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In special-relativistic physics, spacetime is imbued with a fixed, nondynamical metric tensor. A path to
gravitational theory is to promote this tensor to a genuine dynamical field. An alternative description of
special-relativistic physics involves no fixed spacetime geometry but instead the inclusion of scalar fields
XIðxμÞ which dynamically may take the form of inertial coordinates in spacetime. This suggests an
alternative approach to gravity where the invariance of actions under global Poincaré transformations of XI

is promoted to either a local Poincaré, local translational, or local Lorentz symmetry via the introduction of
gauge fields. Points of commonality and departure of the resulting gravitational theories as compared to
general relativity are discussed. It is shown that the model based on local Lorentz symmetry is an extension
of general relativity that can introduce a standard of time into the dynamics of the gravitational field and
allows for spacetimes described by a Minkowski metric or flat Euclidean signature metric despite the
gravitational gauge field possessing nonzero curvature.
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I. INTRODUCTION

The notion of gauge symmetry is a crucial part of the
mathematical structure of the standard model of particle
physics. Consider an action Sχ ½χ� describing the dynamics
of a matter field χ that is invariant under a global (i.e.,
independent of location in spacetime) continuous sym-
metry represented by the transformation χ → Uχ (where
indices are suppressed for notational compactness).
Typically the action will not be invariant under local
symmetry transformations [U ¼ UðxμÞ] as derivative terms
∂μχ present in the Lagrangian then do not transform
homogeneously under this transformation. However, the
global symmetry can generally be promoted to a local one
by the introduction of an additional field Aμ—called a
gauge field or connection—which allows for the creation of
a covariant derivative which—if the transformation U can
be represented as a matrix and χ belongs to the fundamental
representation of the symmetry group—takes the form:

∂μχ → DðAÞ
μ χ ≡ ∂μχ þ Aμχ. ð1Þ

If, under the U transformation, Aμ → UAμU−1 − ∂μUU−1

then DðAÞ
μ χ → UDðAÞ

μ χ. The extension of the definition of

DðAÞ
μ to matter fields in other representations of the

symmetry group is straightforward. Alongside the modi-
fication Sχ ½χ� → Sχ ½χ; Aμ�, the process is then completed by
the introduction of an action SA½Aμ; χ� which allows for the
dynamics of Aμ to be well defined. An example of this
process would be that of a complex scalar field theory,
where the Lagrangian density in inertial coordinates in
Minkowski spacetime is Lϕ ¼ − 1

2
ημν∂μϕ

�
∂νϕ − Vðϕ�ϕÞ is

invariant under globalUð1Þ transformations ϕ → eiαϕ. The
Uð1Þ invariance can be made local by introducing a field Aμ

to construct the covariant derivative DðAÞ
μ ϕ ¼ ∂μϕþ Aμϕ;

the resultant locally Uð1Þ invariant action for ϕ is then
supplemented by the Lagrangian density LA ¼ − 1

4
FμνFμν,

where Fμν ¼ 2∂½μAν�, which provides dynamics for the
field Aμ.
In this paper we will consider a similar gauging process

in the context of gravitation, first reviewing existing results
that show how it can be used to recover general relativity
then exploring a new variant that yields novel gravitational
dynamics.
Special relativistic theories are commonly formulated in

terms of matter fields existing in a space with fixed-
geometrical structure, i.e., Minkowski space and its accom-
panying metric tensor ημν. An alternative approach is to not
assume the presence of ημν but rather introduce a set of four
scalar fields XIðxμÞ which are dynamical in the sense the
action is stationary with respect to small variations of these
fields and this results in them having own equations of
motion. Actions can be constructed so that dynamically the
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fields end up configured to play the role of inertial
coordinate fields in spacetime with an effective metric
emerging via the combination η̃μν ¼ ηIJ∂μXI

∂νXJ, where
ηIJ ¼ diagð−1; 1; 1; 1Þ. Such theories are referred to as
“parametrized field theories.” An interesting property of
these theories is that the absence of fixed geometrical
structure (such as ημν) means that such actions possess a
symmetry with respect to spacetime diffeomorphisms in the
manner familiar from gravitational theory. In addition, the
actions for parametrized field theories possess a global
symmetry:

XI → ΛI
JXJ þ PI. ð2Þ

The combined effect of the orthogonal matrix ΛI
J (repre-

senting a Lorentz transformation of XI) with PI is that
of a global Poincaré transformation of XI, analogous to
the global coordinate transformations that preserve ημν ¼
ð−1; 1; 1; 1Þ, i.e., that preserve the form of the Minkowski
metric in inertial coordinates.
It will be shown that the promotion of the global

symmetry (2) to a local one via the introduction of gauge
fields leads to gravitational theory. Specifically, if the entire
transformation (2) is promoted to a local one then the
Einstein-Cartan theory of gravity is recovered (see, for
example [1]). We then discuss the result that instead
promoting only the symmetry under global translations
of XI to a local one results in the teleparallel formulation of
general relativity. These first two examples are known in
the literature. We will then show that a novel extension to
general relativity can be recovered if, instead, only the
global Lorentz symmetry is promoted to a local symmetry,
alongside the removal of the global invariance under
XI → XI þ PI.
The structure of the paper is as follows. In Sec. II we

introduce the notion of parametrization, beginning with
parametrized particle mechanics where models of mechan-
ics are formulated in a way such that Newtonian time is
promoted to an independent, dynamical field and then
proceeding to parametrized field theory in four dimensions
with the introduction of four dynamical “coordinate” fields
XI . Section III contains an overview of existing results in
the literature relating gravity to notions of the gauging of
global Poincaré symmetry: specifically, Kibble’s gauging
of the global Poincaré symmetry present in nonparame-
trized field theory and of how the gauging of the global
Poincaré symmetry that the XI fields possess in para-
metrized field theories leads to the first-order Einstein-
Cartan theory of gravity. Section IV continues the survey of
existing results with the demonstration of how gauging only
the global translations of XI can lead to the teleparallel
formulation of general relativity. In Sec. V we present a
new possibility: that, instead, gauging only the global
Lorentz symmetry that the XI fields possess leads to an
extension to general relativity with novel phenomenology.

In Sec. VI we obtain solutions to this model in Friedmann-
Robertson-Walker (FRW) symmetry, demonstrating the
appearance of an additional “dark” matter density in the
cosmological equations of motion. In Sec. VII we obtain
solutions to the model which correspond to Minkowski
space; interestingly, there are two structurally distinct
possibilities: one where the curvature of the gravitational
gauge field is zero, one where it is nonzero. The behavior of
small perturbations around these backgrounds is discussed.
In Sec. VIII we briefly discuss consequences of the
complex-valuedness of gravitational fields in the model,
such as the recovery of flat, four dimensional Euclidean
space as another solution to the model’s field equations. In
Sec. IX we discuss the phenomenology of the model and
future steps that to enable comparison between theory and
observation. In Sec. X we discuss the collected results in
the paper and present our conclusions.

II. PARAMETRIZATION

Newton’s laws of motion describing a particle with
position qi (i ¼ 1, 2, 3) follow from the stationarity of
the following action under small variations of qi:

S½qi� ¼
Z

dT

�
m
2
δij

dqi

dT
dqj

dT
− VðqiÞ

�
. ð3Þ

The functional derivative δS=δqi ¼ 0 is equivalent to:

m
d
dT

�
δij

dqj

dT

�
¼ −

∂V
∂qi

. ð4Þ

Alternatively, one can look to promote the Newtonian time
T to an independent degree of freedom TðλÞ [alongside
qi ¼ qiðλÞ] where λ parametrizes trajectories. We can
consider the following action:

S0½qi; T� ¼
Z

dλ

�
dT
dλ

���
dT
dλ

�
−2m

2
δij

dqi

dλ
dqj

dλ
− VðqiÞ

�
.

ð5Þ

This is the action for parametrized particle mechanics and is
invariant under reparametrizations λ → fðλÞ that reduce to
the identity (λ → λ) at the end points of integration of the
action. The first equation of motion δS=δqi ¼ 0 is

m
d
dλ

��
dT
dλ

�
−2
δij

dqj

dλ

�
¼ −

∂V
∂qi

ð6Þ

whereas there is now a new equation of motion following
from δS=δT ¼ 0:

d
dλ

��
dT
dλ

�
−2 m

2
δij

dqi

dλ
dqj

dλ
þ VðqiÞ

�
¼ 0. ð7Þ
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This equation can be integrated to yield:

�
dT
dλ

�
−2m

2
δij

dqi

dλ
dqj

dλ
þ VðqiÞ ¼ E; ð8Þ

where E is a constant. There exist solutions where T varies
monotonically with λ in which case a gauge/parametriza-
tion λ¼� T can be found and the collective equations of
motion are

m
d
dT

�
δij

dqj

dT

�
¼� −

∂V
∂qi

ð9Þ

m
2
δij

dqi

dT
dqj

dT
þ VðqiÞ¼� E. ð10Þ

Therefore, Newton’s equations of motion with solutions
corresponding to a single value of energy E are recovered.
The theory also permits solutions where T does not vary
monotonically with λ, for example admitting solutions
such as dT

dλ ¼ 0 where time seems not to flow or solutions
where the sign of dT

dλ varies. For such situations the gauge
T ¼ λ is not globally accessible. Nonetheless, the quantum
mechanical propagator for this theory can be constructed
in terms of gauge/parametrization independent observables
and reproduce the results of standard quantum mechanics
based on the action (3) with T playing the role of time [2,3].
Now we consider the extension of these ideas to field

theory. For concreteness we consider the case of the electro-
magnetic field. The following action yields Maxwell’s
equations upon small variations of the field Aμ:

S0½Aμ� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½η�

p
ημαηνβFμνFαβ; ð11Þ

where ημν is the metric tensor of Minkowski spacetime,
Fμν ≡ 2∂½μAν�, and fxμg are some set of coordinates
describing points in spacetime (not necessarily Minkowski
coordinates). Due to the fixed, flat geometry of spacetime
there exist “inertial” coordinate systems coordinatized by
fXIg, for which in a general coordinate system fxμg

ημν ¼ ηIJ
∂XI

∂xμ
∂XJ

∂xν
; ð12Þ

where ηIJ ¼ diagð−1; 1; 1; 1Þ. In the case of mechanics
when described by the action (3), Newtonian time T
appears as a nondynamical, monotonically increasing
parameter. From a modern perspective T is, rather, reflec-
tive of the spacetime structure provided by the metric tensor
gμν, itself a dynamical field. One can imagine the motiva-
tion for promoting T to a field to be independently varied
and similarly, one might imagine looking to recover metric
structure from ηIJ

∂XI

∂xμ
∂XJ

∂xν instead of the fixed background

metric ημν and promote the fields XI to being dynamical.
Then, consider the following action:

S0½Aμ; XI� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½η̃�

p
η̃μαη̃νβFμνFαβ; ð13Þ

where

η̃μν ≡ ηIJ
∂XI

∂xμ
∂XJ

∂xν
ð14Þ

and where ηIJ ¼ diagð−1; 1; 1; 1Þ and η̃μν is the matrix
inverse of η̃μν, which is assumed to exist. The action (13) is
manifestly invariant under the global transformation (2) and
the equation of motion for XI can be shown to be

0 ¼ ∂μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½η̃�

p ∂XI

∂xν
Tμν

�
; ð15Þ

where Tμν is the stress energy tensor of the electromagnetic
field; therefore the equation of motion for XI expresses
conservation of the stress energy tensor, analogously to the
equation of motion for Newtonian time T recovered the
conservation of energy. There exist solutions XIðxμÞ for
which there exist coordinates such that ∂XI=∂xμ ¼� δIμ. This

is a generalization of the λ¼� T gauge in parametrized
particle mechanics. In these coordinates, η̃μν ¼
diagð−1; 1; 1; 1Þ and so we see that XI here play the role
of inertial coordinates in Minkowski spacetime. As
expected, for these solutions, this form of η̃μν is preserved
by the transformation (2). Generally, the recovery of
familiar classical field theory in Minkowski space is
possible in the parametrized approach, though interestingly
the recovery of standard results in quantum field theory
from the parametrized approach in four dimensions
encounters a number of technical challenges [4].

III. GRAVITY VIA GAUGING OF GLOBAL
POINCARÉ INVARIANCE

The standard route to gravitation has been via Einstein’s
general relativity where ημν is promoted to a dynamical
field (denoted gμν) with its own action which is given—up
to the necessary Gibbons-Hawking-York boundary term—
by the Einstein-Hilbert action:

Sg½gμν� ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ. ð16Þ

This approach must be modified somewhat when fermionic
fields are present. The actions of the standard model
of particle physics consists of the following dynamical
fields: gauge fields Aμ (spacetime one-forms), the electro-
weak Higgs field ϕ (a spacetime scalar), and fermionic
fields ΨA and χA

0
[Weyl spinors, i.e., spacetime scalars
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in the fundamental representations of SLð2; CÞ] alongside
the nondynamical object ēIμ (a spacetime one form in
the fundamental representation of SOð1; 3Þ such that
ηIJēIμēJν ≡ ημν). These actions are invariant under global
SLð2; CÞ transformations which act only on the Weyl
spinors and on ēIμ via the group homomorphism between
SLð2; CÞ and SOð1; 3Þ. The Lagrangian four forms L that
are integrated to produce the actions of the standard model
transform as differential forms under diffeomorphisms that
act on both dynamical and nondynamical fields but also
transform as forms under diffeomorphisms that act only on
the dynamical fields for diffeomorphisms generated by
vector fields ξμ that satisfy £ξημν ¼ 0 (where £ξ denotes the
Lie derivative), i.e., ξμ that satisfy this equation are the
Killing vectors of Minkowski space. There are ten inde-
pendent ξðiÞμ and their commutator ½ξðiÞ; ξðjÞ� satisfies the
Lie algebra of the Poincaré group ISOð1; 3Þ. In this sense
the actions of the standard model possess a global SLð2; CÞ
symmetry and the Lagrangian forms exhibit a global
ISOð1; 3Þ covariance. It was shown by Kibble [5] (building
on earlier work by Utiyama [6]) that the global SLð2; CÞ
symmetry could be promoted to a local one by the
introduction of a gauge field ω valued in the Lie algebra

of SLð2; CÞ—such that the covariant derivative DðωÞ
μ χA

0≡
∂μχ

A0 þωA0
B0μχ

B0
, where ωA0

B0μ ¼ 1
8
ωIJμðσ̄IσJ − σ̄JσIÞA0

B0 ,
transforms homogeneously under this transformation.
Additionally, the remaining presence of nondynamical,
prior geometry was removed by the introduction of a
dynamical field eIμ to appear in place of ēIμ—such that
ηIJeIμeJν ≡ gμν. The introduction of the set of dynamical
fields feIμ;ωA0

B0μg into the matter actions suggests that the
gauging process should be completed by providing action
allowing for a consistent dynamics of these degrees of
freedom, i.e., the introduction of gravitation as a dynamical
interaction. A simple possibility is the following action:

Sg½ω; e� ¼
1

32πG

Z
ϵIJKLeI ∧ eJ ∧ RKLðωÞ

¼ 1

64πG

Z
d4xεμναβϵIJKLeIμeJνRKL

αβðωÞ; ð17Þ

where εμναβ is the Levi-Civita density and RIJ
μν≡

2∂½αωIJ
β� þ 2ωI

K½αωKJ
β�. The action (17) is the Palatini

action in the Einstein-Cartan formulation of gravity and its
equations of motion are classically equivalent to general
relativity with an additional matter term quadratic in
fermionic currents.
This procedure can be interpreted as a combined gauging

of internal symmetries and the limited spacetime cova-
riances of the original nongravitational actions which
leads to a theory of matter and gravity that possess a local
internal SLð2; CÞ symmetry and is generally covariant in
the sense that the action is invariant under infinitesimal

diffeomorphisms generated by vector fields ζμ that vanish
at the boundary of the action’s integration that act on the
dynamical fields χ as χ → χ þ £ζχ [7].
We note that the gauging procedure does not uniquely

fix the gravitational action but rather suggests a family of
potential actions, each of which must possess a symmetry
under both local SLð2; CÞ transformations and spacetime
diffeomorphisms. Indeed, allowing the gravitational action
to consist of terms up to quadratic order in RKLðωÞ and
TI ≡ deI þ ωIJ ∧ eJ is the approach of Poincaré gauge
theory which permits a wealth of interesting phenomenol-
ogy [8–14].
Now we return to the parametrized approach, now as

applied to the actions of the standard model. In the place of
the nondynamical field ēIμ we instead have ∂μXI. Due to the
fields XI now being dynamical, the actions are generally
covariant as well as possessing an additional invariance
under the following global transformations:

XI → ΛI
JXJ þ PI; ð18Þ

where ΛJI ¼ Λ−1
IJ (where indices have been lowered with

ηIJ). We may consider what happens if some or all of the
global invariance under the transformation (18) is promoted
to a local invariance [1]. Consider the possibility that
fΛI

J; PIg depend on spacetime coordinate. Therefore
under a local transformation parametrized by these quan-
tities we have

∂μXI → ΛI
J∂μXI þ ∂μΛI

JXJ þ ∂μPI . ð19Þ

We can introduce the following fields fωI
Jμ; θIμg to define a

Poincaré-covariant derivative:

DðPÞ
μ XI ≡ ∂μXI þ ωI

JμXJ þ θIμ. ð20Þ

Under a transformation represented by fΛI
JðxÞ; PIðxÞg we

have

DðPÞ
μ XI → ΛI

JD
ðPÞ
μ XJ ð21Þ

if

ωI
Jμ → ΛI

Kω
K
LμðΛ−1ÞLJ − ∂μΛI

KðΛ−1ÞKJ ð22Þ

θIμ → ΛI
Jθ

J
μ − ∂μPI . ð23Þ

We note that the transformation (18) and definitions
(20), (22), and (23) follow from the five dimensional
matrix representation of the Poincaré group which we
summarize briefly in Appendix A.
Actions originally possessing the global Poincaré invari-

ance (18) then possess a local Poincaré invariance if all free
“gauge” indices of combinations of covariant derivatives
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DðPÞ
μ XI are absorbed by contraction with symbols ηIJ and

ϵIJKL (which are proposed to be invariant under the local
Poincaré transformations) alongside the promotion of
partial derivatives of spinors to covariant ones, e.g.,

∂μχ → DðωÞ
μ χ. Note that ηIJXIXJ is not Poincaré invariant

and so cannot appear in the action. A potential action for
gravity is

Sg½ω; θ; X� ¼
Z

cIJKLDðPÞXI ∧ DðPÞXJ ∧ RKLðωÞ

¼ 1

2

Z
d4xεμναβcIJKLD

ðPÞ
μ XIDðPÞ

ν XJRKL
αβðωÞ;

ð24Þ

where

cIJKL ≡ αðϵIJKL þ 2βηI½KηL�JÞ ð25Þ

RIJ
αβðωÞ ¼ 2∂½αωIJ

β� þ 2ωI
K½αωKJ

β�. ð26Þ

As in the case of (17), this action has been chosen as the one
of lowest order possible in curvature. Actions of higher
order in curvature are additionally consistent with this
gauging procedure and may be considered. Coupling to

matter fields χ is implemented by the promotion ∂μXI →

DðPÞ
μ XI and the use of the Lorentz covariant derivative

DðωÞ
μ ¼ ∂μ þ 1

2
ωIJμSIJ acting on spinors:

Sm ¼ Sm½χ; DðPÞXI;ωIJðSÞ� ð27Þ

¼
Z

Lm. ð28Þ

The equations of motion obtained by varying Sg þ Sm with
respect to ω, θ, X respectively are:

2cKLM½IXJ�DðPÞXK∧RLM−2cKLIJDðωÞðDðPÞXK∧DðPÞXLÞ

þ ∂Lm

∂DðPÞX½I XJ� þ
∂Lm

∂ωIJðSÞ¼0 ð29Þ

−2cIJKLDðPÞXJ ∧ RKL þ ∂Lm

∂DðPÞXI
¼ 0 ð30Þ

DðPÞ
�
−2cIJKLDðPÞXJ ∧ RKL þ ∂Lm

∂DðPÞXI

�
¼ 0; ð31Þ

where, for example, under a small variation of ωIJ the
variation of a Lagrangian four form L is δωL≡
ð∂L=∂ωIJÞ ∧ δωIJ. To make progress, it’s useful to conduct
a gauge transformation with PI ¼ −XI so that in the new

gauge XIðxÞ¼� 0 and DðPÞ
μ XI ¼� θIμ and the equations of

motion take the form

−2cKLIJDðωÞðθK ∧ θLÞ þ ∂Lm

∂ωIJðSÞ ¼
�
0 ð32Þ

−2cIJKLθJ ∧ RKL þ ∂Lm

∂θI
¼� 0 ð33Þ

DðPÞ
�
−2cIJKLθJ ∧ RKL þ ∂Lm

∂θI

�
¼� 0. ð34Þ

With the identification θIμ ¼� eIμ, these are the equations of
Einstein-Cartan theory for a general real value of the
parameter β (and for β ¼ �i) [15]. Note that the formal
solution to the XI equation (34) in this gauge is simply
given by the θI equation of motion (33). This can be stated
as the property of general relativity that—when such a
quantity is well defined—the total energy-momentum
density of gravity and matter is equal to zero.
Coupling to integer spin matter is via the following

tensor

g̃μν ≡ ηIJD
ðPÞ
μ XIDðPÞ

ν XJ

¼� ηIJθ
I
μθ

J
ν ð35Þ

which is the extension of the quantity η̃μν to the case where
gravitation via the gauging of global Poincaré symmetry is
present.

IV. GRAVITY VIA GAUGING OF GLOBAL
TRANSLATIONAL INVARIANCE

We now consider the case where one gauges only the
inhomogeneous piece PI of the Poincaré symmetry trans-
formation (2). The tetrad field in this case can be identified

simply as eIμ ¼ DðT Þ
μ XI ≡ ∂μXI þ θIμ. As we saw was the

case for the full Poincaré gauge theory in Sec. III, the XI is
redundant, at least for classical purposes, in the sense that
generally a translational gauge can be found where XI ¼� 0.
In contrast to the polynomial actions of Sec. III, however,

we now have to resort to very complicated functionals of eIμ
demanding also the existence of its matrix inverse eμI ,
in order to write down actions which are dynamically
equivalent to general relativity. Having the translation-
invariant eIμ, we can then consider its Levi-Civita con-
nection ΓI

JμðeÞ (which, recall, is the solution to the equation
deI þ ΓI

J ∧ eJ ¼ 0). One can deduce that the action

Sk½e� ¼
1

2

Z
ϵIJKLeI ∧ eJ ∧ ΓK

MðeÞ ∧ ΓLMðeÞ ð36Þ

realises the dynamical equivalence. In fact the action (36) in
tensor formalism is known as the Einstein action. Since
ΓI

JðeÞ is not tensorial, Sk is invariant only up to a boundary
term. More properly, it is considered as the gauge-fixed
action of symmetric teleparallel gravity [16].
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Now in the space of nonpolynomial functionals, there
can be many more alternatives. It is well known that
now the teleparallel torsion TI ≡DðT ÞeI ¼ DðT ÞDðT ÞXI ¼
DðT ÞðdXI þ θIÞ ¼ DðT ÞθI is equivalent to the translation
gauge field strength. We can consider an action that is
quadratic in this gauge field strength. In terms of the
contortion KIJ defined via KI

J ∧ eJ ¼ TI, the action is
now

S0k½e� ¼
1

2

Z
ϵIJKLeI ∧ eJ ∧ KK

M ∧ KLM: ð37Þ

This action is equivalent to the metric teleparallel gravity
[16–19]. Now S0k is Lorentz-invariant only up to a boundary
term, but it can be made invariant by gauging the full
Poincaré symmetry with the restriction RI

J ¼ 0. A problem
with this version of the theory is that the connection cannot
be consistently minimally coupled to matter [20–22]. We
may note that both Sk and S0k are the (tetrad version of the)
Einstein-Hilbert action (16), up to the (different) boundary
terms which both contain second derivatives of eIμ. The
symmetric and metric teleparallel frameworks can be
unified in an extension of teleparallel gravity based on a
larger general linear gauge symmetry [23].
Here our main purpose was to clarify the conceptually

different approaches to gauging translations. The inhomo-
geneous property of the translation symmetry does not
allow formulating a gauge theory with precisely the
structure of a Yang-Mills theory of a homogeneous
symmetry. In theories based on gauging the global
Poincaré symmetry and the teleparallel special cases such
as Sk and S0k above, one introduces a translation gauge

potential θIμ, but its role is not to provide a covariant but an
invariant derivative, in contrast to Yang-Mills theory.

V. GRAVITY VIA GAUGING OF GLOBAL
LORENTZ INVARIANCE

We now consider a new possibility: that where only the
Lorentz transformation XI → ΛI

JXJ in (2) is promoted
to a local invariance.1 Analogously to the Poincaré case,
the following local Lorentz covariant derivative can be
constructed:

DðAÞ
μ XI ¼ ∂μXI þAI

JXJ. ð38Þ

Under a transformation represented by ΛI
JðxÞ we have

DðAÞ
μ XI → ΛI

JD
ðAÞ
μ XJ ð39Þ

if

AI
Jμ → ΛI

KAK
LμðΛ−1ÞLJ − ∂μΛI

KðΛ−1ÞKJ. ð40Þ

Additionally, a covariant derivative DðAÞ
μ acting on Weyl

spinors can be defined using AI
Jμ so that, for example

DðAÞ
μ χA

0
transforms homogeneously under local SOð1; 3Þ ≃

SLð2; CÞ transformations. Matter actions originally pos-
sessing the global Poincaré invariance (18) then possesses a

local Lorentz invariance under the replacement ∂μXI →

DðAÞ
μ XI and ∂μΨ → DðAÞ

μ Ψ for spinor fields Ψ. To complete
the picture it is additionally necessary to introduce an
action for the gravity itself. A potential action for gravity is

Sg½A; X� ¼
Z

cIJKLDðAÞXI ∧ DðAÞXJ ∧ RKLðAÞ

¼ 1

2

Z
d4xεμναβcIJKLD

ðAÞ
μ XIDðAÞ

ν XJRKL
αβðAÞ;

ð41Þ

where

cIJKL ¼ αðϵIJKL þ 2βηI½KηL�JÞ ð42Þ

RIJ
αβðAÞ ¼ 2∂½αAIJ

β� þ 2AI
K½αAKJ

β�. ð43Þ

As in the case of (24), the gauging of a global symmetry
of parametrized field theories does not suggest a unique
gravitational field, with additional terms higher order in
curvature possible. The action (41) may seem like a
surprising proposal for a gravitational action given the
absence of a gauge potential θIμ which could clearly
correspond to eIμ in a particular gauge, as in the Poincaré
case. Nonetheless, we will see that four dimensional metric
structure and gravitational dynamics described by an exten-
sion to general relativity can emerge from a theory whose
gravitational fields are fAIJ

μ ; XIg. Coupling to matter fields χ

is implemented by the promotion ∂μXI → DðAÞ
μ XI and the

use of the Lorentz covariant derivative DðAÞ
μ ¼ ∂μ þ

1
2
AIJμSIJ acting on spinors:

Sm ¼ Sm½χðmÞ; DðAÞXI;AIJðSÞ� ð44Þ

¼
Z

Lm; ð45Þ

where χðmÞ are matter fields. Unlike in the Poincaré case, the
Lorentz-invariant XIXI is permitted to appear in actions but
we do not consider coupling of this quantity to matter, its
presence being inconsistent with the procedure of partial
gauging of the original global Poincaré invariance of the

nongravitational theory. The promotion ∂μXI → DðAÞ
μ XI

1The authors of [24,25] consider this concept but do not
present an action that possesses a general-relativistic limit.
Interestingly, the action suggested in [24] corresponds to a
topological field theory [26].
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in matter actions suggests that the quantity gμν ≡
ηIJD

ðAÞ
μ XIDðAÞ

ν XJ will play the role of the spacetime metric
tensor. To help show the relation of this model to general
relativity we introduce the auxiliary field eIμ which is to equal

DðAÞ
μ XI “on shell” and replaces instances of DðAÞ

μ XI in Sg
and Sm, with this equality implemented via the use of a
Lagrange multiplier three-form field λI:

Sλ ¼
Z

λI ∧ ðDðAÞXI − eIÞ ð46Þ

so the total action S ¼ Sg þ Sλ þ Sm takes the form:

S½e;A; X; λ; χðmÞ� ¼
Z

½cIJKLeI ∧ eJ ∧ RKL

þ λI ∧ ðDðAÞXI − eIÞ�
þ Sm½χðmÞ; e;A�. ð47Þ

The equations of motion obtained by varying S with respect
to e, A, X, and λ are

−2cIJKLeJ ∧ RKL þ ∂Lm

∂eI
− λI ¼ 0 ð48Þ

−DðAÞðcIJ½MN�eI ∧ eJÞ þ ∂Lm

∂AMNðSÞ þ λ½MXN� ¼ 0 ð49Þ

DðAÞλI ¼ 0 ð50Þ

DðAÞXI − eI ¼ 0; ð51Þ

where, for example, δeLm ¼ ∂Lm
∂eI ∧ δeI. We now assume that

XIXI ≠ 0 over the region of spacetime of interest so that we
may define a projector orthogonal to XI:

PI
J ¼ δIJ −

1

XKXK XIXJ. ð52Þ

We therefore have that:

eIμ ¼
1

X2
EμXI þ EI

μ; ð53Þ

where EI
μ ≡ PI

JD
ðAÞ
μ XJ, hence XIEI

μ ¼ 0. By the definition

DðAÞ
μ XI ¼ eIμ we have Eμ ¼ 1

2
∂μX2 and hence:

gμν ≡ ηIJeIμeJν ¼ ηIJDðAÞXIDðAÞXJ

¼ 1

4X2
∂μX2

∂νX2 þ EI
μEIν. ð54Þ

To cover distinct cases, we can define XIXI ¼ ξX2 where
ξ ¼ −1 if XIXI is timelike and ξ ¼ 1 if XIXI is spacelike. It
is useful to clarify the signature of the tensor hμν ≡ EI

μEIν.

The quantities gμν and hμν are each Lorentz gauge-
independent. For the case ξ ¼ −1 and XI is real, we can find
a gauge where XI ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−XJXJ

p
δI0 where η00 ¼ −1; there-

fore, as XIEI ¼ 0, the signature of hμν is ð0;þ;þ;þÞ and it
can be considered as a spatial metric orthogonal to the
timelike vector ∂μX2. Alternatively, for the case where ξ ¼ 1

and XI is real, we can find a gauge where XI ¼�
ffiffiffiffiffiffiffiffiffiffiffi
XJXJ

p
δI1

where η11, implying that in this case the signature of hμν is
ð0;−;þ;þÞ and it can be considered as a timelike metric
orthogonal to the spacelike vector ∂μX2.
Only for the values β ¼ �i does a general-relativistic

limit of the theory exist [27]. For illustration, the impact of
having other values of β will be shown in Sec. VI where a
general value is considered in the context of Friedmann-
Robertson-Walker (FRW) symmetry. We will see that the
recovery of a general-relativistic limit involves the intro-
duction of a complex AIJ

μ . We may additionally allow XI to
be complex valued. The symmetry of the action is neces-
sarily then that of the complexified Lorentz group
SOð1; 3ÞC (though we will assume that the spacetime
manifold is real). For concreteness we will work with
the value β ¼ i. The option β ¼ −i yields an identical
gravitational theory though differences are possible when
coupling of AIJ

μ to spinors is considered. With β ¼ i we
have

cIJKL ¼ αðϵIJKL þ 2iηI½KηL�JÞ. ð55Þ

The significance of the values β ¼ �i is as follows: for a
differential form FIJ valued in the Lie algebra of SOð1; 3Þ
(i.e., FIJ ¼ −FJI) one can decompose the form into self-
dual (+) and anti self-dual (−) parts as FIJ ¼ FþIJ þ F−IJ,
F�IJ ¼ 1

2
ðFIJ ∓ iϵIJKLF

KL=2Þwhere ϵIJKLF�KL ¼ �2iF�IJ.
It follows then that for β ¼ i:

cIJKLRKLðAÞ ¼ 2αϵIJKLRþKLðAÞ. ð56Þ

Furthermore, it may be verified that

RþIJðAÞ ¼ RIJðAþÞ. ð57Þ

Therefore in this model only the self-dual connection AþIJ
μ

appears within the curvature. This is as in the case of the
Ashtekar formulation of gravity [28,29]. However, unlike
that theory, the action of the current model also contains the
anti self-dual connection which appears within the covar-

iant derivative DðAÞ
μ XI ¼ ∂μXI þAþIJ

μ XJ þA−IJ
μ XJ.

By taking the anti-self dual part of (49) and assuming
that AIJ

μ ðSÞ ¼ AþIJ
μ , i.e., covariant derivatives of spinor

fields are to be built using AþIJ
μ (which is a consistent

choice for coupling to spinor fields [30]) it follows that
λI ∝ XI and so we may define the field ϱ via λI ¼ ðϱ=XÞXI ,
following which the equations of motion become:
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−4αϵIJKLeJ ∧ RKLðAþÞ þ ∂Lm

∂eI
−

1

X
XIϱ ¼ 0 ð58Þ

−2αDðAþÞðϵIJ½KL�eI ∧ eJÞþ þ ∂Lm

∂AþKL ¼ 0 ð59Þ

∂μX∂
μX ¼ ξ ð60Þ

dϱ ¼ 0 ð61Þ

EI ∧ ϱ ¼ 0; ð62Þ

where indices are raised with gμν, taken to be the matrix
inverse of (54). Equation (59) in the absence of coupling of
the source term due to spinor coupling to the AþIJ

μ field2

implies [31] that the solution for the self-dualAþIJ
μ is given

by the self-dual part of the Levi-Civita spin connection
ΓIJ
μ ðe; ∂eÞ which is defined to be the solution to the

equation deI þ ΓI
J ∧ eJ ¼ 0 [31]. We can make contact

with standard notation by writing the three-form Einstein
equation as a tensor equation:

4αϵIJKLε
μναβeJμRKL

ναðAþÞ ¼ 2

3!

�
∂Lm

∂eI

�
μνα

εμναβ

þ 2

3!
XIϱμναεμναβ. ð63Þ

We nowmake the following ansatz for ϱwhich satisfies (62):

ϱμνα ¼ −
1

2
ξ
ffiffiffiffiffiffi
−g

p
εμναβ∂

βXρ. ð64Þ

Now, multiplying (63) by eIζ and using XIeIζ ¼ 1
2
ξ∂ζX2 as

well as defining α≡ 1=ð64πGÞ we have:

R̄μν −
1

2
R̄gμν ¼ 8πGðTðmÞ

μν þ ρ∂μX∂νXÞ; ð65Þ

where R̄IJ
μν is the curvature two-form associated with

ΓIJ
μ ðe; ∂eÞ, Rμ

ν ≡ Rσμ
σν, and we have defined the stress

energy tensor for matter fields:

TðmÞ
μν ¼ 1

3!2
ffiffiffiffiffiffi−gp eIðνgμÞσε

αβγσ

�
∂Lm

∂eI

�
αβγ

. ð66Þ

The equation dϱ ¼ 0 becomes:

0 ¼ ∂μð
ffiffiffiffiffiffi
−g

p
ρ∂μXÞ. ð67Þ

We see then from (65) and (67) that when ξ ¼ −1, Einstein’s
equations in the presence of an additional dustlike fluid

component with density ρ and four-velocity Vðξ¼−1Þμ ¼ ∂μX
are recovered. Interestingly, an effective dustlike fluid can
emerge in other modifications to Einstein’s theory [32,33].
Additionally it follows from (60) that

Vμ
ðξ¼−1Þ∇μVν

ðξ¼−1Þ ¼ 0; ð68Þ

where ∇μ is the covariant derivative according to the
Christoffel symbols Γα

μνðg; ∂gÞ, i.e., Vμ
ðξ¼−1Þ describes time-

like geodesic curves in spacetime. Alternatively, for the case
ξ ¼ 1 (XIXI > 0), the Eqs. (65) and (67) still apply but with
a different interpretation: the vector Vμ

ðξ¼1Þ is spacelike and,

satisfying Vμ
ðξ¼1Þ∇μVν

ðξ¼1Þ ¼ 0 the fields describe spacelike

geodesic curves in spacetime. As such, the source term due
to ρ in (65) is more readily interpreted as a “dark pressure.”
We will see in Sec. VII that there exist simple solutions
where in some parts of spacetime XIXI < 0, in others
XIXI > 0 and in others XIXI ¼ 0 (either by XI vanishing
or being null)—therefore in such cases the projector PIJ

cannot be globally defined.
Something that may appear confusing is the role ofAþIJ

μ

and A−IJ
μ in producing metric structure (via DðAÞXI) but

also reproducing, via AþIJ
μ , the self-dual Levi-Civita

connection ΓþIJ
μ , which depends on spacetime derivatives

of the same structure. Consider the case where XIXI < 0.
It’s helpful to choose a partial gauge fixing where
XI ¼� TðxμÞδI0 (where η00 ¼ −1). Then from the definition

eIμ ≡DðAÞ
μ XI we have:

e0μ ¼� ∂μT ð69Þ

eiμ ¼� Ai
0μT. ð70Þ

It then follows from the self-dual part of the equation of
motion for AþIJ that:

Aþ0i
μ ¼� 1

2

�
Γ0i
μ þ i

1

2
ϵijkΓjk

μ

�
¼ Γþ0i

μ ð71Þ

Aþij
μ ¼� 1

2
ðΓij

μ − iϵijkΓ0k
μÞ ¼ Γþij

μ; ð72Þ

where ΓþIJ
μ ¼ 1

2
ðΓIJ

μ − iϵIJKLΓKL
μ =2Þ. This implies that

AIJ ¼�
 

0 1
T e

i

− 1
T e

i Γij − iϵijk ðΓ0k − 1
T e

kÞ

!
ð73Þ

and hence

A−0i
μ ¼� 1

2

��
2

T
eiμ − Γ0i

μ

�
− i

1

2
ϵijkΓ

jk
μ

�
ð74Þ

2The inclusion of such sources will modify the solution for
AþIJ

μ so that a term involving spinor currents will appear when
the metric Einstein equations are ultimately recovered.
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A−ij
μ ¼� 1

2

�
Γij
μ þ iϵijk

�
2

T
ekμ − Γ0k

μ

��
. ð75Þ

By comparison, in the Einstein-Cartan model of gravity
based on the action (17) in the absence of spinorial sources,
the spin connection has the real torsion-free solution ωIJ

μ ¼
ΓIJ
μ and hence ω−IJ

μ ¼ ½ωþIJ
μ �� (where � denotes complex

conjugation). In the self-dual Ashtekar model only the self-
dual connection AþIJ

μ appears in the entire formalism and in
the absence of spinorial sources the theory’s equations of
motion imply AþIJ

μ ¼ ΓþIJ
μ . Interestingly, an approach

based on an SOð1; 3Þ connection AIJ
μ , a field XI , and an

independent field eIμ yields a variety of novel phenom-
enology [34].

VI. AN EXAMPLE: FRIEDMANN-ROBERTSON-
WALKER SYMMETRY

By way of illustration, we can consider the equations of
this theory in a situation of high spacetime symmetry.
Consider a case where ηIJXIXJ < 0 throughout spacetime,
in which case one can globally find the Lorentz gauge
XI ¼� TðxÞδI0. We adopt the following ansatz for the
gravitational fields:

T ¼ TðtÞ ð76Þ

A0i ¼ bEi ð77Þ

A12 ¼ −
KðrÞ
r

E2 − cE3 ð78Þ

A13 ¼ −
KðrÞ
r

E3 þ cE2 ð79Þ

A23 ¼ −
cot θ
r

E3 − cE1; ð80Þ

where b ¼ bðtÞ, c ¼ cðtÞ, and we have defined the follow-
ing comoving spatial coordinate basis one-forms:

E0 ¼ dt E1 ¼ dr
KðrÞ E2 ¼ rdθ E3 ¼ r sin θdφ; ð81Þ

where KðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
with k being the constant of

spatial curvature. This corresponds to restriction to
Friedmann-Robertson-Walker symmetry. The curvature
two-form RIJðAÞ becomes:

R0i ¼ _bE0Ei þ bcϵijkEjEk ð82Þ

Rij ¼ ðk − c2 þ b2ÞEiEj − _cϵijkE0Ek. ð83Þ

Therefore we can identify the spacetime metric as

gμν ≡ ηIJD
ðAÞ
μ XIDðAÞ

ν XJ

¼ −ð _TÞ2∂μt∂νtþ δijðbTÞ2Ei
μE

j
ν; ð84Þ

where h̄μν ≡ δijEi
μE

j
ν is the (constant in time) metric of

either flat three dimensional Euclidean space, the
three-sphere, or the three-hyperboloid for k ¼ 0, k > 0, and
k < 0 respectively. The form of (84) suggests that we
should look to consider the combination a≡ bT to be equal
to the metric scale factor. The action for gravity is,
considering a general value of γ ≡ 1=β:

Sg ¼
1

32πG

Z �
ϵIJKL þ

2

γ
ηIKηJL

�
DðAÞXI ∧DðAÞXJ ∧ RKL

ð85Þ

¼ 1

16πG

Z �
T _Tb

�
k − c2 þ b2 −

2

γ
cb

�

þ b2T2

�
_b −

1

γ
_c

��
ϵijkdt ∧ Ei ∧ Ej ∧ Ek. ð86Þ

For illustrative purposes consider matter to be described by
a scalar field with Lagrangian density

Lϕ ¼ ffiffiffiffiffiffi
−g

p
Fðϕ;KÞ; ð87Þ

where K≡ −gμν∂μϕ∂νϕ. In FRW symmetry we have ϕ ¼
ϕðtÞ so K ¼ _ϕ2= _T2 and

ffiffiffiffiffiffi−gp ¼ _Ta3 so

Lϕ ¼ _Ta3Fðϕ; ð _ϕ= _TÞÞ. ð88Þ

Putting everything together we have, up to a boundary
term:

SgþSϕ ¼b 6

32πG

Z ffiffiffī
h

p
d3xdt

�
2 _Ta

�
k−c2þ

�
a
T

�
2

−
2

γ
c
a
T

�

þ
�
2a2

d
dt

�
a
T

�
þ2

γ

da2

dt
c

��

þ
Z ffiffiffī

h
p

d3xdt _Ta3Fðϕ;ð _ϕ= _TÞÞ; ð89Þ

where ¼b means equal to up to a boundary term and
h̄ ¼ detðh̄μνÞ. Varying with respect to c we have

bþ γc ¼ _a= _T. ð90Þ

This is the restriction of the equation of motion (59) to
FRW symmetry and illustrates how this combination of
parts of AIJ are solvable in terms of derivatives of the
metric tensor. In this case we may use (90) to solve for the
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field cðtÞ algebraically and eliminate it from the action,
which then after integration by parts takes the form

Sg þ Sϕ ¼b
Z ffiffiffī

h
p

d3xdta3 _T

�
3

8πG

�
1

γ2
1

a2
_a2

_T2
þ k
a2

�

þ ð1þ γ2Þ
8πGγ2

1

T2
þ F

�
ϕ;

_ϕ
_T

��
. ð91Þ

The recovery of the FRW-symmetric action for general
relativity is only recovered for γ ¼ �i, which we hence-
forth adopt, yielding:

Sg þ Sϕ ¼b
Z ffiffiffi

h
p

d3xdta3 _T

�
3

8πG

�
−

1

a2
_a2

_T2
þ k
a2

�

þ F

�
ϕ;

_ϕ
_T

��
. ð92Þ

Note that the action (92) has reduced to that of para-
metrized particle mechanics with t playing the role of the
parameter λ. We can introduce new fields PT and N such
that PT is a Lagrange multiplier term enforcing the
definition of the “time velocity” N ¼ _T, with the action
becoming:

S½PT; T;N; a;ϕ� ¼b
Z ffiffiffi

h
p

d3xdt

�
PTð _T − NÞ

þ a3N

�
3

8πG

�
−

1

N2

1

a2
_a2 þ k

a2

�

þ F

�
ϕ;

_ϕ

N

���
. ð93Þ

Varying T and N we have:

3

8πGN2

�
_a2

a2
þ k
a2

�
¼
�
_ϕ

N
∂F

∂ð _ϕ=NÞ − F

�
þ PT

a3
ð94Þ

_PT ¼ 0 ð95Þ

while equations of motion obtained by varying a and ϕ
respectively are identical to those in general relativity
coupled to a scalar field with Lagrangian density (87).
Equations (94) and (95) arise from the field equations (58)
and (61) restricted to FRW symmetry. Additionally, PT
itself is the analogue of the integration constant E in
parametrized particle mechanics and it has an observa-
tional effect: it would be interpreted as a dark matter
component in the universe.

VII. MINKOWSKI SOLUTIONS

We now show that the model based on local Lorentz
symmetry admits several distinct field configurations that
solve the field equations and result in the spacetime metric

being that of Minkowski space. Recall that in the case of the
nongravitational parametrized field theory, a Minkowski
metric was recovered via

η̃μν ¼ ηIJ
∂XI

∂xμ
∂XJ

∂xν
. ð96Þ

We will now show that two distinct solutions in the
gravitational theory lead to the recovery of Minkowski
space. To aid visualization, Fig. 1, which shows the profile
of the field XI in Minkowski space, has been included in
Appendix B.

A. Vanishing curvature

Clearly a solution to the vacuum equations of motion
(48)–(51) for β ¼ �i is if the curvature two-form RI

J ¼ 0.
Then, one can find a gauge whereAIJ

μ ¼� 0 and in this gauge

gμν¼� ηIJ∂μXI
∂μXJ. ð97Þ

The equations of motion admit solutions where XI can
coordinatize the entire spacetime such that gμν ¼ ημν. Note
that here XI ¼ 0 at a single point in spacetime. Such a
solution is not unique. Additional XI related to the original
solution by XI → ΛI

JXJ þ PI—where ΛI
J ∈ SOð1; 3ÞC;

PI ∈ C4 and ∂μΛI
J ¼ ∂μPI ¼ 0—are also solutions, i.e.,

there are a family of solutions related by global complexi-
fied Poincaré transformations.

B. Nonvanishing curvature

An alternative possibility is to consider the case of
timelike XI in FRW symmetry and obtain a solution where
the scale factor aðtÞ ¼ Cst, implying that the metric tensor
gμν takes Minkowski form. Indeed it can readily be seen
that Eqs. (94) and (95) for the case of no matter sources
(e.g., in the case of the scalar field of Sec. VI this would
mean F ¼ 0) and for zero spatial curvature they possess a
solution PT ¼ 0. Then from the definition of b and the
equation of motion for the field c we have:

b ¼ 1

t
; c ¼ −

i
t
. ð98Þ

Due to the vanishing spatial curvature, we can pick
Cartesian spatial coordinates fxig such that Ei ¼ dxi

and the curvature two-form takes the form:

R0i ¼ −
1

t2
dt ∧ dxi −

i
t2
ϵijkdxj ∧ dxk ð99Þ

Rij ¼ 2

t2
dxi ∧ dxj −

i
t2
ϵijkdt ∧ dxk. ð100Þ

Here XI now vanishes on the 3-surface t ¼ 0. Remarkably,
the curvature tensor is nonzero for this solution with flat
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spacetime metric.3 Note that the curvature diverges as
t → 0. However, nonetheless the gravitational action Sg
remains zero for all moments of time as it only depends on
the self-dual curvature which—as can be verified from (99)
and (100)—always vanishes. The existence of solutions
with a maximally symmetric metric in the presence of
fields which spontaneously break local Lorentz invariance
is reminiscent of ghost condensate [35] and Einstein-Aether
[36,37] models which permit Minkowski space as a
solution to the field equations despite the presence of,
respectively, a scalar field ϕwith nonzero time derivative or
vector field Aμ with timelike expectation value.

C. Perturbations around Minkowski
background solutions

We now consider small perturbations to the Minkowski
background solutions. In regions where the background
solution XI ¼ X̄I satisfies X̄IX̄I ≠ 0 the Eq. (67) perturbed
to linear order in ρ and XI reads:

∂X̄δρ ¼ 0; ð101Þ

where recall that by definition X̄IX̄I ¼ ξX̄2 where ξ ¼ −1
if X̄IX̄I is timelike and ξ ¼ 1 if X̄IX̄I is spacelike. Consider
the vanishing-curvature solution. For, say, the “upper”
region in the solution where X̄IX̄I < 0 [t > r, t > 0 in
spherical coordinates ðt; r; θ;ϕ)], we can coordinatize
spacetime by coordinates ðX̄ ; χ; θ;ϕÞ such that the
Minkowski metric in these coordinates is

η ¼ −dX̄2 þ X̄ 2ðdχ2 þ sinh2 χdΩ2Þ ð102Þ

¼ −dt2 þ dr2 þ r2dΩ2. ð103Þ

So

r ¼ X̄ sinh χ ð104Þ

t ¼ X̄ cosh χ; ð105Þ

where X̄ ¼ ðt2 − r2Þ1=2 (0 < X̄ < ∞), and χ ¼
cosh−1ðt=ðt2 − r2Þ1=2Þ ð−∞ < χ < ∞Þ. So the perturbed
stress energy tensor in the ðX̄ ; χÞ coordinate basis has one
nonvanishing component T X̄ X̄ ¼ δρ which in the inertial
coordinate basis yields:

T tt ¼
t2

t2 − r2
δρ ð106Þ

T rr ¼
r2

t2 − r2
δρ; ð107Þ

where δρ ¼ δρðχ; θ;ϕÞ and with all other components of
T μν vanishing.
In the region for the vanishing-curvature solution sol-

ution where X̄IX̄I > 0, we can coordinatize spacetime
by coordinates ðX̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
; ζ; θ;ϕÞ [where r > 0 and

r > t in spherical coordinates ðt; r; θ;ϕÞ] such that the
Minkowski metric in these coordinates is:

η ¼ dX̄2 þ X̄2ð−dζ2 þ cosh2 ζdΩ2Þ ð108Þ

¼ −dt2 þ dr2 þ r2dΩ2; ð109Þ

where

r ¼ X̄ cosh ζ ð110Þ

t ¼ X̄ sinh ζ. ð111Þ

So X̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − t2

p
(0 < X̄ < ∞) and ζ ¼ cosh−1ðr=ðr2 −

t2Þ1=2Þ (−∞ < ζ < ∞). Now, the equations of motion
imply that δρ is constant along the spacelike vector ∂μX̄
so the perturbed stress energy tensor in the ðX̄ ; ζÞ basis has
one nonvanishing component T X̄ X̄ ¼ δρ, hence in this
region

T tt ¼
t2

r2 − t2
δρ ð112Þ

T rr ¼
r2

r2 − t2
δρ; ð113Þ

where δρ ¼ δρðζ; θ;ϕÞ and with all other components of
T μν vanishing. To stop divergence of T μν there should be
appropriate fall off of δρ to zero as the limiting values of χ
and ζ respectively are approached to compensate for the
accompanying diverging 1=jr2 − t2j. It seems reasonable to

require that T ðX̄2>0Þ
μν joins smoothly with T ðX̄2<0Þ

μν across the
X̄2 ¼ 0 null surface and at X̄I ¼ 0 and for the resultant
global T μν to source a smooth metric perturbation δgμν as
solutions to Einstein’s equations (which apply in each
region where X̄2 ≠ 0).
The case of nonvanishing curvature is more straightfor-

ward. As now the background X̄ coordinate can simply be
identified with t and as such we have:

T tt ¼ δρ ð114Þ

with all other components of T μν vanishing and, to linear
order in perturbations ∂tδρ ¼ 0.

3This is the opposite of the case of teleparallel gravity
(discussed in more detail in Sec. IV) where the spacetime
curvature is zero but nonetheless metrics with nonvanishing
Riemannian curvature (i.e., curvature built from the Christoffel
symbols) exist as solutions to the field equations [16–19].
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VIII. OTHER SOLUTIONS

It is also possible to find solutions to the field equations
where the four dimensional metric corresponds to that of
flat four dimensional Euclidean space, i.e., where coor-
dinates exist so that the metric can globally be put in the

form gμν ¼ ηIJD
ðAÞ
μ XIDðAÞ

ν XJ ¼ diagð1; 1; 1; 1Þ. This may
be recovered from the nonvanishing curvature Minkowski
solution via ðT; bÞ → ðiT;�ibÞ or considering a zero-
curvature solution for which in the gauge AIJ

μ ¼� 0 we have
XI ¼ ðit; xiÞ where ðt; xiÞ comprise a set of inertial coor-
dinates in spacetime. Interestingly the field XI in the
nonzero curvature solution introduces a “preferred” (imagi-
nary) time coordinate but nonetheless the resultant
Euclidean geometry with four dimensional metric δμν
possesses symmetry under the group of diffeomorphisms
generating global ISOð4Þ coordinate transformations.
In a more general context, recall that the spacetime

metric tensor takes the following form when X2≡XIXI ≠0.

gμν ¼
1

4X2
∂μX2

∂νX2 þ EI
μEIν. ð115Þ

Consider the case where there exists an SOð1; 3ÞC gauge
where XI ≡ iSðxμÞδI0 where SðxμÞ is assumed real and
hence XIXI ¼ S2. In this gauge we have

EI
μ ¼� iSAI

0μ. ð116Þ

Therefore the only nonvanishing EI
μ are Ei

μ where i; j;
k ¼ 1…3 and

gμν ¼
1

S2
∂μS2∂νS2 − S2ηijAi

0μAj
0ν. ð117Þ

So if Ai
0μ in this gauge are purely imaginary then the

spacetime metric is real and of Euclidean signature.

IX. PHENOMENOLOGY

From Eqs. (65) and (67) we see that in the regime
XIXI < 0, the extension to general relativity arrived at via
the action (41) when β ¼ �i is the presence of a pressure-
less, perfect fluid source in Einstein’s equations. The
equations of motion for this system equivalently follow
from the action

S½g; ρ;X � ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
R − ρð∂μX∂

μX þ 1Þ
�
.

ð118Þ

We now consider the phenomenology associated with the
action (118). Notably, the standard model of cosmology
consists of general relativity, the fields of the standard
model of particle physics, a positive cosmological constant

Λ, and new degrees of freedom which behave precisely as a
pressureless, perfect fluid on cosmological scales (dark
matter) [38]. In general relativity, the introduction of a
nonzero cosmological constant is an “economical” explan-
ation for data suggesting late-time acceleration of the
universe because it requires no new degrees of freedom
beyond those present in general relativity to be introduced.
Analogously, the dark matter effect appearing from the
action (41) is to be considered an inherent part of
gravitation: it arises from the gravitational degrees of
freedom fωIJ; XIg which define the geometry itself. Can
the dark matter effect arising from (41) [and hence from
(118)] be considered a realistic dark matter candidate?
A good approximation to all dark matter models on

large, cosmological scales is expected to be the hydrody-
namical description in which the dark matter is described
by a fluid with density ρðxÞ and four velocity uμ where the
four velocity obeys the geodesic equation according to the
metric gμν. Generally a configuration uμ specified on an
initial Cauchy surface will evolve so that ∇μuμ diverges in
finite time (the formation of caustics), preventing further
evolution of the field via the equation of motion (67) [39]. It
is not difficult to find initial data so that the pathological
behavior arises on timescales orders of magnitude shorter
than the age of the universe [40] and so the viability of the
classical equations of motion following from (118) is called
into question. A possibility is that a cosmic skeleton of
singular structures would appear in such a scenario; a
consequence of this scenario would be that supermassive
black holes would form with such ease that the observed
mass of the presumed black hole in the centre of the
Milky Way galaxies constrains the cosmic abundance of
such “irrotational” dark matter to be a small fraction of the
total amount in our universe [41].
It seems likely then that new physics beyond the classical

equations of motion (65) and (67) must come into play. In
particle models of dark matter, the would-be appearance of
caustics signifies the breakdown of the hydrodynamical
approximation in favor of a description in terms of
particles, which may collide or pass through one another.
In models where the four velocity is the gradient of a field
[e.g., uμ ¼ ∂μX in the case of the action (118)] which is to
be regarded as “fundamental,” the behavior of the field
must depart from that dictated by solutions to the Eqs. (65)
and (67).
One possibility is that quantum corrections to the

classical equations of motion prevent the formation of
caustics. By way of example, one approach [42,43] has
been to construct the canonical formulation of the action
(118) and then implement a time gauge fixing constraint
X ¼� t (which is analogous to the gauge T¼� λ in para-
metrized particle mechanics example given in Sec. II) prior
to quantization. Hence, if X plays the role of time in the
putative quantum theory of gravity (and allowed to flow
eternally without obstruction), it is not clear that the caustic
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pathologies which prevent the use of X as a global clock in
the classical theory can emerge as a limit of the quantum
theory. Indeed there is evidence that caustics are indeed
avoided when spherical collapse of the pressureless perfect
fluid is considered for the model (118) quantized in
accordance with [44]. Additionally, it is known in the
context of Friedmann-Robertson-Walker symmetry, the big
bang singularity associated with the classical equations (65)
and (67) may be avoided in the quantum theory restricted to
this symmetry [45,46]. A criticism of such approaches [47]
has been that it has not been clear how degrees of freedom
ðρ;XÞ could appear in a physical theory and we regard it as
encouraging that they arise naturally from a theory based
on the action (41).
However, it should be emphasized that this interpretation

of (118) is not universal. Rather, [48] considered the fluid
part of the action decoupled from gravity and constructed
the canonical formulation of this part in isolation,
recovering a Hamiltonian densityH ¼ ΠðXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂

iX∂iX
p

,
where ΠðXÞ is the canonical momentum of X and i denotes
a spatial coordinate index which is raised with flat
Euclidean inverse metric. The authors then consider an
expansion around a background solution X ¼ t, ΠðXÞ ¼ ρ0
(∂μρ0 ¼ 0) with δX ¼ χ=

ffiffiffiffiffi
ρ0

p
, δΠðXÞ ¼ Πχ

ffiffiffiffiffi
ρ0

p
where ρ0 is

to be interpreted as the background density of the pressur-
eless perfect fluid. It follows then that H ¼ 1

2
∂
iχ∂iχþ

1
2
ffiffiffiffi
ρ0

p Πχ∂
iχ∂iχ þ � � �, which suggests that the perturbative

expansion breaks down for energy scales Λ ∼ ρ1=40 which
for the current cosmic dark matter density corresponds to
Λ ∼ 10−3 eV suggesting that perturbative quantization of
the fluid part of (118) is limited to energy scales E ≪ Λ,
which has been argued to be unacceptable for a component
of a candidate theory of quantum gravity. It is unlikely that
a quantum theory based on this perturbative approach is
equivalent to the one based on gauge fixing X ¼ t prior to
quantization.
Another possibility is that new degrees of freedom

beyond those present in (118) become active in regimes
close to the formation of caustics, in effect causing the
velocity field uμ to depart from geodesic motion and
leading to caustic avoidance. A well-known example of
this is the “UV completion” of (118) in terms of a massive,
complex scalar field Φ ¼ λeiϕ. In curved spacetime the
Lagrangian for such a field is

LΦ ¼ 1

2

ffiffiffiffiffiffi
−g

p ð−gμν∂μΦ�
∂νΦ −M2jΦj2Þ

¼ 1

2

ffiffiffiffiffiffi
−g

p �
−
gμν∂μλ̃∂νλ̃

M2
− λ̃2ðgμν∂μϕ̃∂νϕ̃þ 1Þ

�
; ð119Þ

where λ̃ ¼ Mλ, ϕ̃ ¼ ϕ=M. In the limit M → ∞ and with
the identification λ̃2 ¼ 2ρ, ϕ̃ ¼ X , we see that LΦ tends to
the form of the fluid part of (118) and indeed it can be

shown that solutions for gravity coupled to LΦ can
approach those of (118) for sufficiently large M. For finite
M it follows from the λ̃ equation of motion that the “four-

velocity” uμ ≡ ∂μϕ̃=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∂νϕ̃∂νϕ̃Þ

q
does not satisfy the

geodesic equation and it can be shown that caustics
associated with this field do not form [40].
Thus an alternative to important quantum corrections to

(118) arising would be such a UV completion of the model
(41) so as to introduce new degrees of freedom to
ameliorate the problem of caustics. Such a scenario is
not inconceivable: for example, despite the great success of
general relativity, a leading candidate for cosmic inflation
and the origin of structure in the universe is the Starobinsky
model of inflation [49] which considers a correctionffiffiffiffiffiffi−gp

R2 to the Einstein-Hilbert Lagrangian; this model is
equivalent to a scalar tensor theory and the new scalar
degree of freedom in gravitation can be of great importance
at high energy scales—for example in sourcing large scale
structure in the universe [50].
A final possibility is that the constraint uμuμ þ 1 ¼ 0

with uμ ¼ ∂μX remains in place so that uμ always satisfies
the geodesic equation but that additional terms in the action
become important close to caustic formation so as to create
a repulsive gravity effect, stopping ∇μuμ from diverging.
Indeed, a dark matter effect with a number of similar
characteristics to that following from (41) was discovered
in the context of the projectable Hořava-Lifshitz gravity
[32,51] where the four velocity of the dark matter fluid
takes the form uμ ¼ −∂μT where TðxÞ is a scalar field
which acts as a preferred time coordinate in spacetime. It
has been argued that caustics should be expected to not
form in such theories due to (a) corrections to the
Lagrangian that depend on the extrinsic curvature of
surfaces of constant T (and so may include ∇μuμ) which
modify classical gravitational dynamics so as to provide a
repulsive effect preventing the divergence of ∇μuμ, and
(b) quantum behavior of the gravitational degrees of
freedom, akin to how the big bang singularity may be
avoided in minisuperspace quantum cosmological models
of a system comprising general relativity and dust. As we
have discussed, behavior (b) may also arise from the action
(41) while corrections of the type (a) are conceivable: it
may be checked that equations of motion for the model
β ¼ �i (41) imply that the extrinsic curvature of surfaces of
constant X is contained within the torsion DðAÞeI ¼
RI

JðAÞXJ and so additional terms in the action of higher
order in these parts of the curvature may be able to
dynamically prevent singular behavior in this extrinsic
curvature.
It is beyond the current scope of this work to provide a

definitive resolution to the question of the corrections that
should be expected to Eqs. (65) and (67) and how they
affect the viability of a dark matter candidate arising from a
description of gravity in terms of a spontaneously-broken
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gauge theory of the Lorentz group. The scenario that
geodesic motion is modified by repulsive gravity effects
in the vicinity of would-be caustics is perhaps most
immediately testable given the effect such a modification
would have on the propagation of light, leading to a
potential gravitational lensing signature.
Finally we comment on possible experimental signatures

associated with the Minkowski solution possessing non-
zero gauge field curvature RIJðAÞ presented in Sec. VII B.
In a Minkowski coordinate basis ðt; xiÞ, the solution
implies that AþIJ¼0, A−IJ¼ð2=tÞðn½IEJ� þ i

2
ϵIJKLnKELÞ

where nI ¼ XI=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−XJXJ

p
where EL are spatial coordinate

basis one-forms satisfying ELnL ¼ 0 while the metric

gμν ¼ DðAÞ
μ XIDðAÞ

ν XI ¼ ημν. Any field that couples toA−IJ

in isolation (i.e., aside from the coupling to A−IJ contained
within gμν) will be affected by the background curvature.
Here appears an apparent choice in the coupling between
spinor fields and gravity. Consider the kinetic term for
a − (minus) chirality spinor χA

0
. There are two independent

possibilities:

iϵIJKLeJ ∧ eK ∧ eL ∧ ðχ�AσIAA0DðA−ÞχA0 Þ ð120Þ

−iϵIJKLeJ ∧ eK ∧ eL ∧ ðDðAþÞχ�AσIAA0χA
0 Þ. ð121Þ

It is the latter possibility that was considered by Ashtekar
et al. [30] in the self-dual Einstein Cartan theory where the
field A−IJ does not appear in the formalism and hence
the term (120) cannot be constructed. It was shown that the
coupling (121) nonetheless allowed the recovery of familiar
results from the coupling of gravity to spinors in Einstein-
Cartan theory. In the present model, if the coupling (121) is
chosen then the spinor field does not “see” the curvature of
the background. If, on the other hand, the coupling (120) is
chosen then a brief calculation shows that if χA

0
is part of a

Dirac spinor Ψ (for example the left handed electron-
neutrino in the standard model) then the following cou-
plings appear in the spinor Lagrangian on this background:
aIΨ̄γIΨ and bIΨ̄γ5γIΨwhere aI; bI ∼ nI=t. Such couplings
have been widely studied in the context of Lorentz-
violating extensions of the standard model [52] and
contemporary constraints [53–55] on the magnitude of
components of bI would correspond to a t value of the order
of several months. The fact that faI; bIg diverge t → 0 is
perhaps indicative that treating the matter coupling to
gravity via a term (120) as a small perturbation to the
background Sec. VII B is not consistent. Nonetheless, it is
conceivable that the field configuration fXI;AIJg produc-
ing the geometry accessible to experiment approximates a
part of this solution and so the above Lorentz-violating
matter couplings may be relevant, however a definitive
answer likely depends on the resolution of the dark matter
propagation issue discussed earlier.

X. DISCUSSION AND CONCLUSIONS

The aim of this paper was to clarify a novel approach the
recovery of gravitational theory via a gauging process.
Originally, Kibble improved Utiyama’s theory by consid-
ering special-relativistic actions and gauging their global
Poincaré invariance, considered as a combination of
“internal” Lorentz transformations and a subgroup of the
spacetime diffeomorphism group, thus introducing fields
ωIJ
μ and eIμ that admitted an interpretation as gauge fields.

An alternative approach, with a rationale analogous to
parametrized Newtonian mechanics, could be regarded as
the gauging of some or all of the global Poincaré symmetry
(18) of the dynamical fields XI . The known recovery of
what may be considered standard gravitational theory upon
gauging the full Poincaré group (in the form of the Einstein-
Cartan theory of gravity) or via its subgroup of translations
(in the form of the teleparallel equivalent to general
relativity) was discussed.
It was then shown that the gauging of the Lorentz group

could yield a different theory: an extension of general
relativity with novel phenomenology, notably the existence
of a modification to Einstein’s equations interpretable as a
dark matter component.4 The gauging of translations in the
gauge theory based on the Lorentz group is completely
different to that in the Poincaré and teleparallel case. No
affine generalization of the Minkowski space is required,
and no θIμ is introduced to localise translations.
It is notable that the gauging of Lorentz symmetry

implies that the local Lorentz symmetry must be a complex
one, suggesting the possibility that gravitational fields may
be complex in some circumstances (though we assume that
spacetime coordinates are real throughout). Preliminary
results suggest that this allows for solutions corresponding
to metrics of Euclidean signature to exist. Exploration of
general solutions to the theory possessing real spacetime
metric will be aided by the canonical formulation of the
action (41) [26]. Do there exist classical solutions within
this model that allow for the dynamical signature change of
the four dimensional metric?
It may additionally be asked whether the action (41) is

somehow preferred, beyond the parameter choice β ¼ �i.
It may be shown [57] that up a boundary term it is equal to:

S ¼ α

Z �
1

4
X2ϵIJKL þ 2βXJXLηIK

�
RIJ ∧ RKL; ð122Þ

where here RIJ ¼ RIJðAÞ, i.e., the curvature of the full spin
connection. One additional term that is possible that is both
quadratic in XI and in RIJ: X2RIJ ∧ RIJ; it is known [27]
that unless β ¼ �i in (122) then general relativity is not

4An interesting alternative modification to gravity has been
considered [56] in the metric formalism inspired by the step from
Newtonian mechanics to parametrized particle mechanics and
also resulting in an effective dark matter component.
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recovered, instead yielding a modified theory where, for
example, gravitational waves do not travel at the speed of
light. It is conceivable that this putative additional term in
the Lagrangian causes similar effects. Additionally, if it is
required that actions are invariant (up to a boundary term)
under covariant-constant translation symmetry (i.e., trans-
formations XI → XI þ ϕI that satisfy DðAÞϕI ¼ 0) then
this term and terms with arbitrary powers of XIXI are
excluded.
It was shown that the action (41) possesses solutions

corresponding to general relativity coupled to a pressure-
less perfect fluid [42]. It is tempting to wonder whether this
fluid could be responsible for some or all of the dark matter.
In Sec. IX we have discussed issues facing the model as a
viable origin for dark matter and different possibilities for
their resolution, notably either via quantum corrections to
the model or the possibility of a UV completion of the
model where the effect of new degrees of freedom beyond
those resulting from (41) become important.
Though in this paper we restricted to the (inhomo-

geneous and homogeneous) Lorentz groups, the new
approach to translations can be applied in the more general
context of gravitational gauge theories. For example,
metric-affine gravity is conventionally formulated on the
general affine bundle, but for local translation invariance
the general linear bundle would be sufficient (see also [58]).
A generic consequence of the latter approach is that torsion,
if defined as D2XI , is not independent of the curvature
but equal to RI

JXJ. Our conclusion that a flat metric may
then correspond to nontrivial gauge geometry in terms
of curvature and torsion, seems to be at odds with the
conventional interpretation that in the absence of gravity
gμν ¼ ημν. However, the more natural ground state is rather
gμν ¼ 0, if the metric is a composite field as it is considered,
e.g., in the contexts of emergent spinor gravity [59–63].
Whereas the conventional approach to gauging external
symmetries endows a spacetime with gravitational inter-
action, the novel approach better describes the emergence
of a spacetime in concert with gravity.
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APPENDIX A: MATRIX REPRESENTATION
OF THE POINCARÉ GROUP

The Poincaré group admits a five dimensional matrix
representation, with a group element having the form:

PA
B ¼

�
ΛI

J ξI

0 1

�
ðA1Þ

and the following generators:

ðPI
JÞAB ¼

�
jIJ 0

0 0

�
ðA2Þ

ðPIÞAB ¼
�
0 pI

0 0

�
ðA3Þ

where the sub-matrices ðjIJÞKL are the generators of the
Lorentz group and, e.g., p0 ¼ ð1; 0; 0; 0Þ. It can be shown
that the matrices fJ IJ;PIg indeed satisfy the Lie algebra of
the Poincaré group and so a connection PA

Bμ in this Lie
algebra can be written:

PA
Bμ ¼

�
ωI

Jμ θIμ

0 0

�
. ðA4Þ

Under a gauge transformation represented by a matrix PA
B

we require that:

PA
Bμ → PA

CPC
DμðP−1ÞDB − ∂μPA

CðP−1ÞCB. ðA5Þ

An object in the fundamental representation of the group is
here taken to be a five-vector XA ¼ ðXI; 1Þ with covariant
derivative

DðPÞ
μ XA ¼ ∂μXA þ PA

BμXB. ðA6Þ

It can be checked that the I components of this equation are
indeed equal to (20) while the “4” component is simply
equal to zero.
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APPENDIX B: ILLUSTRATION OF VECTOR FIELD PROFILES FOR ZERO CURVATURE AND
NONZERO CURVATURE MINKOWSKI SOLUTIONS

FIG. 1. Profiles for XI in a plane coordinatized by inertial coordinates ðx; tÞ leading to Minkowski metric with zero (left panel) and
nonzero (right panel) spacetime curvature respectively. Points where XI ¼ 0 are given in black.
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[16] J. Beltrán Jiménez, L. Heisenberg, and T. S. Koivisto,
The geometrical trinity of gravity, Universe 5, 173
(2019).

[17] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity: An
Introduction (Springer, New York, 2013).

[18] R. Aldrovandi and J. G. Pereira, Teleparallelism: A new way
to think the gravitational interaction, Cienc. hoje 55, 32
(2015).

[19] M. Krssak, R. J. van den Hoogen, J. G. Pereira, C. G.
Bohmer, and A. A. Coley, Teleparallel theories of gravity:
Illuminating a fully invariant approach, Classical Quantum
Gravity 36, 183001 (2019).

[20] Y. N. Obukhov and J. G. Pereira, Metric affine approach to
teleparallel gravity, Phys. Rev. D 67, 044016 (2003).

[21] R. Ferraro, Noether’s second theorem in teleparallel gravity,
Phys. Rev. D 106, 124033 (2022).
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