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This paper investigates the quasinormal mode (QNM) vibrations of a rotating cylindrical black hole (or
black string) spacetime that is surrounded by a thin shell rotating synchronously with the black string’s
axis. The existence of the thin shell leads to a piecewise metric of the black hole spacetime beyond the
horizon, which is divided into two stationary spacetime parts by the radius of the thin shell. As a result,
the potential function VðrÞ of the QNM equation is also discontinuous. To solve the QNM equation with
the discontinuous potential function, we propose two methods, the matrix method and the generalized
Horowitz-Hubeny method. We find that the influence of the thin shell can reduce the QNM frequency of the
black string while alleviating their amplitude decay rate. Our suggested method can be easily applied to
other QNM calculations of black hole spacetime with discontinuous potential function, thus facilitating
investigations into more intricate and realistic black hole spacetimes, such as those with accretion disks.
Additionally, the finite difference method is employed to investigate the spacetime too. This analysis
discloses a substantial gap in the potential function when the thin shell’s mass and charge achieve
sufficiently high values, resulting in the outer spacetime nearing gravitational collapse and extreme black
hole scenarios. Within this gap, the QNMwave displays oscillations, producing an echo effect. Moreover, it
is established that the closeness of the spacetime to the collapse threshold and charge extremality have
positive correlation with the beat interval of this echo.
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I. INTRODUCTION

In 2015, a momentous discovery by The Laser
Interferometer Gravitational-Wave Observatory (LIGO)
verified the existence of these elusive entities by detecting
gravitational waves emanating from a binary black hole
coalescence [1–9]. The signal from such a cataclysmic event
comprises three phases: first, an inspiral phase when the two
black holes gravitate towards each other in a tightening orbit;
then, a merger phase when they collide and coalesce into one
massive body with a radiant outburst; finally, a ringdown
phase when the remaining perturbations dissipate as the final
black hole reaches equilibrium. For a stable black hole
spacetime, ringdown reflects the dynamical evolution of the
black hole under a minor disturbance. A potent technique for
probing this phase is to apply perturbation theory to derive
quasinormal modes (QNMs) that depict how oscillations
decay around a black hole. More broadly, any quantum field
theory that adheres to Lorentz symmetry can describe the
evolution of quantum field fluctuations in a curved black
hole spacetime background.
Several numerical techniques have been developed to

calculate the QNM frequency, such as WKB approximation

[10–13], continued fraction method (CFM) [14], asymp-
totic iteration method [15–17], Horowitz-Hubeny method
(HHM) [18], matrix method (MM) [19–25], finite differ-
ence method (FDM) [26–30], and so on. These methods
can describe the dynamical evolution of various black
holes, such as static, rotating, anti–de Sitter (AdS) or
de Sitter cases. However, many methods (except MM
and FDM) can only solve the decoupled QNM equation,
so we must use various tricks to simplify them. This implies
that the higher spin case is more complex for simplifying
the QNM master equation.
Black holes are theoretically simple but practically

intricate entities in the real universe. Their formidable
gravitational field draws and amasses various forms of
matter beyond their event horizon. Hence, to capture the
actual spacetime geometry of a black hole, one must
incorporate external factors such as accretion disks and
dark matter. As a result, real black hole spacetime may not
conform to a smooth mathematical representation.
A spacetime metric that entails a discontinuous function
would also imply a nonsmooth potential function for the
QNMs equation. It is a novel challenge to explore QNMs of
realistic black hole spacetime.
This paper explores a simple example of a nonsmooth

spacetime metric: an outer thin shell with mass and charge*lk314159@hotmail.com
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enclosing a rotating anti–de Sitter (AdS) black string. The
thin shell shares its axis of symmetry with the event horizon
of the black hole and spins at an equal angular velocity as
the black string. We will use three numerical methods to
investigate the QNMs dynamics in this nonsmooth space-
time. In Sec. II, we present and simplify the metric for this
thin-shell black string configuration, and then obtain the
QNM equation for a scalar field in this background
geometry. In Sec. III, we describe three numerical methods
for solving this equation: matrix method, generalized
Horowitz-Hubeny method, and finite difference method.
We apply these methods for computation in Sec. IV. We
also find that, when the mass of the thin shell approaches
critical mass of gravitational collapse and its charge
approaches extremality, there is a large gap in the potential
function that causes an echo effect. We analyze this echo
effect further in Sec. IV. Section V contains some dis-
cussions and conclusions.

II. QUASINORMAL MODE MASTER EQUATION
OF ROTATING BLACK STRING

WITH THIN SHELL

According to [31], the rotating charged cylindrical
anti–de Sitter black hole with α2 ≡ −Λ=3 has the
following form:

ds2 ¼ −fðrÞ
�
Ξdt̄ −

ω̄

α2
dφ̄

�
2

þ dr2

fðrÞ
þ r2ðΞdφ̄ − ω̄dt̄Þ2 þ α2r2dz̄2;

fðrÞ ¼ α2r2 −
4M
αr

�
1 −

3

2
α2a2

�
þ 4Q2

α2r2
2 − 3α2a2

2 − α2a2

≡ α2r2 −
4Meff

αr
þ 4Q2

eff

α2r2
; ð2:1Þ

where M, Q and a represent the mass per unit length, the
linear charge density and the angular momentum per unit
mass of the black string, respectively. Meff , Qeff , Ξ and ω̄
are defined by

Meff ≡M

�
1 −

3

2
α2a2

�
;

Q2
eff ≡Q2

2 − 3α2a2

2 − α2a2
;

Ξ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − α2a2

2 − 3α2a2

s
;

ω̄≡
ffiffiffi
2

p
α2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 3α2a2
p ; ð2:2Þ

and the cylindrical black hole horizon rhð> 0Þ that satisfies
fðrhÞ ¼ 0. It is obvious that, at the event horizon,

the angular velocity of black string is given by
ΩH ≡ dφ̄=dt̄jr¼rh ¼ ω̄=Ξ.
In this paper, we consider a rotating black string with a

cylindrical thin shell at rsð> rhÞ that rotates around the black
string with the same angular momentum per unit mass a.
This allows us to describe the effective mass and effective
charge of the black string spacetime with a thin shell as

Meff ¼
�
Min rs ≥ r ≥ rh
Moutð≡Min þMshell ≥ MinÞ r ≥ rs

Qeff ¼
�
Qin rs ≥ r ≥ rh
Qoutð≡Qin þQshellÞ r ≥ rs:

ð2:3Þ

Upon introducing the coordinate transformation,

t ¼ γt̄ −
ω̄

α2
φ̄

φ ¼ γφ̄ − ω̄ t̄

z ¼ αz̄; ð2:4Þ
the metric is simplified as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dφ2 þ r2dz2; ð2:5Þ

which yields an effective staticlike black string metric.
We illustrate this in Fig. 1.
Without loss of generality, we set α ¼ 1 and rewrite

fðrÞ as

fðrÞ ¼
�
finðrÞ rs ≥ r ≥ rh
foutðrÞ r ≥ rs

finðrÞ≡ r2 −
4Min

r
þ 4Q2

in

r2

¼
�
1 −

rh
r

��
1 − ein

rh
r

�
½ð1þ einÞrhr

þ r2 þ ð1þ ein þ e2inÞr2h�;

foutðrÞ≡ r2 −
4Mout

r
þ 4Q2

out

r2

¼
�
1 −

rp
r

��
1 − eout

rp
r

�
½ð1þ eoutÞrpr

þ r2 þ ð1þ eout þ e2outÞr2p�; ð2:6Þ
where rp ¼ coutrh represents the gravitational radius of the
AdS spacetime with a thin shell, and it means matter
distributed within this radius will inevitably be attracted
into the black hole, so the position of the thin shell must
satisfy the condition rs

rh
ð≡bÞ > cout > 1. In addition, the

spacetime may be charged, but the charge of black hole
spacetime has an upper limit because of the cosmic
censorship principle. We set the parameters einð∈ ½0; 1ÞÞ
and eoutð∈ ½0; 1ÞÞ depending on the charge and mass of the
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black hole spacetime with a thin shell. Hence, the relation
of Min, Qin, Mout, Qout and rh, rp, ein, eout follows from

Min ¼
1

4
ð1þ ein þ e2in þ e3inÞr3h;

Mout ¼
1

4
ð1þ eout þ e2out þ e3outÞr3p

¼ 1

4
ð1þ eout þ e2out þ e3outÞc3outr3h;

Q2
in ¼

1

4
ðein þ e2in þ e3inÞr4h;

Q2
out ¼

1

4
ðeout þ e2out þ e3outÞr4p

¼ 1

4
ðeout þ e2out þ e3outÞc4outr4h: ð2:7Þ

Assuming a massless scalar perturbation, we obtain the
minimally coupled scalar wave equation as gμνΦ;μν ¼ 0. By
setting Φ ¼ 1

rΨðt; rÞ exp ðikzþ iLφÞ, we can derive the
radial master equation for scalar quasinormal modes as

fðrÞ ∂

∂r

�
fðrÞ ∂Ψ

∂r

�
−
∂
2Ψ
∂t2

− VðrÞΨ ¼ 0; ð2:8Þ

where

VðrÞ ¼ fðrÞUðrÞ;

UðrÞ ¼ L2 þ k2

r2
þ f0ðrÞ

r
: ð2:9Þ

Then, by using the tortoise coordinate r� ¼
R

dr
fðrÞ, we set

Ψðt; rÞ ¼ RðrÞ exp ½−iωðtþ r�Þ�, so Eq. (2.8) becomes

fðrÞR00ðrÞ þ ½f0ðrÞ − 2iω�R0ðrÞ −UðrÞRðrÞ ¼ 0: ð2:10Þ

SinceMeff andQeff vary inside and outside of the thin shell,
we reformulate the preceding equations as

for rs≥ r≥ rh

finðrÞR00
inðrÞþ½f0inðrÞ−2iω�R0

inðrÞ−UinðrÞRinðrÞ¼0;

for r≥ rs≡brh

foutðrÞR00
outðrÞþ½f0outðrÞ−2iω�R0

outðrÞ−UoutðrÞRoutðrÞ¼0:

ð2:11Þ

The boundary condition and the join condition requires

RinðrhÞ ¼ Constant

Routðr → ∞Þ → 0

R0
inðrsÞ

RinðrsÞ
¼ R0

outðrsÞ
RoutðrsÞ

: ð2:12Þ

To simplify our analysis, we consider the scenario where
rh ¼ 1 and ein ¼ 0 hold. However, the QNM equation is
difficult to solve analytically due to the complex potential
function VðrÞ, so we propose three numerical methods to
tackle the problem with a noncontinuous potential function.

III. NUMERICAL METHOD

Typically, the conventional numerical methods are inad-
equate to handle the QNM equation with a noncontinuous
potential function, so we need to enhance the standard
method. In this section, we present three numerical meth-
ods that can address the preceding problem, namely matrix
method (MM), generalized Horowitz-Hubeny method
(GHHM) and finite difference method (FDM).

A. Matrix method

To transform the coordinates in region rs ≥ r ≥ rh,
we apply a mapping function

x ¼ r − rh
rs − rh

;

w ¼ ω

rh
ð3:1Þ

FIG. 1. The effective staticlike black string with a thin shell.
The solid line indicates the horizon (rh) of the black hole, and the
dotted line marks the location (rs) of the thin shell with mass
Mshell and electrical charge Qshell. From the figure, we observe
thatMeff ¼ Min and Qeff ¼ Qin hold in region rs ≥ r ≥ rh, while
Meff ¼ Mout and Qeff ¼ Qout hold in region r ≥ rs.
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so that xðrhÞ ¼ 0 and xðrsÞ ¼ 1, and the QNM equation
becomes

B2ðxÞR00
inðxÞ þ B1ðxÞR0

inðxÞ þ B0ðxÞRinðxÞ ¼ 0

B2ðxÞ ¼ xð1 − xþ bxÞ½3þ 3ðb − 1Þxþ ðb − 1Þ2x2�;
B1ðxÞ ¼ 3þ 9ðb − 1Þxþ 12ðb − 1Þ2x2 þ 8ðb − 1Þ3x3

þ 2ðb − 1Þ4x4 − 2iwð1 − xþ bxÞ3;
B0ðxÞ ¼ ðb − 1Þ½ð1 − xþ bxÞðL2 þ k2Þr−2h þ 3

þ 6ðb − 1Þxþ 6ðb − 1Þ2x2 þ 2ðb − 1Þ3x3�:
ð3:2Þ

To transform the coordinates in region r ≥ rs, we apply a
mapping function

y ¼ 1 −
rs
r
;

w ¼ ω

rh
ð3:3Þ

so that yðrsÞ ¼ 0 and yðr → ∞Þ ¼ 1, and the QNM
equation is

C2ðyÞR00
outðyÞ þ C1ðyÞR0

outðyÞ þ C0ðyÞRoutðyÞ ¼ 0

C2ðyÞ ¼ ðb − cout þ coutyÞðy − 1Þ2½b3
þ c3outeoutð1þ eout þ e2outÞðy − 1Þ3
þ bc2outðy − 1Þ2 þ b2coutð1 − yÞ�

C1ðyÞ ¼ c3outðy − 1Þ4½3bð1þ eout þ e2out þ e3outÞ
þ 4couteoutð1þ eout þ e2outÞðy − 1Þ�
− 2ib3ðy − 1Þ2w

C0ðyÞ ¼ b2ðL2 þ k2Þr−2h ðy − 1Þ2 − 2b4

þ bc3outð1þ eout þ e2out þ e3outÞðy − 1Þ3
þ 2c4outeoutð1þ eout þ e2outÞðy − 1Þ4: ð3:4Þ

The join condition becomes

R0
inðx ¼ 1Þ

ðb − 1ÞRinðx ¼ 1Þ ¼
R0
outðy ¼ 0Þ

bRoutðy ¼ 0Þ ¼ λ; ð3:5Þ

or

R0
inðx ¼ 1Þ − λðb − 1ÞRinðx ¼ 1Þ ¼ 0;

R0
outðy ¼ 0Þ − λbRoutðy ¼ 0Þ ¼ 0: ð3:6Þ

Based on the matrix method, we first divide the
region x ∈ ½0; 1� (or y ∈ ½0; 1�) into a set of discrete points
fx1 ¼ 0; x2;…; xn ¼ 1g and obtain a corresponding set of

functions χ ¼ ½Rðx0Þ; Rðx1Þ;…; RðxnÞ�T . Then we apply
a high-accuracy difference method to discretize the preced-
ing differential equation. Such methods include the Runge-
Kutta method, the differential quadrature method and a
non-grid-based interpolation scheme in [19]. In this paper,
we adopt the latter scheme for computation and express the
derivative of order m for RðmÞðxiÞ at point xi as a linear
combination of all values of RðxjÞ in χ. Hence, we substitute
RðmÞðxiÞ with M̃fmg

i χi, resulting in

for rs ≥ r ≥ rh

Minχin ≡ ðB2M̃f2g þ B1M̃f1g þ B0M̃f0gÞχin ¼ 0;

for r ≥ rs

Moutχout ≡ ðC2M̃f2g þ C1M̃f1g þ C0M̃f0gÞχout ¼ 0; ð3:7Þ

where M̃i denotes the ith row of a square matrix with
details given in [19]. The boundary condition stipulates that
Rinðx ¼ 0Þ remains constant and Routðy ¼ 1Þ disappears.
The join condition needs to be discretized as

M̃f1g
n − λðb − 1ÞM̃f0g

n ¼ 0; ð3:8Þ

and

M̃f1g
1 − λbM̃f0g

1 ¼ 0: ð3:9Þ

So we substitute Eqs. (3.8) and (3.9) for the final row ofMin
and the initial row of Mout, respectively, and then modify
the final row of Mout as ð0; 0;…; 1Þ to prevent potential
numerical singularity. As a result, the matrix Min and Mout

transform into M̃in and M̃out, respectively. Finally, to solve
for the preceding eigenmatrix, we equate the determinant of
the matrix with zero:

det M̃inðw; λÞ ¼ 0;

det M̃outðw; λÞ ¼ 0: ð3:10Þ

The eigenvalue ω and λ could be obtained by the command
“FindRoot” or “NSolve” in Mathematica software.

B. Generalized Horowitz-Hubeny method

In [18], Horowitz and Hubeny introduced a novel
approach to compute the QNM frequency in AdS space-
time. The approach resembles the continued fraction
method, but it has an edge over it as it does not derive
the recurrence relation for the coefficient function. Thus, it
does not demand that the coefficient function of the QNM
equation be a rational expression. However, when dealing
with a metric with a piecewise function, the initial HH
method falls short and needs to be generalized here.
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By using the coordinate transformation z ¼ 1 − rh
r and

w ¼ ω
rh
, Eq. (2.10) becomes

A2ðzÞR00ðzÞ þ A1ðzÞR00ðzÞ þ A0ðzÞRðzÞ ¼ 0

A2ðzÞ ¼ ð1 − cþ czÞðz − 1Þ2½1þ cþ c2ðz − 1Þ2
þ c3eð1þ eþ e2Þðz − 1Þ3 − cz�;

A1ðzÞ ¼ c3ðz − 1Þ4½3þ ð3þ 4cz − 4cÞðeþ e2 þ e3Þ�
− 2iwðz − 1Þ2;

A0ðzÞ ¼ 2c4ðeþ e2 þ e3Þðz − 1Þ4
þ c3ð1þ eþ e2 þ e3Þðz − 1Þ3 − 2

− ðL2 þ k2Þr−1h ðz − 1Þ2: ð3:11Þ

According to the boundary condition, we set

A1ðzÞ
A2ðzÞ

¼
X∞
k¼−1

B̂kzk

A0ðzÞ
A2ðzÞ

¼
X∞
k¼−1

Ĉkzk

RinðzÞ ¼
X∞
k¼0

akzk for zs ≥ z ≥ 0 ð3:12Þ

and

A1ðzÞ
A2ðzÞ

¼
X∞
k¼0

β̂kðz − zsÞk

A0ðzÞ
A2ðzÞ

¼
X∞
k¼0

γ̂kðz − zsÞk

RoutðzÞ ¼
X∞
k¼0

bkðz − zsÞk for 1 ≥ z ≥ zs; ð3:13Þ

where zs ¼ 1 − rh
rs
. Finally, the recurrence relation is given by

a1 ¼ −
Ĉ−1

B̂−1
a0;

akþ2 ¼ −
1

ðkþ 2Þðkþ 1þ B̂−1Þ

�
Ĉ−1akþ1

þ
Xk
i¼0

½ðk − iþ 1ÞB̂iak−iþ1 þ Ĉiak−i�
�
;

b0 ¼ RoutðzsÞ ¼ RinðzsÞ ¼
X
i¼0

aizis;

b1 ¼ ∂zRoutðzÞjr¼rs
¼ ∂zRinðzÞjr¼rs

¼
X
i¼0

aiþ1ðiþ 1Þzis;

bkþ2 ¼ −
P

k
i¼0 ½ðk − iþ 1Þβ̂ibk−iþ1 þ γ̂ibk−i�

ðkþ 1Þðkþ 2Þ ð3:14Þ

with k ≥ 0. So once the value of a0 is determined, all
bi ¼ biðωÞ can be derived. For the sake of simplicity, we
set a0 ¼ 1, so that the frequencyω ¼ wrh can be obtained by
solving the equation

Routð1Þ ¼
X∞
k¼0

bkð1 − zsÞk ¼ 0: ð3:15Þ

Since the preceding series converges, we only need to
extend the series up to N order (where N ≫ 1) in the actual
computation, provided that its error stays within a toler-
able range.

C. Finite difference method

The finite difference method operates in the time
domain, and it depends on the r� coordinate, so we compute
the tortoise coordinate:

rin� ¼ rout� ðrsÞ þ
1

6rh

�
2

ffiffiffi
3

p
arctan

2rþ rhffiffiffi
3

p
rh

− 2
ffiffiffi
3

p
arctan

2rs þ rhffiffiffi
3

p
rh

þ 2 log
rh − r
rh − rs

þ log
r2h þ rhrs þ r2s
r2h þ rhrþ r2

�
;

rout� ¼ logðr − coutrhÞ
coutrhð3 − eout − e2out − e3outÞ

þ 3þ 6eout þ 10e2out þ 6e3out þ 3e4out
coutrhð3þ 2eout þ e2outÞ3=2ð1þ 2eout þ 3e2outÞ

arccot
cout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2eout þ 3e2out

p
rh

2rþ coutð1þ eoutÞrh
þ e2out logðr − couteoutrhÞ
coutrhðeout − 1Þð1þ 2eout þ 3e2outÞ

−
ð1þ eoutÞ3

2coutrhð3þ 2eout þ e2outÞð1þ 2eout þ 3e2outÞ
× log ½r2 þ coutð1þ eoutÞrhrþ c2outð1þ eout þ e2outÞr2h� − rC

rC ¼ 3þ 6eout þ 10e2out þ 6e3out þ 3e4out
2coutð3þ 2eout þ e2outÞ3=2rh

π

1þ 2eout þ 3e2out
ð3:16Þ

so r�ðr → ∞Þ → þ∞ and r�ðr → rhÞ → −∞.
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By taking t ¼ t0 þ iΔt and r� ¼ r�0 þ jΔr�, Eq. (2.8)
become the finite difference equation,

Ψiþ1
j ¼ −Ψi−1

j þ Δt2

Δr2�
ðΨi

j−1 þΨi
jþ1Þ

þ
�
2 − 2

Δt2

Δr2�
− Δt2Vj

�
Ψi

j: ð3:17Þ

Let us choose the initial conditions and boundary
condition as

Ψðr�; t0Þ ¼ CA exp ½−Caðr� − CbÞ2�;
∂tΨðr�; tÞjt¼t0 ¼ 0;

Ψðr�; tÞjr�¼0 ¼ 0: ð3:18Þ

The join condition at the grid point js of rs requires
Ψr→rþS

¼ Ψr→r−S
and ∂rΨr→rþS

¼ ∂rΨr→r−S
, so it satisfies

Ψi
jb
−Ψi

jb−1

Δr�
¼ Ψi

jbþ1 −Ψi
jb

Δr�
ð3:19Þ

or

Ψi
jb
¼ Ψi

jb−1 þΨi
jbþ1

2
: ð3:20Þ

Finally, pay attention to the von Neumann stability
Δt2
Δr2�

þ Δt2
4
Vmax < 1 [28–30], so we choose Δr� ¼ 2Δt.

By using the method, we can obtain all functions at grid
points.
We will employ the preceding three approaches to

compute the scalar QNMs of the black string with a thin
shell in the following section.

IV. NUMERICAL RESULTS

We find that MM and GHHM produce highly precise
outcomes, so for the sake of simplicity, we assign the
step value 1=33 for MM, so the master differential
equations transform into two eigenmatrices with 34 rows
and 34 columns. For GHHM, we extend all series functions
to 40 order.
In Table I, we compare MM with GHHM and observe

that they concur with each other at a very high precision,
which indicates that both methods are reliable. In Table II,
we utilize MM to compute the QNM frequency for various
values of cout and eout. We ascertain that when cout and eout
are small, as they increase, both the real part and the

TABLE I. Scalar quasinormal mode frequency ω with rp ¼ 1, rs ¼ 2, L ¼ k ¼ 0 and n ¼ 0.

cout eout 2M 2jQj MM GHHM

1 0 0.5 0 1.84942131358547 − 2.66385266115268i 1.84942131254772 − 2.66385266044390i
1 0.1 0.5555 0.333167 1.84886115991618 − 2.66226082053395i 1.84886118067628 − 2.66226081764372i
1 0.2 0.624 0.497996 1.84815838246885 − 2.66028120740985i 1.84815842249751 − 2.66028121314482i
1 0.3 0.7085 0.645755 1.84727369483746 − 2.65781614263610i 1.84727374309536 − 2.65781617236739i
1 0.4 0.812 0.789937 1.84616262788783 − 2.65476139504655i 1.84616265506010 − 2.65476145891629i
1.01 0 0.515151 0 1.84874708634214 − 2.66280679611562i 1.84874708059789 − 2.66280678415070i
1.01 0.1 0.572332 0.339863 1.84818249987103 − 2.66118467764087i 1.84818254560525 − 2.66118465702376i
1.01 0.2 0.642908 0.508006 1.84747391534033 − 2.65916691063215i 1.84747401094012 − 2.65916690900099i
1.01 0.3 0.729968 0.658735 1.84658153010992 − 2.65665355321889i 1.84658165205779 − 2.65665360895264i
1.01 0.4 0.836604 0.805814 1.84546018651184 − 2.65353774273786i 1.84546026737753 − 2.65353788541905i
1.05 0 0.578813 0 1.84586193207136 − 2.65839380268179i 1.84586073437129 − 2.65839231903923i
1.05 0.1 0.643061 0.367316 1.84528415854500 − 2.65665090542783i 1.84528476583011 − 2.65664885481842i
1.05 0.2 0.722358 0.549041 1.84455801780905 − 2.65448060691822i 1.84456061173763 − 2.65447884008743i
1.05 0.3 0.820177 0.711945 1.84364192918572 − 2.65177365694817i 1.84364613137428 − 2.65177352308678i
1.05 0.4 0.939992 0.870905 1.84248828077456 − 2.64841223044930i 1.84249236789830 − 2.64841522044087i

TABLE II. Scalar quasinormal mode frequency ω by the matrix method with rp ¼ 1, rs ¼ 2, L ¼ k ¼ 0 and
n ¼ 0.

eout ¼ 0 eout ¼ 0.1 eout ¼ 0.2 eout ¼ 0.3

cout ¼ 1 1.84942 − 2.66385i 1.84886 − 2.66226i 1.84816 − 2.66028i 1.84727 − 2.65782i
cout ¼ 1.01 1.84875 − 2.66281i 1.84818 − 2.66118i 1.84747 − 2.65917i 1.84658 − 2.65665i
cout ¼ 1.03 1.84734 − 2.66065i 1.84677 − 2.65896i 1.84605 − 2.65687i 1.84515 − 2.65426i
cout ¼ 1.05 1.84586 − 2.65839i 1.84528 − 2.65665i 1.84456 − 2.65448i 1.84364 − 2.65177i
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absolute value of the imaginary part of QNMs frequency
will diminish, which implies that QNM oscillation fre-
quency ascends and its amplitude decay rate declines.
In Fig. 2, we employ the FDM to investigate the dynamical
process of scalar QNM oscillation, and confirm that they
are consistent with our previous results.
We acknowledge that the spacetime outside the thin shell

obeys cout < b. However, once cout ¼ b is violated, the thin
shell will collapse into a black hole. eout < 1 is determined
by charge. finðr → ∞Þ ¼ foutðr → ∞Þ ¼ 1 holds true, but
the location of fout ¼ 0 exceeds the location of fout ¼ 0,
creating a gap near the discontinuous point rs. As cout=b and
eout approach 1, the gap enlarges significantly, resulting in an
echo effect in QNM oscillation [32–34]. Interestingly, as
these two values approach 1, the beat period of the echo
effect lengthens. We illustrate this dynamic process in Fig. 3.
It is interesting that the curve will change from echo

phase to QNM phase by reducing the mass and charge of
the shell, because the gap of potentials becomes narrower
as the parameters decrease. Additionally, it is also found
that the echo phase is changed from a stable QNM phase,
so the echo phase decays in amplitude as t → ∞ (though
the echo duration grows significantly due to the reflection
of the wave in the gap). The reason is that the boundary
condition requires that the wave function must vanish
at infinity, which means that the energy cannot leak at
infinity; but from the event horizon, the energy of the
gravitational waves will gradually enter the interior of the
black string due to the characteristic that classical black
holes only absorb radiation and do not emit it, so that the
echo effect outside of the black string will slowly decrease
with time. The details are shown in Fig. 4.

FIG. 3. Echo effect of the near extreme black hole case with L ¼ k ¼ 0. The observation point is situated at ro ¼ 5.085.

FIG. 2. Scalar quasinormal modes with L ¼ k ¼ 0. The ob-
servation point is situated at ro ¼ 1.2.
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V. CONCLUSION

This paper proposes two numerical approaches for
computing QNM frequencies of discontinuous potentials:
specifically, the matrix method and the generalized
Horowitz-Hubeny method.
Using the matrix method, we map the domain range of

both regions inside and outside the thin shell to the interval
[0, 1] by applying the coordinate transformation (3.1)
and (3.3). Then we approximate the derivative at each
grid point as a linear combination of function values at
nearby points by using high-accuracy difference, the
Runge-Kutta method or the differential quadrature method.
This yields two matrix equations. We impose the
Wronskian condition as a join condition at the disconti-
nuity point and replace the rows of the matrix correspond-
ing to the thin shell point with this condition after
discretization. This results in two eigenmatrices whose
eigenvalues and eigenvectors are the QNM frequencies and
waveforms. However, similar to the original version of the
matrix method, this method faces the problem of an
excessively large number of matrix rows due to excessive
grid points. This leads to significantly longer computation
time when the number of grid points exceeds 50. To

overcome this problem, we propose a technique that
combines the high-order matrix method with a secant
method for computing QNMs [25]. In the work involving
discontinuous potential functions, we have to face the
problem of solving multiple determinants simultaneously.
However, this can be calculated efficiently by using high-
order matrix method and the Broyden method.
Using the generalized Horowitz-Hubeny method, we

simply require that the function and its first-order derivatives
of the two master equations are equal at the discontinuity
point in AdS black hole spacetime. In fact, we can apply the
same logic to solve QNMs of asymptotically flat spacetime
and de Sitter spacetime: we just need to set RðrÞ ¼
e2iωrr2iωrhΨðrÞ and x ¼ 1 − rh

r in Eq. (2.10) for the asymp-
totically flat spacetime case, orRðrÞ ¼ ðrc − rÞ2iω=f0ðrcÞΨðrÞ
and x ¼ r−rh

rc−rh
for the de Sitter spacetime with cosmological

horizon rc, so that the master equation becomes

A2ðxÞΨ00ðxÞ þ A1ðxÞΨ0ðxÞ þ A0ðxÞΨðxÞ ¼ 0: ð5:1Þ

Then, we can expand A1

A2
¼ P

i âix
i, A0

A2
¼ P

i b̂ix
i and

ΨðxÞ ¼ P
i ĉix

i near the horizon x ¼ 0, and deduce the

FIG. 4. From echo phase to QNM phase of the black hole as the shell’s mass and charge reduce. The observation point is situated at
ro ¼ 5.085.
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recurrence relation of âi, b̂i and ĉi. Subsequently, the
QNM frequency is derived from the boundary condition
Ψ0ðx ¼ 1Þ → 0. Unlike CFM, GHHM does not necessitate
that A2ðxÞ, A1ðxÞ, A0ðxÞ are rational expressions, thus
GHHM has a broader scope of application.
We apply the aforementioned approach to investigate

scalar quasinormal modes of a rotating cylindrical AdS
black hole with a thin shell, and also discover that the
discontinuous potential function VðrÞ exhibits a large gap
in the case of a very massive and strongly charged thin
shell, resulting in an echo effect in the quasinormal
mode wave. Using the finite difference method, we
obtain the echo wave and observe a significant difference
from the echo waveform in asymptotically flat black hole
spacetime.

In fact, a black hole with a thin shell is the simplest
example of a black hole with a discontinuous potential
function. More realistic cases could involve black holes
with an accretion disk or dark matter, and the research on
the ringdown gravitational wave of such realistic black hole
spacetimes has more practical significance. We will pursue
this open problem in the future.
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