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Quasinormal modes and echo effect of a cylindrical anti—de Sitter black hole
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This paper investigates the quasinormal mode (QNM) vibrations of a rotating cylindrical black hole (or
black string) spacetime that is surrounded by a thin shell rotating synchronously with the black string’s
axis. The existence of the thin shell leads to a piecewise metric of the black hole spacetime beyond the
horizon, which is divided into two stationary spacetime parts by the radius of the thin shell. As a result,
the potential function V(r) of the QNM equation is also discontinuous. To solve the QNM equation with
the discontinuous potential function, we propose two methods, the matrix method and the generalized
Horowitz-Hubeny method. We find that the influence of the thin shell can reduce the QNM frequency of the
black string while alleviating their amplitude decay rate. Our suggested method can be easily applied to
other QNM calculations of black hole spacetime with discontinuous potential function, thus facilitating
investigations into more intricate and realistic black hole spacetimes, such as those with accretion disks.
Additionally, the finite difference method is employed to investigate the spacetime too. This analysis
discloses a substantial gap in the potential function when the thin shell’s mass and charge achieve
sufficiently high values, resulting in the outer spacetime nearing gravitational collapse and extreme black
hole scenarios. Within this gap, the QNM wave displays oscillations, producing an echo effect. Moreover, it
is established that the closeness of the spacetime to the collapse threshold and charge extremality have

positive correlation with the beat interval of this echo.
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I. INTRODUCTION

In 2015, a momentous discovery by The Laser
Interferometer Gravitational-Wave Observatory (LIGO)
verified the existence of these elusive entities by detecting
gravitational waves emanating from a binary black hole
coalescence [1-9]. The signal from such a cataclysmic event
comprises three phases: first, an inspiral phase when the two
black holes gravitate towards each other in a tightening orbit;
then, a merger phase when they collide and coalesce into one
massive body with a radiant outburst; finally, a ringdown
phase when the remaining perturbations dissipate as the final
black hole reaches equilibrium. For a stable black hole
spacetime, ringdown reflects the dynamical evolution of the
black hole under a minor disturbance. A potent technique for
probing this phase is to apply perturbation theory to derive
quasinormal modes (QNMs) that depict how oscillations
decay around a black hole. More broadly, any quantum field
theory that adheres to Lorentz symmetry can describe the
evolution of quantum field fluctuations in a curved black
hole spacetime background.

Several numerical techniques have been developed to
calculate the QNM frequency, such as WKB approximation
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[10-13], continued fraction method (CFM) [14], asymp-
totic iteration method [15-17], Horowitz-Hubeny method
(HHM) [18], matrix method (MM) [19-25], finite differ-
ence method (FDM) [26-30], and so on. These methods
can describe the dynamical evolution of various black
holes, such as static, rotating, anti—de Sitter (AdS) or
de Sitter cases. However, many methods (except MM
and FDM) can only solve the decoupled QNM equation,
so we must use various tricks to simplify them. This implies
that the higher spin case is more complex for simplifying
the QNM master equation.

Black holes are theoretically simple but practically
intricate entities in the real universe. Their formidable
gravitational field draws and amasses various forms of
matter beyond their event horizon. Hence, to capture the
actual spacetime geometry of a black hole, one must
incorporate external factors such as accretion disks and
dark matter. As a result, real black hole spacetime may not
conform to a smooth mathematical representation.
A spacetime metric that entails a discontinuous function
would also imply a nonsmooth potential function for the
QNMs equation. It is a novel challenge to explore QNMs of
realistic black hole spacetime.

This paper explores a simple example of a nonsmooth
spacetime metric: an outer thin shell with mass and charge

© 2023 American Physical Society
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enclosing a rotating anti—de Sitter (AdS) black string. The
thin shell shares its axis of symmetry with the event horizon
of the black hole and spins at an equal angular velocity as
the black string. We will use three numerical methods to
investigate the QNMs dynamics in this nonsmooth space-
time. In Sec. II, we present and simplify the metric for this
thin-shell black string configuration, and then obtain the
QNM equation for a scalar field in this background
geometry. In Sec. III, we describe three numerical methods
for solving this equation: matrix method, generalized
Horowitz-Hubeny method, and finite difference method.
We apply these methods for computation in Sec. IV. We
also find that, when the mass of the thin shell approaches
critical mass of gravitational collapse and its charge
approaches extremality, there is a large gap in the potential
function that causes an echo effect. We analyze this echo
effect further in Sec. IV. Section V contains some dis-
cussions and conclusions.

II. QUASINORMAL MODE MASTER EQUATION
OF ROTATING BLACK STRING
WITH THIN SHELL

According to [31], the rotating charged cylindrical
anti-de Sitter black hole with o> =-A/3 has the
following form:

_ @ . \2 dr?
dszz—f(r)<.:df—azd(p> —l—m

+ r*(Edjp — adi)* + o?r?dz?,

aM 3 40?%2 - 3a*a®
_ 22 22
1) ==t (1-Je) + 25 0
AMye 402
_ 2 f eff
== are a’r?’ 2.1)

where M, Q and a represent the mass per unit length, the
linear charge density and the angular momentum per unit
mass of the black string, respectively. M, Q. = and @
are defined by

n=— (2.2)

and the cylindrical black hole horizon r;,(> 0) that satisfies
f(ry) =0. Tt is obvious that, at the event horizon,

the angular velocity of black
QH = d@/dﬂr:rh = 67)/EI‘

In this paper, we consider a rotating black string with a
cylindrical thin shell at r (> r),) that rotates around the black
string with the same angular momentum per unit mass a.
This allows us to describe the effective mass and effective
charge of the black string spacetime with a thin shell as

string is given by

{Min re2Tr =T,
My =
Mout(EMin+Mshell ZMin) rz rs
i re>2r2>r
Qeff _ { Qm B s h (23)
Qout(zQin + Qshell) r2rs.
Upon introducing the coordinate transformation,
t=7-24
=ri= a9
p=yp—at
7 =az, (2.4)
the metric is simplified as
2 0, AP s o
ds* = —f(r)dt* + ——+ r*de* + r*dz*, (2.5)

f(r)

which yields an effective staticlike black string metric.
We illustrate this in Fig. 1.
Without loss of generality, we set @ =1 and rewrite

f(r) as

_f Sulr) rezrzr,
4 2
fin(r) =12 —4Ar4m —5—%

— <1 _r—r”) <1 - einr—rh> (14 ey)rpr

+ 2+ (1 + ey + €))7l

a4M 402,
fout(r)ErQ_Tom—i—%

- ( -’7P> (1 —eom’%’) [(1+ equ) 77

+ 24 (1 + equ + €2u) 73], (2.6)

where r, = ¢,y 7, represents the gravitational radius of the
AdS spacetime with a thin shell, and it means matter
distributed within this radius will inevitably be attracted
into the black hole, so the position of the thin shell must
satisfy the condition :—h (=b) > coy > 1. In addition, the
spacetime may be charged, but the charge of black hole
spacetime has an upper limit because of the cosmic
censorship principle. We set the parameters e;,(€ [0, 1))
and e, (€ [0, 1)) depending on the charge and mass of the
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FIG. 1. The effective staticlike black string with a thin shell.
The solid line indicates the horizon () of the black hole, and the
dotted line marks the location (r,) of the thin shell with mass
M e and electrical charge Q.- From the figure, we observe
that Moy = M;, and Qe = Qj, hold in region r¢ > r > r),, while
Moe = My, and Qegr = Qo hold in region r > r,.

black hole spacetime with a thin shell. Hence, the relation
of Min, Oin, Mous Qoue and 1y, 7, €5y, €y follows from

My =g (1+ e + e+,
Mo = 3 (1 -+ ou €+ )1
= 2 (1 o B+ )
2 = (ewt e+,
%m = % (eout + egut + e?)ut)r;
= % (out + €3uc + €3u) CouTs- (2.7)

Assuming a massless scalar perturbation, we obtain the
minimally coupled scalar wave equation as ¢*®.,, = 0. By
setting ® = 1W(z, r) exp (ikz + iLp), we can derive the
radial master equation for scalar quasinormal modes as

103 (10 5) - 25 = v o,

— — 2.8
or or or? (2.8)

where

V(r) = f(ru(r).
:Lzr_|2_k2+f/£r)‘

U(r) (2.9)

Then, by using the tortoise coordinate r, = [ %, we set
¥(t,r) = R(r)exp [—iw(t + r.)], so Eq. (2.8) becomes

f(r)R"(r) + [f'(r) = 2iw]R'(r) = U(r)R(r) = 0. (2.10)

Since M i and Q. vary inside and outside of the thin shell,

we reformulate the preceding equations as

forry>r>r,

Fin(r) R (r) + [, (r) = 2i00] R, (r) = Uin (r)Riy (r) =0,

forr>r,=br,

fout(r)Rgul<r) + [fémt(’.) _2iw}R:Jut(r) - Uout(r)Rout(r) -
(2.11)

The boundary condition and the join condition requires

R;,(r,) = Constant

Rout(r - 00) - O

Riy(r) _ Riu(ry)
Rin<rs) Rout(rs> .

(2.12)

To simplify our analysis, we consider the scenario where
r, =1 and e;, = 0 hold. However, the QNM equation is
difficult to solve analytically due to the complex potential
function V(r), so we propose three numerical methods to
tackle the problem with a noncontinuous potential function.

III. NUMERICAL METHOD

Typically, the conventional numerical methods are inad-
equate to handle the QNM equation with a noncontinuous
potential function, so we need to enhance the standard
method. In this section, we present three numerical meth-
ods that can address the preceding problem, namely matrix
method (MM), generalized Horowitz-Hubeny method
(GHHM) and finite difference method (FDM).

A. Matrix method

To transform the coordinates in region r, > r > ry,
we apply a mapping function

. r—ry
_r‘\‘_rh’
w
=— 3.1
=" 3.)
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so that x(r,) =0 and x(r;) = 1, and the QNM equation
becomes

Ba()RY(x) + By (1)) (1) + By(x)Rin(x) = 0
By(x) = x(1 —x +bx)[3+3(b—1)x+ (b—1)2x%,
Bi(x) =3+9(b—1)x+12(b—1)2x* +8(b - 1)x3
+2(b = 1)*x* = 2iw(1 — x + bx)?,
By(x) = (b= 1)[(1 = x + bx)(L* + &*)r;* +3
+6(b—1)x+6(b—1)2x* +2(b—1)].
(3.2)

To transform the coordinates in region r > r,, we apply a
mapping function

y= I- E’
r
0]
= 3.3
w2 (33)
so that y(r,) =0 and y(r - o) =1, and the QNM
equation is
Cr(y)Rsu(¥) + CL(y)Row(y) + Co(y)Rou(y) =0
CZ(y) = (b — Cout + Couty)( )z[b’i
+ couteout(1 + eout + eout)(y 1)
+bcout( - 1) +b Cout(l - )}
Cl (y) - Cout( 1) [3b(1 + €out + eout + eout)
+ deoueou (1 + oy + egut)(y - 1)]
—2ib*(y — 1)%*w
Co(y) = b*(L> + K*)r;2(y — 1)? = 2b*
+ bcgm(l + eou + e(z)ut + Egut) (y - 1)3
+ 2Cguleout(l + €out + egut) (y - 1)4 (34)
The join condition becomes
= Rl = 0
( ) Out(y ) — l, (35)
( ) ( = 1) bRout(y = 0)
or
R{ (x = 1) —/1(b - 1)Rin(x = 1) =0,
R:)ut( 0) - leout(y = O) =0. (36)

Based on the matrix method, we first divide the
region x € [0, 1] (or y € [0, 1]) into a set of discrete points
{x; =0,x,,...,x, = 1} and obtain a corresponding set of

functions y = [R(xy), R(x), ..., R(x,)]”. Then we apply
a high-accuracy difference method to discretize the preced-
ing differential equation. Such methods include the Runge-
Kutta method, the differential quadrature method and a
non-grid-based interpolation scheme in [19]. In this paper,
we adopt the latter scheme for computation and express the
derivative of order m for R (x;) at point x; as a linear
combination of all values of R(x;) in y. Hence, we substitute

R (x;) with M™y,, resulting in

forry>r>r,
Mintin = (BoM 2 + By MU 4 BoM )y, = 0,
for r > r,

Moul)(oul = (CZM{Z} + CIM{I} + COM{O}))(out = 0’ (37)
where M, denotes the ith row of a square matrix with
details given in [19]. The boundary condition stipulates that
R;,(x = 0) remains constant and R,,(y = 1) disappears.
The join condition needs to be discretized as
Nt =o,

it = A - (3.8)

and

Y — it =0 (3.9)
So we substitute Egs. (3.8) and (3.9) for the final row of M,
and the initial row of M, respectively, and then modify
the final row of M, as (0,0,...,1) to prevent potential
numerical singularity. As a result, the matrix M, and M,
transform into M, and M., respectively. Finally, to solve
for the preceding eigenmatrix, we equate the determinant of
the matrix with zero:

det My, (w, )
det Mgy (w, 1) =

07
0. (3.10)

The eigenvalue @ and 4 could be obtained by the command
“FindRoot” or “NSolve” in Mathematica software.

B. Generalized Horowitz-Hubeny method

In [18], Horowitz and Hubeny introduced a novel
approach to compute the QNM frequency in AdS space-
time. The approach resembles the continued fraction
method, but it has an edge over it as it does not derive
the recurrence relation for the coefficient function. Thus, it
does not demand that the coefficient function of the QNM
equation be a rational expression. However, when dealing
with a metric with a piecewise function, the initial HH
method falls short and needs to be generalized here.
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By using the coordinate transformation z =1—" and  wherez, =1 — ﬂ

= % Eq. (2.10) becomes

F1nally, the recurrence relation is given by

¢
a, = ———ayg,
Ay (2)R"(2) + A1 (2)R"(2) + Ag(2)R(z) = 0 LBy
Ay(@) = (1= c+e2x)(z =121+ e+ Az = 1) s — — L {c
le(l+eted)(z—1) - ez, (k+2)(k+1+B_)
k
A(z) =A(z=1)*B+ (3 +4cz—4c)(e+ e* + &%)] + Z[(k — i+ D)Bay_i g + Ciak_i]},
—2iw(z — 1), i=0
Ag(z) = 2c*(e + €* + 63)(2 _ 1)4 by = Rou(zs) = Za 25
3 2 4 L3\ (s_1)3 _
to(ltete+e)(z-1)"-2 by = azRout(Z)lr:rj = azRin<Z)|r:rs
242 _ .
(L + ) (z—-1)% (3.11) _ Zai+1(i+ 1)z,
According to the boundary condition, we set . ) N R
by, = — 22i=0 [(k =i+ Dpibriy1 + 7ibi-i] (3.14)
Al(Z)_ZBZk ’ (k+1)(k+2)
= k
Ax(2) k=—1 with k > 0. So once the value of g, is determined, all
Ao(2) o b; = bj(w) can be derived. For the sake of simplicity, we
A,5(2) = Z Ci2* setay = 1, so that the frequency @ = wry, can be obtained by
2 k=~1 solving the equation
Rin(z) =) azf forz,>2>0 (3.12) )
; Rou(1) = bi(1—-z,)* =0. (3.15)
=0
and . . .
Since the preceding series converges, we only need to
A(2) w extend the series up to N order (where N > 1) in the actual
Al = Zﬂk(z —zy)k computation, provided that its error stays within a toler-
2(2) 1= able range.
Ao(2) _ P k
As(z) ; Pz = z) C. Finite difference method
0 The finite difference method operates in the time
Roui(2) = Z bi(z —z,)k for 1>z> z,, (3.13)  domain, and it depends on the r, coordinate, so we compute
k=0 the tortoise coordinate:

. _ 2 r2
rit = r(r)) —|—— 2\/_arcta —2+/3arcta n "1 2log Tl log%
67, \/_rh \/_rh Fp—Fg Fptrpr+r
out log(r - Coutrh) 3+ 6eout + 1Oeout + 66(3)ul + 3egut Cout V 3+ 2eout + 3egutrh
out d —+ TN 5— arccot
coulrh(3 — €out ~ €out — eout) Cout”n (3 + 2eoul + eout) (1 + 2eoul + 3eout) 2r+ COUt(l + eOllt) T
e%ut log(r B Couteoutrh) (1 + eout)3

+ —_
Coutrh(eout - 1)(1 + 2eout + 3€gut) 2coutrh(3 + 2eout + e(z)ut)(l + 2eout + 3e%ut)

X IOg [r2 + Cout(l + eout)rhr + cgut(l + €out + egut)’%] —Ic
3 + 6eout + 1Oegut + 6egut + 3eéut T
2cout(3 + 2eout + ecz)ut)3/2rh 1+ 2eout + 3e%ut

(3.16)

re =

so r,(r - o) > 4o0 and r,(r - r;) > —c0.
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TABLE 1. Scalar quasinormal mode frequency w with r, =1, ry=2, L =k =0 and n = 0.

Cout Cout 2M 2|0] MM GHHM

1 0 0.5 0 1.84942131358547 — 2.66385266115268i 1.84942131254772 — 2.66385266044390i
1 0.1 0.5555 0.333167 1.84886115991618 — 2.66226082053395i 1.84886118067628 — 2.66226081764372i
1 0.2 0.624 0.497996 1.84815838246885 — 2.660281207409851i 1.84815842249751 — 2.66028121314482i
1 0.3 0.7085 0.645755 1.84727369483746 — 2.65781614263610i 1.84727374309536 — 2.65781617236739i
1 0.4 0.812 0.789937 1.84616262788783 — 2.65476139504655i 1.84616265506010 — 2.65476145891629i
1.01 0 0.515151 0 1.84874708634214 — 2.66280679611562i 1.84874708059789 — 2.66280678415070i
1.01 0.1 0.572332  0.339863 1.84818249987103 — 2.66118467764087i 1.84818254560525 — 2.66118465702376i
1.01 0.2 0.642908  0.508006 1.84747391534033 — 2.65916691063215i 1.84747401094012 — 2.65916690900099i
1.01 0.3 0.729968  0.658735 1.84658153010992 — 2.65665355321889i 1.84658165205779 — 2.65665360895264i
1.01 0.4 0.836604  0.805814 1.84546018651184 — 2.65353774273786i 1.84546026737753 — 2.65353788541905i
1.05 0 0.578813 0 1.84586193207136 — 2.65839380268179i 1.84586073437129 — 2.65839231903923i
1.05 0.1 0.643061 0.367316 1.84528415854500 — 2.65665090542783i 1.84528476583011 — 2.65664885481842i
1.05 0.2 0.722358  0.549041 1.84455801780905 — 2.65448060691822i 1.84456061173763 — 2.65447884008743i
1.05 0.3 0.820177  0.711945 1.84364192918572 — 2.65177365694817i 1.84364613137428 — 2.65177352308678i
1.05 04 0.939992  0.870905 1.84248828077456 — 2.64841223044930i 1.84249236789830 — 2.64841522044087i

By taking ¢ =ty + iAt and r, = r,y + jAr,, Eq. (2.8)

become the finite difference equation,

. , A . .
Wi = Wil —— (P + W) AP

12

2
Ars
2

Ars

i

SR T (3.20)

Jb 2

Finally, pay attention to the von Neumann stability
+AT’2Vmax <1 [28-30], so we choose Ar, =2At.

Ar :
+ <2—2A2—Ar2vj)lp}. (3.17)

*

Let us choose the initial conditions and boundary
condition as

W(r..tg) = Cyexp [-C,(r. — Cb)Z]»
atlp(r*, t)|r:zo =0,

W(r,.1)], o =0. (3.18)

The join condition at the grid point j, of r; requires
‘P,_”; =Y, and a,‘P,_,,t = 0,¥,_,-, so it satisfies

By using the method, we can obtain all functions at grid
points.

We will employ the preceding three approaches to
compute the scalar QNMs of the black string with a thin
shell in the following section.

IV. NUMERICAL RESULTS

We find that MM and GHHM produce highly precise
outcomes, so for the sake of simplicity, we assign the
step value 1/33 for MM, so the master differential
equations transform into two eigenmatrices with 34 rows
and 34 columns. For GHHM, we extend all series functions
to 40 order.

In Table I, we compare MM with GHHM and observe
that they concur with each other at a very high precision,

¥, — i1 _ Y1 =¥, (3.19) which indicates that both methods are reliable. In Table II,

Ar, Ar, ) we utilize MM to compute the QNM frequency for various

values of ¢, and e,,;. We ascertain that when c,; and e,

or are small, as they increase, both the real part and the
TABLE II.  Scalar quasinormal mode frequency w by the matrix method with r, =1, ry =2, L = k=0 and

n=0.
o =0 €out = 0.1 eour = 0.2 eour = 0.3

Cout = 1 1.84942 — 2.66385i 1.84886 — 2.66226i 1.84816 — 2.66028i 1.84727 —2.65782i
Cour = 1.01 1.84875 — 2.66281i 1.84818 —2.66118i 1.84747 —2.65917i 1.84658 — 2.65665i
Cout = 1.03 1.84734 — 2.66065i 1.84677 — 2.65896i 1.84605 — 2.65687i 1.84515 — 2.65426i
Cout = 1.05 1.84586 — 2.65839i 1.84528 —2.65665i 1.84456 — 2.65448i 1.84364 —2.65177i
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rm=1, rs=1.1, ro=1.2, L=k=0
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_____ Cout=1.06, eout=0.06 i E Y
1
1
1014 L . I : I t

4 6 8
rh=1, Coul=1-03, eout=0-03, ro=1-2, L=k=0

gl

FIG. 2. Scalar quasinormal modes with L = k = 0. The ob-
servation point is situated at r, = 1.2.

=1, rs=5, 1,=5.085, cout=4.997, €,t=0.997

=1, rs=5, ro=5.085, Cout=4.993, €0ut=0.993

absolute value of the imaginary part of QNMs frequency
will diminish, which implies that QNM oscillation fre-
quency ascends and its amplitude decay rate declines.
In Fig. 2, we employ the FDM to investigate the dynamical
process of scalar QNM oscillation, and confirm that they
are consistent with our previous results.

We acknowledge that the spacetime outside the thin shell
obeys ¢, < b. However, once c,,, = b is violated, the thin
shell will collapse into a black hole. e, < 1 is determined
by charge. fi,(r = o) = fou(r = 00) = 1 holds true, but
the location of f,, = 0 exceeds the location of f,, =0,
creating a gap near the discontinuous point r,. As ¢,,/b and
e approach 1, the gap enlarges significantly, resulting in an
echo effect in QNM oscillation [32-34]. Interestingly, as
these two values approach 1, the beat period of the echo
effect lengthens. We illustrate this dynamic process in Fig. 3.

It is interesting that the curve will change from echo
phase to QNM phase by reducing the mass and charge of
the shell, because the gap of potentials becomes narrower
as the parameters decrease. Additionally, it is also found
that the echo phase is changed from a stable QNM phase,
so the echo phase decays in amplitude as t — oo (though
the echo duration grows significantly due to the reflection
of the wave in the gap). The reason is that the boundary
condition requires that the wave function must vanish
at infinity, which means that the energy cannot leak at
infinity; but from the event horizon, the energy of the
gravitational waves will gradually enter the interior of the
black string due to the characteristic that classical black
holes only absorb radiation and do not emit it, so that the
echo effect outside of the black string will slowly decrease
with time. The details are shown in Fig. 4.

rm=1, rs=5, r,=5.085, Cout=4.99, €out=0.99
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FIG. 3. Echo effect of the near extreme black hole case with L = k = 0. The observation point is situated at r, = 5.085.
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FIG. 4. From echo phase to QNM phase of the black hole as the shell’s mass and charge reduce. The observation point is situated at

r, = 5.085.

V. CONCLUSION

This paper proposes two numerical approaches for
computing QNM frequencies of discontinuous potentials:
specifically, the matrix method and the generalized
Horowitz-Hubeny method.

Using the matrix method, we map the domain range of
both regions inside and outside the thin shell to the interval
[0, 1] by applying the coordinate transformation (3.1)
and (3.3). Then we approximate the derivative at each
grid point as a linear combination of function values at
nearby points by using high-accuracy difference, the
Runge-Kutta method or the differential quadrature method.
This yields two matrix equations. We impose the
Wronskian condition as a join condition at the disconti-
nuity point and replace the rows of the matrix correspond-
ing to the thin shell point with this condition after
discretization. This results in two eigenmatrices whose
eigenvalues and eigenvectors are the QNM frequencies and
waveforms. However, similar to the original version of the
matrix method, this method faces the problem of an
excessively large number of matrix rows due to excessive
grid points. This leads to significantly longer computation
time when the number of grid points exceeds 50. To

overcome this problem, we propose a technique that
combines the high-order matrix method with a secant
method for computing QNMs [25]. In the work involving
discontinuous potential functions, we have to face the
problem of solving multiple determinants simultaneously.
However, this can be calculated efficiently by using high-
order matrix method and the Broyden method.

Using the generalized Horowitz-Hubeny method, we
simply require that the function and its first-order derivatives
of the two master equations are equal at the discontinuity
point in AdS black hole spacetime. In fact, we can apply the
same logic to solve QNMs of asymptotically flat spacetime
and de Sitter spacetime: we just need to set R(r) =
e?ierp2ionp(r) and x = 1 — 2 in Eq. (2.10) for the asymp-
totically flat spacetime case, or R(r) = (r. — )2l r)p(r)
and x = % for the de Sitter spacetime with cosmological
horizon .., so that the master equation becomes

Ay (X)W (x) + A ()P (x) + Ag(x)P(x) =0.  (5.1)
Then, we can expand fT; =Y ax, 5 AO =, bix' and

¥(x) =Y _;¢x' near the horizon x = O, and deduce the
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recurrence relation of a;, l;i and ¢;. Subsequently, the
QNM frequency is derived from the boundary condition
¥ (x = 1) - 0. Unlike CFM, GHHM does not necessitate
that A,(x), A;(x), Ag(x) are rational expressions, thus
GHHM has a broader scope of application.

We apply the aforementioned approach to investigate
scalar quasinormal modes of a rotating cylindrical AdS
black hole with a thin shell, and also discover that the
discontinuous potential function V(r) exhibits a large gap
in the case of a very massive and strongly charged thin
shell, resulting in an echo effect in the quasinormal
mode wave. Using the finite difference method, we
obtain the echo wave and observe a significant difference
from the echo waveform in asymptotically flat black hole
spacetime.

In fact, a black hole with a thin shell is the simplest
example of a black hole with a discontinuous potential
function. More realistic cases could involve black holes
with an accretion disk or dark matter, and the research on
the ringdown gravitational wave of such realistic black hole
spacetimes has more practical significance. We will pursue
this open problem in the future.
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