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We investigate the shadow cast by a regular black hole in scalar-tensor-vector modified gravity theory. This
black hole differs from a Schwarzschild-Kerr black hole by the dimensionless parameter β. The size of the
shadowdependson this parameter. Increasing thevalue of theparameterβ shrinks the shadow.Acritical value of
the parameter β is found to be βcrit ¼ 0.40263. The shadow for the horizonless dark compact object has been
analyzed for the static, spherically symmetric case and compared with M87* and Sgr A* data. Shadow
observables have been determined in the context of the regular black hole and used for obtaining the energy
emission rate. The peak of the energy emission rate shifts to lower frequency for the increasing value of the
parameter β.
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I. INTRODUCTION

One of the most remarkable predictions of the general
theory of relativity is the occurrence of black holes. The
recent observations by the Event Horizon Telescope (EHT)
Collaboration [1–7] and the detection of gravitational wave
signals by the Laser-Interferometer Gravitational Wave-
Observatory (LIGO) and Virgo [8–10], corroborate the
existence of these celestial objects. Despite its success, the
theory of general relativity is not flawless. The two major
drawbacks of this theory are the presence of singularities
[11,12] in the theory and the lack of observational data
verifying the existence of the dark sector [13]. The research
community is divided into two groups regarding this issue
[14–19]. Either dark matter exists or alternatively Einstein’s
gravitational theory has to be modified. Despite numerous
attempts to find the existence of the dark sector, in
particular the dark matter, all experimental attempts to
detect dark matter have, until now, failed [20,21]. This
motivates us to explore the nature of black holes in a theory
where these above mentioned ambiguities are removed.
One of the successful approaches towards this goal has
been developed by one of the authors [22]. The theory is
popularly known in the literature as the scalar-tensor-vector
gravity (STVG) theory and modified gravity (MOG). The
solar system observations [23], cosmological observations
[24], galaxy rotation curves [25–27] and the dynamics of
galaxy clusters [28,29] have all been satisfactorily
explained by the MOG. It has also been successful in

describing structure growth, the matter power spectrum,
and cosmic microwave background (CMB) acoustical and
angular power spectrum data [30–33]. Observational sig-
natures and constrains of the black holes and other compact
objects as appearing in MOG theory have been discussed in
the literature [34–36]. To distinguish the MOG theory from
general relativity, EHTobservational data have been used to
study the shadow cast by the supermassive MOG black
holes Sgr A* and M87*[37].
As a result of lensing phenomena [38–41], the black hole

scatters the higher angular-momentum photons from the
source, sending them to the distant observer, while the
photons with less angular momentum fall into the black
hole and create a shadow zone and a possible light ring. The
black hole shadow, which develops next to the event
horizon, gives us a general notion of the fundamental
geometrical structure of horizons [42]. A review of these
developments can be found in [43]. Sagittarius A*, the
supermassive black hole at the heart of our galaxy, and
M87* at the galactic center of M87 have both been
confirmed by the EHT astronomical observations [1–7].
A two-dimensional dark disc encircled by bright rings is the
black hole’s observable appearance. The light rings are
photon orbits, while the dark area represents the black hole
shadow. The accreted matter around the black hole has an
impact on how the shadow is shaped. Since the black hole’s
shadow carries the geometry of the surrounding region in
its shape and size, it is considered a helpful tool for
determining the black hole’s spin and other deformation
characteristics and parameters [44–47]. This in turn can
help to distinguish and test general relativity and other
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alternative theories [48–65]. The black hole candidates
display a significant rotation. Our main goal will be to
explore the rotating black holes in MOG/STVG theory. To
evade the problem of a singularity, we will focus our study
on regular solutions in the STVG/MOG theory of gravity.
One of the crucial methods for obtaining information about
a black hole is the study of its shadow [66–71]. Earlier
attempts have been made to analyze the shadows of regular
black holes [54,72–78]. Many of these regular black holes
arise from gravity coupled to nonlinear electrodynamics.
However, the electrical charge of black holes is expected to
have negligible effect on the geometry of spacetime [79]. In
STVG/MOG theory, the regular black hole solutions are
obtained from a purely gravitational theory and can be
potential candidates for astrophysical black holes.
The paper is organized as follows: In Sec. II a brief

introduction to the STVG/MOG gravitational action and
field equations is presented. The static regularMOGcompact
object is discussed in Sec. III. In Sec. IV, we investigate the
regular MOG spherically symmetric solution and analyti-
cally derive the critical value of the parameter β. We also
derive the parameter dependence of the black hole horizon,
photon sphere and shadow. Section V is dedicated to a study
of the regular MOG rotating solution. In Sec. VI, we have
determined the shape and size of the black hole shadow for
the regularMOGrotating solution alongwith theobservables
associated with it. Finally we have calculated the energy
emission rate for the concerned black hole with the help of
associated observables in Sec. VII.
Throughout the paper, we will use mostly the positive

metric convention assuming the velocity of light to be
unity (c ¼ 1).

II. STVG ACTION AND FIELD EQUATIONS

The action for MOG/ STVG theory is

S ¼ SGR þ Sϕ þ SS þ SM; ð1Þ

where

SGR ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p 1

G
R; ð2Þ

Sϕ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4
BμνBμν −

1

2
μ2ϕμϕμ − Jμϕμ

�
; ð3Þ

SS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

G3

�
1

2
gμν∇μG∇νG − VðGÞ − JG

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p 1

μ2G

�
1

2
gμν∇μμ∇νμ − VðμÞ

�
: ð4Þ

Here gμν is the spacetime metric, g is the determinant of the
metric, R is the Ricci scalar, ϕμ is a proca-type massive
vector field such that Bμν ¼ ∂μϕν − ∂νϕμ, GðxÞ and μðxÞ

are scalar fields and VðGÞ and VðμÞ are the corresponding
potentials. SM is the matter action. The energy-momentum
tensor for the gravitational source can be written as

Tμν ¼ TM
μν þ Tϕ

μν þ TS
μν ð5Þ

where

TM
μν ¼ −

2ffiffiffiffiffiffi−gp ∂SM
δgμν

; ð6aÞ

Tϕ
μν ¼ −

2ffiffiffiffiffiffi−gp ∂Sϕ
δgμν

; ð6bÞ

TS
μν ¼ −

2ffiffiffiffiffiffi−gp ∂SS
δgμν

: ð6cÞ

Here, TM
μν is the ordinary matter energy-momentum

tensor, Tϕ
μν is the energy-momentum tensor for the field

ϕμ and the scalar contribution to the energy-momentum
tensor is denoted by TS

μν. Moreover, Jμ and J are the vector
and scalar field currents, respectively.
The Schwarzschild-MOG and Kerr-MOG black hole

solutions can be found with the following assumptions:
(i) It is assumed that the matter energy-momentum

tensor TM
μν and the vector and scalar field currents Jμ

and J are zero.
(ii) Since the effects of the vector field ϕμ mass μ

becomes prominent at kiloparsec distances from the
source, the mass of the vector field is disregarded
when solving the field equations for compact objects
like black holes.

(iii) The constant G depends on the parameter β ¼
α=ð1þ αÞ by G ¼ GNð1þ αÞ ¼ GN

1−β. Here, GN is
Newton’s gravitational constant and we assume that
∂μG ≈ 0. The range of the dimensionless parameter
β is 0 ≤ β ≤ 1.

The action in (1) assumes the following form:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

4
BμνBμν

�
: ð7Þ

Varying this action with respect to gμν, we get the following
field equations:

Gμν ¼ 8πGTϕ
μν; ð8Þ

where Gμν is the Einstein tensor Rμν − 1
2
gμνR. The energy-

momentum tensor associated with vector field ϕμ is
given by

Tϕ
μν ¼ 1

4π

�
Bμ

ρBνρ −
1

4
gμνBαβBαβ

�
: ð9Þ
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To obtain the dynamical equation for the vector field, we
need to vary the action in (7) with respect to the vector field
ϕμ. Such a variation leads to the following dynamical
equation:

∇νBμν ¼ 1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
BμνÞ ¼ 0: ð10Þ

One should note here that the gravitational charge Qg

associated with the MOG vector field is proportional to the
mass of the gravitational source as [80]

Qg ¼
ffiffiffiffiffiffiffiffiffi
αGN

p
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞGN

p
Mβ; ð11Þ

whereMβ ¼ ð1þ αÞM. The gravitational chargeQg results
in the modified Newtonian acceleration for weak gravita-
tional fields and slow particle motion:

aðrÞ ¼ −
GNM
r2

½1þ α − α expð−μrÞð1þ μrÞ� ð12Þ

For small scale objects and weak gravitational fields μr ≪
1 and the parameter α cancels, reducing the acceleration to
Newtonian gravity. With parameter-post-Newtonian cor-
rections this guarantees that MOG is consistent with
accurate solar system experiments.

III. STATIC REGULAR MOG
COMPACT OBJECT

The gravitational action for the matter-free MOG theory
using nonlinear field equations for the gravitational spin 1
vector field ϕμ is given by [81]

SMOG ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − LðBÞ� ð13Þ

where R is the Ricci scalar, LðBÞ describes the nonlinear
contribution of Bμν ¼ ∂μϕν − ∂νϕμ with B ¼ 1

4
BμνBμν. The

associated field equations are

Gμν ¼ 8πGTϕ
μν; ð14aÞ

∇ν

�
∂L
∂B

Bμν

�
¼ 0; ð14bÞ

∇μð⋆BμνÞ ¼ 0; ð14cÞ

where ⋆Bμν ¼ ϵμνρσBρσ is the Hodge-dual of Bμν. The
energy-momentum tensor associated with the theory is
given by

Tϕ
μν ¼ 1

4π

�
∂L
∂B

gρσBμρBνσ − gμνLðBÞ
�
: ð15Þ

In this theory, the gravitational constant is enhanced by
G ¼ GNð1þ αÞ. The gravitational source charge associ-
ated with the vector field ϕμ is given by

Qg ¼
ffiffiffiffiffiffiffiffiffi
αGN

p
M; ð16Þ

where M is the mass parameter of the theory. The gravi-
electric field is given by

EgravðrÞ ¼ B01ðrÞ ¼ −B10ðrÞ: ð17Þ

The energy-momentum tensor components are given by

Tϕ0
0 ¼ Tϕ1

1 ¼ −
1

4π

�
E2
grav

∂L
∂B

þ LðBÞ
�
: ð18Þ

To describe the nonlinear system in an alternative way, one
can consider the function H obtained from the Legendre
transformation. The function H is given by

H ¼ 2B
∂L
∂B

− LðBÞ: ð19Þ

We assume

Pμν ¼
∂L
∂B

Bμν ð20Þ

and

P ¼ 1

4
PμνPμν ¼

�
∂L
∂B

�
2

B: ð21Þ

Now, H can be expressed as the function of P. For the
regular spacetime metric solution the form of the function
HðPÞ is given by

HðPÞ ¼ P
ð1 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þ αÞM2P

p
Þ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þ αÞM2P

p
Þ3

−
3

2αð1þ αÞM2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þ αÞM2P

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þ αÞM2P

p
�
;

ð22Þ

where b ¼
ffiffi
α

p
M
2

and P ¼ − α
ð1þαÞ

M2

2r4 and we have set the

gravitational constant GN ¼ 1. The associated Lagrangian
L is provided by

LðPÞ ¼P
ð1− 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þαÞM2P

p
−6αð1þαÞM2PÞ

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þαÞM2P

p
Þ4

−
3ð−2αð1þαÞM2PÞ5=4ð3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þαÞM2P

p
Þ

4αð1þαÞM2bð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2αð1þαÞM2P

p
Þ7=2 :

ð23Þ
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IV. REGULAR MOG STATIC SPHERICALLY
SYMMETRIC SPACETIME

The MOG regular, static spherically symmetric solution
can be written as [81,82]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð24Þ

with

fðrÞ ¼ 1 −
2ð1þ αÞMr2

ðr2 þ αð1þ αÞM2Þ3=2 þ
αð1þ αÞM2r2

ðr2 þ αð1þ αÞM2Þ2 :

ð25Þ
HereM is the mass parameter of the gravitating object. The
associated gravielectric field is given by

EgravðrÞ ¼
ffiffiffi
α

p
Mr4

�
r2 − 5αð1þ αÞM2

fr2 þ αð1þ αÞM2g4

þ 15

2

ð1þ αÞM
fr2 þ αð1þ αÞM2g7=2

�
: ð26Þ

For a convenient way of studying the theory, we introduce
the alternative parameter β as

β ¼ α

1þ α
: ð27Þ

The (Arnowitt-Deser-Misner) ADMmass of the gravitating
object is

MADM ¼ ð1þ αÞM ¼ M
1 − β

≡Mβ: ð28Þ

We can express the metric in (24) in terms of the ADM
mass with

fðrÞ ¼ 1 −
2Mβr2

ðr2 þ βM2
βÞ3=2

þ βM2
βr

2

ðr2 þ βM2
βÞ2

ð29Þ

Here Mβ is the ADM mass of the spacetime and β is the
enhancement parameter. The gravitational source charge in
terms of the ADM mass is given by

Qg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βð1 − βÞGN

p
Mβ ð30Þ

The horizon of the spacetime depends on the zeros of the
function fðrÞ and that can be used to determine the critical
value of the parameter β. Let us assume r2

M2
β
þ β ¼ x2, then

zeros of fðrÞ can be determined by the equation

ax4 þ bx3 þ cx2 þ dxþ e ¼ 0 ð31Þ

where, a ¼ 1; b ¼ −2; c ¼ β; d ¼ 2β; e ¼ −β2. The dis-
criminant of the quartic equation is

Δ¼ 256a3e3 − 192a2bde2− 128a2c2e2þ 144a2cd2e

− 27a2d4þ 144ab2ce2− 6ab2d2e− 80abc2de

þ 18abcd3þ 16ac4e− 4ac3d2− 27b4e2þ 18b3cde

− 4b3d3− 4b2c3eþb2c2d3

¼−4β2ð27þ 4β½−16þ βf20þ βð−28þ 25βÞg�Þ: ð32Þ

As the discriminant satisfies Δ ≤ 0, there will be two
distinct real roots of the quartic equation. The critical value
at which there will be only one horizon is given by the
solution of the equation

10800β3 − 12096β2 þ 20304β − 6912 ¼ 0: ð33Þ

The solution of this equation is β ¼ 0.402186 ¼ βcrit. For
β < βcrit there will be a black hole with two horizons [80]
and there will be no horizon for β > βcrit. This result is
displayed in Fig. 1.

A. Motion of photons in MOG spherically
symmetric spacetime

The Lagrangian for the photon motion is given by

L ¼ 1

2

�
−fðrÞ_t2 þ 1

fðrÞ _r
2 þ r2 _θ2 þ r2sin2θ _ϕ2

�
: ð34Þ

For a spherically symmetric spacetime, we can always
choose without loss of generality θ ¼ π=2 and _θ ¼ 0. The
equations for _t and _ϕ can be deduced using the symmetries
of the MOG regular, static spherically symmetric space-
time. The associated equations are

fðrÞ_t ¼ E; ð35Þ

r2 _ϕ ¼ L; ð36Þ

FIG. 1. The zeros of the function fðrÞ have been shown to
confirm that either two horizons or no horizon are possible for the
regular MOG spherically symmetric spacetime. For β ¼ 0 the
spacetime becomes Schwarzschild and has a singularity at r ¼ 0.
One horizon solution is possible for the critical value of the
parameter βcrit ≈ 0.40263. It is easy to check that there is no
singularity for nonzero values of parameter β.
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where E and L are, respectively, the energy and angular
momentum of the photon. The radial equation can be
written as

_r2 þ VðrÞ ¼ E2; ð37Þ

where, VðrÞ ¼ L2 fðrÞ
r2 . The structure of the potential helps

to determine the presence of stable or/and unstable circular
orbits. From Fig. 2, we conclude that for the whole
parameter space, there exists a stable circular orbit and
an unstable circular orbit. This special situation arises for
βcrit < β ≲ 0.5. However, with close inspection and from
Fig. 3(a) for β < βcrit, we only have unstable circular orbits.
As assumed earlier, r2=M2

β þ β ¼ x2 can be used to find
the position of the photon sphere. The position of the
photon sphere can be found by the real greatest solution of
the following equation:

x4 − 3x3 þ 2βx2 þ 5βx − 3β2 ¼ 0: ð38Þ

For β < βcrit, there will be a photon sphere and a gradual
increase in the enhancement parameter β causes the decrease
of both the horizon and shadow radius. For the dark compact
object with βcrit < β ≲ 0.5, although there is no horizon, we
still have a photon sphere. In spherically symmetric space-
times, the shadowof theblackhole is circular in structure. For
the regular MOG black holes, the shadow has been shown
with the variation in the parameter β in Fig. 3(b). In the
figures, A and B are the celestial coordinates.

B. Parameter estimation using M87*
and Sgr A* data

Although astrophysical black holes are rotating in
nature, for a first-hand estimation of black hole parameters,
one can use the shadow of the spherically symmetric black
holes. As the shadow for spherically symmetric black holes
does not depend on the inclination angle to obtain the initial

(a)

(b)

FIG. 2. The variation of the potential for the photon particle
has been shown in these plots (a) minima of the potential has been
shown and (b) maxima of the potential has been shown. For
β < βcrit, there exists a stable circular orbit along with an unstable
circular orbit. However, for the MOG static spherically sym-
metric solution only unstable circular orbits exist for β < βcrit.
The existence of both stable and unstable circular orbits is
possible for βcrit < β ≲ 0.5.

(a)

(b)

FIG. 3. (a) the variation of the horizon radius, photon sphere
and the radius of the shadow are depicted as a function of the
parameter β. It is interesting to note that in the range 0.4≲ β ≲
0.5 there is no event horizon. However, this does not hinder us in
defining the photon sphere and shadow for the compact object.
Also, for the range of parameter space, we have both stable and
unstable circular orbits. (b) the circular shadow structures have
been depicted.
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estimation of the parameter β, we can work with the
shadow of the regular MOG black hole solution. Apart
from this, the observed shadows for M87* and Sgr A* are
more or less circular in nature. This motivates us to find the
observational signatures of the regular MOG black hole or
compact objects in M87* and Sgr A* using EHT data.
We have calculated how the radius of the photon sphere

and the shadow affected the parameter β in the previous
section. We can determine the values of β based on the size
of the angular diameter, which is defined as

tan α ≈ α ¼ rsh
D

; ð39Þ

where rsh is the radius of the black hole shadow, D is the
distance of the centre of theblackhole from the observer,2α is
the angular diameter. As the distance between the black hole
and the observer is much greater than the radius of the black
hole shadow, the small angle approximation is justified.
The mass and distance of M87* needs to be independ-

ently measured. The mass of M87* has been reported to be
M ¼ 3.5þ0.9

−0.3 × 109M⊙ from model gas-dynamics mass
measurements [83]. However, based on model stellar-
dynamics mass measurements, the mass is reported to be
M ¼ 6.2þ1.1

−0.5 × 109M⊙ [84,85]. The distance of the gravi-
tating source is reported to be D ¼ ð16.8� 0.8Þ Mpc.
Having the information of mass and distance of the black
hole one can define the angular gravitational radius
θ ¼ GM=c2D. The angular gravitational radius θdyn as
measured by stellar-dynamics process and the angular
gravitational radius θg as reported by EHT are more or
less consitent [86]. Theoretical bounds on the shadow
diameter has been discussed by Kocherlakota et al. [87]
Based on M87* shadow size they have implied restrictions
on the physical charges of several different spinning or
nonrotating black holes. We use the stellar dynamics mass
measurement to theoretically deduce the shadow radius
of the black hole. The supermassive black hole M87* in
the core of the galaxy M87 has an angular diameter of
ð42� 3Þ μas, according to the Event Horizon Telescope
(EHT) Collaboration [2]. In the plots shown in Fig. 4, the
central value 42 μas second has been shown with a gray
line and the error bar has been shown with the dashed gray
line. There is an error in the mass estimation of M87*
around the central value. The variation of angular diameter,
taking the central value of mass, has been shown with a
blue line. Taking the errors, we can also plot the angular
diameter. This has been shown with dot-dashed blue lines.
The central value of mass of M87* is 6.2 × 109M⊙.
Considering the error bars both for angular diameter

measurement and mass measurement, there is a possibility
that M87* could be a regular MOG black hole. For the
angular diameter ð42� 3Þ μas the value of the parameter β
can be as high as approximately β ¼ 0.3. This has been
shown with a vertical orange line in Fig. 4(a). So, in this
case we can say that the M87* is a regular MOG black hole.

With the angular diameter ð42� 3Þ μas, the possibility that
M87* is a horizonless compact object can be rejected.
However, if one considers a 10% offset value of the angular
diameter, the parameter β can be as high as approximately
β ¼ 0.45, and in this case M87* can be a horizonless
compact object. In Fig. 4(b), the theoretical range of β has
been shown by a gray shaded region and the region enclosed
by the two orange lines in gray shaded represents the
observationally allowed range of the parameter β for M87*.
According to the EHT Collaboration, the angular diam-

eter of the Sgr A* shadow is ð48.7� 7Þ μas [88–93]. The
angular diameter of the Sgr A* shadow depends on the
determined mass and distance of Sgr A*. Several groups
have reported the mass and distance of Sgr A*. From the
Keck team, keeping the redshift parameter free the mass
and distance of Sgr A* have been reported to be ð3.975�
0.058� 0.026Þ × 106M⊙ and ð7959� 59� 32Þ pc, res-
pectively [94]. The same group has also reported the
mass and distance assuming the redshift parameter
to be unity and these are ð3.951� 0.047Þ × 106M⊙ and
ð7935� 50Þ pc, respectively [94]. The mass and distance,
according to the Gravity Collaboration are, respectively,
ð4.261� 0.012Þ M⊙ and ð8246.7� 9.3Þ pc [95,96].
The Gravity Collaboration further limited the BH mass
ð4.297� 0.012� 0.040Þ × 106M⊙ and the distance
ð8277� 9� 33Þ pc by accounting for optical aberrations.
In Fig. 5, we have plotted the angular diameter as a function

FIG. 4. (a) the variation of the ring diameter has been shown
with the error bar. (b) the variation of shadow diameter has been
shown.

SUBHADIP SAU and JOHN W. MOFFAT PHYS. REV. D 107, 124003 (2023)

124003-6



of the parameter β with mass and distance as given by the
above teams. From the plot, using the Keck team data, one
can constrain the parameter to be 0 < β ≲ 0.4. With the
Keck team data, it is almost impossible to say that Sgr A* is
a horizonless compact object. However, using the Gravity
Collaboration data, we can say that there is a possibility
that Sgr A* is a horizonless compact object, because
with the Gravity Collaboration data the parameter range
is 0 < β ≲ 0.46.

V. REGULAR MOG ROTATING
COMPACT OBJECT

The regular rotating MOG solution can be obtained with
the help of the modified Newman-Janis algorithm. The

associated line element of the spacetime in Boyer-Lindquist
coordinates is given by [81]

ds2 ¼ −fðr; θÞdt2 − 2a sin2 θf1 − fðr; θÞgdϕdtþ Σ
Δ
dr2

þ Σdθ2 þ sin2 θ½Σ − a2ffðr; θÞ − 2g sin2 θ�dϕ2;

ð40Þ

where

FIG. 6. Parameter space of (β − a) plane for the regular rotating
MOG solution is displayed here. The reddish region represents
the black hole solution and the boundary denotes the occurrence
of an extremal black hole.

FIG. 5. Theoretical angular diameter for Sgr A* has been
shown.

(a)

(c)

(b)

(d)

FIG. 7. The nature of the static limit surface (SLS) is depicted as a function of coordinate r for various values of spin parameter a. The
variation of the SLS with respect to the enhancement parameter β can be seen along the row of the figure matrix [i.e. (a)–(b) and (c)–(d)].
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fðr; θÞ ¼ 1 −
2Mβr

ffiffiffi
Σ

p

½Σþ βM2
β�3=2

þ βM2
βΣ

½Σþ βM2
β�2

; ð41aÞ

Δ ¼ Σfðr; θÞ þ a2 sin2 θ; ð41bÞ

Σ ¼ r2 þ a2 cos2 θ: ð41cÞ

Here, Mβ is the ADM mass of the spacetime, β is the
enhancement parameter and a is the spin parameter. A
certain portion of the full parameter space of β − a is
available for the existence of the regular rotating MOG
black hole. The parameter space has been shown in Fig. 6.
From the figure, it is noticeable that the highly spinning
regular MOG black hole has a relatively low value of the
parameter β.
The location and the structure of the static limit surface

are obtained by setting the prefactor of dt2 to zero. The SLS
can be determined by solving the following equation:

ðΣþ βM2
βÞ2 − 2Mβr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðΣþ βM2

βÞ
q

þ βM2
βΣ ¼ 0: ð42Þ

For β ¼ 0, we have the usual Kerr scenario. The variation
and existence of the static limit surface for rotating regular
MOG black holes is displayed in Fig. 7. The location of the
horizon is determined by setting the grr to be zero, which in
turn gives

Δ ¼ Σfðr; θÞ þ a2 sin2 θ ¼ 0: ð43Þ

The existence of the horizon in the regular rotating MOG
solution is depicted in Fig. 8.

VI. ANALYSIS OF THE BLACK HOLE SHADOW

To investigate the black hole shadow, we must determine
the photon geodesic equations for the metric given in (40).
When using the Hamilton-Jacobi formulation for the
rotating MOG regular solution, it is particularly challeng-
ing to separate the equations, since the function fðr; θÞ has
a highly complex structure. Consequently, to overcome this
issue, we consider an approximation for θ, such that
θ ≈ π=2þ ϵ.[97] Note that although we are focusing on
photon orbits that are close to the equator, unstable photon
circular orbits are not only limited to this region. This fact
does not invalidate the calculations that follow, because the
major goal of this work is to calculate the shadow of a black
hole cast by an observer at infinity, which can be done
using the approximations indicated above. The trigono-
metric functions here have the following form: sin θ ≈ 1
and cos θ ≈ −ϵ. With these approximations the function
fðr; θÞ becomes fðrÞ, which is given by

fðrÞ ¼ 1 −
2Mβr2

ðr2 þ βM2
βÞ3=2

þ βM2
βr

2

ðr2 þ βM2
βÞ2

: ð44Þ

A. Null geodesics

For a general stationary, axisymmetric metric the
Lagrangian L can be written as

gμν _xμ _xν ¼ gtt_t2 þ 2gtϕ_t _ϕþgϕϕ _ϕ
2 þ grr _r2 þ gθθ _θ

2 ¼ 2L:

ð45Þ

For massive particles and massless particles, the
Lagrangian is equal to unity and zero, respectively. The
associated Hamiltonian is provided byFIG. 9. Schematic diagram of lensing and formation of shadow.

(a) (b)

FIG. 8. A set of parameter values are allowed for black hole solutions. In these plots, the set of parameters has been shown for the
extremal black hole. The horizonless compact object can result for an increase in spin keeping the enhancement parameter β constant.
(a) the enhancement parameter β is 0.1. Whereas in (b) the enhancement parameter is 0.3.
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H ¼ pμ _xμ − L ¼ 1

2
gμνpμpν ¼

k
2
; ð46Þ

with k, which in this instance is zero and represents the
test particle’s rest mass. By utilizing the Hamilton-Jacobi
technique, we may connect the Hamiltonian to the action
S by

Hðxμ; pμÞ þ ∂S
∂λ

¼ 0 with pμ ¼
∂S
∂xμ

: ð47Þ

The metric described in (45) is independent of t and ϕ,
whereby the (specific) energy E and the (specific)
angular momentum L are conserved quantities. These
are supplied by

E ¼ gtt_tþ gtϕ _ϕ; ð48aÞ

L ¼ gtϕ_tþ gϕϕ _ϕ: ð48bÞ

From the aforementioned context, the action may be
expressed as

S ¼ −Etþ Lϕþ Sðr; ϵÞ: ð49Þ

Now, for the metric given in (40), (49) is separable such that
Sðr; θÞ ¼ SrðrÞ þ SϵðϵÞ. Substituting (49) in equation (46)
we get

grr
�
∂Sr

∂r

�
2

þ gθθ
�
∂Sθ

∂θ

�
2

þ gttð−EÞ2 þ 2gtϕð−EÞL

þ gϕϕL2 ¼ 0: ð50Þ

The metric in (40) causes the equation above to take the
form:

Δ
�
dSr

dr

�
2

þ
�
dSϵ

dϵ

�
2

−
�
1

Δ
½r2 þ a2�2 − a2

�
E2

þ 2ar2

Δ
f1 − fðrÞgELþ r2fðrÞ

Δ
L2 ¼ 0: ð51Þ

It is interesting to note that the r and θ components of the
preceding equation may be split up so that

Δ
�
dSr

dr

�
2

−
1

Δ
½r2 þ a2�2E2 þ 2ar2

Δ
f1 − fðrÞgEL

þ r2fðrÞ
Δ

L2 þ a2E2 ¼ −
�
dSϵ

dϵ

�
2

¼ −C: ð52Þ

The Carter constant is represented by C. The left-hand side
of (52) is only a function of r, whereas the right-hand side is
a function of θ alone. The radial component of (52) may be
expressed as

�
dSr

dr

�
2

¼ RðrÞ
Δ2

; ð53Þ

where

RðrÞ ¼ −Δ½Cþ ðL − aEÞ2� þ f½r2 þ a2�E − aLg2: ð54Þ
The angular part can be written as

�
dSϵ

dϵ

�
2

¼ C: ð55Þ

Consequently, the action adopts the form

S ¼ −Etþ Lϕþ
Z ffiffiffiffiffiffiffiffiffi

RðrÞp
Δ

drþ
Z ffiffiffiffi

C
p

dϵ: ð56Þ

The equation of motion for r and ϵ is given by

_r ¼ �
ffiffiffiffi
R

p

r2
; ð57Þ

_ϵ ¼ �
ffiffiffiffi
C

p

r2
: ð58Þ

For determining the unstable circular orbits, one needs to
introduce χ ¼ C

E2 and η ¼ L
E. The unstable circular orbit can

be obtained by setting RðrÞ ¼ 0 ¼ dRðrÞ
dr . So, using (54)

with aforementioned conditions one obtains

½r2fðrÞþa2�ðχþ η2þa2− 2ηaÞ ¼ ½r2þa2−aη�2; ð59Þ

χþ η2þa2− 2ηa¼ 4

½2fðrÞþ rf0ðrÞ� ½r
2þa2 −aη�: ð60Þ

These two equations can be solved to get two one-
parameter classes of solutions parametrized in terms of
r, which is the radius of unstable circular orbits:

(i)

χ ¼ −
r4

a2
; ð61Þ

η ¼ a2 þ r2

a
; ð62Þ

(ii)

χ ¼ r3½8a2f0ðrÞ − rfrf0ðrÞ − 2fðrÞg2�
a2frf0ðrÞ þ 2fðrÞg2 ; ð63Þ

η ¼ 1

a

�
r2 þ a2 −

4ðr2fðrÞ þ a2Þ
2fðrÞ þ rf0ðrÞ

�
: ð64Þ

The solution of the first kind is not a physical solution, but
the second solution helps to determine the contour of the
shadow in the ðη; χÞ plane. Further, this solution satisfies
the following condition for the critical curve:
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a2 − χ − η2 ¼ 8ða2 þ r2fðrÞÞ
rf0ðrÞ þ 2fðrÞ −

16ða2 þ r2fðrÞÞ
ðrf0ðrÞ þ 2fðrÞÞ2 − 2r2:

ð65Þ

When we consider the nonrotating case i.e. the regular
MOG static spherically symmetric solution, we have

χ þ η2 ¼ 2r2ph½4fðrphÞ2 − 8fðrphÞ − r2phf
0ðrphÞ2�

frphf0ðrphÞ þ 2fðrphÞg2
; ð66Þ

where rph is the radius of the photon sphere. The above
equation helps to find the shadow of the regular MOG
static, spherically symmetric solution.

B. Celestial coordinates and shadow structure

We now want to find out how the rotating MOG regular
black hole shadow appears to be shaped. For a clearer
depiction, we locate the shadow using the celestial coor-
dinates Ai and Bi. These coordinates are introduced as

Ai ¼ lim
r0→∞

�
−r20 sin θ0

dϕ
dr

�
; ð67Þ

Bi ¼ lim
r0→∞

�
r20

dϵ
dr

�
; ð68Þ

where r0 is the distance between the black hole and the
distant observer and θ0 is the inclination angle i.e. the angle
between the line of sight and the rotation axis of the black
hole. From further calculations and considering the limit,
one can arrive at the following:

(a)

(c)

(b)

(d)

FIG. 10. Shadow of the regular MOG rotating black hole is situated at the origin of the coordinate system. The inclination angle is
θ0 ¼ π=2. Each image (i.e., (a) Shadow structure for fixed value of spin parameter a=Mβ ¼ 0.1, (b) Shadow structure for fixed value of
spin parameter a=Mβ ¼ 0.3, (c) Shadow structure for fixed value of spin parameter a=Mβ ¼ 0.5, (d) Shadow structure for fixed value of
spin parameter a=Mβ ¼ 0.7) represents the shadow for a fixed value of the spin parameter a. One can note that just like in the Kerr
scenario, here also the shadow gets dented with an increase in spin parameter a. An increase in the parameter β causes a shrinking of the
shadow for a fixed value of the spin parameter.
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Ai ¼ −η; ð69Þ
Bi ¼

ffiffiffi
χ

p
: ð70Þ

The photons are now parametrized by the conserved
quantities ðη; χÞ. All the light rays, coming from the source
placed behind the black hole, will not be able to reach the
observer as the black hole will hinder a portion of light rays
due to gravitational lensing as shown in Fig. 9. The dark
patch that appears to the observer is known as the black hole
shadow and the boundary of this shadow can be determined
allowing the parameters ðη; χÞ all possible values. The
coordinates Ai and Bi are known as celestial coordinates.
For a spherically symmetric scenario, these coordinates do
not depend on the inclination angle and the shadow appears
to be a perfect circle. However, the inclusion of the rotational
effect of compact objects and the inclination angle make the
shadow dented and not a perfect circle. The shape and size of
the shadow can be analyzed to determine the parameters
including the spin parameter of the black hole. The variation
of the shape and size of the black hole shadow has been
depicted in Fig. 10.

C. Observables

For further analysis of the shape of the critical curve, we
are going to define two new observables as prescribed by
Hioki and Maeda [98]. To define these observables, we
need to characterize a few points of the critical curve while
fitting it with a circular outline. Consider a circle in Fig. 11
that passes through the three extreme points of the shadow
curve. The points are

(i) extreme right of the shadow i.e. UðAr; 0Þ, at which
the shadow intersects the A—axis.

(ii) topmost point of the shadow i.e. VðAt; BtÞ.
(iii) bottom-most point of the shadow i.e. WðAb; BbÞ.

As the shape of the shadow is not circular, the extreme left
point of the shadow does not coincide with the extreme
left point of the associated circle. This characterizes the
distortion of the shape of the shadow from a circular shape.
The extreme left point of the shadow is PðAl; 0Þ and the
extreme point of the associated circle is QðAL; 0Þ. Now we
define the two observables associated with the shadow
curve, which are

(i) The characteristic radius Rs, which can be defined as

Rs ¼
ðAt − ArÞ2 þ B2

t

2jAt − Arj
; ð71Þ

(ii) Distortion parameter δs, which is defined as

δs ¼
Ds

Rs
¼ jAL − Alj

RS
: ð72Þ

For a nonrotating scenario, the distortion parameter
becomes zero as the shape of the shadow for such a case
is always zero. Similarly, the characteristic radius reduces

FIG. 11. Characteristic points have been shown in the sche-
matic diagram of the black hole shadow. A solid blue curve is the
outline of the black hole shadow. The dot-dashed green curve is
associated with the fitting circle. The associated circle passes
through the three points of the shadow outline. The topmost and
bottom-most points of the shadow are, respectively, V andW. The
leftmost and rightmost points of the shadow outline are P and U.
A separation distance of points P and Q measures the distortion
parameter δs.

(a)

(b)

FIG. 12. The variation of characteristic radius Rs has been
shown in (a) and the distortion parameter δs of the regular rotating
MOG black hole as a function of parameter β has been shown in
(b). The variation has been shown for a fixed value of spin
parameter a. From the plots, one notices how the observables get
changed with the spin parameter.
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to the radius of the circle for the nonrotating scenario. So
these two observables measure the deviation from the
circularity of the shape of the shadow. It has been illustrated
in Fig. 12 how the parameter β affects the characteristic
radius Rs and distortion parameter δs of the spinning
regular MOG black hole. The change in the observables
has been shown for two fixed values of the spin param-
eters a.

VII. ENERGY EMISSION RATE FOR THE
ROTATING REGULAR MOG BLACK HOLE

For the regular rotating MOG solution, the observers see
the large energy absorption cross section is caused by the
shadows of black holes. At high energies, the black hole
absorption cross sections exhibit a little modulation close to
a limiting constant value. We may use the absorption cross
section limiting constant value for a nearly spherically
symmetric black hole as a decent approximation, which is
given by

σlim ≈ πR2
s : ð73Þ

The energy emission rate of the concerned black hole is
given as [99]

d2EðωÞ
dωdt

¼ 2π3R2
sω

3

eω=T − 1
; ð74Þ

where ω is the frequency of the photon and T is the
Hawking temperature, which can be defined as [99]

T ¼ lim
θ¼0;r→rþ

∂r
ffiffiffiffiffiffiffiffi−gtt

p
2π

ffiffiffiffiffiffi
grr

p ; ð75Þ

where rþ is the outer event horizon of the regular rotating
MOG black hole. In Fig. 13, we have plotted the energy
emission rate of the black hole with the frequency of the
photon ω for different values of the parameter β. One
notices from the figure that the peak of the energy emission
rate shifts towards a lower frequency as the parameter β
increases.

VIII. CONCLUSIONS

In this paper, we have explored the regular black hole
solution in STVG/MOG theory. In early papers on this
theory, the parameter space is from zero to infinity. We have
compactified the range of the parameter space with a
modification of the form of the parameter β. At first, we
have focused on the regular solution of STVG/ MOG
theory in the static, spherically symmetric scenario and also
determined analytically the critical value of the parameter
β. For the dimensionless parameter β ≲ 0.4, we have a
black hole solution with two horizons in the spherically
symmetric case. For 0.4≲ β ≲ 0.5, there is no black hole
solution as there exists no horizon. For the critical value of
the parameter β ≅ 0.40263, a single horizon black hole
solution can be obtained. We have also studied the null
geodesics in this spacetime as it is a prerequisite to analyze
the shadow of the black hole. For β < βcrit, only unstable
circular orbits exist. However, for βcrit < β ≲ 0.5, there
exists a stable circular orbit. It is also noticeable that the
radius of the photon sphere, the radii of the shadow and the
event horizon decrease as the parameter β increases. Thus,
the circular shadow shrinks as the parameter β is increased.
Furthermore, as the shadows of M87* and Sgr A* are more
or less circular in shape, we have tried to compare the
theoretical outcomes with the observational data. For this
purpose, we have used independent mass measurements
to calculate the theoretical angular diameter. The regular
MOG black holes and the possibility of horizonless com-
pact objects are compatible with the EHT data and mass
measurements.
We have considered the regular rotating MOG black hole

by studying the behaviors of the horizon and static limit
surface for a change in the parameter β. Just like the
spherically symmetric case, here also a critical value of
parameter β exists for a fixed value of the spin parameter a.
We have determined the parameter space for which a
rotating regular black hole exists. As a chief goal of this
paper, a special emphasis has been placed on the black hole

(a)

(b)

FIG. 13. Energy emission rate as a function of frequency has
been shown. For a fixed value of the spin parameter, the increase
in the parameter β causes a shift of the peak of the spectrum to a
lower frequency. (a) the variation has been shown for a fixed spin
parameter of value 0.20. (b) the variation has been shown for the
fixed value of spin parameter of 0.80.
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shadow. However, we have considered only equatorial
approximations. How the shape and size of the associated
shadow transforms have been determined. As the spin
parameter, a, increases the shape gets more deformed from
a circular shape. The increasing value of parameter β causes
the size of the shadow to become smaller. To analyze the
shadow, the required observables have been defined and
plotted. One of the observables has been used to evaluate
the energy emission rate for the rotating regular MOG black
hole. From this, we have concluded that the peak of the
energy-emission rate shifts to a lower frequency for a
relatively large value of the parameter β.
It is hard to decouple the differential equations in terms

of r and θ without an equatorial approximation. We have
reported the analysis of shadows using numerical tech-
niques, using the observables as introduced by Hioki and
Maeda. However, one can introduce new observables or
can use other existing observables to study the shadows.
In this work, we have demonstrated that classical regular

black holes and regular horizonless dark compact objects,
generally considered to be distinct families of astrophysical
objects, are a family of connected astrophysical objects
continuously deformed into one another, depending on the
range and value of the parameter β. Our work illustrates that
different strong gravity geometries describe alternative
states of black holes and compact astrophysical objects

in their lifetime. It is expected that at the small scale
reached at the central value of the compact object when
r → 0, quantum gravity will take over [100]. The regular
and horizonless compact objects derived from the MOG
field equations in this work are classical in nature. The
stability of photon orbits around the black hole and dark
compact object shadows will produce viability issues for
the existence of these astrophysical objects. For the MOG-
Schwarzschild andMOG-Kerr solutions with two horizons,
the inner Cauchy horizon can lead to instability problems.
In future work, the gravitational collapse of stars will be

investigated, assuming a form of matter and stress-energy,
by solving the time dependent MOG field equations.
Moreover, the merging of the regular and horizonless
dark compact objects, producing gravitational waves and
the subsequent ringdown phase, will be investigated.
Singularity-resolving physics in photon rings can further
be studied in context of MOG theory [101].
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