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In special-relativistic physics, spacetime is imbued with a fixed, nondynamical metric tensor. A path to
gravitational theory is to promote this tensor to a genuine dynamical field. An alternative description of
special-relativistic physics involves no fixed spacetime geometry but instead the inclusion of scalar fields

X!(x*) which dynamically may take the form of inertial coordinates in spacetime. This suggests an
alternative approach to gravity where the invariance of actions under global Poincaré transformations of X’
is promoted to either a local Poincaré, local translational, or local Lorentz symmetry via the introduction of
gauge fields. Points of commonality and departure of the resulting gravitational theories as compared to
general relativity are discussed. It is shown that the model based on local Lorentz symmetry is an extension
of general relativity that can introduce a standard of time into the dynamics of the gravitational field and
allows for spacetimes described by a Minkowski metric or flat Euclidean signature metric despite the
gravitational gauge field possessing nonzero curvature.

DOI: 10.1103/PhysRevD.107.124013

I. INTRODUCTION

The notion of gauge symmetry is a crucial part of the
mathematical structure of the standard model of particle
physics. Consider an action S, [y] describing the dynamics
of a matter field y that is invariant under a global (i.e.,
independent of location in spacetime) continuous sym-
metry represented by the transformation y — Uy (where
indices are suppressed for notational compactness).
Typically the action will not be invariant under local
symmetry transformations [U = U(x*)] as derivative terms
d,x present in the Lagrangian then do not transform
homogeneously under this transformation. However, the
global symmetry can generally be promoted to a local one
by the introduction of an additional field A,—called a
gauge field or connection—which allows for the creation of
a covariant derivative which—if the transformation U can
be represented as a matrix and y belongs to the fundamental
representation of the symmetry group—takes the form:

du =DMy =00 +Au. (1)

If, under the U transformation, A, » UA, U™ —9,UU™!
then D/(,A) x— UD,(,A> . The extension of the definition of
DLA) to matter fields in other representations of the
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symmetry group is straightforward. Alongside the modi-
fication S, [y] — S, [x.A,], the process is then completed by
the introduction of an action S4[A,, y] which allows for the
dynamics of A, to be well defined. An example of this
process would be that of a complex scalar field theory,
where the Lagrangian density in inertial coordinates in
Minkowski spacetime is £, = —1#0,¢0*0,¢ — V(¢*9) is
invariant under global U(1) transformations ¢p — ¢'*¢. The
U(1) invariance can be made local by introducing a field A,

to construct the covariant derivative DLA>¢ =0, +A,;
the resultant locally U(1) invariant action for ¢ is then
supplemented by the Lagrangian density £, = — i F"F,,
where F,, =20,,A,, which provides dynamics for the
field A,,.

In this paper we will consider a similar gauging process
in the context of gravitation, first reviewing existing results
that show how it can be used to recover general relativity
then exploring a new variant that yields novel gravitational
dynamics.

Special relativistic theories are commonly formulated in
terms of matter fields existing in a space with fixed-
geometrical structure, i.e., Minkowski space and its accom-
panying metric tensor 7, An alternative approach is to not
assume the presence of 7, but rather introduce a set of four
scalar fields X’(x*) which are dynamical in the sense the
action is stationary with respect to small variations of these
fields and this results in them having own equations of
motion. Actions can be constructed so that dynamically the

© 2023 American Physical Society
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fields end up configured to play the role of inertial
coordinate fields in spacetime with an effective metric
emerging via the combination 7,, = 7;,0,X'd,X’, where
ny = diag(—1,1,1,1). Such theories are referred to as
“parametrized field theories.” An interesting property of
these theories is that the absence of fixed geometrical
structure (such as 77,,) means that such actions possess a
symmetry with respect to spacetime diffeomorphisms in the
manner familiar from gravitational theory. In addition, the
actions for parametrized field theories possess a global
symmetry:

X' — ALX! + Pl (2)

The combined effect of the orthogonal matrix A’; (repre-
senting a Lorentz transformation of X’) with P! is that
of a global Poincaré transformation of X, analogous to
the global coordinate transformations that preserve 7, =
(=1,1,1,1), i.e., that preserve the form of the Minkowski
metric in inertial coordinates.

It will be shown that the promotion of the global
symmetry (2) to a local one via the introduction of gauge
fields leads to gravitational theory. Specifically, if the entire
transformation (2) is promoted to a local one then the
Einstein-Cartan theory of gravity is recovered (see, for
example [1]). We then discuss the result that instead
promoting only the symmetry under global translations
of X’ to a local one results in the teleparallel formulation of
general relativity. These first two examples are known in
the literature. We will then show that a novel extension to
general relativity can be recovered if, instead, only the
global Lorentz symmetry is promoted to a local symmetry,
alongside the removal of the global invariance under
X' - X'+ Pl

The structure of the paper is as follows. In Sec. II we
introduce the notion of parametrization, beginning with
parametrized particle mechanics where models of mechan-
ics are formulated in a way such that Newtonian time is
promoted to an independent, dynamical field and then
proceeding to parametrized field theory in four dimensions
with the introduction of four dynamical “coordinate” fields
X!. Section III contains an overview of existing results in
the literature relating gravity to notions of the gauging of
global Poincaré symmetry: specifically, Kibble’s gauging
of the global Poincaré symmetry present in nonparame-
trized field theory and of how the gauging of the global
Poincaré symmetry that the X! fields possess in para-
metrized field theories leads to the first-order Einstein-
Cartan theory of gravity. Section IV continues the survey of
existing results with the demonstration of how gauging only
the global translations of X’ can lead to the teleparallel
formulation of general relativity. In Sec. V we present a
new possibility: that, instead, gauging only the global
Lorentz symmetry that the X’ fields possess leads to an
extension to general relativity with novel phenomenology.

In Sec. VI we obtain solutions to this model in Friedmann-
Robertson-Walker (FRW) symmetry, demonstrating the
appearance of an additional “dark” matter density in the
cosmological equations of motion. In Sec. VII we obtain
solutions to the model which correspond to Minkowski
space; interestingly, there are two structurally distinct
possibilities: one where the curvature of the gravitational
gauge field is zero, one where it is nonzero. The behavior of
small perturbations around these backgrounds is discussed.
In Sec. VIII we briefly discuss consequences of the
complex-valuedness of gravitational fields in the model,
such as the recovery of flat, four dimensional Euclidean
space as another solution to the model’s field equations. In
Sec. IX we discuss the phenomenology of the model and
future steps that to enable comparison between theory and
observation. In Sec. X we discuss the collected results in
the paper and present our conclusions.

II. PARAMETRIZATION

Newton’s laws of motion describing a particle with
position ¢' (i =1, 2, 3) follow from the stationarity of
the following action under small variations of g':

. m . dq'dg’ .
sl = [ ar (58,505 -v@). @)
The functional derivative 5S/8¢" = 0 is equivalent to:
d dg’ oV
"ar ( i dT) g’ @

Alternatively, one can look to promote the Newtonian time
T to an independent degree of freedom T'(4) [alongside
g' = q'(A)] where A parametrizes trajectories. We can
consider the following action:

(5)

This is the action for parametrized particle mechanics and is
invariant under reparametrizations 4 — f(1) that reduce to
the identity (4 — A1) at the end points of integration of the
action. The first equation of motion 6S/8q" = 0 is

d ((dT\~_ dg/ oV
() 5.2 = 220 6
" <<d/1> i dﬁ) g (6)

whereas there is now a new equation of motion following
from 6S/6T = 0:

d ((dT\2m _ dq'dq’ .
() 2, L L vighy) =0, (7
d/1<<d/1> 2%z az TV )> ™
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This equation can be integrated to yield:

<dT> 2m . dqg'dg’

a V(g') = E. 8
ai) 2% ar TV (8)

where E is a constant. There exist solutions where T varies
monotonically with 4 in which case a gauge/parametriza-

tion A=7 can be found and the collective equations of

motion are
m T (5,.,. ﬁ) = ©)
m . dq'dg’ -\
ms d4dd g 10
"5, 9090 vig) (10)

Therefore, Newton’s equations of motion with solutions
corresponding to a single value of energy E are recovered.
The theory also permits solutions where 7" does not vary
monotonically with A, for example admitting solutions
such as Lu =0 Where time seems not to flow or solutions
where the sign of 4 E varies. For such situations the gauge
T = 2 1is not globally accessible. Nonetheless, the quantum
mechanical propagator for this theory can be constructed
in terms of gauge/parametrization independent observables
and reproduce the results of standard quantum mechanics
based on the action (3) with T playing the role of time [2,3].

Now we consider the extension of these ideas to field
theory. For concreteness we consider the case of the electro-
magnetic field. The following action yields Maxwell’s
equations upon small variations of the field A,,:

1
S =—5 / b/~ QU F o Fope (1)

where 7, is the metric tensor of Minkowski spacetime,
F,, =20,4,, and {x'} are some set of coordinates
describing points in spacetime (not necessarily Minkowski
coordinates). Due to the fixed, flat geometry of spacetime
there exist “inertial” coordinate systems coordinatized by
{Xx"}, for which in a general coordinate system {x*}

ox! ox’

. 12
ox ox¥ (12)

Nw =M1y 57

where 5;; = diag(—1,1,1,1). In the case of mechanics
when described by the action (3), Newtonian time T
appears as a nondynamical, monotonically increasing
parameter. From a modern perspective T is, rather, reflec-
tive of the spacetime structure provided by the metric tensor
Guy» itself a dynamical field. One can imagine the motiva-
tion for promoting 7 to a field to be independently varied
and similarly, one might imagine looking to recover metric

9X X' instead of the fixed background

structure from n;; 5755

metric 7, and promote the fields X’ to being dynamical.
Then, consider the following action:

1 PAPATe Y
S'A,. XT] = —Z/d“x\/—det[n}n” MPF,Fap  (13)
where
oX' oX”’
77 — 14
77/41/ N5 0" oY ( )

and where 7;; = diag(—1,1,1,1) and 7 is the matrix
inverse of 7,,,, which is assumed to exist. The action (13) is
manifestly invariant under the global transformation (2) and
the equation of motion for X’ can be shown to be

) (15)

is the stress energy tensor of the electromagnetic
field; therefore the equation of motion for X! expresses
conservation of the stress energy tensor, analogously to the
equation of motion for Newtonian time 7 recovered the
conservation of energy. There exist solutions X! (x*) for

which there exist coordinates such that 9X’/ox* = 8. This

is a generalization of the A=7T gauge in parametrized
particle  mechanics. In these coordinates, 7, =
diag(—1,1,1,1) and so we see that X’ here play the role
of inertial coordinates in Minkowski spacetime. As
expected, for these solutions, this form of 7, is preserved
by the transformation (2). Generally, the recovery of
familiar classical field theory in Minkowski space is
possible in the parametrized approach, though interestingly
the recovery of standard results in quantum field theory
from the parametrized approach in four dimensions
encounters a number of technical challenges [4].

—0X
0= a,,( — det[q] axvl

where T,

III. GRAVITY VIA GAUGING OF GLOBAL
POINCARE INVARIANCE

The standard route to gravitation has been via Einstein’s
general relativity where 7, is promoted to a dynamical
field (denoted g,,) with its own action which is given—up
to the necessary Gibbons-Hawking-York boundary term—
by the Einstein-Hilbert action:

& /GR(g.  (16)

Solgwl =165
This approach must be modified somewhat when fermionic
fields are present. The actions of the standard model
of particle physics consists of the following dynamical
fields: gauge fields A, (spacetime one-forms), the electro-
weak Higgs field ¢ (a spacetime scalar), and fermionic
fields ¥, and y* [Weyl spinors, i.e., spacetime scalars
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in the fundamental representations of SL(2, C)] alongside
the nondynamical object élﬂ (a spacetime one form in
the fundamental representation of SO(1,3) such that
nyehe] =n,,). These actions are invariant under global
SL(2,C) transformations which act only on the Weyl
spinors and on é,’, via the group homomorphism between
SL(2,C) and SO(1, 3). The Lagrangian four forms £ that
are integrated to produce the actions of the standard model
transform as differential forms under diffeomorphisms that
act on both dynamical and nondynamical fields but also
transform as forms under diffeomorphisms that act only on
the dynamical fields for diffeomorphisms generated by
vector fields & that satisfy £,77,, = 0 (where £, denotes the
Lie derivative), i.e., & that satisfy this equation are the
Killing vectors of Minkowski space. There are ten inde-
pendent £7¥ and their commutator [£(7), £U)] satisfies the
Lie algebra of the Poincaré group ISO(1, 3). In this sense
the actions of the standard model possess a global SL(2, C)
symmetry and the Lagrangian forms exhibit a global
ISO(1, 3) covariance. It was shown by Kibble [5] (building
on earlier work by Utiyama [6]) that the global SL(2, C)
symmetry could be promoted to a local one by the
introduction of a gauge field @ valued in the Lie algebra
(@)

of SL(2, C)—such that the covariant derivative D,” y*'=
0" + " g x®, where o'y, =Law,, (510" —5/6)A
transforms homogeneously under this transformation.
Additionally, the remaining presence of nondynamical,
prior geometry was removed by the introduction of a
dynamical field e/, to appear in place of &, —such that
nyehel = g,,. The introduction of the set of dynamical
fields {e}, " p,} into the matter actions suggests that the
gauging process should be completed by providing action
allowing for a consistent dynamics of these degrees of
freedom, i.e., the introduction of gravitation as a dynamical

interaction. A simple possibility is the following action:

1
Sylw. €] = %/Eumel A el AR (o)
1
= 642G d*xe"Pepygp el e] REE p(w),  (17)

where &% is the Levi-Civita density and RY, =
20[,0" g + 20" g1@®’ . The action (17) is the Palatini
action in the Einstein-Cartan formulation of gravity and its
equations of motion are classically equivalent to general
relativity with an additional matter term quadratic in
fermionic currents.

This procedure can be interpreted as a combined gauging
of internal symmetries and the limited spacetime cova-
riances of the original nongravitational actions which
leads to a theory of matter and gravity that possess a local
internal SL(2, C) symmetry and is generally covariant in
the sense that the action is invariant under infinitesimal

diffeomorphisms generated by vector fields {# that vanish
at the boundary of the action’s integration that act on the
dynamical fields y as y — y + £ [7].

We note that the gauging procedure does not uniquely
fix the gravitational action but rather suggests a family of
potential actions, each of which must possess a symmetry
under both local SL(2, C) transformations and spacetime
diffeomorphisms. Indeed, allowing the gravitational action
to consist of terms up to quadratic order in RX!(w) and
T! = de' + " A e, is the approach of Poincaré gauge
theory which permits a wealth of interesting phenomenol-
ogy [8-14].

Now we return to the parametrized approach, now as
applied to the actions of the standard model. In the place of
the nondynamical field &} we instead have d,X”. Due to the
fields X’ now being dynamical, the actions are generally
covariant as well as possessing an additional invariance
under the following global transformations:

X' = A X7+ P (18)

where A;; = A7} (where indices have been lowered with
n;7)- We may consider what happens if some or all of the
global invariance under the transformation (18) is promoted
to a local invariance [1]. Consider the possibility that
{A;,P'} depend on spacetime coordinate. Therefore
under a local transformation parametrized by these quan-
tities we have

9, X" — Ao, X"+ 9,A' ;X7 +0,P". (19)

We can introduce the following fields {@’,,, 8.} to define a
Poincaré-covariant derivative:

DX =9, X" + o, X + 0. (20)

Under a transformation represented by {A’;(x), P'(x)} we
have

p{P'x! = A, D" x! (21)

if
o'y, = ANygo®p, (A™HE, - auAIK(A_l)KJ (22)
0, — AL,0) —a,P'. (23)

We note that the transformation (18) and definitions
(20), (22), and (23) follow from the five dimensional
matrix representation of the Poincaré group which we
summarize briefly in Appendix A.

Actions originally possessing the global Poincaré invari-
ance (18) then possess a local Poincaré invariance if all free
“gauge” indices of combinations of covariant derivatives
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Df)X’ are absorbed by contraction with symbols 7;; and
€17k (which are proposed to be invariant under the local
Poincaré transformations) alongside the promotion of

partial derivatives of spinors to covariant ones, e.g.,

0 — D\")y. Note that 5,,X'X” is not Poincaré invariant

and so cannot appear in the action. A potential action for
gravity is

S,lw.0,X] = / cxkDPIXT A DPIX) A REL ()

1
— 2/ d4x8ﬂD(1ﬁC[JKLD/(4P)XIDZ(/P)XJRKL(I/}(G)),

(24)

where
cuke = al€ykr + 2Pnikne)) (25)
Rl (@) = 20,0 5 + 20 k0™ . (26)

As in the case of (17), this action has been chosen as the one
of lowest order possible in curvature. Actions of higher
order in curvature are additionally consistent with this
gauging procedure and may be considered. Coupling to

matter fields y is implemented by the promotion 9, X’ —
D,SP)X’ and the use of the Lorentz covariant derivative

DY = 0, +Lwy;,S" acting on spinors:

Sy = Sulr. DPX!, 0! (8)]

~ [ £

The equations of motion obtained by varying S, + S, with
respect to w, 6, X respectively are:

(27)

(28)

2CKLM[1XJ]D<P)XKA RLM - 2CKL]JD((H> (D<P)XK/\ D<P)XL)
oL, oLc

T opPxi X g (5 =0 29)
—2¢k. DPIX? A REL - %n__ (30)
ClIKL aDPx!

oL,
6D(7’)X1> =0, (31)

where, for example, under a small variation of !/ the
variation of a Lagrangian four form £ is J§,L=
(0L/0w") A S . To make progress, it’s useful to conduct
a gauge transformation with P! = —X’ so that in the new
gauge X'(x)=0 and DX =0/, and the equations of
motion take the form

D<P) <—2C[]KLD(P>XJ AN RKL +

—2¢kr D (0K A OL) + 30 (S) =0 (32)
aE *
—2C]JKLHJ A RKL + _}11’1 =0 (33)
00
aﬁ *
D) (—2c,,KLef A RKL aT’,") =0. (34)

With the identification ¢, = el,, these are the equations of
Einstein-Cartan theory for a general real value of the
parameter f (and for f# = 4i) [15]. Note that the formal
solution to the X’ equation (34) in this gauge is simply
given by the 8 equation of motion (33). This can be stated
as the property of general relativity that—when such a
quantity is well defined—the total energy-momentum
density of gravity and matter is equal to zero.

Coupling to integer spin matter is via the following
tensor

~ P
g;w = ”IJDil )

= '7119,[491{

XI Dt(/P) XJ

(35)

which is the extension of the quantity 7,,, to the case where
gravitation via the gauging of global Poincaré symmetry is
present.

IV. GRAVITY VIA GAUGING OF GLOBAL
TRANSLATIONAL INVARIANCE

We now consider the case where one gauges only the
inhomogeneous piece P! of the Poincaré symmetry trans-
formation (2). The tetrad field in this case can be identified
simply as e/, = D,(47>X’ =0,X' 4 0!. As we saw was the
case for the full Poincaré gauge theory in Sec. III, the X is
redundant, at least for classical purposes, in the sense that
generally a translational gauge can be found where X’ = 0.

In contrast to the polynomial actions of Sec. I1I, however,
we now have to resort to very complicated functionals of e/,
demanding also the existence of its matrix inverse e/,
in order to write down actions which are dynamically
equivalent to general relativity. Having the translation-
invariant e,’,, we can then consider its Levi-Civita con-
nection Iy, (e) (which, recall, is the solution to the equation

de! +T!; A ¢/ = 0). One can deduce that the action

1

Syle] = §/€1JKL€I Ael ATK(e) AT (e)  (36)

realises the dynamical equivalence. In fact the action (36) in
tensor formalism is known as the Finstein action. Since
I/ (e) is not tensorial, S is invariant only up to a boundary
term. More properly, it is considered as the gauge-fixed
action of symmetric teleparallel gravity [16].
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Now in the space of nonpolynomial functionals, there
can be many more alternatives. It is well known that
now the teleparallel torsion 7/ = D7)e! = DT DT X! =
DT)(dx' 4 6") = DTG is equivalent to the translation
gauge field strength. We can consider an action that is
quadratic in this gauge field strength. In terms of the
contortion K/ defined via K’; A ¢/ = T', the action is
now

/ 1 I A T K M
S”[e]zz/eume ANel ANKEy AKEM (37)
This action is equivalent to the metric teleparallel gravity
[16-19]. Now Sh is Lorentz-invariant only up to a boundary

term, but it can be made invariant by gauging the full
Poincaré symmetry with the restriction R’ ; = 0. A problem
with this version of the theory is that the connection cannot
be consistently minimally coupled to matter [20-22]. We
may note that both S} and Sil are the (tetrad version of the)

Einstein-Hilbert action (16), up to the (different) boundary
terms which both contain second derivatives of e,’r The
symmetric and metric teleparallel frameworks can be
unified in an extension of teleparallel gravity based on a
larger general linear gauge symmetry [23].

Here our main purpose was to clarify the conceptually
different approaches to gauging translations. The inhomo-
geneous property of the translation symmetry does not
allow formulating a gauge theory with precisely the
structure of a Yang-Mills theory of a homogeneous
symmetry. In theories based on gauging the global
Poincaré symmetry and the teleparallel special cases such
as § and Sﬁ above, one introduces a translation gauge

potential &/, but its role is not to provide a covariant but an
invariant derivative, in contrast to Yang-Mills theory.

V. GRAVITY VIA GAUGING OF GLOBAL
LORENTZ INVARIANCE

We now consider a new possibility: that where only the
Lorentz transformation X/ — A/, X’ in (2) is promoted
to a local invariance." Analogously to the Poincaré case,
the following local Lorentz covariant derivative can be
constructed:

DYVX! = 9,x" + Al X (38)

Under a transformation represented by A’;(x) we have

pVx! > AlLD x? (39)

"The authors of [24,25] consider this concept but do not
present an action that possesses a general-relativistic limit.
Interestingly, the action suggested in [24] corresponds to a
topological field theory [26].

if
Aly = N A (ADE =0, (ATHK, (40)

Additionally, a covariant derivative DLA) acting on Weyl

spinors can be defined using A’;, so that, for example

D,(,A) ¢ transforms homogeneously under local SO(1, 3) ~
SL(2,C) transformations. Matter actions originally pos-
sessing the global Poincaré invariance (18) then possesses a

local Lorentz invariance under the replacement 0NX’ —

D,(,A)XI andd, ¥ — D,(,A)‘I‘ for spinor fields ¥. To complete
the picture it is additionally necessary to introduce an
action for the gravity itself. A potential action for gravity is

S,[AX] = / ek DX A DIX? A REE(A)

1
-3 / d*xem by, DYV XIDYYVXIREL (A,

(41)

where
cyke = alepkr + 2Pnixnwy) (42)
RY (5(A) = 20, A" g + 2A g1, AR . (43)

As in the case of (24), the gauging of a global symmetry
of parametrized field theories does not suggest a unique
gravitational field, with additional terms higher order in
curvature possible. The action (41) may seem like a
surprising proposal for a gravitational action given the
absence of a gauge potential @, which could clearly
correspond to e,’, in a particular gauge, as in the Poincaré
case. Nonetheless, we will see that four dimensional metric
structure and gravitational dynamics described by an exten-
sion to general relativity can emerge from a theory whose

gravitational fields are {.A/, X"}. Coupling to matter fields y

is implemented by the promotion aﬂxl - DLA)XI and the
use of the Lorentz covariant derivative D,(,A> =0, +
1 A;;,S" acting on spinors:

Sm = Splr™, DAWX!, AV (S)] (44)

= / L. (45)

where y(") are matter fields. Unlike in the Poincaré case, the
Lorentz-invariant X, X’ is permitted to appear in actions but
we do not consider coupling of this quantity to matter, its
presence being inconsistent with the procedure of partial

gauging of the original global Poincaré invariance of the

nongravitational theory. The promotion O”X’ - D,(,A>XI
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in matter actions suggests that the quantity g,, =

n JD,(,A>X DY X7 will play the role of the spacetime metric

tensor. To help show the relation of this model to general
relativity we introduce the auxiliary field e/, which is to equal
DY X! “on shell” and replaces instances of DSVX! in S,
and S,,, with this equality implemented via the use of a
Lagrange multiplier three-form field 4;:

S, = / Ay A (DX — el (46)
so the total action § = §, + S, + §,, takes the form:
S[E,A, X,i,)[(m)] = /[C]JKLel A\ eJ A RKL
+ Ay A (DWXT — )]
+ 8,0, e, Al. (47)

The equations of motion obtained by varying S with respect
to e, A, X, and A are

“2¢,xpe’ A RKL 4 ?77 _a =0 (48)

=D (cpymme’ A e’) + M()% +AuXy =0 (49)
(S)

DWW, =0 (50)

DWAWX! — ¢! =0, (51)

where, for example, 6,L,, = % A e!. We now assume that
X; X! # 0 over the region of spacetime of interest so that we
may define a projector orthogonal to X':

1
Pl =6,- Xox¥ X'X;. (52)
We therefore have that:
! *—1 EX'+E! 53
Cn = x2Cn + £y (53)

where E!, = P’,D,(,A)XJ, hence X, E/, = 0. By the definition

DYVX! = ¢! we have £, = 1,X* and hence:

I = ’7113,1465 = ’YIJD(A)XID(A)XJ

1
e 0,X%0,X* + ELEy,.

(54)

To cover distinct cases, we can define X, X/ = EX? where
&= —1if X, X! is timelike and & = 1 if X, X" is spacelike. It
is useful to clarify the signature of the tensor h,, = E{JE -

The quantities g,, and h,, are each Lorentz gauge-
independent. For the case £ = —1 and X! is real, we can find
a gauge where X!/ = \/—X,X’ 8} where 19, = —1; there-
fore, as X;E! = 0, the signature of hy, is (0,4, +,+) and it
can be considered as a spatial metric orthogonal to the
timelike vector 0 X>. Alternatively, for the case where & = 1
and X' is real, we can find a gauge where X' = /X, X’ &/
where 77,1, implying that in this case the signature of £, is
(0,—,+,+) and it can be considered as a timelike metric
orthogonal to the spacelike vector 0*X?.

Only for the values f§ = +i does a general-relativistic
limit of the theory exist [27]. For illustration, the impact of
having other values of f will be shown in Sec. VI where a
general value is considered in the context of Friedmann-
Robertson-Walker (FRW) symmetry. We will see that the
recovery of a general-relativistic limit involves the intro-
duction of a complex A[/. We may additionally allow X" to
be complex valued. The symmetry of the action is neces-
sarily then that of the complexified Lorentz group
SO(1,3)c (though we will assume that the spacetime
manifold is real). For concreteness we will work with
the value ff = i. The option f = —i yields an identical
gravitational theory though differences are possible when
coupling of Al to spinors is considered. With g =i we
have

cykr = alenkr + 2ingxng))- (55)
The significance of the values f = +i is as follows: for a
differential form F!/ valued in the Lie algebra of SO(1,3)
(i.e., F/ = —F') one can decompose the form into self-
dual (+) and anti self-dual (—) parts as F"/ = F+/ + =17,
FH = L(FV F iel}, FKL /2) where e, F*KL = £2iF*!7.
It follows then that for f = i:

kL R¥ (A) = 2aep,5 RV (A). (56)
Furthermore, it may be verified that
RT(A) = RV(AY). (57)

Therefore in this model only the self-dual connection A"/
appears within the curvature. This is as in the case of the
Ashtekar formulation of gravity [28,29]. However, unlike
that theory, the action of the current model also contains the
anti self-dual connection which appears within the covar-
iant derivative D,(,A)X’ =0,X" + ATVX, + AVX,.

By taking the anti-self dual part of (49) and assuming
that A/ (S) = Af"/, i.e., covariant derivatives of spinor
fields are to be built using A;r” (which is a consistent
choice for coupling to spinor fields [30]) it follows that
A; < X; and so we may define the field o via A; = (o/X)X],
following which the equations of motion become:
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oL 1

—4 IARKE(AT) +—F - =X;0=0 58
acpgre” N (A") + ool a8 (58)

+ a[’m
—ZaD(A )(€1J[KL]€I AN eJ)+ + aA+KL = 0 (59)
9, XX = ¢ (60)
do=0 (61)
E Ao=0, (62)

where indices are raised with ¢"*, taken to be the matrix
inverse of (54). Equation (59) in the absence of coupling of
the source term due to spinor coupling to the A,/ field”
implies [31] that the solution for the self-dual .A,,“ I is given
by the self-dual part of the Levi-Civita spin connection
I'/(e,de) which is defined to be the solution to the
equation de’ +T7; A e/ =0 [31]. We can make contact
with standard notation by writing the three-form Einstein
equation as a tensor equation:

2 [oL
daep g e e REE  (AT) = 3 [aeﬂ gtvap
: uva

2
+ a X[«Qyuagﬂyaﬂ' (63)

‘We now make the following ansatz for ¢ which satisfies (62):

1
Quva = — E 5\/ _gsyuaﬂaﬂ‘)(p' (64)

Now, multiplying (63) by e/ and using X, e} =
well as defining a = 1/(647G) we have:

1&0, X% as

_ 1. m
R, - zRgﬂv = 8”G(T/(w) + paﬂ‘/val/‘)()’ (65)

where R, is the curvature two-form associated with
I'’/(e,0e), R*,=R%,,, and we have defined the stress
energy tensor for matter fields:

(m) 1 I by [dﬁm}
€(,9u)0€ — . (66)
g de afy

o3 —g @
The equation dp = 0 becomes:
0 = 0,(y/=gpo"X). (67)

We see then from (65) and (67) that when £ = —1, Einstein’s
equations in the presence of an additional dustlike fluid

The inclusion of such sources will modify the solution for
A" so that a term involving spinor currents will appear when
the metric Einstein equations are ultimately recovered.

component with density p and four-velocity V—_;), = d,X
are recovered. Interestingly, an effective dustlike fluid can
emerge in other modifications to Einstein’s theory [32,33].
Additionally it follows from (60) that

Vﬂ

VLV, =0, (68)

(¢=-1) —
where vﬂ is the covariant derivative according to the
Christoffel symbols I, (g.dg), i.e., V’é:_l) describes time-
like geodesic curves in spacetime. Alternatively, for the case
E=1(X,;X" > 0), the Egs. (65) and (67) still apply but with
a different interpretation: the vector Vﬁg:]) is spacelike and,
ViVl
geodesic curves in spacetime. As such, the source term due
to p in (65) is more readily interpreted as a “dark pressure.”
We will see in Sec. VII that there exist simple solutions
where in some parts of spacetime X/X, <0, in others
X'X; > 0 and in others X’X; = 0 (either by X! vanishing
or being null)—therefore in such cases the projector P
cannot be globally defined.

Something that may appear confusing is the role of A’/

satisfying V’é:l = 0 the fields describe spacelike

and A" in producing metric structure (via DXy but
also reproducmg, via A” /. the self-dual Levi-Civita
connection I'f*/, which depends on spacetime derivatives

of the same structure. Consider the case where X, X! < 0.
It’s helpful to choose a partial gauge fixing where

X! =T (x*)8} (where 19y = —1). Then from the definition
el = D,(,A)X[ we have:
e} =09,T (69)
el =Aly,T. (70)

It then follows from the self-dual part of the equation of
motion for A* that:

. | o1
A;O’—§<F2’+l—e

5 ijkrjku> — F+0iﬂ (71)

A;lj i 5 (FUM _ i€l]kFOkﬂ) _ F+Uﬂ’ (72)

where I'f*/ = 1 (T — ie/, TKL /2). This implies that

0 Lt
Al T (73)
—ge T —ie/(T% —1ek)

and hence

AL :§<<feﬂ_rg> _’Eeijkrft> (74)
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—ij % 1 ii . i 2
A/AJIE(F;JJ—Flek](?eZ_FBk))-

By comparison, in the Einstein-Cartan model of gravity
based on the action (17) in the absence of spinorial sources,
the spin connection has the real torsion-free solution w}/ =
'}/ and hence w,”’ = [w,"/]* (where % denotes complex
conjugation). In the self-dual Ashtekar model only the self-
dual connection A,f*/ appears in the entire formalism and in
the absence of spinorial sources the theory’s equations of
motion imply AS" =T/ Interestingly, an approach
based on an SO(1,3) connection A7/, a field X', and an
independent field e,’l yields a variety of novel phenom-

enology [34].

(75)

VI. AN EXAMPLE: FRIEDMANN-ROBERTSON-
WALKER SYMMETRY

By way of illustration, we can consider the equations of
this theory in a situation of high spacetime symmetry.
Consider a case where 1, XX’ < 0 throughout spacetime,
in which case one can globally find the Lorentz gauge
X' =T(x)s). We adopt the following ansatz for the
gravitational fields:

T=T() (76)

A% = pE! (77)

A= KO p g (78)

AB = —@Iﬁ + cE? (79)

4= s g, (80)
r

where b = b(t), ¢ = ¢(t), and we have defined the follow-
ing comoving spatial coordinate basis one-forms:

dr

K(r)

where K(r) = V1 —kr* with k being the constant of
spatial curvature. This corresponds to restriction to
Friedmann-Robertson-Walker symmetry. The curvature
two-form R (A) becomes:

E'=dr E'= E*=rd0 E®=rsinfdp, (81)

R = HE'E' + bce' j E/E* (82)

RV = (k—c*+ b*)E'E/ — ¢l E°E*. (83)

Therefore we can identify the spacetime metric as

A A
g/w = ’71le(4 )XIDL(/ )XJ

= —(T)%0,10,t + 8;;(bT)*ELE], (84)
where l_zﬂ,, = 6,»jE;',E,’, is the (constant in time) metric of
either flat three dimensional Euclidean space, the
three-sphere, or the three-hyperboloid for k = 0, k > 0, and
k < 0 respectively. The form of (84) suggests that we
should look to consider the combination a = bT to be equal
to the metric scale factor. The action for gravity is,
considering a general value of y = 1/4:

1

2
S, =—— = DWXI A DAXI A RKL
g 32ﬂG/<€HKL +y’71K”IJL>
(85)
1 . 2
= / TThb| k—c*>+b>—=cb
162G y
| A .
+ b*T? <b - —é‘))eijkdt AN E'AE/ A EF (86)
Y

For illustrative purposes consider matter to be described by
a scalar field with Lagrangian density

Ly =/=9F(¢.K), (87)

where K = —¢"0,¢0,¢. In FRW symmetry we have ¢ =
$(1) so K = §*/T? and /=g = Ta’ so
Ly =Ta F(¢.(¢/T)). (88)

Putting everything together we have, up to a boundary
term:

6 = . 2.2
Sg+S{/, i m/\/’jld3xdl [2Ta (k—C2+ <%> —;C;>

+ 22£ﬁ +gd_d2
Ca\r) Sy ar ¢

n / VidxdiTa F($,(§)T)), (89)

where 2 means equal to up to a boundary term and
h = det(h,,). Varying with respect to ¢ we have

b+ye=a/T. (90)
This is the restriction of the equation of motion (59) to
FRW symmetry and illustrates how this combination of

parts of A" are solvable in terms of derivatives of the
metric tensor. In this case we may use (90) to solve for the
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field c(z) algebraically and eliminate it from the action,
which then after integration by parts takes the form

= [ 3 /11& &k
Sg+S¢i/\/Zd3xdta3T{— (——a +—2>

87G \y? azﬁ a

1+ 1 ¢
iarr r(F) oy

The recovery of the FRW-symmetric action for general
relativity is only recovered for y = +i, which we hence-
forth adopt, yielding:

b = [ 3 1a &k
Sg+S¢:/\/Zd3xdta3T{% (——2—+—2>

‘ a1 a
(s8] o

Note that the action (92) has reduced to that of para-
metrized particle mechanics with ¢ playing the role of the
parameter 4. We can introduce new fields Py and N such
that Py is a Lagrange multiplier term enforcing the

definition of the “time velocity” N = T, with the action
becoming:

SIPr. TN, a, ] 2 /\/ﬁd%dt{PT(T—N)
3 11 k
3N -
+a <87[G< N2’ +a2>

) e

Varying T and N we have:

3 (a> k\ (¢ OF Pr
e () = <Na(¢/N) ~F) ko

Pr=0 (95)

while equations of motion obtained by varying a and ¢
respectively are identical to those in general relativity
coupled to a scalar field with Lagrangian density (87).
Equations (94) and (95) arise from the field equations (58)
and (61) restricted to FRW symmetry. Additionally, Py
itself is the analogue of the integration constant E in
parametrized particle mechanics and it has an observa-
tional effect: it would be interpreted as a dark matter
component in the universe.

VII. MINKOWSKI SOLUTIONS

We now show that the model based on local Lorentz
symmetry admits several distinct field configurations that
solve the field equations and result in the spacetime metric

being that of Minkowski space. Recall that in the case of the
nongravitational parametrized field theory, a Minkowski
metric was recovered via

_ oxlox!
= o

Tl (96)
We will now show that two distinct solutions in the
gravitational theory lead to the recovery of Minkowski
space. To aid visualization, Fig. 1, which shows the profile
of the field X’ in Minkowski space, has been included in
Appendix B.

A. Vanishing curvature

Clearly a solution to the vacuum equations of motion
(48)—(51) for f = =i is if the curvature two-form R/, = 0.

Then, one can find a gauge where A/ =0 and in this gauge
9 =1179,X19, X" (97)

The equations of motion admit solutions where X’ can
coordinatize the entire spacetime such that g, = 7,,. Note
that here X/ =0 at a single point in spacetime. Such a
solution is not unique. Additional X’ related to the original
solution by X! — Al;X’/ + Pl—where A!; € SO(1,3),
Pl e C* and 9,A’; = 9,P" = O—are also solutions, i.e.,
there are a family of solutions related by global complexi-
fied Poincaré transformations.

B. Nonvanishing curvature

An alternative possibility is to consider the case of
timelike X’ in FRW symmetry and obtain a solution where
the scale factor a(¢) = Cst, implying that the metric tensor
g takes Minkowski form. Indeed it can readily be seen
that Eqgs. (94) and (95) for the case of no matter sources
(e.g., in the case of the scalar field of Sec. VI this would
mean F = 0) and for zero spatial curvature they possess a
solution P; = 0. Then from the definition of b and the
equation of motion for the field ¢ we have:

=1 /
t

, c=—-. 98
t (98)
Due to the vanishing spatial curvature, we can pick
Cartesian spatial coordinates {x'} such that E' = dx’
and the curvature two-form takes the form:

) 1 A A .
ROI — —t—zdl‘ A dxl — t—2€ljkdxj AN dxk (99)
R/ — t_zdx’ A dx) — t%e’fkdt A dxk.

(100)

Here X’ now vanishes on the 3-surface ¢ = 0. Remarkably,
the curvature tensor is nonzero for this solution with flat

124013-10



PATHS TO GRAVITATION VIA THE GAUGING OF ...

PHYS. REV. D 107, 124013 (2023)

spacetime metric.’ Note that the curvature diverges as
t — 0. However, nonetheless the gravitational action S,
remains zero for all moments of time as it only depends on
the self-dual curvature which—as can be verified from (99)
and (100)—always vanishes. The existence of solutions
with a maximally symmetric metric in the presence of
fields which spontaneously break local Lorentz invariance
is reminiscent of ghost condensate [35] and Einstein-Aether
[36,37] models which permit Minkowski space as a
solution to the field equations despite the presence of,
respectively, a scalar field ¢p with nonzero time derivative or
vector field A# with timelike expectation value.

C. Perturbations around Minkowski
background solutions

We now consider small perturbations to the Minkowski
background solutions. In regions where the background
solution X/ = X' satisfies X, X’ # 0 the Eq. (67) perturbed
to linear order in p and X’ reads:

0yp =0, (101)
where recall that by definition X, X/ = £X? where & =
if X, X" is timelike and & = 1 if X, X’ is spacelike. C0n51der
the vanishing-curvature solution. For, say, the “upper”
region in the solution where X, X/ <0 [t>7r, >0 in
spherical coordinates (t,r,6,¢)], we can coordinatize

spacetime by coordinates (i’, 1,0,¢) such that the
Minkowski metric in these coordinates is

n = —dX? + X?(dy* + sinh? ydQ?) (102)
= —df* + dr* + r?dQ>. (103)
So
r = Xsinhy (104)
t = Xcoshy, (105)
where X =(2-r)"? 0O<X <o), and y=

cosh™! (¢/ (> = r*)!/2) (=00 < y < ). So the perturbed
stress energy tensor in the (X, ) coordinate basis has one
nonvanishing component 7 3 3 = dp which in the inertial
coordinate basis yields:

5p (106)

This is the opposite of the case of teleparallel gravity
(discussed in more detail in Sec. IV) where the spacetime
curvature is zero but nonetheless metrics with nonvanishing
Riemannian curvature (i.e., curvature built from the Christoffel
symbols) exist as solutions to the field equations [16—19].

I‘2

Trr = 2 _

2 0p. (107)

where 6p = 8p(x,0, ¢) and with all other components of
T ,, vanishing.

In the region for the vanishing-curvature solution sol-
ution where X,;X/ > 0, we can coordinatize spacetime
by coordinates (X = Vr* —1*,{,0,¢) [where r > 0 and
r >t in spherical coordinates (z,r,8,¢)] such that the
Minkowski metric in these coordinates is:

n = dX? + X*(=d* + cosh? {dQ?) (108)
= —df* + dr?* + r2dQ2, (109)
where
r = Xcosh( (110)
t = Xsinh . (111)
So X =+ =7 (0 <X < co) and { = cosh™ (r/(r* -

?)1/?) (=00 < ¢ < o0). Now, the equations of motion
imply that 8p is constant along the spacelike vector *X
so the perturbed stress energy tensor in the (X, {) basis has
one nonvanishing component 7 3 3 = dp, hence in this
region

l‘2

T,= op (112)

)

2

Trr = 2 [25p7 (113)
where 8p = 6p({, 0, ) and with all other components of
7 ,, vanishing. To stop divergence of 7, there should be
appropriate fall off of dp to zero as the limiting values of y
and ¢ respectively are approached to compensate for the

accompanymg dlvergmg 1/|r? =3 Tt seems reasonable to

require that T o ]OlIlS smoothly with T P <0 across the
X? = 0 null surface and at X/ = 0 and for the resultant
global 7, to source a smooth metric perturbation &g, as
solutions to Einstein’s equations (which apply in each
region where X2 # 0).

The case of nonvanishing curvature is more straightfor-
ward. As now the background X coordinate can simply be
identified with ¢ and as such we have:

T.u=0dp (114)
with all other components of 7, vanishing and, to linear
order in perturbations 9d,0p = 0.
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VIII. OTHER SOLUTIONS

It is also possible to find solutions to the field equations
where the four dimensional metric corresponds to that of
flat four dimensional Euclidean space, i.e., where coor-
dinates exist so that the metric can globally be put in the
form g,, = ;D5 X' DYV X! = diag(1,1, 1, 1). This may
be recovered from the nonvanishing curvature Minkowski
solution via (7,b) — (iT,=+ib) or considering a zero-
curvature solution for which in the gauge A% =0 we have
X! = (it, x") where (t,x) comprise a set of inertial coor-
dinates in spacetime. Interestingly the field X’ in the
nonzero curvature solution introduces a “preferred” (imagi-
nary) time coordinate but nonetheless the resultant
Euclidean geometry with four dimensional metric §,,
possesses symmetry under the group of diffeomorphisms
generating global ISO(4) coordinate transformations.

In a more general context, recall that the spacetime
metric tensor takes the following form when X2 = X, X/ #0.

1
G = 5 0,X%0,X> + ELE,,.

12 O (115)

Consider the case where there exists an SO(1,3). gauge
where X' = iS(x*)8) where S(x*) is assumed real and
hence X, X/ = §2. In this gauge we have
EL=iSA!),. (116)
Therefore the only nonvanishing E are E} where i, j,
k=1...3 and
1 23 2 _ @2, AP AJ
g/”’ = §0#S a,,S -S l”]l]A OyAA Ov- (117)
So if AiOM in this gauge are purely imaginary then the
spacetime metric is real and of Euclidean signature.

IX. PHENOMENOLOGY

From Egs. (65) and (67) we see that in the regime
X, X" < 0, the extension to general relativity arrived at via
the action (41) when 8 = =i is the presence of a pressure-
less, perfect fluid source in FEinstein’s equations. The
equations of motion for this system equivalently follow
from the action

Slg,p, X] = /d“x\/a{mR p(0,X0'X +1)].

(118)

We now consider the phenomenology associated with the
action (118). Notably, the standard model of cosmology
consists of general relativity, the fields of the standard
model of particle physics, a positive cosmological constant

A, and new degrees of freedom which behave precisely as a
pressureless, perfect fluid on cosmological scales (dark
matter) [38]. In general relativity, the introduction of a
nonzero cosmological constant is an “economical” explan-
ation for data suggesting late-time acceleration of the
universe because it requires no new degrees of freedom
beyond those present in general relativity to be introduced.
Analogously, the dark matter effect appearing from the
action (41) is to be considered an inherent part of
gravitation: it arises from the gravitational degrees of
freedom {@", X'} which define the geometry itself. Can
the dark matter effect arising from (41) [and hence from
(118)] be considered a realistic dark matter candidate?

A good approximation to all dark matter models on
large, cosmological scales is expected to be the hydrody-
namical description in which the dark matter is described
by a fluid with density p(x) and four velocity u# where the
four velocity obeys the geodesic equation according to the
metric g,,. Generally a configuration u* specified on an
initial Cauchy surface will evolve so that V,u* diverges in
finite time (the formation of caustics), preventing further
evolution of the field via the equation of motion (67) [39]. It
is not difficult to find initial data so that the pathological
behavior arises on timescales orders of magnitude shorter
than the age of the universe [40] and so the viability of the
classical equations of motion following from (118) is called
into question. A possibility is that a cosmic skeleton of
singular structures would appear in such a scenario; a
consequence of this scenario would be that supermassive
black holes would form with such ease that the observed
mass of the presumed black hole in the centre of the
Milky Way galaxies constrains the cosmic abundance of
such “irrotational” dark matter to be a small fraction of the
total amount in our universe [41].

It seems likely then that new physics beyond the classical
equations of motion (65) and (67) must come into play. In
particle models of dark matter, the would-be appearance of
caustics signifies the breakdown of the hydrodynamical
approximation in favor of a description in terms of
particles, which may collide or pass through one another.
In models where the four velocity is the gradient of a field
[e.g., u, = 9, X in the case of the action (118)] which is to
be regarded as “fundamental,” the behavior of the field
must depart from that dictated by solutions to the Egs. (65)
and (67).

One possibility is that quantum corrections to the
classical equations of motion prevent the formation of
caustics. By way of example, one approach [42,43] has
been to construct the canonical formulation of the action
(118) and then implement a time gauge fixing constraint
X =1 (which is analogous to the gauge T=1in para-
metrized particle mechanics example given in Sec. II) prior
to quantization. Hence, if X plays the role of time in the
putative quantum theory of gravity (and allowed to flow
eternally without obstruction), it is not clear that the caustic
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pathologies which prevent the use of X" as a global clock in
the classical theory can emerge as a limit of the quantum
theory. Indeed there is evidence that caustics are indeed
avoided when spherical collapse of the pressureless perfect
fluid is considered for the model (118) quantized in
accordance with [44]. Additionally, it is known in the
context of Friedmann-Robertson-Walker symmetry, the big
bang singularity associated with the classical equations (65)
and (67) may be avoided in the quantum theory restricted to
this symmetry [45,46]. A criticism of such approaches [47]
has been that it has not been clear how degrees of freedom
(p, X) could appear in a physical theory and we regard it as
encouraging that they arise naturally from a theory based
on the action (41).

However, it should be emphasized that this interpretation
of (118) is not universal. Rather, [48] considered the fluid
part of the action decoupled from gravity and constructed
the canonical formulation of this part in isolation,

recovering a Hamiltonian density H = Il x)/1 + 0'X0, X,
where 1 y) is the canonical momentum of X" and i denotes
a spatial coordinate index which is raised with flat
Euclidean inverse metric. The authors then consider an
expansion around a background solution X' = 7, I ) = py

(0upo = 0) with 6X = y /. /po, 6l x) = IL,\/py where py is
to be interpreted as the background den51ty of the pressur-
eless perfect fluid. It follows then that H :%0i10i1+

I1,0'y0,y + - - -, which suggests that the perturbative

z\/— 4

expansion breaks down for energy scales A ~ p * which
for the current cosmic dark matter density corresponds to
A ~ 1073 eV suggesting that perturbative quantization of
the fluid part of (118) is limited to energy scales E < A,
which has been argued to be unacceptable for a component
of a candidate theory of quantum gravity. It is unlikely that
a quantum theory based on this perturbative approach is
equivalent to the one based on gauge fixing X’ = ¢ prior to
quantization.

Another possibility is that new degrees of freedom
beyond those present in (118) become active in regimes
close to the formation of caustics, in effect causing the
velocity field u, to depart from geodesic motion and
leading to caustic avoidance. A well-known example of
this is the “UV completion” of (118) in terms of a massive,
complex scalar field ® = Je?. In curved spacetime the
Lagrangian for such a field is

1
Lo = 5/75(-0"0,®'0,@ ~ M*|0])
"o, 70, vg
=—\/ ( 7—12(9" dpd,p+1) ). (119)
where 1 = MA, ¢ = ¢/M. In the limit M — oo and with
the identification 1> = 2p, ¢ = X, we see that L, tends to
the form of the fluid part of (118) and indeed it can be

shown that solutions for gravity coupled to Lg can
approach those of (118) for sufficiently large M. For finite
M it follows from the 1 equation of motion that the “four-

velocity” uﬂzaﬂg;ﬁ/ \/—(0,9$) does not satisfy the

geodesic equation and it can be shown that caustics
associated with this field do not form [40].

Thus an alternative to important quantum corrections to
(118) arising would be such a UV completion of the model
(41) so as to introduce new degrees of freedom to
ameliorate the problem of caustics. Such a scenario is
not inconceivable: for example, despite the great success of
general relativity, a leading candidate for cosmic inflation
and the origin of structure in the universe is the Starobinsky
model of inflation [49] which considers a correction
\/—_gRZ to the Einstein-Hilbert Lagrangian; this model is
equivalent to a scalar tensor theory and the new scalar
degree of freedom in gravitation can be of great importance
at high energy scales—for example in sourcing large scale
structure in the universe [50].

A final possibility is that the constraint u,u* + 1 =10
with u,, = d, X’ remains in place so that u, always satisfies
the geodesic equation but that additional terms in the action
become important close to caustic formation so as to create
a repulsive gravity effect, stopping V,u* from diverging.
Indeed, a dark matter effect with a number of similar
characteristics to that following from (41) was discovered
in the context of the projectable Horava-Lifshitz gravity
[32,51] where the four velocity of the dark matter fluid
takes the form u, = —0,T where T(x) is a scalar field
which acts as a preferred time coordinate in spacetime. It
has been argued that caustics should be expected to not
form in such theories due to (a) corrections to the
Lagrangian that depend on the extrinsic curvature of
surfaces of constant 7 (and so may include Vﬂu”) which
modify classical gravitational dynamics so as to provide a
repulsive effect preventing the divergence of V,u*, and
(b) quantum behavior of the gravitational degrees of
freedom, akin to how the big bang singularity may be
avoided in minisuperspace quantum cosmological models
of a system comprising general relativity and dust. As we
have discussed, behavior (b) may also arise from the action
(41) while corrections of the type (a) are conceivable: it
may be checked that equations of motion for the model
p = +£i (41) imply that the extrinsic curvature of surfaces of
constant X’ is contained within the torsion DMe! =
R!;(A)X’ and so additional terms in the action of higher
order in these parts of the curvature may be able to
dynamically prevent singular behavior in this extrinsic
curvature.

It is beyond the current scope of this work to provide a
definitive resolution to the question of the corrections that
should be expected to Eqgs. (65) and (67) and how they
affect the viability of a dark matter candidate arising from a
description of gravity in terms of a spontaneously-broken
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gauge theory of the Lorentz group. The scenario that
geodesic motion is modified by repulsive gravity effects
in the vicinity of would-be caustics is perhaps most
immediately testable given the effect such a modification
would have on the propagation of light, leading to a
potential gravitational lensing signature.

Finally we comment on possible experimental signatures
associated with the Minkowski solution possessing non-
zero gauge field curvature R/ (A) presented in Sec. VII B.
In a Minkowski coordinate basis (z,x'), the solution
implies that A =0, A~ = (2/1)(n' E/) +1e!/KLngE; )
where n! = X!/\/—X,;X’ where E, are spatial coordinate
basis one-forms satisfying E;nl =0 while the metric
G = D,gA)X' pAx, = 1, Any field that couples to A~/
in isolation (i.e., aside from the coupling to A~/ contained
within g,,) will be affected by the background curvature.
Here appears an apparent choice in the coupling between
spinor fields and gravity. Consider the kinetic term for
a — (minus) chirality spinor y*". There are two independent
possibilities:

ie;xre’ A ek el A (yel DA YY) (120)
—iegre’ AeX Ael A (DA Ash ). (121)

It is the latter possibility that was considered by Ashtekar
et al. [30] in the self-dual Einstein Cartan theory where the
field A~ does not appear in the formalism and hence
the term (120) cannot be constructed. It was shown that the
coupling (121) nonetheless allowed the recovery of familiar
results from the coupling of gravity to spinors in Einstein-
Cartan theory. In the present model, if the coupling (121) is
chosen then the spinor field does not “see” the curvature of
the background. If, on the other hand, the coupling (120) is
chosen then a brief calculation shows that if 4" is part of a
Dirac spinor ¥ (for example the left handed electron-
neutrino in the standard model) then the following cou-
plings appear in the spinor Lagrangian on this background:
a,;Py'¥ and b, ¥y°y"¥ where a;, b; ~ n;/t. Such couplings
have been widely studied in the context of Lorentz-
violating extensions of the standard model [52] and
contemporary constraints [53—-55] on the magnitude of
components of »; would correspond to a ¢ value of the order
of several months. The fact that {a;, b;} diverge r — 0 is
perhaps indicative that treating the matter coupling to
gravity via a term (120) as a small perturbation to the
background Sec. VII B is not consistent. Nonetheless, it is
conceivable that the field configuration {X’, A"} produc-
ing the geometry accessible to experiment approximates a
part of this solution and so the above Lorentz-violating
matter couplings may be relevant, however a definitive
answer likely depends on the resolution of the dark matter
propagation issue discussed earlier.

X. DISCUSSION AND CONCLUSIONS

The aim of this paper was to clarify a novel approach the
recovery of gravitational theory via a gauging process.
Originally, Kibble improved Utiyama’s theory by consid-
ering special-relativistic actions and gauging their global
Poincaré invariance, considered as a combination of
“internal” Lorentz transformations and a subgroup of the
spacetime diffeomorphism group, thus introducing fields
wy/ and e/, that admitted an interpretation as gauge fields.
An alternative approach, with a rationale analogous to
parametrized Newtonian mechanics, could be regarded as
the gauging of some or all of the global Poincaré symmetry
(18) of the dynamical fields X’. The known recovery of
what may be considered standard gravitational theory upon
gauging the full Poincaré group (in the form of the Einstein-
Cartan theory of gravity) or via its subgroup of translations
(in the form of the teleparallel equivalent to general
relativity) was discussed.

It was then shown that the gauging of the Lorentz group
could yield a different theory: an extension of general
relativity with novel phenomenology, notably the existence
of a modification to Einstein’s equations interpretable as a
dark matter component.4 The gauging of translations in the
gauge theory based on the Lorentz group is completely
different to that in the Poincaré and teleparallel case. No
affine generalization of the Minkowski space is required,
and no @/, is introduced to localise translations.

It is notable that the gauging of Lorentz symmetry
implies that the local Lorentz symmetry must be a complex
one, suggesting the possibility that gravitational fields may
be complex in some circumstances (though we assume that
spacetime coordinates are real throughout). Preliminary
results suggest that this allows for solutions corresponding
to metrics of Euclidean signature to exist. Exploration of
general solutions to the theory possessing real spacetime
metric will be aided by the canonical formulation of the
action (41) [26]. Do there exist classical solutions within
this model that allow for the dynamical signature change of
the four dimensional metric?

It may additionally be asked whether the action (41) is
somehow preferred, beyond the parameter choice f = =i.
It may be shown [57] that up a boundary term it is equal to:

1
S = Ot/ (ZX2€1JKL + 2ﬂX]XLl’]IK)RIJ A\ RKL, (122)

where here R = R/ (A), i.e., the curvature of the full spin
connection. One additional term that is possible that is both
quadratic in X’ and in R"”: X?>R,; A R"; it is known [27]
that unless = =£i in (122) then general relativity is not

*An interesting alternative modification to gravity has been
considered [56] in the metric formalism inspired by the step from
Newtonian mechanics to parametrized particle mechanics and
also resulting in an effective dark matter component.
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recovered, instead yielding a modified theory where, for
example, gravitational waves do not travel at the speed of
light. It is conceivable that this putative additional term in
the Lagrangian causes similar effects. Additionally, if it is
required that actions are invariant (up to a boundary term)
under covariant-constant translation symmetry (i.e., trans-
formations X! — X! + ¢/ that satisfy D¢! = 0) then
this term and terms with arbitrary powers of X; X! are
excluded.

It was shown that the action (41) possesses solutions
corresponding to general relativity coupled to a pressure-
less perfect fluid [42]. It is tempting to wonder whether this
fluid could be responsible for some or all of the dark matter.
In Sec. IX we have discussed issues facing the model as a
viable origin for dark matter and different possibilities for
their resolution, notably either via quantum corrections to
the model or the possibility of a UV completion of the
model where the effect of new degrees of freedom beyond
those resulting from (41) become important.

Though in this paper we restricted to the (inhomo-
geneous and homogeneous) Lorentz groups, the new
approach to translations can be applied in the more general
context of gravitational gauge theories. For example,
metric-affine gravity is conventionally formulated on the
general affine bundle, but for local translation invariance
the general linear bundle would be sufficient (see also [58]).
A generic consequence of the latter approach is that torsion,
if defined as D?X’, is not independent of the curvature
but equal to R’,;X’. Our conclusion that a flat metric may
then correspond to nontrivial gauge geometry in terms
of curvature and torsion, seems to be at odds with the
conventional interpretation that in the absence of gravity
9y = M- However, the more natural ground state is rather
9w = 0, if the metric is a composite field as it is considered,
e.g., in the contexts of emergent spinor gravity [59-63].
Whereas the conventional approach to gauging external
symmetries endows a spacetime with gravitational inter-
action, the novel approach better describes the emergence
of a spacetime in concert with gravity.
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APPENDIX A: MATRIX REPRESENTATION
OF THE POINCARE GROUP

The Poincaré group admits a five dimensional matrix
representation, with a group element having the form:

Ay g
P4 = Al
="y %) (A1)

and the following generators:
i1

Jr 0
=y 3) (2

0 pf
= (o ) (a3

where the sub-matrices (j//)K, are the generators of the
Lorentz group and, e.g., p® = (1,0,0,0). It can be shown
that the matrices { 7%/, P} indeed satisfy the Lie algebra of
the Poincaré group and so a connection P4 py in this Lie

algebra can be written:

! !
@ g 9
PAB"_< 0 (f)

Under a gauge transformation represented by a matrix P4,
we require that:

(A4)

PABu - PACPCD/A(P_I)DB - aupé(P_l)CB- (A5)
An object in the fundamental representation of the group is

here taken to be a five-vector X4 = (X', 1) with covariant
derivative

DP'xA = 9,x7 + PAy X5 (A6)
It can be checked that the / components of this equation are

indeed equal to (20) while the “4” component is simply
equal to zero.
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APPENDIX B: ILLUSTRATION OF VECTOR FIELD PROFILES FOR ZERO CURVATURE AND
NONZERO CURVATURE MINKOWSKI SOLUTIONS

FIG. 1.

(R N A O

b +XH Vb

Profiles for X in a plane coordinatized by inertial coordinates (x, ) leading to Minkowski metric with zero (left panel) and

nonzero (right panel) spacetime curvature respectively. Points where X! = 0 are given in black.
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