deformability equations a scaling law can also be used.
This can be realized through the following variables:

p̃r ¼
pr

B
; ρ̃ ¼ ρ

B
; σ̃ ¼ σ

B
; m̃ ¼ m

ffiffiffiffi
B

p
;

r̃ ¼ r
ffiffiffiffi
B

p
; ω̃ ¼ ωffiffiffiffi

B
p ; W̃ ¼ W

e
;

Ṽ ¼ V
f
; C̃0 ¼

C0ffiffiffiffi
B

p ; C̃1 ¼
C1

B
; ỹ ¼ y; ð30Þ

where f ¼ ffiffiffiffi
B

p
e, and f and e are positive and non-null.

Considering this scaling law, the stellar structure, nonradial
oscillations, and tidal deformability equations keep their
original form. Thus, knowing the properties of a star for a
certain value of B, the properties of another star with a
different value of B0 can be determined by considering the
scale

ρ0c
B0 ¼

ρc
B
; M0 ffiffiffiffiffi

B0p
¼ M

ffiffiffiffi
B

p
; R0 ffiffiffiffiffi

B0p
¼ R

ffiffiffiffi
B

p
;

ω0ffiffiffiffiffi
B0p ¼ ωffiffiffiffi

B
p ; Λ0 ¼ Λ; ð31Þ

with ρc being the central energy density.

D. Oscillation spectrum of anisotropic strange stars

The frequency and eigenfrequency, normalized with the
average density

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, versus the total mass M=M⊙ are

presented in the left and right panels of Fig. 1, respectively,
for five values of κ. The top and bottom panels show the
results for f- and p1-modes, respectively. In the left panels,
in the f-mode frequency case, we note that the curves
decrease with the increment of the total mass until attaining
a minimum value; after this point the curves turn counter-
clockwise to grow with M=M⊙. In turn, in the p1-mode
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FIG. 1. Upper panels: oscillation frequency ff (left) and normalized frequency ωf (right) as functions of the total gravitational mass
for the f-mode. Lower panels: frequencies corresponding to the p1-mode. We use five values for the anisotropy parameter κ, where the
isotropic solution is represented by the black curve. It can be observed that the f-mode frequencies increase (decrease) because of a
positive (negative) anisotropy. Something similar occurs in the case of the p1-mode frequencies; however, the impact of anisotropy is
more significant only in the high-mass branch.
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frequency case, we obtain that the curves decrease mono-
tonically with the increment of M=M⊙. In the right panels,
the normalized eigenfrequencies f and in p1 decay mono-
tonically with the growth ofM=M⊙. Furthermore, from the
figures we can also see that the anisotropy affects the
pulsation mode of the fluid. We find that both the f- and
p1-mode change with κ. For greater κ > 0 (lower κ < 0),
stars have a larger (lower) ff, fp1

, ωfðR3=MÞ0.5, and
ωp1

ðR3=MÞ0.5. This change in frequency is associated with
the fact that the radial pressure changes with the anisotropy;
see Ref. [56].

E. Tidal deformability of anisotropic strange stars

The dimensionless tidal deformability as a function of
the total mass is shown in the top panel of Fig. 2 for
different values of κ. These results are contrasted with
the case of Λ1.4 ¼ 190þ390

−120 obtained by LVC [10]. In all
curves, we note that the tidal deformability decreases

monotonically with the increment of the total mass. On
the other hand, the effects of anisotropy on tidal deform-
ability are also observed. We find that for a larger (lower)
value of κ > 0 (κ < 0), greater (lesser) values of Λ are
derived for the same mass. All of these curves are within the
range of Λ1.4 reported by LVC in Ref. [10]. In the bottom
panel of Fig. 2, it is possible to see in more detail the effect
of the anisotropic parameter on Λ1.4, where the dimension-
less tidal deformability undergoes a slight increment
(decrement) with the increase (decrease) of the dimension-
less anisotropic constant.
In the top and bottom panels of Fig. 3 we show the

oscillation frequencies ff and fp1
, respectively, versus the

dimensionless tidal deformability for different values of κ.
These results are contrasted with the Λ1.4 ¼ 190þ390

−120
reported by LVC; see Ref. [10]. In the figure, we note
that the f-mode (p1-mode) decreases (increases) mono-
tonically with the increment of the dimensionless tidal
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FIG. 2. Top: dimensionless tidal deformability versus the total
mass for several values of κ. Bottom: Λ1.4 as a function of the
dimensionless anisotropic constant κ. The vertical and horizontal
dashed straight lines represent Λ1.4 ¼ 190þ390

−120 reported by LVC
in Ref. [10].
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FIG. 3. The oscillation frequencies ff and fp1
versus the tidal

deformability for different values of κ are plotted in the top and
bottom panels, respectively. The vertical dashed straight lines
mark the tidal deformability Λ1.4 ¼ 190þ390

−120 from the event
GW170817 estimated in Ref. [10].
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deformability. In addition, within the interval delimited by
the observation, we note that the frequency as a function of
the deformability has an almost linear behavior.
The data obtained by LVC allowed the authors in Ref. [8]

to establish some constraints on Λ1 and Λ2 which are
the dimensionless tidal deformability of two compact stars
in a binary system, where Λ1 is the dimensionless tidal
deformability parameter of the star with higher mass in the
binary system and Λ2 represents the same parameter of
the companion star. In Fig. 4 we shown the diagram
Λ1 × Λ2, where the curves Λ1 − Λ2 are plotted first chosen
a value ofM1 and determiningM2 via the chirp massM ¼
1.188M⊙ [8], defined byM ¼ ðM1M2Þ3=5=ðM1 þM2Þ1=5.
Moreover, the values considered for M1 and M2 are
within the ranges 1.36 ≤M1=M⊙ ≤ 1.60 and 1.17≤M2=
M⊙ ≤1.36, respectively. We also represent the lines of 50%
and 90% credibility levels related to the GW170817 event
established by LVC in the low-spin prior scenario. For
either κ > 0 or κ < 0, we note the clear influence of the
anisotropic parameter on tidal deformability. All curves
derived are within the confidence lines taken from Ref. [8].
Finally, we study the dimensionless parameter Λ̃, which

is measurable through the gravitational-wave signal of a
binary system. Λ̃ is obtained as follows [22]:

Λ̃ ¼ 16

13

ðM1 þ 12M2ÞM4
1Λ1 þ ðM2 þ 12M1ÞM4

2Λ2

ðM1 þM2Þ5
: ð32Þ

As can be seen, it is calculated using the masses and
dimensionless tidal deformability of the stars forming the
binary system. Since the masses M1ðΛ1Þ and M2ðΛ2Þ are
established into a particular interval of dimensionless tidal
deformability in agreement with the GW170817 event, it is
evident that each value of κ will produce a range for Λ̃.

Thus, in Fig. 5 we show Λ̃ versus κ for anisotropic strange
stars. We contrast these results with the constraint on the
combined dimensionless tidal deformability reported by
LVC, i.e., Λ̃ ¼ 300þ420

−230 ; see Ref. [32]. Note that all of the
obtained values of Λ̃ are within the observational intervals.

IV. CONCLUSIONS

In this work we investigated the role of anisotropy on
the fluid pulsation mode and tidal deformability of strange-
quark stars. This was realized through numerically inte-
grating the hydrostatic equilibrium, nonradial oscillation,
and tidal deformability equations, which are modified
to include the anisotropy effects. To describe the fluid
inside the star we assumed the MIT bag model EOS
and for the anisotropy factor we employed the relation
σ ¼ κprð1 − e−2ΨÞ.
Regarding the fluid pulsation modes, we noted that the

f-mode changes considerably with the anisotropy; in
contrast, the p1-mode frequencies do not change much
in the presence of anisotropy.
We also studied the compatibility of dimensionless tidal

deformability of anisotropic strange stars with observatio-
nal data reported by LVC from the GW170817 event.
In this scenario, we noted that the results reported in this
article are within the set of observational data reported by
LVC. It is important to highlight that other anisotropy
pressure profiles can be used in strange stars [46,56], and
by analyzing their dimensionless tidal deformability we
can investigate the viability of the anisotropic profile and
impose some constraints using the same approach followed
here. It should be noted that the deformability value
increases with κ and decreases with −κ. This is in agree-
ment with the study of polytropic stars done in Ref. [58].
However, it is in disagreement with the studies reported in
Refs. [48] and [62], where the deformability profile and
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FIG. 4. Dimensionless tidal deformabilities for the components
of the GW170817 event for different values of the anisotropic
parameter k. The yellow line represents the LVC confidence
curves [8], and the dotted diagonal line denotes the values that
correspond to Λ1 ¼ Λ2.
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in Ref. [32].
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how it changes with anisotropy σ ¼ κðρþ prÞðρþ
3prÞr2e2Ψ=3 was also investigated. From this, we can
understand that the deformability increases or decreases
with κ depending on the type of anisotropic profile
employed.
Additionally, it should be noted that in some works the

deformability parameter of strange stars was analyzed in
different contexts. For example, in Ref. [51] this parameter
was analyzed considering quark matter in the color-flavor-
locked phase of color superconductivity, in Ref. [63] this
factor was investigated taking into account isospin effects
in strange quark matter, and in Ref. [64] tidal deformability
was studied under the hypothesis that the quasiparticle
model includes the nonperturbing characteristics of quan-
tum chromodynamics in the low-density region. In the
works in question, as well as in the present study, the light
from the event GW170817 is used to set limits to the study
of strange stars within the aforementioned contexts.
Finally, it can be mentioned that the detectability of the

oscillation modes is an important issue to be considered.
This detectability is strongly related with the parameters of
the detectors, the most important being the sensitivity and
frequency range. Moreover, it has to be considered that
there are future planned upgrades for the actual operating
LIGO/Virgo detector; the upgraded detector will be called
LIGO Voyager [65]. In addition, it is well known that the
scientific community has taken seriously the idea to build
more technologically advanced gravitational-wave detec-
tors, we can mention the third-generation detectors:
Einstein Telescope [66], Cosmic Explorer [67], and
NEMO [68]. The NEMO detector has a sensitivity of
10−24 Hz−1, which is on the order of Cosmic Explorer and
Einstein Telescope, but its technology primarily targets
frequencies in the range of 1–4 kHz where it is possible to
observe the fundamental mode. As can be seen, with all of
the planned detectors, the observation of the oscillation
modes of a compact star is a matter of time, and theoretical
research in this direction is very important.
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APPENDIX: TIDAL DEFORMABILITY
EQUATIONS FOR THE ANISOTROPIC CASE

To derive the differential equations used to investigate
the dimensionless tidal deformability for the anisotropic
case, we start by considering the perturbed field equation

δGμ
φ ¼ 8πδTμ

φ; ðA1Þ

and, following Thorne and Campolattaro’s work [69], we
use the linear perturbation of the background metric tensor
of the form

gð�Þαβ ¼ gαβ þ hαβ; ðA2Þ

where gαβ and hαβ are the unperturbed metric tensor and the
linearized perturbed metric, respectively. With these spe-
cializations, hαβ can be written as [69,70]

hαβ ¼ diag½He2Φ; He2Ψ; r2K; r2Ksin2θ�Ylm; ðA3Þ

where H ¼ HðrÞ and K ¼ KðrÞ depend on the radial
coordinate, and Ylm ¼ Ylmðθ;ϕÞ is a function of the
angular coordinates.
Expanding the fluid perturbation variables in terms of

Ylm, from the perturbed field equation (A1) we find

�
e−2Ψ

�
K00 − K0Ψ0 −

H0

r
þ 3K0

r
−
H
r2

þ 2H
r

Ψ0
�
−
Hlðlþ 1Þ

2r2
þ K
r2

−
Klðlþ 1Þ

2r2

�
Ylm ¼ −8πδρ; ðA4Þ

�
e−2Ψ

�
K0Φ0 − 2H

Φ0

r
−
H0

r
þ K0

r
−
H
r2

�
þ K
r2

þ lðlþ 1ÞðH − KÞ
2r2

�
Ylm ¼ 8πδpr; ðA5Þ

�
rHe2ΦΨ0Φ0 − rHe2ΦΦ02 − rHe2ΦΦ00 þ re2ΦH0Ψ0

2
−
3

2
re2ΦH0Φ0 −

re2ΦH00

2
−
re2ΦK0Ψ0

2

þ re2ΦK0Φ0

2
þ re2ΦK00

2
þHe2ΦΨ0 −He2ΦΦ0 −H0e2Φ þ K0e2Φ

�
e−2ðΨþΦÞ

r
Ylm ¼ 8πδpt; ðA6Þ

�
HΦ0

r2
þ H0

2r2
−

K0

2r2

�
∂θYlm ¼ 0: ðA7Þ
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Substituting Eq. (A7), where K0 ¼ 2HΦ0 þH0 and K00 ¼ 2H0Φ0 þ 2HΦ00 þH00, into the difference between Eqs. (A4)
and (A5) and into Eq. (A6), we have, respectively,

−2Ylme−2ΨHΨ0Φ0 − Ylme−2ΨH0Ψ0 þ 2Ylme−2ΨH0Φ0 þ 2Ylme−2ΨHΦ00 þ Ylme−2ΨH00 þ 2H
r

Ylme−2ΨΨ0

þ 6H
r

Ylme−2ΨΦ0 þ 2H0

r
Ylme−2Ψ −

Hlðlþ 1ÞYlm

r2
− 2Ylme−2ΨHΦ02 − Ylme−2ΨΦ0H0 ¼ −8πðδρþ δprÞ; ðA8Þ

H
r
e−2ΨYlmðΨ0 þΦ0Þ ¼ 8πδpt: ðA9Þ

For the perturbation of the radial pressurepr ¼ prðpt;ΨÞ,
we have

δpr ¼
∂pr

∂pt
δpt; ðA10Þ

where it is considered that δΨ ¼ 0. In addition, δρ is
defined by considering the equation of state ρ ¼ ρðprÞ.
In this way, by replacing Eqs. (A8) and (A9) we
obtain

H00 þ C0H0 þ C1H ¼ 0; ðA11Þ

where the functions C0 ¼ C0ðrÞ and C1 ¼ C1ðrÞ are calcu-
lated as functions of the background quantities as follows:

C0 ¼
2m
r2

e2Ψ þ 4πe2Ψðpr − ρÞrþ 2

r
; ðA12Þ

C1 ¼ 4πe2Ψ
�
4ρþ 4pr þ 4pt þ

pr þ ρ

Ac2s
ðc2s þ 1Þ

�

−
lðlþ 1Þ

r2
e2Ψ − 4Φ02; ðA13Þ

with c2s ¼ dpr
dρ and A ¼ dpt

dpr
.
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[11] S. Turck-Chièze and I. Lopes, Solar-stellar astrophy-
sics and dark matter, Res. Astron. Astrophys. 12, 1107
(2012).

[12] I. Lopes and J. Silk, Dark matter imprint on 8B neutrino
spectrum, Phys. Rev. D 99, 023008 (2019).

[13] I. D. Saltas and I. Lopes, Obtaining Precision Constraints on
Modified Gravity with Helioseismology, Phys. Rev. Lett.
123, 091103 (2019).

[14] G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, Stellar
structure models in modified theories of gravity: Lessons
and challenges, Phys. Rep. 876, 1 (2020).

[15] I. P. Lopes, Nonradial adiabatic oscillations of stars. Mode
classification of acoustic-gravity waves, Astron. Astrophys.
373, 916 (2001).

[16] I. Lopes, A new look at the Eckart-Scuflaire-Osaki classi-
fication scheme of stellar oscillations, Astrophys. J. 542,
1071 (2000).

[17] G. Miniutti, J. A. Pons, E. Berti, L. Gualtieri, and V. Ferrari,
Non-radial oscillation modes as a probe of density dis-
continuities in neutron stars, Mon. Not. R. Astron. Soc. 338,
389 (2003).

[18] A. Passamonti, M. Bruni, L. Gualtieri, and C. F. Sopuerta,
Coupling of radial and nonradial oscillations of relativistic

FLUID PULSATION MODES AND TIDAL DEFORMABILITY OF … PHYS. REV. D 107, 124016 (2023)

124016-9

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1088/1674-4527/12/8/011
https://doi.org/10.1088/1674-4527/12/8/011
https://doi.org/10.1103/PhysRevD.99.023008
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1016/j.physrep.2020.07.001
https://doi.org/10.1051/0004-6361:20010130
https://doi.org/10.1051/0004-6361:20010130
https://doi.org/10.1086/317033
https://doi.org/10.1086/317033
https://doi.org/10.1046/j.1365-8711.2003.06057.x
https://doi.org/10.1046/j.1365-8711.2003.06057.x


stars: Gauge-invariant formalism, Phys. Rev. D 71, 024022
(2005).

[19] A. Passamonti, M. Bruni, L. Gualtieri, A. Nagar, and
C. F. Sopuerta, Coupling of radial and axial nonradial
oscillations of compact stars: Gravitational waves from
first-order differential rotation, Phys. Rev. D 73, 084010
(2006).

[20] G. J. Savonije, Non-radial oscillations of the rapidly
rotating Be star HD 163868, Astron. Astrophys. 469,
1057 (2007).

[21] C. V. Flores, Z. B. Hall, and P. Jaikumar, Nonradial oscil-
lation modes of compact stars with a crust, Phys. Rev. C 96,
065803 (2017).

[22] E. E. Flanagan and T. Hinderer, Constraining neutron star
tidal Love numbers with gravitational wave detectors, Phys.
Rev. D 77, 021502(R) (2008).

[23] T. Binnington and E. Poisson, Relativistic theory of tidal
Love numbers, Phys. Rev. D 80, 084018 (2009).

[24] T. Hinderer, Tidal love numbers of neutron stars, Astrophys.
J. 677, 1216 (2008).

[25] S. Postnikov, M. Prakash, and J. M. Lattimer, Tidal Love
numbers of neutron and self-bound quark stars, Phys. Rev.
D 82, 024016 (2010).

[26] T. Damour and A. Nagar, Relativistic tidal properties of
neutron stars, Phys. Rev. D 80, 084035 (2009).

[27] A. I. Sokolov, Phase transitions in a superfluid neutron
liquid, Sov. Phys. JETP 52, 575 (1980), http://www.jetp.ras
.ru/cgi-bin/dn/e_052_04_0575.pdf.

[28] R. F. Sawyer, Condensed π− Phase in Neutron-Star Matter,
Phys. Rev. Lett. 29, 382 (1972).

[29] R. Ruderman, Pulsars: Structure and dynamics, Annu. Rev.
Astron. Astrophys. 10, 427 (1972).

[30] H. Heiselberg and M. H. Jensen, Phases of dense matter in
neutron stars, Phys. Rep. 328, 237 (2000).

[31] R. Kippenhahn and A. Weigert, Stellar Structure and
Evolution (Springer, Berlin, 1990).

[32] B. P. Abbott et al., Properties of the Binary Neutron Star
Merger GW170817, Phys. Rev. X 9, 011001 (2019).

[33] R. C. Tolman, Static solution of Einstein’s field equation for
spheres of fluid, Phys. Rev. D 55, 364 (1939).

[34] J. R. Oppenheimer and G. Volkoff, On massive neutron
cores, Phys. Rev. D 55, 374 (1939).

[35] R. L. Bowers and E. P. T. Liang, Anisotropic spheres in
general relativity, Astrophys. J. 188, 657 (1974).

[36] P. N. McDermott, H. M. Van Horn, and J. F. Scholl, Non-
radial g-mode oscillations of warm neutron stars, Astrophys.
J. 268, 837 (1983).

[37] L. Lindblom and R. J. Splinter, The accuracy of the
relativistic Cowling approximation, Astrophys. J. 348,
198 (1990).

[38] C. Vásquez Flores and G. Lugones, Discriminating
hadronic and quark stars through gravitational waves of
fluid pulsation modes, Classical Quantum Gravity 31,
155002 (2014).

[39] H. Sotani, N. Yasutake, T. Maruyama, and T. Tatsumi,
Signatures of hadron-quark mixed phase in gravitational
waves, Phys. Rev. D 83, 024014 (2011).

[40] S. Yoshida and Y. Kojima, Accuracy of the relativistic
Cowling approximation in slowly rotating stars, Mon. Not.
R. Astron. Soc. 289, 117 (1997).

[41] A. Stavridis, A. Passamonti, and K. Kokkotas, Nonradial
oscillations of slowly and differentially rotating compact
stars, Phys. Rev. D 75, 064019 (2007).

[42] S. Boutloukos and H. P. Nollert, Eigenmode frequency
distribution of rapidly rotating neutron stars, Phys. Rev.
D 75, 043007 (2007).

[43] L. Samuelsson and N. Andersson, Neutron star astero-
seismology. Axial crust oscillations in the Cowling
approximation, Mon. Not. R. Astron. Soc. 374, 256
(2007).

[44] D. D. Doneva and S. S. Yazadjiev, Nonradial oscillations of
anisotropic neutron stars in the Cowling approximation,
Phys. Rev. D 85, 124023 (2012).

[45] J. D. V. Arbañil, C. H. Lenzi, and M. Malheiro, Fluid
pulsation modes from strange stars in a higher-dimensional
space-time, Phys. Rev. D 102, 084014 (2020).

[46] E. J. Aquino Curi, L. B. Castro, C. V. Flores, and C. H.
Lenzi, Non-radial oscillations and global stellar properties
of anisotropic compact stars using realistic equations of
state, Eur. Phys. J. C 82, 527 (2022).

[47] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Tidal
deformability of neutron stars with realistic equations of
state and their gravitational wave signatures in binary
inspiral, Phys. Rev. D 81, 123016 (2010).

[48] B. Biswas and S. Bose, The tidal deformability of an
anisotropic compact star: Implications of GW170817,
Phys. Rev. D 99, 104002 (2019).

[49] A. Rahmansyah, A. Sulaksono1, A. B. Wahidin, and A. M.
Setiawan, Anisotropic neutron stars with hyperons: Impli-
cation of the recent nuclear matter data and observations of
neutron stars, Eur. Phys. J. C 80, 769 (2020).

[50] E. P. Zhou, X. Zhou, and A. Li, Constraints on interquark
interaction parameters with GW170817 in a binary strange
star scenario, Phys. Rev. D 97, 083015 (2018).

[51] O. Lourenço, C. H. Lenzi, M. Dutra, E. J. Ferrer, V. de la
Incera, L. Paulucci, and J E. Horvath, Tidal deformability of
strange stars and the GW170817 event, Phys. Rev. D 103,
103010 (2021).

[52] Q. Wang, C. Shi, and H. S. Zong, Nonstrange quark
stars from an NJL model with proper-time regularization,
Phys. Rev. D 100, 123003 (2019); 100, 129903(E)
(2019).

[53] C. M. Li, S. Y. Zuo, Y. Yan, Y. P. Zhao, F. Wang, Y. F.
Huang, and H. S. Zong, Strange quark stars within proper
time regularized (2þ 1)-flavor NJL model, Phys. Rev. D
101, 063023 (2020).

[54] E. Witten, Cosmic separation of phases, Phys. Rev. D 30,
272 (1984).

[55] E. Farhi and R. L. Jaffe, Strange matter, Phys. Rev. D 30,
2379 (1984).

[56] J. D. V. Arbañil and M. Malheiro, Radial stability of
anisotropic strange quark stars, J. Cosmol. Astropart. Phys.
11 (2016) 012.

[57] D. Horvat, S. Ilijic, and A. Marunociv, Radial pulsations
and stability of anisotropic stars with quasi-local equa-
tion of state, Classical Quantum Gravity 28, 025009
(2011).

[58] J. D. V. Arbañil and G. Panotopoulos, Tidal deformability
and radial oscillations of anisotropic polytropic spheres,
Phys. Rev. D 105, 024008 (2022),

ARBAÑIL, FLORES, LENZI, and PRETEL PHYS. REV. D 107, 124016 (2023)

124016-10

https://doi.org/10.1103/PhysRevD.71.024022
https://doi.org/10.1103/PhysRevD.71.024022
https://doi.org/10.1103/PhysRevD.73.084010
https://doi.org/10.1103/PhysRevD.73.084010
https://doi.org/10.1051/0004-6361:20077377
https://doi.org/10.1051/0004-6361:20077377
https://doi.org/10.1103/PhysRevC.96.065803
https://doi.org/10.1103/PhysRevC.96.065803
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1086/533487
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1103/PhysRevD.82.024016
https://doi.org/10.1103/PhysRevD.80.084035
http://www.jetp.ras.ru/cgi-bin/dn/e_052_04_0575.pdf
http://www.jetp.ras.ru/cgi-bin/dn/e_052_04_0575.pdf
http://www.jetp.ras.ru/cgi-bin/dn/e_052_04_0575.pdf
http://www.jetp.ras.ru/cgi-bin/dn/e_052_04_0575.pdf
http://www.jetp.ras.ru/cgi-bin/dn/e_052_04_0575.pdf
https://doi.org/10.1103/PhysRevLett.29.382
https://doi.org/10.1146/annurev.aa.10.090172.002235
https://doi.org/10.1146/annurev.aa.10.090172.002235
https://doi.org/10.1016/S0370-1573(99)00110-6
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1086/152760
https://doi.org/10.1086/161006
https://doi.org/10.1086/161006
https://doi.org/10.1086/168227
https://doi.org/10.1086/168227
https://doi.org/10.1088/0264-9381/31/15/155002
https://doi.org/10.1088/0264-9381/31/15/155002
https://doi.org/10.1103/PhysRevD.83.024014
https://doi.org/10.1093/mnras/289.1.117
https://doi.org/10.1093/mnras/289.1.117
https://doi.org/10.1103/PhysRevD.75.064019
https://doi.org/10.1103/PhysRevD.75.043007
https://doi.org/10.1103/PhysRevD.75.043007
https://doi.org/10.1111/j.1365-2966.2006.11147.x
https://doi.org/10.1111/j.1365-2966.2006.11147.x
https://doi.org/10.1103/PhysRevD.85.124023
https://doi.org/10.1103/PhysRevD.102.084014
https://doi.org/10.1140/epjc/s10052-022-10498-4
https://doi.org/10.1103/PhysRevD.81.123016
https://doi.org/10.1103/PhysRevD.99.104002
https://doi.org/10.1140/epjc/s10052-020-8361-4
https://doi.org/10.1103/PhysRevD.97.083015
https://doi.org/10.1103/PhysRevD.103.103010
https://doi.org/10.1103/PhysRevD.103.103010
https://doi.org/10.1103/PhysRevD.100.123003
https://doi.org/10.1103/PhysRevD.100.129903
https://doi.org/10.1103/PhysRevD.100.129903
https://doi.org/10.1103/PhysRevD.101.063023
https://doi.org/10.1103/PhysRevD.101.063023
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1103/PhysRevD.30.2379
https://doi.org/10.1088/1475-7516/2016/11/012
https://doi.org/10.1088/1475-7516/2016/11/012
https://doi.org/10.1088/0264-9381/28/2/025009
https://doi.org/10.1088/0264-9381/28/2/025009
https://doi.org/10.1103/PhysRevD.105.024008


[59] V. Folomeev and V. Dzhunushaliev, Magnetic fields in
anisotropic relativistic stars, Phys. Rev. D 91, 044040
(2015).

[60] H. O. Silva, C. F. B. Macedo, E. Berti, and L. C. B. Crispino,
Slowly rotating anisotropic neutron stars in general rela-
tivity and scalar-tensor theory, Classical Quantum Gravity
32, 145008 (2015).

[61] N. K. Glendenning, Compact Stars: Nuclear Physics,
Particle Physics and General Relativity (Springer-Verlag,
Berlin, 1997).

[62] H. C. Das, I-Love-C relation for an anisotropic neutron star,
Phys. Rev. D 106, 103518 (2022).

[63] B. L. Li, Y. Yan, and J. L. Ping, Tidal deformabilities and
radii of strange quark stars, Phys. Rev. D 104, 043002
(2021).

[64] J.-F. Xu, C.-J. Xia, Z.-Y. Lu, G.-X. Peng, and Y.-P. Zhao,
Symmetry energy of strange quark matter and tidal deform-
ability of strange quark stars, Nucl. Sci. Tech. 33, 143 (2022).

[65] R. X. Adhikari et al., A cryogenic silicon interferometer for
gravitational-wave detection, Classical Quantum Gravity
37, 165003 (2020).

[66] M. Punturo et al., The Einstein Telescope: A third-gener-
ation gravitational wave observatory, Classical Quantum
Gravity 27, 194002 (2010).

[67] R. David et al., Cosmic Explorer: The U.S. Contribution
to gravitational-wave astronomy beyond LIGO, Bull.
Am. Astron. Soc. 51, 7 (2019), https://baas.aas.org/pub/
2020n7i035/release/1.

[68] K. Ackley et al., Neutron Star Extreme Matter Observatory:
A kilohertz-band gravitational-wave detector in the global
network, Publ. Astron. Soc. Aust. 37, e047 (2020).

[69] K. S. Thorne and A. Campolattaro, Non-radial pulsation of
general-relativistic stellar models I. Analytic analysis for
l ≥ 2, Astrophys. J. 149, 591 (1967).

[70] T. Regge and J. A. Wheeler, Stability of a Schwarzschild
singularity, Phys. Rev. 108, 1063 (1957).

FLUID PULSATION MODES AND TIDAL DEFORMABILITY OF … PHYS. REV. D 107, 124016 (2023)

124016-11

https://doi.org/10.1103/PhysRevD.91.044040
https://doi.org/10.1103/PhysRevD.91.044040
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1088/0264-9381/32/14/145008
https://doi.org/10.1103/PhysRevD.106.103518
https://doi.org/10.1103/PhysRevD.104.043002
https://doi.org/10.1103/PhysRevD.104.043002
https://doi.org/10.1007/s41365-022-01130-x
https://doi.org/10.1088/1361-6382/ab9143
https://doi.org/10.1088/1361-6382/ab9143
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://baas.aas.org/pub/2020n7i035/release/1
https://baas.aas.org/pub/2020n7i035/release/1
https://baas.aas.org/pub/2020n7i035/release/1
https://baas.aas.org/pub/2020n7i035/release/1
https://doi.org/10.1017/pasa.2020.39
https://doi.org/10.1086/149288
https://doi.org/10.1103/PhysRev.108.1063

