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Einstein-Gauss-Bonnet gravity in high-dimensional spacetime is intriguing. Here, the properties of thick
branes generated by a bulk scalar field in the five-dimensional Einstein-Gauss-Bonnet gravity were studied.
With the help of the superpotential method, we obtain a series of multikink brane solutions. We also
analyze the linear stability of the brane system under tensor perturbations and prove that they are stable.
The massless graviton is shown to be localized near the brane and hence the four-dimensional Newtonian
potential can be recovered. By comparing the properties of these thick branes under different super-
potentials we find with some specific choice of superpotential the Gauss-Bonnet term can determine the
scalar field are multikink or single kink.
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I. INTRODUCTION

Among several interestingdescriptions of ourUniverse, an
attractive one may be that our Universe acts as a
four-dimensional hypersurface called 3-brane embedded
in higher-dimensional spacetime [1–6].At the end of the 20th
century, the Arkani-Hamed-Dimopoulos-Dvali (ADD)
model [5] and theRandall-Sundrum (RS)model [6] provided
a new way to solve the hierarchical problem in the Standard
Model of particle physics. With the development of higher-
dimensional gravity theories, more and more works focused
on the nature of the extra dimensions [7–11] and various
potential observable effects of extra dimensions were pro-
posed. This attracted the attention of physicists once again
and opens a new era for studying extra dimensions.
In brane world scenarios, there are thin or thick branes in

terms of their width along the extra dimensions. Both the
branes are thin inADD andRSmodels because the thickness
of the brane has been neglected. Note that, in the thin brane
model, the scalar curvature comes to be singular at the core of
the brane because of the zero width [12]. To deal with this
singularity, the Israel-Lanczos junction condition [13] should
be introduced. Physically, a brane should have thickness and
it emerges as an alternative to thin brane configuration. That

is to say, a brane should have nontrivial width along extra
dimensions and there is no singularity problemas appeared in
the thin braneworld models.
One way to obtain such nonsingular thick brane might be

simply replacing the singular source term in the thin brane
scenarios with a nonsingular source term. In 1983, Rubakov
and Shaposhnikov first proposed the picture of the thick
brane described by a domain wall along the extra dimension
in five-dimensional flat spacetime [2]. They obtained the
solution of a scalar fieldwith a kinklike configuration. Such a
solution connects the two vacua of the scalar potential and
has a nontrivial topology. Inspired by the idea of the domain
wall in five-dimensional spacetime, lots of literature focused
on the properties of thick brane including gravity [14–22].
There were some models based on the nonminimal coupling
between gravity and the scalar field [23–25]. Those non-
trivial sources induced many new phenomena and abundant
brane configurations. Furthermore, thick brane models [26–
39] and thin brane models [40–42] were investigated in
modified gravity theories such as fðRÞ gravity. In particular,
some brane solutions with a rich structure were obtained
in [31,32].
When the spacetime dimension is higher than four,

the Einstein-Hilbert action can be supplemented with
higher-order curvature corrections which do not generate
three or higher-order terms of equations of motion [43].
The gravity theory including the Gauss-Bonnet (GB)
invariant term is a theory that satisfies the above-mentioned
property, where the GB invariant arises as a correction in
string theory [44–47] and is defined as follows:

RGB ¼ RABCDRABCD − 4RABRAB þ R2: ð1Þ
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The letters A, B, C, D in this paper are the indexes of the
whole spacetime. In four-dimensional spacetime, the GB
term is a topological term and acts as the boundary term
that does not have influence on the classical field equations.
When the spacetime dimension satisfies D ≥ 5, the GB
term is no longer topologically invariant and its influ-
ence will exit [46]. Recently, the GB term was applied to
the investigation of inflation after the GW170817
event [48–52], cosmology [53–55], as well as black hole
physics [56–59]. In addition, the entanglement wedge cross
section was investigated in a five-dimensional anti–de
Sitter-Vaidya spacetime with GB corrections [60]. It is
also interesting to consider branes in the GB gravity. Thin
brane models in the GB gravity were discussed in
Refs. [61–65]. Besides the thin brane model, the thick
brane models in the GB gravity with a bulk scalar field were
widely investigated [54,66–73], and the brane model in the
GB gravity was also applied to cosmology [74–86]. The
domain wall solutions constructed by two scalar fields
combining either in a kink-antikink or a trapping-bag
configuration were found in five-dimensional GB gravity
with one warped extra dimension [87]. Note that there is
only one defect for the domain walls with kink or antikink;
when multikinks are considered, the gravitating multi-
defects can be obtained. This was originally investigated
in Refs. [88,89]. Similar to the domain wall obtained in
Ref. [2], the multikinklike configurations of a back-
ground scalar field will connect the corresponding multi-
vacua of the scalar potential. Such novel multikink
configurations will lead the thick brane possess a more
richer inner structure. The corresponding inner structures
will induce different effective potentials, and various novel
Kaluza-Klein (KK) resonances will exist [90]. It has been
proved that the dynamics of the KK resonances is closely
related to the effective potentials [91]. Therefore, con-
struction of thick branes described by multikink solutions
with inner structures is very important. It is well-known that
the effects of the GB invariant is absent in four-dimensional
GB gravity, but one can investigate them in a higher-
dimensional spacetime. In this paper we would like to
construct a multikink brane solution in the higher-dimen-
sional GB gravity and study the possible effects of the GB
term on the brane structure. We also analyze the linear
stability of the system under tensor perturbation and the
localization of gravity.
The paper is organized as follows. In Sec. II, we

introduce the method to solve the thick brane solutions
in GB gravity. The system can be reduced to the first-order
formulas by introducing a superpotential. In Sec. III, we
construct thick branes with some superpotentials and a
polynomial warp factor, respectively, and study the
influences of the GB term on the thick brane. In
Sec. IV, the linear stability of the brane system under
the tensor perturbations and localization of gravity are
analysed. Finally, a brief summary is given in Sec. V.

II. BRANE MODEL IN GB GRAVITY

In this section, we will introduce a new method to
solve the thick brane in GB gravity. The brane model in
D-dimensional GB gravity is described by the following
action:

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
R
2κ

þ αRGB þ Lm

�
; ð2Þ

where κ ¼ 8πGD ¼ M2−D� with GD the D-dimensional
gravitational constant and M� the D-dimensional funda-
mental mass scale, and α is the GB coupling constant with
mass dimension D − 4. In this paper, we use the units
κ ¼ c ¼ ℏ ¼ 1. The Lagrangian density of the scalar field
is given by

Lm ¼ −
1

2
gAB∂Aϕ∂Bϕ − VðϕÞ; ð3Þ

where VðϕÞ is the scalar potential. Varying the action (2)
with the metric and scalar field respectively, we can get the
equations of motion as follows:

GAB − 2ακQAB ¼ κTAB; ð4Þ

gAB∇A∇Bϕ −
∂VðϕÞ
∂ϕ

¼ 0; ð5Þ

where GAB ¼ RAB − 1
2
RgAB is the Einstein tensor and

QAB ¼ 1

2
gABRGB − 2RRAB þ 4RACRC

B

þ 4RACBDRCD − 2RACDERCDE
B ð6Þ

is the Lanczos tensor [92]. The energy-momentum tensor
of the scalar field reads

TAB ¼ gABLm þ ∂Aϕ∂Bϕ: ð7Þ

In this paper, we focus on the flat thick brane with Z2

symmetry in a five-dimensional spacetime (D ¼ 5). The
metric is written as [7]

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð8Þ

where the warp factor AðyÞ is an even function of the
extradimensional coordinatey and ημν is the four-dimensional
Minkowskimetric. Theordinary four-dimensional coordinate
indexes μ, ν are from 0 to 3. The scalar curvature is

R ¼ −4ð5A02 þ 2A00Þ; ð9Þ

where the prime denotes the derivative with respect to the
extradimensional coordinate y. The explicit equations of
motion are
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6ðA00 þ 2A02Þ − 48ακA02ðA00 þ A02Þ þ κðϕ02 þ 2VÞ ¼ 0;

ð10aÞ
12A02 − 48ακA04 − κðϕ02 − 2VÞ ¼ 0; ð10bÞ

4A0ϕ0 þ ϕ00 −
∂V
∂ϕ

¼ 0: ð10cÞ

It can be shown that there are only two independent
equations in Eqs. (10a)–(10c) for the three functions
VðϕÞ, ϕðyÞ, and AðyÞ. The scalar potential VðϕÞ contains
the contribution of the cosmological constant. In addition,
the scalar field ϕ is assumed to be an odd function of the
extradimensional coordinate y to localize the fermion zero
mode on the brane [93].
To solve Eqs. (10a)–(10b), we introduce the so called

superpotential used in supergravity to reduce the second-
order field equations (10a)–(10b) to the first-order ones. Such
a method has been used successfully in Refs. [94–100]. We
first introduce a superpotential WðϕÞ. The relation between
thewarp factorAðyÞ and the superpotentialWðϕÞ is given by

A0ðyÞ ¼ −
1

3
κWðϕÞ; ð11Þ

where the superpotentialWðϕÞ should be an odd function of
ϕ since AðyÞ and ϕðyÞ are assumed to be even and odd,
respectively. From Eq. (11), we have

A00ðyÞ ¼ −
1

3
κWϕϕ

0ðyÞ: ð12Þ

Substituting Eqs. (11) and (12) into Eqs. (10a)–(10c), we
have

4

3
κ2W2 − 2κWϕϕ

0 þ 16

9
ακ4W2Wϕϕ

0

−
16

27
ακ5W4 þ κðϕ02 þ 2VÞ ¼ 0; ð13Þ

4

3
κ2W2 −

16

27
ακ5W4 − κðϕ02 − 2VÞ ¼ 0; ð14Þ

ϕ00 −
4

3
κWϕ0 − Vϕ ¼ 0; ð15Þ

whereWϕ ¼ dWðϕÞ
dϕ andVϕ ¼ dVðϕÞ

dϕ . After replacing thewarp
factor in terms of the relations (11) and (12), one can obtain a
relation between the scalar field ϕ and the superpotential
WðϕÞ by subtracting Eq. (13) from Eq. (14) as follows:

ϕ0 ¼ 1

9
ð9 − 8ακ3W2ÞWϕ: ð16Þ

One can further obtain the scalar potential by substituting
Eq. (16) into Eq. (14):

V¼ 1

162
ðW2

ϕð9−8ακ3W2Þ2þ12κW2ð4ακ3W2−9ÞÞ: ð17Þ

In our thick brane model, the background scalar field has a
kinklike configuration and it will approach to a constant ϕ∞
when the extradimensional coordinate y → ∞. Thus the
spacetime is an asymptotical AdS5 spacetime, which is in
accord with the RS brane model. The corresponding naked
cosmological constant can be calculated from the scalar
potential,

Λ5 ¼ lim
y→∞

2κVðϕðyÞÞ ¼ lim
ϕ→ϕ∞

2κVðϕÞ: ð18Þ

Now, the original field equations (10a)–(10c) have been
replaced by the first-order formulas (11), (16), and (17).Once
the superpotential WðϕÞ is given, we can solve all the
functions for the brane solution with the help of the above
first-order formulas.
Note that the solutions of nonlinear coupled differential

equations are not unique, which will lead to two or more
different background configurations with the same
Lagrangian parameters and boundary conditions. In our
setup, we force the scalar field ϕðyÞ to be an odd function
along the extradimensional coordinate y. Besides this
assumption, we still add another condition and let the
scalar field ϕðyÞ to be a monotonic function of y. Thus, for
such an assumption of the scalar field ϕðyÞ, it has an inverse
function yðϕÞ and our solution is unique. With the help of
the above assumption and boundary conditions, we can
obtain the corresponding background solutions from the
given superpotentials conveniently. We can write the
inverse function yðϕÞ from Eq. (16) as follows:

yðϕÞ ¼
Z

9

ð9 − 8ακ3W2ÞWϕ
dϕ: ð19Þ

The warp factor can also be obtained as

AðyðϕÞÞ ¼
Z

3κW
ð8ακ3W2 − 9ÞWϕ

dϕ: ð20Þ

Furthermore, we introduce the conditions: yðϕ ¼ 0Þ ¼ 0
and Aðy ¼ 0Þ ¼ 0. By specifying the suitable superpoten-
tial, one can obtain the thick brane solution from Eqs. (17),
(19), and (20). The distribution of the thick brane can
be described by the effective energy density along the
extra dimension with respect to the static observer
uA ¼ ðeA; 0; 0; 0; 0Þ,

ρ ¼ τðeffÞMN uMuN ¼ −g00ðT00 þ 2αQ00Þ; ð21Þ

where τðeffÞMN ¼ TMN þ 2αQMN is the effective energy-
momentum tensor. It can also be expressed in terms of
the superpotential as follows:

ρ ¼ 1

81
½W2

ϕð9 − 8ακ3W2Þ2 þ 6κW2ð4ακ3W2 − 9Þ�: ð22Þ
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Note that ρðjyj → ∞Þ is nonvanishing since the above
expression contains the contribution from the effective
cosmological constant coming from the naked cosmologi-
cal constant Λ5 in (18) and the Lanczos tensor. In order to
describe the shape of the brane better, we subtract the
contribution of the effective cosmological constant, i.e., we
make the following replacement

ρðyÞ → ρðyÞ − ρðjyj → ∞Þ: ð23Þ

Actually, there is a direct way to solve Eqs. (10a)–(10c).
First, giving the potential VðϕÞ as a function of the scalar
field ϕ, then the scalar field ϕðyÞ and the warp factor AðyÞ
can be solved as functions of the extradimensional coor-
dinate y. The scalar field ϕðyÞ and the warp factor AðyÞ
contain the GB coupling α. In this way, the parameters in
the potential VðϕÞ and the GB coupling α are independent.
However, it is difficult to obtain the brane solution with this
method as higher-order terms of the warp factor induced
from the Lanczos tensor are contained in the equations of
motion. Using the superpotential method the equations of
motion can be downgraded in order, so that one can
simplify the calculation.
In the superpotential method, it is the superpotential

WðϕÞ but not the scalar potential VðϕÞ that is given
independently. So the parameters in the superpotential
WðϕÞ and the GB coupling α are independent. The scalar
potential VðϕÞ is decided by the GB term and the super-
potential WðϕÞ from Einstein equations. Therefore, the
parameters in the potential VðϕÞ are no longer independent.
In this case, one can study how the GB coupling α and the
parameters in the superpotentialWðϕÞ independently effect
the solutions of the warp factor and scalar field. If the
superpotentialWðϕÞ was set asWðϕÞ ¼ ϕ, the brane world
solution can be solved analytically, and the potential VðϕÞ
would be a ϕ4 potential. This case has been studied in
Ref. [101]. Here, we study the more general superpotential;
since the analytical solutions would be more difficult to get
we will use the numerical method to solve the equations of
motion.
Besides the superpotential method for solving thick

brane system, one can also obtain the thick brane solutions
by using the relations between the scalar field as well as the
scalar potential and the warp factor. This can be done
conveniently with the following five-dimensional confor-
mally flat metric

ds2 ¼ e2AðzÞ½ημνdxμdxν þ dz2�; ð24Þ

where the warp factor e2AðzÞ is a function of the extradimen-
sional coordinate z and the relation between z and y is given
by eAdz ¼ dy. With a known warp factor, one can derive
the expressions for the scalar potential and scalar field,

VðϕðzÞÞ ¼ 12αe−4Að∂zAÞ2½ð∂zAÞ2 þ ∂
2
zA�

−
3

2κ
e−2A½3ð∂zAÞ2 þ ∂

2
zA�; ð25Þ

ϕðzÞ¼
Z

dz

ffiffiffi
3

κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1−8ακð∂ze−AÞ2�½ð∂zAÞ2−∂

2
zA�

q
: ð26Þ

Therefore, we can obtain the thick brane solution by
directly specifying the form of the warp factor. In Ref. [70],
one analytical solution has been obtained, and we would
like to extend this solution using other warp factors.

III. BRANE SOLUTIONS

In this section, we first consider various superpotentials
for solving multikink branes. Then, we also construct a
thick brane solution with a polynomial warp factor in the
conformal coordinate. We will setM� ¼ 1 in the numerical
calculations or plots in this paper.

A. Solutions with superpotential method

Once a superpotential is given, the warp factor, the scalar
field, the energy density, and the scalar potential can be
obtained numerically, just as discussed in Sec. II, and the
property of the brane can be calculated. For some concrete
examples, we consider the following three types of super-
potentials:

W1ðϕÞ ¼ M4�ða ϕ̃þ bϕ̃ sechðϕ̃ÞÞ; ð27Þ

W2ðϕÞ ¼ M4�ða ϕ̃þ b sinhðϕ̃ÞÞ; ð28Þ

W3ðϕÞ ¼ M4�ða ϕ̃þ b sinðϕ̃ÞÞ; ð29Þ

where ϕ̃ ¼ ϕ=ðM3=2
� vÞ is a dimensionless scalar field and

a, b, and v are dimensionless parameters. Inspired by the
sine-Gordon scalar potentials studied in Refs. [102,103],
here we give three superpotentials containing the same
polynomial and different nonpolynomial contributions. The
three different nonpolynomial terms in these superpoten-
tials are a finite term, a divergent term, and a periodic term,
respectively. The different superpotentials induce different
scalar potentials. With these three superpotentials the scalar
potentials can have richer structures, which represent more
complex interactions. We will show that multikink thick
brane solutions can be obtained for all these superpotentials
with different parameter spaces.

1. First superpotential

For the first superpotential (27), we obtain the scalar
potential from (17), the function yðϕÞ from (19), and the
warp factor from (20),
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VðϕÞ ¼ 2

27
M5�ϕ̃2ðb sechðϕ̃Þ þ aÞ2

× ð4α̃ϕ̃2ðb sechðϕ̃Þ þ aÞ2 − 9Þ

þ 1

162
M5�v−2ð9 − 8α̃ϕ̃2ðb sechðϕ̃Þ þ aÞ2Þ2

× ðb sechðϕ̃Þð1 − ϕ̃ tanhðϕ̃ÞÞ þ aÞ2; ð30Þ

yðϕÞ ¼ M−1�

Z
ϕ̃

0

9v2

b sechðϕ̃Þ − bϕ̃ tanhðϕ̃Þsechðϕ̃Þ þ a

×
1

9 − 8α̃ðbϕ̃ sechðϕ̃Þ þ aϕ̃Þ2 dϕ̃; ð31Þ

AðyðϕÞÞ ¼
Z

ϕ̃

0

3v2ðbϕ̃ sechðϕ̃Þ þ aϕ̃Þ
b sechðϕ̃Þ − bϕ̃ tanhðϕ̃Þsechðϕ̃Þ þ a

×
1

8α̃ðbϕ̃ sechðϕ̃Þ þ aϕ̃Þ2 − 9
dϕ̃: ð32Þ

We defined a dimensionless GB coupling constant
α̃ ¼ α=M�. Here, we also keep M� in these expressions
in order to check the dimensions of the quantities. The
energy density ρðyÞ can be obtained from Eqs. (21), (22),
and (23). We do not list it here.
The kinklike solution for the scalar field demands that

the scalar field satisfies ϕ → const ¼ ϕ∞ when y → ∞.
That is to say, the integral function in Eq. (31) for yðϕÞ
must approach infinity when ϕ → ϕ∞. Thus, we get
constraints on the parameters α̃, a, and b that could support
the existence of thick brane solutions. We list the con-
straints as follows:

(i) when α̃ > 0, the restriction is a ≠ −b;
(ii) when α̃ ≤ 0 and b ≥ 0, the restriction is −b <

a < 0.2511b;
(iii) when α̃ ≤ 0 and b < 0, the restriction is 0.2511b <

a < −b.
Then, specifying the suitable values of parameters a and

b, we can obtain the single-kink, double-kink, and triple-
kink thick brane solutions. See the corresponding results in
Fig. 1 with the values of the parameters given in Table I. In
this subsection, we set v ¼ 1 for the scalar potential. From
Fig. 1 we can see that the triple-kink scalar field configu-
ration has a steplike energy density which is a new feature
of the multikink scalar field.

2. Second superpotential

Next, we use the second superpotential (28) to construct
thick brane solutions. The corresponding expression of the
scalar potential is

VðϕÞ ¼ 2M5�
27

ðaϕ̃þ b sinhðϕ̃ÞÞ2ð4α̃ðaϕ̃þ b sinhðϕ̃ÞÞ2 − 9Þ

þ M5�
162

v−2ðb coshðϕ̃Þ þ aÞ2

× ð9 − 8α̃ðaϕ̃þ b sinhðϕ̃ÞÞ2Þ2: ð33Þ

Substituting the superpotential (28) into Eqs. (19), (20), and
(23), the function yðϕÞ, the warp factor AðyÞ, and the
energy density ρðyÞ can be obtained. We also need to
restrict the parameters α̃, a, and b with Eq. (19) which
could support the existence of thick brane solutions just like
we did in Sec. III A 1. The result is

(i) when α̃ > 0, the restriction is b ≠ −a;
(ii) when α̃ ≤ 0, the restriction is b2 < −ab.
With this superpotential, we can also find thick brane

solutions with single-kink and double-kink scalar field
configurations. We show three different solutions with
double-kink configurations in Fig. 2, for which the param-
eters are given in Table II.

FIG. 1. The brane solutions for the first superpotential (27). The
black dot-dashed lines, red dashed lines, and dark blue lines
correspond to the single-kink, double-kink, and triple-kink scalar
field solutions, respectively. The values of the parameters are
listed in Table I.

TABLE I. Parameters used in Fig. 1.

Solution Lines α̃ a b

Solution_a1 Black dot-dashed lines 0.500 0.200 0.010
Solution_a2 Red dashed lines 0.180 0.400 −0.375
Solution_a3 Dark blue lines 0.220 0.290 1.000
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3. Third superpotential

Finally, we use the third superpotential (29) to derive
the thick brane solutions. With the above superpotential,
we get the scalar potential as follows:

VðϕÞ ¼ 2M5�
27

ðaϕ̃þ b sinðϕ̃ÞÞ2ð4α̃ðaϕ̃þ b sinðϕ̃ÞÞ2 − 9Þ

þ M5�
162

v−2ðaþ b cosðϕ̃ÞÞ2

× ð9 − 8α̃ðaϕ̃þ b sinðϕ̃ÞÞ2Þ2: ð34Þ

Other functions can also be obtained with the above
superpotential. For thick brane solutions, the constraints
for the parameters that support the existence of thick brane
solutions are

(i) when α̃ > 0, then a ≠ �b;
(ii) when α̃ ≤ 0, then −b2 < ab < b2.

The superpotential (29) has rich structure due to the
combination of the linear term ϕ̃ and the periodic function
sinðϕ̃Þ. For such a superpotential, we find that any number
of kinks for a background scalar field can be constructed
with some suitable parameters. For instance, the number of
kinks approaches to infinity when the parameters satisfy
a > −b > 0 and α̃ → þ0. This is a new result of the GB
term and the superpotential (29). We show some multikink
brane solutions in Fig. 3.

Similarly, we can also find other brane world solutions
for a given superpotential with our method given in the last
section. This method is powerful in the GB brane model
and can be generalized to brane models in other gravity
theories.
From the above three typical examples of multikink

brane solutions, we see that the warp factors with even kink
solutions seem fatter than the ones with odd kink solutions.
The energy densities and scalar potentials of multikink
scalar fields are obviously different for different numbers of
kinks. In these solutions we cannot distinguish the number
of kinks from the warp factor. This is because the influence
of the multikink scalar field to the warp factor is too small.
With some suitable superpotentials, the influence to the
warp factor can be seen. We also find that the GB term
plays an important role in finding multikink scalar field
solutions. When α̃ ¼ 0 the scalar field in these three cases
could not be multikink scalar fields, and are at most single-
kink scalar fields. When α̃ ≠ 0 the scalar fields could be
multikink scalar fields. Thus, the GB term could lead to
richer brane structure. Note that the superpotentials contain
polynomial and nonpolynomial contributions and can be
seen as three extensions of the superpotential in Ref. [101].
With these contributions from the nonpolynomial and the
GB term, the multikink scalar fields can be obtained.

B. Solution with a polynomial-expanded warp factor

In the last subsection, we introduced the superpotential
method to solve the thick brane system and shown that we
can obtain the thick brane solutions with multikink back-
ground scalar fields by choosing some suitable super-
potentials. In this subsection, we focus on the second

FIG. 2. The brane solutions for the second superpotential (28).
All three lines correspond to the double-kink solutions. The
values of the parameters are listed in Table II.

TABLE II. Parameters used in Fig. 2.

Solution Lines α̃ a b

Solution_b1 Black dot-dashed lines 0.0001 2.00 2.00
Solution_b2 Red dashed lines −0.003 −11.0 0.050
Solution_b3 Dark blue lines −0.003 −10.0 0.05

FIG. 3. The brane solutions for the third superpotential (29).
The black dot-dashed lines, red dashed lines, and dark blue lines
correspond to the double-kink, triple-kink, and 4-kink scalar field
solutions, respectively. The values of the parameters are listed in
Table III.
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method introduced at the end of Sec. II. As an example, we
adopt the following polynomial-expanded warp factor with
respect to the extradimensional coordinate z:

eAðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
s1ðzÞ
s2ðzÞ

s
; ð35Þ

s1ðzÞ ¼
Xn
i¼0

ðkzÞ2i; ð36Þ

s2ðzÞ ¼
Xnþ1

i¼0

ðkzÞ2i; ð37Þ

where n is a nonnegative integer and k is a positive real
parameter with mass dimension. The scalar potential and
the scalar field can be solved from (25) and (26), respec-

tively. It can be seen that α̃ ≤ 1
8
M2�
k2 can guarantee the scalar

field is real. We plot the brane solutions in Fig. 4 and Fig. 5
by choosing different values of n and α̃, respectively. Since
the warp factor and energy density are independent of α̃, we
do not repeat their plots in Fig. 5. With the increase of the
parameter n, the warp factor shown in Fig. 4(a) becomes
much wider with a platform around z ¼ 0, and the scalar
field shown in Fig. 4(b) changes to double-kink from
single-kink when n ≥ 1. The energy density in Fig. 4(c)
shows that the brane splits into two sub-branes. When the
parameter n increases to infinity, the warp factor, the scalar
field, the energy density, and the scalar potential still have
the similar shapes as the case of a finite n. From Fig. 5 we
see that the scalar field and scalar potential are stretched
with the decrease of the parameter α̃.

IV. STABILITY OF THE SYSTEM
AND LOCALIZATION OF GRAVITY

So far, we have obtained four kinds of thick brane
solutions. It has been shown that the four-dimensional
Newtonian potential can be recovered. Note that the four-
dimensional Newtonian potential is generated by the
massless KK graviton and an additional correction will
be induced by the massive KK gravitons. Therefore, to
check that whether the four-dimensional Newtonian poten-
tial can be recovered, we need to study the properties of the
brane system under four-dimensional tensor perturbations
of the background metric. The total metric is given by

ds2 ¼ e2AðzÞ½ðημν þ hμνÞdxμdxν þ dz2�; ð38Þ

where hμν ¼ hμνðxμ; zÞ is a transverse and traceless tensor
perturbation of the background metric (24). The transverse
and traceless gauge conditions are given by ∂μhμν ¼ 0 ¼ hμμ.
The linear perturbation equation is

δGν
μ − ϵδQν

μ ¼ κδTν
μ; ð39Þ

where ϵ ¼ 2α̃κM�. The above equation can be expanded as

ð1þ 2ϵR̄ÞδRν
μ −

1

2
R̄hνμ − 2ϵ

�
1

4
R̄GBhνμ

þ 2ðδRμβR̄νβ þ R̄μβδRνβÞ þ 2ðδRABR̄AνB
μ þ R̄ABδRAνB

μ Þ

− ðδRμABCR̄νABC þ R̄μABCδRνABCÞ
�
¼ κδTν

μ: ð40Þ

The quantities with a bar and with a delta in Eq. (40)
correspond to the background and the perturbation, respec-
tively. With the help of the equations of motion of the
background, the equation for the tensor perturbation under
the transverse and traceless gauges can be derived as
follows [70]:

ð1−4ϵe−2A∂2zAÞ□ð4Þhνμþ½1−4ϵe−2Að∂zAÞ2�∂2zhνμ
þ½3∂zA−4ϵe−2Að2ð∂zAÞ∂2zAþð∂zAÞ3Þ�∂zhνμ ¼ 0; ð41Þ

FIG. 4. The brane solutions for the warp factor (35) with
different values of n. The red dashed lines, black dot-dashed
lines, and dark blue lines correspond to n ¼ 0, n ¼ 2, and n ¼ 9,
respectively. Here we let α̃ ¼ −0.1.

FIG. 5. The brane solutions for the warp factor (35) with
different values of α̃. The red dashed lines, blue solid lines, black
dot-dashed lines, and dark blue lines correspond to α̃ ¼ 0.1,
α̃ ¼ 0, α̃ ¼ −0.1, and α̃ ¼ −0.5, respectively. Here we let n ¼ 2.
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where □
ð4Þ ¼ ημν∂μ∂ν denotes the four-dimensional

d’Alembert operator on the brane. The above equation
can also be given in the physical coordinate y by the
coordinate transformation dy ¼ eAdz. The result is

□
ð4Þhνμ þ F2ðyÞhν00μ þHðyÞhν0μ ¼ 0; ð42Þ

where the prime denotes the derivative respect to physical
coordinate y and

FðyÞ ¼ eA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4ϵA02Þ

1 − 4ϵðA02 þ A00Þ

s
; ð43Þ

HðyÞ ¼ e2A
4ðA0 − 2ϵA0A00 − 4ϵA03Þ

1 − 4ϵðA02 þ A00Þ : ð44Þ

Then, by considering the KK decomposition of the ten-
sor perturbation hνμðxμ; yÞ ¼ χνμðxμÞφðyÞ, we obtain the
four-dimensional Klein-Gordon equation of the four-
dimensional KK graviton χνμðxμÞ with mass m and the
equation of the extradimensional part φðyÞ,

ð□ð4Þ −m2ÞχνμðxμÞ ¼ 0; ð45Þ

F2ðyÞφ00ðyÞ þHðyÞφ0ðyÞ þm2φðyÞ ¼ 0: ð46Þ

Using another coordinate transformation dy ¼ FðyðwÞÞdw,
equation (46) can be rewritten in the coordinate w as

∂
2
wφðwÞ þKðwÞ∂wφðwÞ þm2φðwÞ ¼ 0; ð47Þ

where KðwÞ ¼ H−∂wF
F . Finally, by making the field trans-

formation φðwÞ ¼ fðwÞξðwÞ with the function fðwÞ sat-
isfying

∂wfðwÞ
fðwÞ ¼ 1

2

�
∂wFðwÞ
FðwÞ −

HðwÞ
FðwÞ

�
; ð48Þ

we can transform the equation for φðwÞ as the following
Schrödinger-like equation

ð−∂2w þ VeffðwÞÞξðwÞ ¼ m2ξðwÞ; ð49Þ

where the effective potential in the coordinate w is given by

VeffðwÞ¼
2Fð∂wH−∂

2
wFÞ−4H∂wFþ3ð∂wFÞ2þH2

4F2
: ð50Þ

The Schrödinger-like equation (49) can be expressed as the
following form

Q†QξðwÞ ¼ m2ξðwÞ; ð51Þ

where the operators Q and Q† are given by

Q ¼ ∂w þ PðwÞ; Q† ¼ −∂w þ PðwÞ; ð52Þ

PðwÞ ¼ 1

2

�
∂wF
F

−
H
F

�
: ð53Þ

Equation (51) guarantees m2 ≥ 0 and there is no tachyonic
graviton. So, it is proved that the system is stable under the
linear tensor perturbations. The tensor zero mode can be
obtained by solving Eq. (51) with m2 ¼ 0,

ξ0ðwÞ ¼ N0e
�
R

PðwÞdw; ð54Þ

where N0 is the normalization constant. A localized
graviton zero mode should satisfy the normalization con-
dition

R∞
−∞ ξ20ðwÞdw ¼ 1.

Next, we use the relation ∂w
∂y ¼ 1

F to write the expressions
of the effective potential Veff and the tensor zero mode ξ0 in
the physical coordinate y,

VeffðwðyÞÞ ¼
1

4

�
H2ðyÞ
F2ðyÞ −

4HðyÞF0ðyÞ
FðyÞ þ F02ðyÞ

�

þ 1

4
ð2H0ðyÞ − 2FðyÞF00ðyÞÞ; ð55Þ

ξ0ðwðyÞÞ ¼ N0e
R

P�ðyÞdy; ð56Þ

where the functions P�ðyÞ are given by

P�ðyÞ ¼ �FðyÞF0ðyÞ −HðyÞ
2FðyÞ2 : ð57Þ

For an asymptotic AdS5 spacetime described by the metric
(8), the warp factor eAðyÞ tends to AðyÞ → −kjyj when
jyj → ∞. Thus, the behavior of the effective potential at
infinity is

lim
jyj→∞

Veff →
15

4
k2e−2kjyj; ð58Þ

which shows that it will tend to zero when jyj → ∞. The
asymptotic behavior of the factor

R
P�dy of the zero mode

at infinity is

lim
jyj→∞

Z
P�ðyÞdy ¼ �

�
3k
2
jyj þ C0

�
; ð59Þ

where C0 is an integration constant. The asymptotic
behavior (59) shows that the following conditionZ

∞

−∞
ξ0ðyÞ2dy ¼ 1 ð60Þ

can be satisfied with a finite normalization constant N0 for
the case of P− in Eq. (59). Therefore, it is proved that the
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corresponding zero mode ξ0ðwðyÞÞ ¼ N0e
R

P−ðyÞdy is local-
ized on the brane and the four-dimensional Newtonian
potential can be recovered.
Next, we focus on the profiles of the effective potentials

and the corresponding configurations of the tensor zero
modes on the thick brane solutions obtained in Sec. III.
Note that, the effective potential (55) would diverge

when the function FðyÞ given in Eq. (43) goes to zero or the
function HðyÞ given in Eq. (44) diverges at certain finite
extra-dimension coordinate y ¼ y0, which is equivalent to

ð4ϵA02 − 1Þð4ϵðA02 þ A00Þ − 1Þ ¼ 0: ð61Þ

The divergence of the effective potential means that
there exists a nonsmooth tensor zero mode in the smooth
thick brane.
Finally, we give the shapes of the effective potentials and

tensor zero modes of our four kinds of thick brane
solutions. Figures 6–8 show the effective potentials and
tensor zero modes of the thick brane solutions generated by
the superpotentials (27), (28), and (29), respectively. It can
be seen that the distribution of each effective potential is
consistent with the energy density of the corresponding
thick brane. With the specific superpotential WðϕÞ, the
effective potential Veff can have a richer structure. For
instance, in Fig. 7 one can see that there are several wells in
the effective potential. Figures 9 and 10 show the effective
potential and tensor zero mode of the thick brane solution
(35) for different values of n and α̃, respectively. Here, we
obtain the discontinuous effective potential and nonsmooth

tensor zero mode for a smooth thick brane when n or −α̃
has a large value. This is a new feature that did not find in
general relativity. Although the profiles of these effective
potentials and tensor zero modes are quite different, the
localization condition (60) are satisfied and so all the zero
modes we obtained can be localized on the brane and the
four-dimensional Newtonian potential can be recovered.
We have discussed the localization of the KK gravitons

and the corresponding tachyon stability. Next, we further
discuss the ghost problem of the tensor perturbations. It has
been proved that the linear perturbation equations can be
derivedvia theHamiltonianvariationprinciple in terms of the
quadratic actions [39,104,105]. Therefore, the coefficients of

FIG. 7. The effective potential and zero mode for the second
brane solution in Sec. III A with the superpotential (28). The
parameters are given in Table II.

FIG. 8. The effective potential and zero mode for the third brane
solution in Sec. III Awith the superpotential (29). The parameters
are given in Table III.

FIG. 9. The effective potential and zero mode for the brane
solution given in Sec. III B with the given warp factor (35) for
different values of n. The parameters are set to α̃ ¼ −0.1 and
n ¼ ð0; 2; 9Þ for the red dashed, black dot-dashed, and dark blue
lines, respectively.FIG. 6. The effective potential and zero mode for the first brane

solution given in Sec. III A with the superpotential (27). The
parameters are given in Table I.

FIG. 10. The effective potential and zero mode for the brane
solution given in Sec. III B with the given warp factor (35) for
different values of α̃. The parameters are set to n ¼ 2 and α̃ ¼
ð0.1; 0;−0.1;−0.5Þ for the red dashed, blue solid, black dot-
dashed, and dark blue lines, respectively.
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the kinetic term for the quadratic action ofhμν can be recast in
terms of the equation ofmotion (41). That is to say, thekinetic
terms of the quadratic action will have the following forms:

−K1ðzÞhμν∂2t hμνþK1ðzÞhμν∂2x⃗hμνþK2ðzÞhμν∂2zhμν; ð62Þ

where

K1ðzÞ ¼ 1 − 8α̃κe−2A∂2zA; ð63Þ

K2ðzÞ ¼ 1 − 8α̃κe−2Að∂zAÞ2: ð64Þ

Therefore, the no-ghost conditions for the KK tensor
modes are

K1 > 0 and K2 > 0: ð65Þ

It can be seen that the above conditions are satisfied in
GR with α̃ ¼ 0, and there is no ghost in GR. Next we will
give the constraint on the GB coupling parameter α̃. It is
noted that the value of function e−2Að∂zAÞ2 is always positive
definite, for which we can get the following inequality

α̃ <
e2AðzÞ

8κð∂zAÞ2
: ð66Þ

For the function e−2A∂2zA, its value can be positive or
negative, therefore, we can get another two conditions

α̃ >
e2AðzÞ

8κ∂2zA
; if ∂2zA < 0; ð67Þ

α̃ <
e2AðzÞ

8κ∂2zA
; if ∂2zA > 0: ð68Þ

To check the ghost instability of our model, we define the
following two functions:

Ω1 ¼
e2AðzÞ

8κ∂2zA
; ð69Þ

Ω2 ¼
e2AðzÞ

8κð∂zAÞ2
: ð70Þ

Then we can check whether the conditions (66), (67),
and (68) are satisfied for our solutions. For the thick brane
models given in case III A 1, we give the result in Fig. 11. It
can be seen that the values of the functions Ω1 and Ω2

along the extra dimension will gradually tend towards the
values of α̃, for which the functions K1 and K2 are positive
definite and there are no ghost instabilities for the tensor
perturbations. For the thick brane models that are given in
case of III A 2, we give the result in Fig. 12 and we show

that there are no ghost instabilities for the solutions in
subfigures 12(a), 12(b), and 12(c). For the thick brane
models that are given in case of III A 3, we give the results
in Fig. 13 and prove that there are no ghost instabilities for
these solutions.
We should note that, it is hard to figure out what are the

exact effects of the GB term on the properties of thick brane
for the thick brane solutions listed in Tables I, II, and III.

FIG. 11. Comparison between the functions ðΩ1;Ω2Þ and
values of α̃ for the thick brane solution of case III A 1.

FIG. 12. Comparison between the functions ðΩ1;Ω2Þ and
values of α̃ for the thick brane solution of case III A 2.
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However, the solutions listed in Tables IVand Vare derived
in terms of the directly given warp factors. Therefore, for a
determined warp factor AðzÞ, the conditions (66), (67),
and (68) can give the constraint of the GB coupling
parameter α̃ directly. As concrete examples we have
checked the corresponding constraints obtained from the

warp factors (35) and we give the results in Figs. 14–16.
For the solutions listed in Table V, the value of α̃ should
satisfy

−0.1 < α̃ < 0.1 ð71Þ

in terms of the constraints (66), (67), and (68). We find that
when we choose α̃ ¼ −0.5, the tensor perturbation will
have the ghost instability. We also choose different values
of α̃ as follows:

FIG. 13. Comparison between the functions ðΩ1;Ω2Þ and
values of α̃ for the thick brane solution of case III A 3.

TABLE III. Parameters used in Fig. 3.

Solution Lines α̃ a b

Solution_c1 Black dot-dashed lines 0.065 0.700 −0.650
Solution_c2 Red dashed lines 0.060 0.600 0.560
Solution_c3 Dark blue lines 0.020 0.800 −0.720

TABLE IV. Parameters used in Fig. 4.

Solution Lines α̃ n

Solution_d1 Red dashed lines −0.1 0
Solution_d2 Black dot-dashed lines −0.1 1
Solution_d3 Dark blue lines −0.1 2

TABLE V. Parameters used in Fig. 5.

Solution Lines α̃ n

Solution_e1 Red dashed lines 0.1 2
Solution_e2 Blue solid lines 0 2
Solution_e3 Black dot-dashed lines −0.1 2
Solution_e4 Dark blue lines −0.5 2 FIG. 15. Comparison between the functions ðΩ1;Ω2Þ and

values of α̃ for the thick brane solutions in Fig. 5.

FIG. 14. Comparison between the functions ðΩ1;Ω2Þ and
values of α̃ for the thick brane solutions in Fig. 4.
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α̃ ¼ ð−0.1;−0.05;−0.03; 0; 0.03; 0.05; 0.01Þ ð72Þ

and give the results in Fig. 16, our results confirm that the
correctness of constraints (66), (67), and (68). We will
give a summary about the ghost instability of the four-
dimensional tensor perturbation in following Table VI.

V. SCALAR PERTURBATION

In this section, we investigate the properties of scalar
perturbations of our model. Reference [70] studied the full
perturbations and provided the corresponding results about
the localization of the tensor modes, vector modes, and

scalar modes. Here, we give a brief summary about the
scalar perturbations and discuss the corresponding locali-
zation and stability of our models.
The complete form of metric with the scalar perturba-

tion is

δgMN ¼ e2AðzÞ
�
2ημνψ þ 2∂μ∂νE ∂μC

∂μC 2ξ

�
: ð73Þ

It can be seen that the scalar perturbations are parametrized
by the four scalar functions ψ , ξ, C, E. However, the above
scalar perturbation functions are not gauge invariant [70]
under an infinitesimal transformation as follows:

xM → x̃M ¼ xM þ ϵM; ð74Þ

where ϵM ¼ a2ðyÞðϵμ; ϵzÞ and the gauge functions are
ϵμ ¼ ∂μϵþ ζμ with ∂μζ

μ ¼ 0. In Ref. [70], the authors
have constructed the gauge-invariant scalars as follows:

Ψ ¼ ψ − ∂zAð∂zEþ CÞ; ð75Þ

Ξ ¼ ξþ 1

eAðzÞ
∂z½eAðzÞðCþ ∂zEÞ�; ð76Þ

X ¼ χ − ∂zϕð∂zEþ CÞ: ð77Þ

The equations of motion for these gauge-invariant scalars
can also be obtained, see the details in Ref. [70].
Using the rescaled Ψ in terms of

Φ ¼ e3AðzÞ=2q
∂zϕ

Ψ; ð78Þ

the master equation of motion for the scalar perturbation is

−∂2zΦþ u∂2z

�
1

u

�
Φ −

�
1 −

∂zq
∂zAq

�
∂α∂

αΦ ¼ 0; ð79Þ

where

q ¼ 1 −
4ϵð∂zAÞ2
e2AðzÞ

ð80Þ

and

uðzÞ ¼ e3AðzÞ=2∂zϕ
∂zA

: ð81Þ

It has been proved that the equation obeyed by Φ is also
obeyed by the appropriately re-scaled Ξ [70].

FIG. 16. Comparison between the functions ðΩ1;Ω2Þ and
values of α̃ for the thick brane solutions with an determined
warp factor.
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Applying the following KK decomposition

Φ ¼ Σ∞
n snðxμÞθnðzÞ; ð82Þ

and assuming the four-dimensional part snðxμÞ satisfies the
four-dimensional Klein-Gordon equation as follows:

∂α∂
αsnðxμÞ ¼ m2

nsnðxμÞ; ð83Þ
one can derive following equation:

−∂2zθnðzÞþ
�
u∂2z

�
1

u

��
θnðzÞ¼m2

n

�
1−

∂zq
∂zAq

�
θnðzÞ: ð84Þ

Here, mn is the four-dimensional observed effective mass
of the scalar perturbation sn. It can be seen that when the
coupling constant α ¼ 0, we have q ¼ 1, and Eq. (84)
reduce to the GR case [106–108]

−∂2zθnðzÞ þ u∂2z

�
1

u

�
θnðzÞ ¼ m2

nθnðzÞ: ð85Þ

Note that, the localization of massless scalar perturbation
has been ruled out [106–108] and there is no tachyon
instability in GR. To check that whether there are tachyon
instabilities for the scalar perturbations of our thick brane
solutions, we define the following functions:

Θ ¼ 1 −
∂zq
∂zAq

; ð86Þ

Vs ¼ u∂2z̃

�
1

u

�
: ð87Þ

Clearly, one positive definite Θ and one positive definite Vs
will rule out the existence of the solution with an imaginary
mn [107]. We have checked all our solutions and give the

TABLE VI. Stabilities of our thick brane models.

Thick brane solution K1 K2 Θ Vs Stability

Solution_a1 Positive definite Positive definite Positive definite Positive definite Stable
Solution_a2 Positive definite Positive definite Positive definite Not positive definite Unstable
Solution_a3 Positive definite Positive definite Not positive definite Positive definite Unstable

Solution_b1 Positive definite Positive definite Not positive definite Positive definite Unstable
Solution_b2 Positive definite Positive definite Positive definite Not positive definite Unstable
Solution_b3 Positive definite Positive definite Positive definite Positive definite Stable

Solution_c1 Positive definite Positive definite Positive definite Positive definite Stable
Solution_c2 Positive definite Positive definite Positive definite Positive definite Stable
Solution_c3 Positive definite Positive definite Positive definite Not positive definite Unstable

Solution_d1 Positive definite Positive definite Positive definite Positive definite Stable
Solution_d2 Positive definite Positive definite Positive definite Positive definite Stable
Solution_d3 <0 Positive definite Positive definite Positive definite Unstable

Solution_e1 Positive definite Positive definite Not positive definite Positive definite Unstable
Solution_e2 Positive definite Positive definite Positive definite Positive definite Stable
Solution_e3 Positive definite Positive definite Positive definite Positive definite Stable
Solution_e4 <0 Positive definite Positive definite Positive definite Unstable

FIG. 17. Profiles of function Θ along the extra dimension for all
the thick brane models.
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corresponding results in Figs. 17 and 18. Combining the
results about ghost instabilities of tensor perturbation and
tachyon instabilities of scalar perturbations, we finally give
a summary about the instabilities of our thick brane
solutions in Table. VI.
So far, we have studied the properties of thick branes in

five-dimensional GB gravity. We propose the numerical
method to solve the thick brane solutions, the localization
of massless KK graviton and whether the four-dimensional
Newtonian potential can be recovered are still studied, the
ghost instability of four-dimensional tensor perturbation
and tachyon instability of scalar perturbations are also
discussed. Here, we briefly summarize how the GB term
affects the properties of the thick brane. For simplicity, we
only consider the solutions in Table V to discuss this.
When theGBcoupling parameter α̃ goes from the negative

value to the positive value, the profile of scalar field will
gradually transform from the red dashed line to the dark blue
line as shown in Fig. 5. Our further study shows that such

changewill induce the ghost instability of tensor perturbation
and the tachyon instability of scalar perturbation, see the
details in Figs. 15 and 17(e). We find that the thick brane
solution will have the ghost stability of tensor perturbation
but not have the tachyon instability of scalar perturbations
with the negative α̃. When the coupling parameter α̃ is
vanishing, the thick brane will be stable and there are no any
instabilities. When the coupling parameter α̃ becomes
positive, both the tachyon instabilities of scalar perturbations
and the ghost instability of tensor perturbation will exist.

VI. CONCLUSIONS

It is well known that the GB term is topologically
invariant and does not affect the equations of motion in
four-dimensional spacetime. However, when the spacetime
dimension satisfies D ≥ 5, the GB term is no longer
topologically invariant and its influence should be consid-
ered. Thus, in this paper we investigated the property of a
thick brane in the five-dimensional Einstein GB gravity and
showed that how the GB term affects the property of a thick
brane. We introduced two methods for solving the thick
brane solutions. In the first method, all the variables
including the warp factor A, the scalar potential V, and
the extradimensional coordinate y are considered as func-
tions of the scalar field ϕ. Then we can write the brane
solution formally under the help of an auxiliary super-
potentialWðϕÞ, which is given by Eqs. (17), (19), and (20).
Note that, in this method, we have an assumption, i.e., the
scalar field ϕðyÞ is a monotonic function of the extradimen-
sional coordinate y. It was shown that this novel method
works well for solving thick brane solutions with various
superpotentials. In the second method, the expressions for
the scalar field and scalar potential were obtained in terms
of the warp factor, and one can directly obtain the thick
brane solution by specifying a warp factor.
By choosing three special kinds of superpotentials, we

first derived three types of thick brane solutions. We gave
the constraints for the parameters in the superpotentials
(27), (28), and (29) that could support the existence of a
thick brane solution. We showed that one can construct
multikink thick brane solutions with a suitable super-
potential. We then obtained the thick brane solution by
specifying a polynomial-expanded warp factor.
We showed that themassless four-dimensional tensor zero

modes can be localized on the thick branes and the four-
dimensional Newtonian potential can be recovered. The
effective potentials in these brane models for the KK
gravitons have the rich structures such as multiwell, which
would lead to massive resonant KK gravitons [25,26,32,33].
Furthermore, it was found that one can obtain a discontinu-
ous effective potential and nonsmooth tensor zero mode in
the smooth thick brane solution, which was not found in
general relativity. This singularity is originated from the zero
point of the function FðyÞ (43) or the divergence of the
functionHðyÞ given inEq. (44) in the effective potential (50).

FIG. 18. Profiles of function Vs along the extra dimension for
all the thick brane models.
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The singularity condition is given by Eq. (61), from which it
is clear that this singularity comes from theGB term for some
parameter space and there is no singularity in general
relativity. Such a situation was also found in the fðRÞ brane
model, see Ref. [26] for the details. The inner structure of the
effective potential with singularities will also support a series
of resonant KK gravitons. Moreover, we also studied the
ghost instability of four-dimensional tensor perturbation and
the tachyon instability of scalar perturbation. We found that
these thick branewith rich inner structures might be unstable
due to the existence of the ghost and tachyon. Our results
indicate that deviation of α̃ from zero too far in both the
positive and negative directions can lead to instability of the
thick brane, and only the thick brane solutions with GB
coupling parameter α̃ near zero could be stable.
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