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The standard model extension (SME) is an effective field theory framework that can be used to study the
possible violations of Lorentz symmetry in the gravitational interaction. In the SME’s gauge invariant
linearized gravity sector, the dispersion relation of gravitational waves (GWs) is modified, resulting in
anisotropy, birefringence, and dispersion effects in the propagation of GWs. In this paper, we mainly focus
on the nonbirefringent and anisotropic dispersion relation in the propagation of GWs due to the violation of
Lorentz symmetry. With the modified dispersion relation, we calculate the corresponding modified
waveform of GWs generated by the coalescence of compact binaries. We consider the effects from the
operators with the lowest mass dimension d = 6 in the gauge invariant linearized gravity sector of the SME
which are expected to have the dominant Lorentz-violating effect on the propagation of GWs. For this case,
the Lorentz-violating effects are presented by 25 coefficients and we constrain them independently by the
“maximal-reach” approach. We use 90 high-confidence GW events in the GWTC-3 catalog and use BILBY,
an open source software, and DYNESTY, a nested sampling package, to perform parameter estimation with
the modified waveform. We do not find any evidence of Lorentz violation in the GWs data and give a
90% confidence interval for each Lorentz violating coefficient.

DOI: 10.1103/PhysRevD.107.124015

I. INTRODUCTION

Classical general relativity (GR) is the most successful
theory of gravity, having passed various experimental tests at
different scales with astonishing accuracy [1-10]. Although
GR has been so accurate, it is not a good explanation of the
theoretical singularities and quantization problems, and the
experimental problems for dark matter and dark energy.
On the other hand, in some candidate theories of quantum
gravity, such as string theory [11,12], loop quantum
gravity [13], braneworlds scenarios [14], the Lorentz invari-
ance (LI) of the theory can be spontaneously broken.
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The SME is a relatively well-developed framework for
exploring Lorentz invariance violation (LIV) [15,16].
Under this framework, all terms that may break LI
can be constructed in Lagrangian. Over the past few
decades, utilizing SME to test LI in the matter sector
has flourished. In the gravitational sector, studies using
SME to measure LI include lunar laser ranging [17,18],
atom interferometers [19], cosmic rays [20], precision
pulsar timing [21-26], planetary orbital dynamics [27],
and superconducting gravimeters [28]. The case for the
gravity sector of the studies is generally the coupling
between gravity and matters [29]. Since we study the
Lorentz-violating effects on the propagation of GWs, we
focus on the pure gravity sector with linear approximation
[30,31]. We also impose the gauge-invariant condition
under the usual transformation h,, — h,, + 9,5, +9,&,,
where h,, is the metric perturbations in the Minkovski
background and ¢, is an arbitrary infinitesimal vector field.

© 2023 American Physical Society
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The discussion about gauge-violating terms can be referred
to Ref. [32]. In SME’s gauge invariant linearized gravity
sector, all possible general Lagrangians with quadratic
metric perturbations are constructed in [33], and a modi-
fied dispersion relation for GWs is also derived that can
lead to anisotropy, birefringence and dispersion effects on
the propagation of GWs, and it is these effects that distort
the waveform of GWs. The corresponding modified wave-
forms of GWs are given in [34]. With the modified
waveform, one can use Bayesian inference to compare
the modified GWs signals with GW data and constrain the
coefficients representing LIV arising from the linearized
gravity sector of the SME.

The LIGO/Virgo/KAGRA detectors have detected abun-
dant GWs sources. Now the three detectors LIGO, Virgo,
and KAGRA (LVK) form the third GWs Transient Catalog
(GWTC-3) [35]. GWTC-3 is the most comprehensive
collection of GW events so far, and it plays an important
role in the advancement of astrophysics [36], fundamental
physics, and cosmology [37]. GWTC-3 catalog can be used
to test GR, especially the tests of Lorentz symmetry based on
the phenomenological dispersion relations [10,38], which
can arise from a lot of modified theories of gravity, including
multifractal space-time [39], massive gravity [10,40], dou-
ble special relativity [41], Horava-Lifshitz gravity [42,43]
and the theory of extra dimensions [42,44]. Recently, a lot of
tests on the Lorentz symmetry of gravitational interaction
have been carried out by using observational data from GW
events in LVK catalogs. In the SME framework, the
modified dispersion relation of GWs can in general lead
to two other possible effects. One is the velocity birefrin-
gence of GWs which arises from the parity violation in the
gravity sector of SME and causes the propagating velocities
of the two polarization modes of GWs to be different. The
studies on the observational effects of such velocity bire-
fringence and their tests with signals of GW events in LVK
catalogs have been performed in a lot of works [33,45-63];
see Ref. [64] for a recent review. Another effect is the
anisotropic dispersion relation which arises from the break-
ing of the rotation symmetry of gravity. While the tests with
both the birefringence and anisotropic dispersion relation of
GWs have been considered by a lot of works [51,56,65,66],
the main purpose of this paper is to study the effects of the
nonbirefringent anisotropic dispersion relation of GWs and
their observational constraints from signals of GW events in
the LVK catalogs.

For our purpose, in SME’s gauge invariant linearized
gravity sector, we perform complete Bayesian inference
using modified waveforms with effects of anisotropic
nonbirefringent dispersion of GWs to test the Lorentz
symmetry. This paper is organized as follows. In the next
section, we present a brief introduction to the propagation
of GWs in the SME framework and the associated modified
dispersion relation due to the effects of the LIV in the
gravity sector of the SME. In Sec. III, we focus on the phase

modifications to the waveform of GWs due to the LIV
coefficients in the SME. In Sec. IV, we introduce the match-
filtered analysis within Bayesian inference and in Sec. V
we provide the constraints on the LIV coefficients by using
the data of 90 GW events released in the GWTC-3 catalog.
The conclusion and summary of this work are given
in Sec. VL.

Throughout this paper, the metric convention is chosen
as (—, +, +, +), and greek indices (y, v, - - -) run over 0, 1,
2, 3 and latin indices (i, j, k) run over 1, 2, 3. We set the
units to A =c = 1.

II. GRAVITATIONAL WAVES IN THE LINEAR
GRAVITY OF SME

In this section, we present a brief introduction to the
GWs in the linearized gravity sector of the SME and the
associated modified dispersion relation of GWs due to
the effects of the LIV. The quadratic Lagrangian density for
GWs in the gauge invariant linearized gravity sector of the
SME is given by [33]

1
L= 1 e”ﬂa’cewﬁ’lndhmaaaﬂhpo

1 R R N

gl (3 g R R,,(2.0)
where one expands the metric g, of the spacetime in the
form of g, =n,, +h, with n, being the constant
Minkowski metric, e*’** is the Levi-Civita tensor, and
the operators §#7*°, §#?*° and k"""’ represent the three
different classes of modifications due to LIV. These
operators can be further expanded in terms of derivatives
in the following forms

SHpvo — Z s(d)upa]y(mz“.ad—z 5(1, . ‘alld_z’ (22)

g = Z q(d)ﬂ/’almzt’aawad—zaal...dad . (2.3)
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ay e Yay_y *

where d denotes the mass dimension of the three operators
and the tensor coefficients in the above expansions control
the LIV. The sum in the above expansion is over even d > 4
for s-type violations, odd d > 5 for g-type, and even d > 6
for k-type. Specifically, $#7%° is antisymmetric in both “up”
and “ve”, ¢""*° is antisymmetric in “up” and symmetric in
“ve”, and k"7 is totally symmetric. Then the equations of
motion for GWs can be derived by varying the quadratic
action S~ [ d*xL with respect to h,, with Lagrangian
density £ given by (2.1), which yields

1
5 np(reﬂf)mceyﬂ/uaaaﬁhld — oMHre h/m = Ov (25)
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where the tensor operators

SMHvPe — — 1 (§Hrvo 4 grovp) — 1]2/4'//’0

— é (gHrve 4 grere 4 growe 4 grome) . (2.6)

In GR, the metric perturbation A, only contains two
degenerate traceless and transverse tensor modes. However,
when the Lorentz-violating modifications are included,
depending on specific types of the LIV, h,, may contain
extra modes, for example, the scalar or vector modes. These
extra modes do not satisfy transverse and traceless con-
ditions. In the linear gravity of the SME considered in this
paper, these extra modes decouple from the two traceless
and transverse tensor modes and thus do not affect the
propagation of the two tensorial modes. In addition, all the
GW signals detected by LIGO/Virgo/KAGRA detectors are
consistent with two tensorial modes and there is no clear
signature of the existence of extra modes [35]. For these
reasons, in this paper, we only focus on the LIV effects on
the two traceless and transverse tensor modes and constrain
them by using the GW data detected by LIGO/Virgo/
KAGRA detectors. For this purpose, we restrict to the
modes h;; which satisfy

<(3,2 + K+ 2655Mijm”e§,,,1

L ijmn ,R
2ekoMUmeR,,

Then the equations of motion for GWs (2.5) reduce to
(0? = V2)hii 4 26Mimp, . = 0. (2.8)

In the linearized gravity sector of SME, it is convenient to
decompose the GWs into circular polarization modes. To
study the evolution of %;;, we expand it over spatial Fourier
harmonics,

l ARL/(

. denote the circular polanzatlon tensors and

lj’

(r,k")e'ki "ieﬁ»(ki), (2.9)

where e

satisfy the relation €/*n; ek ippe'®; with pg =1 and
oL = —1. So, the equations of motion in (2.8) can be
written as

ha + Iy +2ep M el hy =0, (2.10)
or equivalently in the matrix form
|
2efoM ey, hy
. >< > =0. (2.11)
02+ k* + Ze}iéM ijmnel hy,
vy =1-=¢"41¢. (2.15)

Then, following methods developed for the study of
Lorentz violation in the photon sector of the SME, the
modified dispersion relation of GWs with 4-momentum
k* = (w,k) can be derived by requiring the determinant
of the above 2 x 2 matrix vanishes, which yields (see
also in [33])

w= (1 L |¢|> (2.12)

where
1
g s ).
and

P =

4|k|4 [(e}gjéMl]m”e}Bnn — e%jéMl]m"eI,;m)z

+ 4(eRoMimeL, ) (e sMHPa e q)} (2.14)

The modified dispersion relation in the above leads to the
phase velocities of the GWs

The new effects in the modified dispersion arising from
LIV are induced by the coefficients ¢ and |£|. While ¢£°
modifies the speed of the two tensorial modes in the same
way, the coefficient || leads to the two different velocities
of the two tensorial modes of GWs. Therefore, the two
tensorial modes can be decomposed into a fast mode
(denoted by h; with velocity v ) and a slow mode (denoted
by h, with velocity »_). This phenomenon is also known as
the velocity birefringence in the propagation of GWs. It is
worth noting here that the observational constraints on
velocity birefringence with GW data have been extensively
studied in [51,56,65,66]. Thus in this paper, we will not
perform analysis on that case and only concentrate on the
effects of nonbirefringent dispersion relation induced by
the coefficient ¢°.

In the modified dispersion relation (2.12), the coefficient
¢% which leads to the nonbirefringent dispersions is
functions of the frequency w and wave vector k [51].
Considering it is also direction-dependent and to describe
its effects on the propagation of GWs, it is convenient to
expand its coefficients in terms of spin-weighted spherical
harmonics Y}, as
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R o (d
0= o, @)k, (2.16)
d,jm
where n = —k is the direction of the source, and
0 <j<d-2. The spherical coefficients for LIV kE;i))jm

are linear combinations of the tensor coefficients in (2.2),
(2.3), (2.4). The expansions of the coefficient {° are also a
combination of operators at multiple mass dimensions. In
general, one expects the operators with the lowest mass
dimension to have the dominant Lorentz-violating effects
on the propagation of GWs. In this paper, we only consider
the operators with the lowest mass dimension d and
introduce several energy-independent coefficients as

ZY]’” (Il ]m

Then the phase velocity of the GWs can be rewritten as

(2.17)

v=1- wd“‘cj?d)(ﬁ). (2.18)

The nonbirefringent LIV effects are fully characterized by

(d)

the coefficients, k(l)j.m. These coefficients determine the

speeds of GWs and lead to frequency-dependent disper-
sions except in the case with d = 4. Specifically, the
coefficients kgf))].m are also direction-dependent if j # 0
and thus could induce the anisotropic effects on the
propagation of the GWs. It is interesting to note that all
these coefficients can provide frequency and direction-
dependent phase modifications to the GWs. In the follow-
ing, we are going to study the phase modifications due to
these LIV coefficients in detail.

III. PHASE MODIFICATIONS TO THE
WAVEFORM OF GWs

In this section, we turn to derive the modified waveform
of GW with nonbirefringent LIV effects from the linearized
gravity sector of the SME. For this purpose, we closely
follow the derivation presented in [46,67]. It is worth noting
as well that the modified waveform has also been studied
in [34]. Now consider a graviton emitted radially at r = r,
and received at r = 0, we have

dr

i a(l =) (3.1)

Integrating this equation from the emission time (when
r =r,) to arrival time (when r = (), one obtains

L fodt o /’0 dt
re_/g a(h) w (d)(“) L at

Considering gravitons emitted at two different times 7,
and #,, with wave numbers k and k', and received at

(3.2)

corresponding arrival times f, and #; (r, is the same for
both), then, the difference in their arrival times is given by

W' 4)@0 )/ .

where z = 1/a(t,) — 1 is the cosmological redshift.

Let us focus on the GW signal generated by nonspin-
ning, quasicircular inspiral in the post-Newtonian approxi-
mation. With this approximation, one assumes that orbital
velocities are small compared to the speed of light and that
gravity is weak. Relative to the GW in GR, the LIV
modifies the phase of GWs @(¢). Then the Fourier trans-
form of h,(f) can be obtained analytically in the stationary
phase approximation, which is given by [38]

o A

hA (f) \/W P

where f is the GW frequency at the detector, and ¥(f) is
the phase of GWs. Note that in writing the above form, one
assumes that the phase is changing much more rapidly than
the amplitude. The explicit forms of A4 (f) and ¥(f) in GR
can be found in [38]. In [10,38], it was proved that the
difference of arrival times in (3.3) induces the frequency-
domain phase modification to the GWs ¥ in the following
form,

Aty=(1+7)At, — (@i

(3.4)

P(f) =POR(f) - %(f.h), (3.5)
where
2d—3 d-3 o d
) = @) [ 60

where u = zMf with f = w/2z being the frequency of
the GWs, M = (1 4+ z) M, is the measured chirp mass,
and M, = (mym,)*3/(m, + m,)'/> is the chirp mass of
the binary system with component masses m2; and m,. With
the above phase corrections, the waveform of the two
polarizations h_ (f) and h,(f) becomes

hon(f) = KR ()eY. (3.7)
This expression represents the modified waveform of GWs
we use to compare with the GW data.

IV. BAYESIAN INFERENCE AND
PARAMETER ESTIMATION

In this section, we describe the Bayesian inference by
using observational data from LVK to constrain the
coefficients describing LIV in the SME framework. Up
to now, the GWTC-3 catalog contains 90 compact binary
coalescence events [35], including binary neutron stars
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(BNS) GW170817 and GW190425, neutron star—black
hole binaries (NSBH), and binary black holes (BBH).
Bayesian inference is an important part of modern
astronomy. When we have GW data d;, we compare the
GW data with the predicted GW strain with LIV effects to

infer the distribution of the parameters 6 which describe the
waveform model. According to Bayes theorem, the pos-
terior distribution is given by:

6. H)P(6|H)
PdH)

P(d

P(0|d.H) = (4.1)

-

where P(6
butions of physical parameters 6 which denotes the model

d, H) denotes the posterior probability distri-

parameters. H denotes the waveform model, P(§|H)
denotes the prior distribution when given the model
parameters 6, the denominator P(d 0, H) denotes the

likelihood given a specific set of model parameters and
P(d|H) is normalization factor called the “evidence”,

P(d|H) = / doP(d|6, H)P(6|H). (4.2)

In most cases, the GW signal is very weak and the
matched filtering method can be used to extract these
signals from the noises. Here, we assume that the noise is
Gaussian and stationary [68—70]. The likelihood function
of the matched filtering method can be written in the
following form,

P(d|0. H) « | [ e i-h@)idi=h©))
i=1

(4.3)

where k(@) is the GW strain given by the waveform model
H and i represents different GW detectors. The noise
weighted inner product (A|B) is defined as

(A|B) _4Re[/0m%df],

where * denotes complex conjugation and S(f) is the
power spectral density (PSD) function of the detectors. We
use the PSD data encapsulated in LVK posterior sample
which could lead to a more stable and reliable parameter
estimation compared with obtaining the PSD from strain
data by Welch averaging [71-73].

Next, we restrict our attention to the cases with LIV
in the SME framework. We utilize the PYTHON package
BILBY [74,75] to perform Bayesian inference by analyzing
the GW data of the 90 BBH and BNS, and NBSH merger
events in the GWTC-3 catalog. We use the waveform
template given in (3.7) with (3.6) denoting the LIV effect.
We employ template IMRPhenomXPHM [76-78] for the
GR waveform hSR (f) for BBH and NSBH events, and

(4.4)

IMRPhenomPv2 NRTidal for BNS events. Since the
spherical expansion coefficient formula in (2.18) is a
general solution for different events in the same coordinate
system, we can directly combine the posterior of a single
event,

P(O{d;}.H) « [ P(0]d;. H). (4.5)

i=1

where d; denotes data of the ith GW event and N denotes
selected number of the GW events.

V. RESULTS

In this section, we present the results of the constraints
on the anisotropic nonbirefringent dispersion by compar-
ing the modified waveform (3.7) with the strain data from
GW detectors. As we have mentioned, one expects the
operators with the lowest mass dimension to have the
dominant LIV effects on the propagation of GWs. For this
reason, we are more interested in the lowest mass dimen-
sions, for example, d =4 and d = 6 for kE‘,i)). . However,

. Jjm
the case of d =4 only induces a frequency-independent
effect in the modified dispersion, so they do not give any
observable dephasing effects. In [79], combined with the
detection of the electromagnetic counterpart, the case of
d = 4 is discussed. In this paper, we only consider the case
of d =6.

For the case of d =6, the phase correction in the
waveform takes the form

S‘P:Aﬁ(nf)3, (5.1)
with
8 . to dt
8 .\ 1 (d) to dt
=3 <Zyljm(n)k(,)]m> = (5.2)
Jjm ¢

Note that Aj is the parameter we sampled in the Bayesian
inference along with other GR parameters. We refer to the
selected time interval and signal duration of PSD in [74] as
well as the prior selection method in Bayesian inference.
And we refer to the sampling frequency and minimum
frequency in Appendix E of [35].

For mass dimension d = 6, the index j can take O, 1, 2, 3,
4, and the index m runs from —j to j. Note that each

(6) (6)« _
of K1) jm (Djm =

(-1 )mkgf))j_m. Thus the number of independent components
for coefficients kE?))/.m are (d —1)? = 25. The number of

independent components can refer to Ref. [33]. These
components are entirely tangled together. It is prohibitively

are complex functions which satisfies k
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FIG. 1. Combined probability distributions of each component of k(?) ., We have drawn 25 violin plots of k@ ., components and the

(Djr

error bars denote the 90% confidence intervals, whose central value is basically around zero, consistent with (’Z_‘rR. Note that we have

excluded GW190814 when combining individual GW events.

that one can break the degeneracy of the coefficient kE?))jm
by sufficient GW events since each event has different
source locations. Here we adopt another approach by using
the “maximum-reach” method, with which one can con-
strain each of these components separately [51,65,66].
This implies that when one considers one of these compo-
nents, the others are set to zero. It is worth mentioning here
that in [65,66], an attempt to place global constraints is
proposed, which can place limits on all components simul-
taneously. However, since there are some non-Gaussian
features in our posteriors, it is not appropriate to directly
follow that method where the possible time delays are
assumed to be Gaussian and the multi-Gaussian likelihood
as a function of all coefficients can be constructed. This issue
currently requires further research, we leave it to future

works. This study only reports the results of the “maximum-
reach” method rather than global constraints.
Data samples of Aj, right ascension (ra), and declin-

ation (dec) were obtained by Bayesian reference, so each

component of kg?))jm characterizing LIV effects can be

calculated from the posterior samples of A;, ra, and dec
via (5.2) and (2.17). With a fixed coordinate system, the
expansion coefficients are supposed to be the same for all
events. We combined the individual posterior samples of

kE?))jm through (4.5) excepting GW190814 since it has the

strongest impact in biasing the combined posterior. This
may be caused by the limitations of the existing waveform
approximants, such as systematic errors during the merger
phase of the waveform, or by the existence of physical
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TABLE I.  90% confidence interval of each component of the
LIVl coefficients k(j), from 89 GW events in the GWTC-3
catalog.
j m Coefficient Constraint (1072 m?)
0 Ko (=0.5,0.1)
1 0 Ko (=03,0.1)
1 Re k{1, (~0.9,0.1)
Im k), (~0.3,0.5)
2 0 Ky (=0.7,0.4)
1 Re k{fy», (~0.6.0.0)
Im k{3, (=0.1,0.3)
2 Re k(%)) (2.9, 5.1)
Im {3y, (~7.4,6.5)
3 0 K (~0.7,0.6)
1 Re k{jys, (~0.6,0.1)
Im k() (=0.1,0.3)
2 Re k{5 (~1.4,2.0)
Im k{5, (=3.0,2.4)
3 Re k{753 (=66.0,21.7)
Im {0} (~26.3,79.1)
4 0 Ko (=0.6,1.0)
1 Re k)., (~0.8,0.6)
Im k), (=0.1,0.2)
2 Re k()i (~1.0,1.0)
Im k{5 (-2.0,1.2)
3 Re k()43 (~23.3,7.6)
Im &5} (=9.2,28.4)
4 Re ki), (—143.4,48.9)
Im k), (~82.8,283.9)

effects such as eccentricity which are not taken into

account by current waveform approximants. So we com-
(6)

R ~ T jm
and the results were shown in Fig. 1. Table I summarized the

90% confidence interval of each LIV coefficients kE?))jm.

(6)
(1)jm
are roughly on the same order of magnitude, although the

magnitude of kg?))% and kE?; 44 coefficients is a little bit larger.

From both the Fig. 1 and Table I, it is obvious that the
posterior samples and the 90% confidence interval of each
coefficient kE?))jm are all consistent with zero, which indicates

bined the residual 89 individual posterior samples of k

Figure 1 shows that most of the expansion coefficients k

there are no any signatures of the LIV arising in the linearized
gravity of SME has been found in the GW signals.

VI. CONCLUSION

Since the detection of GW signals by LIGO/Virgo
Collaboration, the tests of gravity in the strong field regime
with GWs have become possible. With the increase in
detector number and sensitivity, LVK catalog GWTC-3
now contains 90 GW events. In this paper, we consider the
gauge-invariant linearized gravity sector of SME to inves-
tigate the Lorentz-violating effects in the propagation of
GWs and constrain them with the detected GW data. The
Lagrangian in the SME framework contains all possible
gauge-invariant quadratic terms of the metric perturbation
h,,,, which represent the LIV modification. According to a
similar approach developed in the discussion of Lorentz
symmetry in the photon sector of SME [80], a modified
dispersion relation of GWs can be obtained from the
Lagrangian, in which the LIV effects without birefringence

is completely characterized by the coefficient kgf))jm. When

j#0, kE;l))jm is direction-dependent, which can lead to

anisotropic effects in the propagation of GWs. We derive
the modified waveform of GWs with the LIV effects and
performed Bayesian inference on the GWs data to constrain
these effects.

By comparing the modified waveform (3.7) with the
strain data from the GWTC-3 catalog, we derive the
constraints on the effects of the anisotropic nonbirefringent
dispersions of GWs due to the LIV in the gauge invariant
linearized gravity sector of the SME. As we mentioned, we
expect the operators with the lowest mass dimension in the
SME to have a major LIV effect on the propagation of
GWs. Therefore, we are more interested in the lowest
dimensions, for example, for k(f))jm, one has d =4 and
d = 6. However, when d = 4, only frequency-independent
effects are produced in the modified dispersion relation, so
it cannot give any observable out-of-phase effects. But
in [79], combined with the detection of the electromagnetic
counterpart, the case of d =4 is discussed. In this paper,
we only consider the case of d =6. Here we use the

“maximum-reach” method to constrain each component of
Jacy
(1)jm
Results represented in Fig. 1 show that there is no
evidence of any violation of Lorentz symme6try. Therefore,
we give the constraints of the coefficients k( 1)jm describing
(6)
(I)jm
components have a 90% confidence interval of roughly

separately.

anisotropic nonbirefringent effects. Most of the k&

Jjm
fidence interval of between 10~8 and 107, but the medians
for all of these components is around zero. Constrains on

1071°, with some kEf; components having a 90% con-

each component of ké?))jm are summarized in Table I. Since

the next generation of GW detectors can detect lighter and
more distant BBH and BNS events, it is expected such
systems can lead to tighter constraints on nonbirefringent
dispersions in the future.
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