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We investigate the motions of charged particles in the near horizon region of an extreme Kerr black hole
with weak electromagnetic fields. There is an enhanced symmetry in the near-horizon-extreme-Kerr
geometry. We find that when the electromagnetic field respects this enhanced symmetry, which we refer to
as the maximally symmetric electromagnetic field, the equations of motion of charged particles get
simplified into a set of decoupled first-order differential equations. We discuss the motions of charged
particles in two maximally symmetric electromagnetic fields, one being the force-free field and the other
being the vacuum fields. Even though the radial motions are similar to the geodesics in near-horizon-
extreme-Kerr geometry, the angular motions could be affected by the electromagnetic field significantly. In
particular, for the vacuum solution that is produced by a weakly charged black hole, there exist stable
vortical motions if the electromagnetic parameter is above the critical value Bc ¼

ffiffiffi
3

p
. These vortical

motions do not cross the equatorial planes, and the charged particles in them radiate nonthermally. We
discuss the corresponding astrophysical implications.
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I. INTRODUCTION

Black holes are astronomical objects of great interests. In
recent years, the horizon-scale images of supermassive
black holes released by Event Horizon Telescope (EHT)
collaborations [1,2] have pushed the study of black hole
physics in strong gravity regime to a new level. By
comparing the observational data with theoretical models,
they allow us to estimate the masses and spins of black
holes, draw the magnetic field configurations around the
black holes and investigate the physics in the accre-
tion disks.
The (electro)magnetic field around a black hole affect

significantly the images of the black hole. It not only
changes the worldlines of charged particles from the
geodesics to more general trajectories, but also induces
the synchrotron radiation. The Lorentz force significantly
affects the motions of electrons and ions, which triggers a
series of observable phenomena such as the jets, the
synchrotron radiation, and the gamma-ray bursts [3]. The
polarized images of black holes encode rich information on

the structure of the electromagnetic fields and the dynamics
of charged particles [4–11]. The electromagnetic fields
surrounding the astronomical black holes [12–14] are
widely believed to originate from the accreted plasma,
even though there are also discussions about the possibility
that the black hole charge act as the source of electromag-
netic fields [15,16]. In any case, there are new configura-
tions of classical electrodynamics fields in the curved
spacetime, which do not exist in a flat spacetime, and
the motions of the charged particles in them present novel
features.
For geometrically thin accretion disks, the fluid

motion can be approximated at the lowest order as
single-particle trajectories on the equatorial plane. The
problem of the fluid motion effectively reduces to an
analysis of the effective radial potential of a single charged
particle [17–23]. Moreover, richer physical processes exist
in the off-equatorial region governed by the magnetosphere
of black holes. In this region, the single-particle approxi-
mation of the dilute plasma works even better [15]. For
integrable systems like the Reissner-Nordström and Kerr-
Newman black holes, the charged particle motions are
regular [24–26] and behave as continuous lines on the
Poincare section. However, the electromagnetic fields
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generically destroy the integrability, making the analytical
study of the off-equatorial motions impossible. One has
to employ the numerical methods and carefully select
the initial conditions. More related works can be found
in [27–30]. In addition, the nonintegrability generally leads
to chaotic motions of the particles as the scattered dots on
the Poincare section [31–35]. However, if the spacetime is
highly symmetric, and for special electromagnetic field
configuration, the off-equatorial motions of charged par-
ticles can still be studied analytically, which allow us to
gain more insights of the physics.
It is well known that the near-horizon-extreme-Kerr

(NHEK) geometry has an enhanced symmetry, which
has led to extensive theoretical studies [36–43]. Based on
observational evidences of high-spin black holes [44,45],
there is a variety of analytical studies on the possible
astronomical observation [46–59]. Among them, the force-
free electrodynamics in NHEK were studied in [48–51],
and the extreme Kerr accretion was investigated in [46,53].
In [47], the authors studied the motions of charged particles
under the Wald potential in the NHEK geometry. They
found that the motions can be solved analytically, and they
investigated the motions in the equatorial plane and along
the spin axis. However, the electromagnetic effects on the
off-equatorial motions of the charged particles in the
extreme Kerr spacetime has not been explored much.
In this work, we study the motions of charged particles in

the NHEK geometry, in the presence of weak electromag-
netic fields. We neglect the backreaction effect to the
spacetime, as the electromagnetic field is weak. We find
that under maximally symmetric electromagnetic (MSEM)
fields, the Carter constant is geometrically realized by the
symmetry of the system. Thus, we are allowed to have an
analytical study of the motion of charged particles. We
derive the first-order differential equations of motion of
charged particles for universal MSEM fields and discuss
some general properties of the angular potential. Then
we consider two kinds of MSEM fields, the force-free one
and a general vacuum field, and study the motion of
charged particles in them. In particular, the vacuum field
with the Z2 symmetry under θ → π − θ is exactly the Wald
solution [60] in the near-horizon limit, which describes an
electromagnetic field generated by a weakly charged black
hole. We present a complete analysis of the charged particle
motions in the Wald solution, and especially have a detailed
discussion on the vortical motions.
The paper is organized as follows. In Sec. II, we shall

first review the NHEK geometry and its isometric group. In
Sec. III, we derive the first-order differential equations of
motion of charged particle motion under MSEM fields. The
fields do not affect the radial motion, and we briefly discuss
its classification. In Sec. IV, the angular motions under
different types of MSEM fields are explored. We summa-
rize and conclude this work in Sec. V. We work in the
geometrized unit with G ¼ c ¼ 1 in this paper.

II. EXTREME KERR BLACK HOLES

A. NHEK limit

The Kerr geometry is a generally accepted description
of astrophysical black holes within the framework of
Einstein’s gravity. In Boyer-Lindquist coordinates, the
metric is given by

ds2 ¼ −
Δ
Σ
ðdt̃ − a sin2θ̃dϕ̃Þ2 þ Σ

�
dr̃2

Δ
þ dϕ̃2

�

þ sin2θ̃
Σ

½adt̃ − ðr̃2 þ a2Þdϕ̃�2; ð2:1Þ

where

Σðr̃; θ̃Þ ¼ r̃2 þ a2cos2θ̃; Δðr̃Þ ¼ r̃2 − 2Mr̃þ a2: ð2:2Þ

The parameter M is the mass of the black hole, a ¼ J=M
denotes the spin parameter, with J the angular momentum
of the black hole. The metric is invariant under a → −a,
ϕ → −ϕ, so we can set a ≥ 0 for simplicity and without
loss of generality. The coordinate singularities are located
at r̃� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and r̃þ is the radius of the event

horizon. To avoid naked singularities, a ≤ M has to be
satisfied. When a → M, one has an extreme Kerr black
hole, whose near-horizon geometry is very different from
the usual Kerr spacetime. In this case, one can use the
method developed by Bardeen and Horowitz [36] to obtain
the near-horizon geometry. Consider a small deviation from
the extremality

a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; ð2:3Þ

where ϵ ≪ 1 is a small factor. Then we perform a dilation
onto the horizon

t ¼ ϵp

2M
t̃; r ¼ r̃ −M

ϵpM
; θ ¼ θ̃; ϕ ¼ ϕ̃ −

t̃
2M

;

ð2:4Þ
with 0 < p ≤ 1 being the “zoom power.” Different p will
zoom into different near-horizon regions (e.g., the ISCO is
in p ¼ 2=3), and the proper distance is proportional to
j log ϵj [40]. For each p < 1, expanding the metric to the
leading order of ϵ, we can get the NHEK geometry

ds2¼2M2Γ
�
−r2dt2þdr2

r2
þdθ2þΛ2ðdϕþrdtÞ2

�
þOðϵÞ;

ð2:5Þ

Γ ¼ 1þ cos2θ
2

; Λ ¼ 2 sin θ

1þ cos2 θ
: ð2:6Þ

It is worth emphasizing that the NHEK geometry is an
exact solution to the vacuum Einstein equations and
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describes the near-horizon region of the extreme Kerr black
hole through the coordinate rescaling Eq. (2.4). However,
it is not asymptotically flat. For a fixed θ, the NHEK
geometry is a Uð1Þ-fibered AdS2, in which the geometry
along the spin axis is exactly AdS2. For p ¼ 1, the
expansion gives the near-NHEK geometry at the leading
order, which takes the form

ds2 ¼ 2M2Γ
�
−ðr2 − 1Þdt2 þ dr2

r2 − 1
þ dθ2

þ Λ2ðdϕþ rdtÞ2
�
þOðϵÞ: ð2:7Þ

Since p corresponds to the extent of zooming, near-NHEK
is the deepest region where the horizon is located. The other
p < 1 corresponds to the regions with different depths,
which are all described by the NHEK. As pointed out
in [38], Eqs. (2.7) and (2.5) are locally diffeomorphic to
each other, under a coordinate transformation not involving
the θ direction. On the other hand, as shown in Sec. III A,
the electromagnetic field does not change the radial motion
of the particles. Thus we only discuss physical processes in
the NHEK geometry without loss of generality. From now
on, we set M ¼ 1 for simplicity.

B. The isometry group

Different from stationary and axisymmetric Kerr space-
time (2.1), which has two Killing vectors ∂t̃, ∂ϕ̃, the NHEK
geometry possesses an enhanced Killing symmetry. At an
infinitesimal level, the isometry group is generated by

W ¼ ∂ϕ; H0 ¼ t∂t − r∂r;

Hþ ¼ ∂t; H− ¼
�
t2 þ 1

r2

�
∂t − 2tr∂r −

2

r
∂ϕ: ð2:8Þ

The Killing vectorsW andHþ are the translations along the
ϕ direction and t direction, respectively, and H0 implies
a self-similarity under the scaling t → t=λ; r → λr. The
fourth Killing vector H− denotes the time translational
invariance when transforming to the global coordinates (an
analog) of AdS2 [36]. The commutation relations between
the generators are

½H0;H�� ¼∓H�; ½Hþ;H−� ¼ 2H0; ½W;H�;0� ¼ 0;

ð2:9Þ

which generate a SLð2;RÞ × Uð1Þ isometry group. Simply
speaking, the SLð2;RÞ subgroup is the isometry of AdS2,
whileUð1Þ is the translational group along ϕ. The quadratic
Casimir is

Cμν ¼ −Hμ
0H

ν
0 þ

1

2
ðHμ

þHν
− þHμ

−HνþÞ: ð2:10Þ

Recall that the Kerr spacetime has an irreducible Killing
tensor, Kμν, which generally cannot be constructed using
any Killing vectors. Thus, the Killing tensor implies
a nongeometrically realized symmetry and a Carter con-
stant of motion along geodesics, K ¼ Kμνpμpν. As a
result, r and θ in the Hamilton-Jacobi equation can be
separated [24]. For an extreme Kerr black hole, when
zooming into NEHK, Kμν becomes reducible

Kμν ¼ gμν þWμWν þ Cμν; ð2:11Þ

where gμν is the metric component. Therefore, due to the
enhanced Killing symmetry in NHEK, Kμν can be con-
structed by the Killing vectors, and the Carter constant is
geometrically realized by the Casimir. This property will
help us to obtain the equations of motion in NHEK with
electromagnetic fields.

III. PARTICLE DYNAMICS IN A MSEM FIELD

In this section, we study the dynamics of charged
particles in NHEK with a weak electromagnetic field,
whose backreaction to the spacetime can be neglected.
Despite the Lorentz force, the Killing symmetries can still
be used to construct conserved quantities along the tra-
jectories in the presence of a MSEM field, whose Lie
derivatives along the Killing vector fields of NHEK are
vanishing. Consequently, we may obtain the first-order
differential equations of motion of charged particles.

A. The equations of motion

If the specific charge is large enough, then the Lorentz
force can be rather strong compared to the gravitation. For
electrons, even a magnetic field of 1 Gauss around a black
hole of solar mass can produce an Lorentz force of nearly
100 times the magnitude of the gravitation. For a particle of
charge q and mass m, neglecting the radiation-reaction
force, its equation of motion reads

DτUa ¼ q
m
FabUb; ð3:1Þ

whereUa and Fab are the four velocity and electromagnetic
field strength tensor, respectively, and Dτ is the covariant
derivative about the proper time τ. If the electromagnetic
field is invariant along a Killing vector ξ, i.e.,

LξA ¼ ½ξ;A� ¼ 0; ð3:2Þ

whereA is the electromagnetic field potential, Lξ is the Lie
derivate along ξ, then we have

DτðξμPμÞ ¼ qUνðLξAÞν ¼ 0: ð3:3Þ

Here Pμ ¼ mUμ þ qAμ denotes the canonical momentum.
Even though one can define the energy and angular
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momentum of a charged particle in a stationary and
axisymmetric spacetime, one has to evolve the second-
order differential equations of motion numerically [31,34]
since the Carter constant gets lost. However, in NHEK, the
geometric symmetry of the electromagnetic field can be
enhanced in such a way that the dynamics of the charged
particles could be simplified. More precisely, if the electro-
magnectic field is maximally symmetric, then it has a
SLð2;RÞ × Uð1Þ invariant potential satisfying

LWA ¼ 0; LH0
A ¼ 0; LH�A ¼ 0; ð3:4Þ

and there are four constants of motion,

E ¼ −Hμ
þPμ ¼ −Pt; L ¼ WμPμ ¼ Pϕ;

h0 ¼ Hμ
0Pμ ¼ −Et − rPr;

h− ¼ Hμ
−Pμ ¼ −

�
t2 þ 1

r2

�
E − 2trPr −

2

r
L: ð3:5Þ

The constants E and L are the NHEK analogs of the energy
and angular momentum.1 The constant h0 originates from
the self-similarity of the system under t → t=λ; r → λr, and
h− is from the translational invariance along the global
time. An important property is that, under an MSEM field,
the Carter constant is restored

C ¼ CμνPμPν ¼ −h20 − Eh−; ð3:6Þ

which implies the separability of the Hamilton-Jacobi
equation. To see this, we need the specific form of the
MSEM field. Denote the potential as AMS, in the gauge
Aθ ¼ 0, the 1-form potential satisfying Eq. (3.4) must be of
the form

AMS ¼ fðθÞðdϕþ rdtÞ; ð3:7Þ

where fðθÞ is an undetermined function of θ. We may
transform the 1-form potential into a vector potential with
only one nonvanishing component

Aϕ ¼ fðθÞ
2ΓΛ2

: ð3:8Þ

In other words, the vector potential AMS is proportional to
W, such that it is obviously invariant under the isometry
group. Within the gauge we have chosen, C directly gives a
first-order differential equation,

C ¼ −r2U2
r þ

E2

r2
þ 2EL

r
; ð3:9Þ

where and hereafter E, L are rescaled by 1=m, and C
rescaled by 1=m2, thus all the conserved quantities become
dimensionless. Combining Eq. (3.9) with UaUa ¼ −1, we
can get rid of the Ur component and find a first-order
differential equation of the polar angle,

C ¼ U2
θ þ

�
1

Λ2
− 1

�
L2 þ 2Γþ k2f2ðθÞ − 2kLfðθÞ

Λ2
;

ð3:10Þ

where k ¼ q=m denotes the specific charge. As a result, the
equations are separated, and the trajectories are regular. Our
result is consistent with [31], where the authors used
numerical methods to study the trajectories in the Kerr
spacetime and found that almost all trajectories become
regular in the limit a → M. For convenience, we rewrite the
equations of motion in the following forms

2Γ
dt
dτ

¼ Eþ Lr
r2

; ð3:11Þ

2Γ
dϕ
dτ

¼ L
Λ2

−
Eþ Lr

r
− k

fðθÞ
Λ2

; ð3:12Þ

2Γ
dr
dτ

¼ �r

ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð3:13Þ

2Γ
dθ
dτ

¼ �θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
: ð3:14Þ

Here the symbols �r, �θ denote the sign of Ur and Uθ,
respectively, and we have introduced the radial and angular
potentials

RðrÞ ¼ −Cr2 þ 2ELrþ E2; ð3:15Þ

ΘðθÞ ¼ Cþ L2 − 2Γ −
1

Λ2
½L − kfðθÞ�2: ð3:16Þ

The potentials must be non-negative along the trajectories.
Note that only the angular potential Eq. (3.16) gets changed
by the presence of MSEM field, compared with the ones
without electromagnetic field. This is one of the main
results in this work. One can see that when the specific
charge k ¼ 0, Eq. (3.16) reduces to the form for geodesics
in NHEK. However, since fðθÞ is an undetermined
function that depends on the choice of the potential
AMS, we need to carefully analyze the angular potential
based on different electromagnetic field configurations.
Moreover, as k increases, the conserved quantities L and C
also increase, and the term “2Γ” in Eq. (3.16) becomes
negligible. Nevertheless, we will focus on the general case
and retain the “2Γ” term in our discussion.

1By the rescaling Eq. (2.4) we have Ẽ ¼ ϵE=2þ L=2, L̃ ¼ L,
where the tilde denotes the quantities in the Kerr spacetime. Thus,
when moving in the NHEK region, the particle’s Kerr energy is
determined by L if neglecting theOðϵÞ correction. Note that only
particles with L > 2m can reach the infinity.
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In addition, although the MSEM field also affects the
motion of ϕ, the effect is somehow trivial. In fact, from
Eq. (2.4), we learn that dϕ̃ ¼ dϕþ dt=ϵ ∼ dt=ϵ, which
means ϕ always increases for the future-directed particles.

B. The classification of radial motions

As the radial potential keeps invariant, the classification
of the motions of charged particles in the r direction is the
same as the ones of the geodesics in NHEK, which has been
discussed in [40,41]. We give a brief review here. At first,
since t is the global time in NHEK, a future-directed
trajectory should satisfy dt=dτ > 0, which gives

r≷rc ¼ −
E
L
; if L≷0; ð3:17Þ

from Eq. (3.11). Then, the radial potential in Eq. (3.15) can
be rewritten as

RðrÞ ¼ −Cðr − r−Þðr − rþÞ; ð3:18Þ

with the roots r� ¼ ELC−1ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CL−2

p
Þ. One can

compare the values of r� with rc to find the allowed regions
of motion. We list the classification below and present the
phase space in Fig. 1.

Case 1: C > 0 or C > −L2, L < 0. In this case, E > 0
must be satisfied. There is an outer bound at r�L

,
where �L is the sign of L. Thus the particles are
confined in the region 0 ≤ r ≤ r�L

and cannot escape
to infinity. In Fig. 1, this case is shown as the light blue
region outside the gray curve.

Case 2: −L2 < C < 0; L > 0. If E > 0, then the allowed
region is r ∈ ½0;þ∞Þ with no turning point, while
E < 0, the allowed region becomes r ∈ ½rþ;þ∞Þ,
where rþ is the turning point of the particles. In Fig. 1,
we use the light green region outside the gray curve to
represent this case.

Case 3: C < −L2. In this case, both L;E < 0 are
forbidden. If L; E > 0, then the allowed region is
r ∈ ½0;þ∞Þ. If L > 0, E < 0, then the allowed region
is r ∈ ½rc;þ∞Þ. If L < 0, E > 0, then the allowed
region is r ∈ ½0; rc�. For the latter two cases, the
trajectories can reach rc and change their time
directions. In Fig. 1, this case is indicated by the
region inside the gray curve. However, this case is
excluded by the constraint from θ motion [40] for the
geodesics of timelike particles. In the following, we
can see that it is also excluded in both the force-free
solution Eq. (4.8) and the Wald solution Eq. (4.28).

Case 4: C ¼ 0. In this case, E > 0 is required. If L > 0,
then the allowed region is ½0;þ∞Þ, which is repre-
sented by the green line in Fig. 1. If L < 0, then the
allowed region is ½0; rc=2�, represented by the blue
line in Fig. 1.

IV. THE ANGULAR MOTIONS

In this section, we investigate the angular motions of
charged particles in the NHEK geometry, in the presence of
different MSEM fields. We consider two kinds of MSEM
fields, one being the force-free one, the other being the
vacuum solution. We pay our attention to not only the
equatorial but also off-equatorial motions.

A. General properties

We start with the general properties of the angular
potential Eq. (3.16). For an MSEM field, the electromag-
netic invariant is

−F2 ¼ −FμνFμν ¼ 1

2Γ2

�
fðθÞ þ ∂θfðθÞ

Λ

��
fðθÞ − ∂θfðθÞ

Λ

�
:

ð4:1Þ
The field strength is electric dominant when −F2 > 0, and
is magnetic dominant when −F2 > 0. To avoid the singu-
larities at the poles, ∂θfð0Þ and ∂θfðπÞ should be zero. Near
the north pole, the angular potential can be expanded as

ΘðθÞ ≈ Cþ L2 − 2 −
�
kfð0Þ − L

θ

�
2

þOðθÞ: ð4:2Þ

Note that for the angular potential near the south pole,
we only need to replace fð0Þ by fðπÞ, so we only give a
discussion for the north pole. If L ≠ kfð0Þ, then the
potential diverges at the pole such that particles can never
reach the pole. If L ¼ kfð0Þ, then we have Θð0Þ ¼ Cþ
k2f2ð0Þ − 2 and Θ0ð0Þ ¼ 0. Thus, for C ≥ 2 − k2f2ð0Þ, the

10 5 0 5 10
10

5

0

5

10

FIG. 1. Phase space of future-directed radial motions.
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particles can reach the north pole, and when the equality
holds, the particles can move along the axis.
Second, the equatorial motions take place only when

Θðπ=2Þ ¼ Cþ L2 − 1 −
1

4
½kfðπ=2Þ − L�2 ¼ 0; ð4:3Þ

∂θΘðπ=2Þ ¼ −
k
2
∂θfðπ=2Þ½kfðπ=2Þ − L� ¼ 0: ð4:4Þ

When ∂θfðπ=2Þ ¼ 0, Eq. (4.4) is always true so that
the equatorial motions requires the condition Eq. (4.3),
which gives a curve in the parameter space of ðC;LÞ.
But when ∂θfðπ=2Þ ≠ 0, there must be L ¼ kfðπ=2Þ
for the equatorial motions. As a result, in the parameter
space the equatorial motions correspond to a point ð1 − L2;
L ¼ kfðπ=2ÞÞ combined with the solution curve of
Eq. (4.3). Moreover, the stability of equatorial motion is
determined by

∂
2
θΘðπ=2Þ ¼ −2 −

1

2
½k∂θfðπ=2Þ�2 −

1

2
½L − kfðπ=2Þ�

× ½3L − 3kfðπ=2Þ − k∂2θfðπ=2Þ�: ð4:5Þ

The unstable/stable motions correspond to ∂
2
θΘðπ=2Þ≷0. If

∂θfðπ=2Þ ¼ 0, then Θ00ðπ=2Þ becomes a function of L, so
that the stability depends on the value of L. In the case
∂θfðπ=2Þ ≠ 0, L ¼ kfðπ=2Þ, the equatorial trajectories are
always stable since the term −2 − 1

2
½k∂θfðπ=2Þ�2 in the

Eq. (4.5) is always negative.

B. Force-free solution

In this subsection, we focus on the force-free solution2 in
which the source feels a vanishing Lorentz force,

JμFμν ¼ 0: ð4:6Þ

On the other hand, from theMaxwell equation∇μFμν ¼ Jν,
we can get

Jμ∂μ ¼ −
1

2Γ2Λ

�
∂θ

�
∂θfðθÞ
Λ

�
þ ΛfðθÞ

�
∂ϕ; ð4:7Þ

which is a pure toroidal current since only the ϕ component
of Jμ survives. Combining with Eq. (4.6), we find that
fðθÞ ¼ f0 must be a constant and

A ¼ f0ðdϕþ rdtÞ; Jμ∂μ ¼ −
2f0

1þ cos2 θ
∂ϕ; ð4:8Þ

which describes an electric-dominated field outside the
ergosphere.3 Considering the fact that the system of interest
has the Z2 symmetry (θ → π − θ), so we only focus on
0 ≤ θ ≤ π=2 without losing generality. It is convenient to
define

z ¼ cos2θ; ð4:9Þ

then Eqs. (3.14) and (3.16) can be rewritten as

Γ
dz
dτ

¼ �θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zΘFFðzÞ

p
¼ �θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðaz2 þ bzþ cÞ

q
; ð4:10Þ

a ¼ 1 −
1

4
ðL − EÞ2; b ¼ −C −

3

2
L2 þ EL −

1

2
E2;

c ¼ Cþ L2 − 1 −
1

4
ðL − EÞ2; ð4:11Þ

with E ¼ kf0 being the electromagnetic parameter.
The angular potential ΘFFðzÞ has two roots z� ¼
1
2a ð−b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ. Note that at the north pole, z ¼ 1,

and the angular potential ΘFFðzÞ becomes

ΘFFð1Þ ¼ aþ bþ c ¼ −ðL − EÞ2; ð4:12Þ

which is negative when L ≠ E. ConsideredΘFFð0Þ ¼ c, the
allowed region of motion is z ∈ ½0; z∓a

� with ∓a being
minus the sign of a, when c > 0. In this case, the particles
oscillate between θ−¼ cos−1 ffiffiffiffiffiffiffiz∓a

p and θþ¼π−cos−1 ffiffiffiffiffiffiffiz∓a

p ,
crossing the equatorial plane for each oscillation. These
trajectories are usually called “oscillatory” motions. The
yellow and orange regions in the phase spaces in Fig. 2
represent the oscillatory motions for a < 0 and a > 0,
respectively. Actually, in the force-free field, there holds

c ¼ CþL2 − 1−
1

4
ðL− EÞ2 ≥ CþL2 − 2Γ−

1

Λ2
ðL− EÞ2

¼ ΘFFðzÞ ≥ 0: ð4:13Þ

In Fig. 2 the case c < 0 is indicated by the red color, labeled
as the forbidden regions. When c ¼ 0, the particles can
move in the equatorial plane with

Ceq ¼ 1 −
3

4
L2
eq −

1

2
ELeq þ

1

4
E2; ð4:14Þ

and the stability is determined by ∂zΘFFð0Þ ¼
−1 − 3ðLeq − EÞ2=4 < 0. Thus, all the equatorial motions
are stable, represented by the orange curves in Fig. 2.
Except for the special case c ¼ 0, we can conclude that

only the oscillatory motions are allowed. This picture can

2The force-free fields have been explored to approximate black
hole magnetospheres [48]. In the NHEK geometry, the force-free
condition is equal to the degenerate condition, ð⋆FÞμνFμν ¼ 0.

3There is no global timelike Killing vector in NHEK, and only
the region outside the ergosphere are the physical region of
electromagnetic fields [61].
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be inferred from the study of the geodesics in the NHEK
geometry. It has been shown in [40] that the NHEK
geodesics are all oscillatory and the angular potential of
the NHEK geodesics takes the form of Eq. (3.16) with
fðθÞ ¼ 0. In our force-free case, we have fðθÞ ¼ f0 as a
constant so that the angular potential is simply modified by
adding a constant.
Moreover, it can be checked that Cþ L2 > c ≥ 0 for all

the equatorial and off-equatorial motions. This ensures that
a charged particle can never reach rc and that the time
direction is kept unchanged in the force-free field consid-
ering the radial potential discussed in Sec. III B.

C. Vacuum solution

Next we turn to another class of MSEM fields, which are
produced by the sources outside the NHEK region. In this
case, we have Jμ ¼ 0 in the Eq. (4.7) and obtain the vacuum
solution

A ¼
�
AM

sin2θ
1þ cos2θ

þ AE
2 cos θ

1þ cos2θ

�
ðdϕþ rdtÞ: ð4:15Þ

The parameters AM, AE are real constants, which can be
taken as magnetic and electric fields in the sense that near
the axis, the electromagnetic invariant becomes

−F2 ≈ ðA2
E − A2

MÞ=2: ð4:16Þ

We define

u ¼ cos θ; ð4:17Þ

and the angular equation can be rewritten as

2Γ
du
dτ

¼ ∓θ

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘvðuÞ

p
; ð4:18Þ

with the angular potential

ΘvðuÞ ¼
�
1 −

L2

4

�
u4 −

�
Cþ 3

2
L2

�
u2 þ Cþ 3

4
L2 − 1

−
�
kAML
2

þ k2A2
M

4

�
u4 − ðkAELþ k2AMAEÞu3

þ k2
�
A2
M

2
− A2

E

�
u2 þ ðkAEL − k2AMAEÞu

þ k
AML
2

− k2
A2
M

4
: ð4:19Þ

One can see that this potential is invariant under L → −L,
AM → −AM, AE → −AE. Note that the system does not
have Z2 symmetry (θ → π − θ), which complicates the
classification of motions.
We consider two special cases here before we discuss the

more general cases. The first special case is that of the
equatorial motions, which requires

Θvð0Þ ¼ ∂uΘvð0Þ ¼ 0; ð4:20Þ

and then

Leq ¼
�
arbitrary value; if AE ¼ 0

kAM; if AE ≠ 0
;

Ceq ¼ 1þ 1

4
ðk2A2

M − 2kAMLeq − 3L2
eqÞ: ð4:21Þ

As discussed in Sec. IVA, if AE ¼ 0, then there exists a
class of equatorial motions with various L, but if AE ≠ 0,

FIG. 2. Phase spaces of angular motions in the force-free field.
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then the equatorial trajectories must have fixed parameters.
The stability is determined by the sign of

∂
2
uΘvðuÞjeq ¼ −1 − k2A2

E þ 1

4
ðkAM þ 3LeqÞðkAM − LeqÞ;

ð4:22Þ

where the subscript “eq” means that the function takes
value at L ¼ Leq, C ¼ Ceq, and u ¼ 0. For a nonvanishing
AE, ∂2uΘvðuÞjeq ¼ −1 − k2A2

E < 0, which means that the
equatorial trajectories are always stable. The case AE ¼ 0

with generic trajectories will be discussed carefully in the
next subsection.
The second special case is a type of motion that lies on

conical surfaces which are determined by

ΘvðuÞ ¼ 0; ∂uΘvðuÞ ¼ 0; u ≠ 0: ð4:23Þ

Such kind of conical motion is absent in the NHEK
geodesics. In this kind of motion, the conserved quantities
in the parameter space are constrained by the above
relation (4.23),

L�ðuÞ ¼
kAMð1 − u2Þ2uþ kAEðu4 − 4u2 − 1Þ � ð1 − u2ÞX

uð3 − u2Þð1þ u2Þ ;

C�ðuÞ ¼
Y ∓ ½2kAMð3 − 2u2 þ 3u4Þu − kAEð3þ 15u2 − 3u4 þ u6Þ�ð1 − u2ÞX

2ð3 − u2Þ2ð1þ u2Þ2u2 ; ð4:24Þ

where

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2A2

Mðu2 þ 4Þu2 þ k2A2
Eð1 − u2Þ2 þ 4k2AMAEð1 − u2Þu − 4ð3 − u2Þð1þ u2Þu2

q
;

Y ¼ −2k2A2
Mð3 − 14u2 þ 12u4 − 2u6 þ u8Þu2 − k2A2

Eð3þ 9u2 þ 42u4 − 26u6 þ 3u8 þ u10Þ
þ 32k2AMAEð1 − u2Þ2u3 þ 4ð9þ 2u4 þ 8u6 − 3u8Þu2: ð4:25Þ

Note that X2 must be non-negative, which gives a constraint
on the allowed region of u. As these expressions are very
complicated, we would not like to give a detailed dis-
cussion on this case. Instead, we will focus on a simple case
AE ¼ 0 in the following, since AE ¼ 0 implies that the
gauge potential is magnetic dominant, which is a more
realistic situation in astrophysics.

1. Angular potential and off-equatorial motions

In the following, we take AE ¼ 0 in the vacuum solution.
When AE ¼ 0, the vacuum solution Eq. (4.15) actually
reduces to the Wald potential in the near-horizon limit [60].
To clarify this point, recall that the Wald vector potential in
the Boyer-Lindquist coordinates takes the form

AW ¼ ðaB −Q=2Þ∂t̃ þ ðB=2Þ∂ϕ̃; ð4:26Þ

where Q is the charge of the black hole, and B is a test
magnetic field vertical at infinity. When zooming into the
NHEK region by Eq. (2.4), we have

2∂t̃ ¼ ϵp∂t − ∂ϕ; ∂ϕ̃ ¼ ∂ϕ: ð4:27Þ

In the leading order, only the field produced by the charge
survives, and the vector potential reduces to [47]

AW ¼ Q
4
∂ϕ; ð4:28Þ

which is the same as the field (4.15) if we identifyQ ¼ AM.
The physical reason why we drop the test magnetic field in
the Wald vector potential is that the extreme black hole
behaves like a perfect diamagnet, excluding the lines of test
magnetic fields [62], and only the intrinsic field provided
by Q survives. Moreover, although the test magnetic term
in the potential is dropped, the charge Q still generates a
magnetic dipole due to the fast rotation of the black hole, so
that the Eq. (4.28) describes a magnetic-dominated case,
i.e., −F2 < 0 outside the ergosphere.
Now we turn to study the angular potential in the back-

ground of Eq. (4.28). We will concern the off-equatorial
motions especially. Note that the system has an Z2

symmetry (θ → π − θ), so we consider 0 ≤ θ ≤ π=2 with-
out loss of generality. By defining

z ¼ cos2θ; ð4:29Þ

we can obtain a quadratic angular potential and find

Γ
dz
dτ

¼ �θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zΘWðzÞ

p
¼ �θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðaz2 þ bzþ cÞ

q
; ð4:30Þ
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a ¼ 1 −
1

4
ðLþBÞ2; b ¼ −C −

3

2
L2 þ 1

2
B2;

c ¼ Cþ 1

4
ðLþBÞð3L −BÞ − 1; ð4:31Þ

where we have introduced an electromagnetic parameter
B ¼ kQ. In addition, considering that the potential is
invariant under L → −L, B → −B, we may set B ≥ 0
for simplicity. It should be stressed that the Eq. (4.30) has
appeared in [47], where the authors investigated the special
cases that charged particles move along the axis and on the
equatorial plane. However, in the present work we mainly
focus our attention to general off-equatorial motions and
quantitatively study the effect of the electromagnetic field.
Hence, we need a detailed analysis of the angular potential
in the Eq. (4.30).
Obviously, the equation

ΘWðzÞ ¼ az2 þ bzþ c ¼ 0 ð4:32Þ

has two roots at z� ¼ ð−b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ=2a. And at the

poles the potential becomes

ΘWð1Þ ¼ aþ bþ c ¼ −L2: ð4:33Þ

The special case L ¼ 0 indicates that the trajectories might
cross the pole. It is beyond our interest, so we focus on
L ≠ 0 in the following. Therefore, we have ΘWð1Þ < 0. On

the other hand, we find ΘWð0Þ ¼ c. It is worth mentioning
that for the force-free case, the angular potential is always
non-negative at z ¼ 0, considering Eq. (4.13). However,
due to a nontrivial influence of B on the angular potential
in the vacuum solution, the sign of c is uncertain, and the
motions of charged particles need a detailed discussion.
We first consider the case c > 0. In this case ΘWð0Þ > 0

so that the charged particles move along normal oscillatory
trajectories, and the allowed region is z ∈ ½0; z∓a

�, with ∓a

being minus the sign of a. As an example, an oscillatory
trajectory is shown in the left plot in Fig. 3. We also present
the oscillatory motions for a < 0 and a > 0 in the phase
space indicated by the yellow and orange regions in the top
left figure of the Fig. 4, respectively, where we setB ¼ 10.
Then we move to the case c < 0. The motions of charged

particles must satisfy z ∈ ½0; 1�, such that the coefficients
have to obey

a < 0; 0 < −
b
2a

< 1; b2 − 4ac ≥ 0: ð4:34Þ

If the above inequalities can be satisfied, then the polar
angles of charged particles oscillate between θ− ¼
cos−1

ffiffiffiffiffi
zþ

p
and θþ ¼ cos−1

ffiffiffiffiffi
z−

p
, or π − θþ and π − θ−,

without crossing the equatorial plane, and such trajectories
are the so-called vortical motions. Likewise, we present an
example of a pair of vortical motions in the right plot
of Fig. 3, which are symmetric about the equatorial plane
and reflects the symmetric transformation θ → π − θ,

FIG. 3. Left: the trajectory of an oscillatory motion with the initial parameter chosen as B ¼ 50, ðE;L; CÞ ¼ ð20; 30; 100Þ, r ¼ 0.01,
and θ ¼ π=2. Right: the trajectories of two symmetric vortical motions with the initial parameter chosen as B ¼ 50,
ðE;L; CÞ ¼ ð5; 15;−220Þ, r ¼ 0.01, and θ ¼ π=4ðaboveÞ, 3π=4ðbelowÞ. For a better display, the trajectories are plotted in the
coordinate: x ¼ ϵ0r sin θ cos ðϕþ t=ϵ0Þ, y ¼ ϵ0r sin θ sin ðϕþ t=ϵ0Þ, z ¼ ϵ0r cos θ, with ϵ0 ¼ 0.001. The event horizon is at (0,0,0),
and the yellow planes denote the equatorial plane.
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ϕ → ϕþ π, �θ →∓θ in Eq. (4.30). In addition, in the top
left figure in Fig. 4, we also show the vortical motions in the
phase space which are indicated by the gray color.
Considering the fact that there are no vortical motions
for the geodesics in the NHEK region [40], we can easily
conclude that these vortical motions are caused by the
electromagnetic force.
At last, we give a brief discussion on the case c ¼ 0.

In this case, we have ΘWðz ¼ 0Þ ¼ c ¼ 0, which corre-
sponds to

ΘW

�
θ ¼ π

2

�
¼ ∂θΘW

�
θ ¼ π

2

�
¼ 0; ð4:35Þ

and

∂
2
θΘW

�
θ ¼ π

2

�
∝ ∂zΘWðz ¼ 0Þ

¼ −1þ ðBþ 3LÞðB − LÞ=4: ð4:36Þ

When ∂zΘWðz ¼ 0Þ ≤ 0, the potentialΘWðzÞ is a decreasing
function in z ∈ ½0; 1�, thus the particles are confined to the

equatorial plane and the trajectories are stable. When
∂zΘWðz ¼ 0Þ > 0, ΘWðzÞ increases to a peak and then
decreases in z ∈ ½0; 1�, and z ¼ 0 is an unstable extremal
point ofΘWðzÞ, corresponding to unstable equatorial motion.
In addition, we want to emphasize that all the motions

discussed above satisfy Cþ L2 ≥ 0 (see proof in the
Appendix), which means a charged particle never reaches
rc and is always future directed in the Wald potential.

2. More on vortical motions and astrophysical
implications

In this subsection, we would like to illustrate the features
of the phase space more carefully. In particular, we want to
give a more detailed analysis of the vortical motions.
First, it is worth mentioning that there are vortical

motions only in the vacuum solution, and no such motions
in the force-free model. It is expected that the force-free
model would be a good approximation of the magneto-
sphere away from the equatorial plane based on simula-
tions. However, it should be noted that the force-free
MSEM considered in this work assumes maximal sym-
metry, which is an oversimplification and idealization

FIG. 4. Top left: phase space of angular motions in the Wald potential with B ¼ 10. The phase spaces with larger B are qualitatively
similar. Down left: end points of two branches of conical motions withB ¼ 10. Top right: the end points and the cusp are plotted as the
functions of B. The plot region is B ∈ ½1.6; 2.4�. Bottom right: ηvor as a function of logB. The plot region is B ∈ ½1; 30�.
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compared to normal force-free solutions in astrophysical
research. It would be interesting to see if vortical motion
can appear with the assumption being relaxed.
Then, let us focus on the boundaries of the vortical

motions in the phase space. It is convenient to zoom in on
the gray region of the top left plot in Fig. 4 to get the bottom
left plot. In the bottom left plot of Fig. 4, one can see that
the orange and light blue curves represent the stable and
unstable equatorial motions at c ¼ 0. In other words,
the stable equatorial motions form the boundary of the
oscillatory motions, and the unstable equatorial motions
form the dividing line between the oscillatory and vortical
motions in the phase space. Apparently, there could be
other critical motions that form the boundaries of the
vortical motions in the phase space.
For these additional critical motions, we have z− ¼ zþ

corresponding to a constant θ, which is a simplified case of
Eq. (4.23). In this case, the charged particles are moving on
conical surfaces and the trajectories are determined by

ΘWðzÞ ¼ Θ0
WðzÞ ¼ 0: ð4:37Þ

For simplicity, we would like to call them the conical
motions which are short for the motions on the conical
surfaces. The corresponding conserved quantities take the
form

L�ðzÞ ¼
Bðz − 1Þ2 � 2ð1 − zÞX

ðzþ 1Þð3 − zÞ ;

C�ðzÞ ¼
Y ∓ 2Bð3z2 − 2zþ 3Þð1 − zÞX

ðzþ 1Þ2ð3 − zÞ2 ; ð4:38Þ

where we introduced

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 2zþB2 − 3

p
;

Y ¼ −ðB2 þ 6Þz4 þ 2ðB2 þ 8Þz3 þ 4ð1 − 3B2Þz2
þ 14B2zþ 18 − 3B2: ð4:39Þ

The condition X2 ≥ 0 leads to

z2 − 2zþB2 − 3 ≥ 0; ð4:40Þ

which requires that B2 − 3 be non-negative in order that
the above inequality can be obeyed for z ∈ ½0; 1�. As a
result, we obtain a critical value of the electromagnetic
parameter as

Bc ¼
ffiffiffi
3

p
: ð4:41Þ

When B < Bc, there is no conical motion, and conse-
quently the vortical motions do not exist as well. Simply
speaking, B ≥ Bc is a necessary condition to have vortical
motions.

When the condition B ≥ Bc holds, there are two
branches LþðCþÞ and L−ðC−Þ from Eq. (4.38), corre-
sponding to two smooth curves in the phase space. In the
bottom left plot of Fig. 4, we set B ¼ 10 >

ffiffiffi
3

p
so that the

vortical and conical motions exist; LþðCþÞ and L−ðC−Þ are
marked by the red and dark blue curves, respectively, and
their intersection is given by ðCm; LmÞ. Moreover, we use
ðC0þ; L0þÞ to denote the intersection of the light blue and the
red curves, and ðC0

−; L0
−Þ to represent the intersection of the

light blue and the dark blue curves, where the light blue
one is a portion of the curve determined by c ¼ 0. Now, we
see that when B > Bc the existing vortical motions are
bounded by the curves LþðCþÞ, L−ðC−Þ, and c ¼ 0 with a
few intersection points.
The values of the intersection points ðC0þ; L0þÞ, ðC0

−; L0
−Þ,

and ðCm; LmÞ can be determined for a fixed B. Combining
c ¼ 0 and L ¼ LþðCþÞ, we obtain that at z ¼ 0

L�ð0Þ ¼ L0
� ¼ 1

3
B� 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −B2

c

q
;

C�ð0Þ ¼ C0
� ¼ 2 −BL0

�; ð4:42Þ

which means the solid angle of the conical plane is 2π and
the conical plane coincides with the equatorial plane. On
the other hand, the non-negativity of X2 gives an upper
limit of z, z ¼ zm. For the caseBc < B < 2, we have zm ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −B2

p
and

L�ðzmÞ ¼ Lm ¼ 4

B
−B;

C�ðzmÞ ¼ Cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −B2

p �
8

B2
− 2

�
−B2 −

32

B2
þ 14:

ð4:43Þ

For the case B > 2, we always have zm ¼ 1, and
ðCm;LmÞ≡ ð2; 0Þ, which corresponds to the motions along
the spin axis. The behaviors of C0

�; L
0
�; Cm; Lm as the

functions ofB are shown in the top right plot of Fig. 4. For
B ¼ Bc, all the points coincide with L ¼ 1=

ffiffiffi
3

p
, C ¼ 1.

Moreover, in the case that Bc < B < 2 all the conical
motions are prograde as Λ0

� > 0, while in the case that
B > 2, the conical motion could be prograde with L0þ > 0

as well as retrograde with L0
− < 0.

Next, we consider the stability of the conical motions.
From Eqs. (4.30) and (4.38), we can easily have
∂
2
zΘWðzÞ ≤ 0, which means the conical motions are always
stable. Moreover, L0þðC0þÞ, L0

−ðC0
−Þ correspond to marginal

stable motions, since in this case ∂
2
zΘWðzÞ ¼ 0. Since the

conical motions form the boundary of the vortical motions,
they will change into the vortical motions and swing
slightly around the original conical surface under a per-
turbation of the conserved quantities.
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Furthermore, since the vortical motions are bounded, the
area of the vortical motions in the phase space should be
finite. To characterize the ratio of the vortical motions in the
phase space, we would like to introduce a parameter ηvor as

ηvor ¼
Z
vor

dCdL
S0

; ð4:44Þ

where “vor”means an integration in the vortical region, and
S0 is defined as the area of the rectangle4 bounded by the
straight lines C ¼ C� and L ¼ L�. From Eq. (4.42) we
have

S0 ¼ ðC0
− − C0þÞðL0þ − L0

−Þ ¼ 16BðB2 − 3Þ=9: ð4:45Þ

Strictly speaking, ηvor is not the ratio of the vortical motions
in the whole phase space, it only characterizes the ratio of
the vortical motions in the space enclosed by the rectangle.
It is straightforward to compute ηvor, with the help of the
expressions of the conical motions. The bottom right plot
of Fig. 4 shows the result of ηvor as a function

5 of B. Note
that for

B ¼ Bc þ δB; 0 < δB ≪ 1; ð4:46Þ

we have

S0 ≈ 10.66 δB and
Z
vor

dCdL ≈ 0.51ðδBÞ2: ð4:47Þ

Thus, ηvor is of OðδBÞ near B ¼ Bc. When B is increas-
ing, ηvor is getting larger, which implies that the enlarged
electromagnetic field triggers more vortical motions of
charged particles. However, as B increases enough, we
have ηvor → 0.062. In this case, the system is almost
completely dominated by the Lorentz force, and the phase
space gains an emergent symmetry, that is, B → λB,
L → L=λ; C → C=λ2, where λ is the scaling factor.
The novel features related to a charged black hole

discussed above might have some astrophysical signifi-
cance. In the Gauss unit, for a particle of charge q and mass
m, there is

B ¼ 1

G
q
m

Q
M

∼ 3 × 1022
�
q
e

��
mp

m

��
Qffiffiffiffi
G

p
M

�
; ð4:48Þ

where e is the unit charge, mp is the ion’s mass (the
hydrogen nucleus), and Q is the black hole charge.
Astronomically, the black hole accretes hot plasma to
the near-horizon region, forming a disk region near the
equatorial plane. Moreover, abundant collisionless particles
can be accreted or produced outside the disk region [63],
where they are accelerated by the magnetosphere and emit
nonthermal synchrotron radiation. Note that the single-
particle approximation only applies outside the disk region,
thus only the vortical motions can produce nonthermal
radiations in NHEK geometry. Considering the radiations
could escape to infinity, the signature of the charged
particles moving vortically might be observed by the
telescopes.
On the other hand, as the specific charge of electron is

much larger than that of ions, so that Be ≈ 2000Bion. If
Be ≲Bc, then there are only oscillatory motions and no
nonthermal radiations. If Bi ≲Bc < Be, then only elec-
trons can move vortically, while if Bi > Bc, then both
electrons and ions can move vortically. As an example, for a
supermassive black hole with mass M ¼ 1010M⊙, as long
as the black hole charge Q is larger than 1.4C, the
radiations from near-horizon vortical electrons could be
observed. However, the radiations from near-horizon vor-
tical ions could be observable only when Q > 2800C.
Finally, we would like to comment on the extraction of

rotational energy through electromagnetic fields. The
Blandford-Znajek mechanism [64] states that the energy
of a Kerr black hole can be extracted through magnetic field
torsion in the form of Poynting flux based on the force-free
solution. On the contrary, unlike the force-free solution,
the vacuum solution cannot generate an energy flux from
the horizon, suggesting that energy extraction through the
vacuum electromagnetic field is not feasible. Additionally,
as the NHEK spacetime on which the present work based is
not asymptotically flat, a more careful analysis is required
to see if the vortical motion can be extended to the
asymptotical flat region and check the efficiency of energy
extraction.

V. SUMMARY AND DISCUSSION

In this work, we studied the motions of charged particles
under MSEM fields in the NHEK geometry. Due to the
enhanced symmetry, there are enough conserved quantities
to simplify the equations of motion, which turn out be only
a set of decoupled first-order differential equations. Even
though the radial motions are similar to the geodesics in
NHEK, the angular motions are changed significantly by
the electromagnetic fields. We investigated the motions of
charged particles in two MSEM fields, the force-free field
and the field in vacuum solutions. In the force-free case,
there are stable equatorial motions and oscillatory motions,
similar to the geodesics in NHEK. In the vacuum solution,
we mainly focused on the case that AE ¼ 0, which recovers

4By Eq. (4.38) one finds that both LþðCþÞ and L−ðC−Þ are
decreasing functions of Cþ and C−, respectively. Then in the
phase space, the parabolic curve determined by c ¼ 0 has an
extreme point with L ¼ −B=3 < L0

−. Thus, the rectangle enc-
loses the vortical region in the phase space.

5When we extend to the regime B < Bc, the expression of S0
still holds, but there is no vortical motion. Nevertheless, we may
define ηvor ≡ 0 for B ≤ Bc and obtain the straight interval for
0 ≤ B < Bc in the bottom right plot of Fig. 4.
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the Wald potential in the NHEK geometry, and discussed
the motions of charged particles in detail.
The motions of charged particles under the Wald

potential in NHEK geometry present some novel features.
In the NHEK region, the Wald potential is dominated by an
electromagnetic field Eq. (4.28). In this case, the angular
motions could be classified into two types, one being the
oscillatory motions that cross the equatorial planes con-
tinually, and the other being the vortical motions without
crossing the equatorial plane. We found the critical value of
the electromagnetic parameter Bc ¼

ffiffiffi
3

p
above which the

vortical motions would occur. Among the vortical motions,
there is a special subclass of motions, in which the particles
move in a conical surface with fixed θ. Actually in the
“phase space” of the motions Fig. 4, the vortical motions
are surrounded by the conical motions and unstable
equatorial motions. We calculated the conserved quantities
of the conical motions and showed their changes with B in
the top right plot of the Fig. 4.
In addition, since the electromagnetic field can be seen as

a magnetosphere produced by a weakly charged black hole,
we further discussed some astrophysical implications ofBc
and found that even a weak black hole charge might induce
a significant difference between the behaviors of electrons
and ions in NHEK geometry, thus triggering relevant
observational signatures.
We close this paper with some outlooks. On the one hand,

as the first step to considering more realistic models, the
discussion is limited to charged particle dynamics in the
NHEK geometry with a weak electromagnetic field. It would
be interesting to consider the effect of a strong field that
affects the background geometry, like the near-horizon
description of extreme Ernst-Wild solution and extreme
MKN black holes [65]. On the other hand, it is of both
theoretical and astrophysical importance to extend the study
to the whole extreme Kerr throat, not just the NHEK region.
It is also essential to investigate the observational signatures
of charged particles inside or outside the Kerr throat.
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APPENDIX: PROOF OF C +L2 ≥ 0
IN THE WALD POTENTIAL

In this section we demonstrate that the constraint
d ¼ Cþ L2 ≥ 0 holds for the motions in NHEK under
the Wald potential Eq. (4.28). The angular potential takes

ΘðzÞ ¼ az2 þ bzþ c ðA1Þ

with

a ¼ 1 − ðLþBÞ2=4; b ¼ −C − 3L2=2þB2=2;

c ¼ Cþ ðLþBÞð3L −BÞ=4 − 1: ðA2Þ
On one hand, for the oscillating motions, we have

d > Cþ L2 − 1 ≥ Cþ 1

4
ðLþBÞð3L −BÞ − 1 ¼ c ≥ 0;

ðA3Þ
where we have used ðLþBÞð3L −BÞ ≤ 4L2. So we have
d > 0 for the oscillating motions. Then, for the vortical
motions, the constraint is

a < 0; c < 0; 0 < b < −2a; b2 − 4ac > 0:

ðA4Þ

Define x� ¼ L�B, thus

a ¼ 1 −
1

4
x2−; b ¼ 1

2
xþx− − d; c ¼ d −

1

4
x2þ − 1:

ðA5Þ

The expression of x� can be written as

xþ ¼ � bþ dffiffiffiffiffiffiffiffiffiffiffi
1 − a

p ; x− ¼∓ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
: ðA6Þ

Inserting Eq. (A6) into the third equation of Eq. (A5), we
obtain

d2 þ Sdþ T ¼ 0; ðA7Þ

where

S ¼ 2ðbþ 2a− 2Þ; T ¼ b2 þ 4ð1− aÞð1þ cÞ: ðA8Þ

The roots of Eq. (A7) are

d� ¼ 1

2
ð−S �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − 3T

p
Þ: ðA9Þ

Since 0 < b < −2a, one has S < −4. Moreover, the
inequality 4ac < b2 < 4a2 means a < c < 0, thus we have

T ¼ b2 − 4acþ 4ð1 − aþ cÞ > 4ð1 − aþ cÞ > 4 > 0:

ðA10Þ

Therefore, we have jSj > ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S − 4T

p
and the roots must

satisfy

dþ > d− > 0; ðA11Þ

which means d > 0 for the vortical motions.
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