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We study the Dirac equation minimally coupled to general relativity using quantum field theory and the
semiclassical gravity approximation. Previous studies of the Einstein-Dirac system did not quantize the
Dirac field and required multiple independent Dirac fields to preserve spherical symmetry. We canonically
quantize a single Dirac field in a static spherically symmetric curved spacetime background. Using the
semiclassical gravity approximation, in which the Einstein field equations are sourced by the expectation
value of the stress-energy-momentum tensor, we derive a system of equations whose solutions describe
static spherically symmetric self-gravitating configurations of identical quantum spin-1=2 particles. We
self-consistently solve these equations and present example configurations. Although limiting cases of our
semiclassical system of equations reproduce the multifield system of equations found in the literature, our
system of equations is derived from the excitations of a single quantum field.
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I. INTRODUCTION

In the Einstein-Dirac system, the Dirac equation is
minimally coupled to general relativity. Solutions describe
self-gravitating configurations of spin-1=2 particles. This
system was first studied in static spherically symmetric
spacetimes by Finster et al. [1]. Additional studies of this
system, including generalizations that couple the Dirac
field to the electromagnetic field or to an SU(2) gauge
field, were undertaken in [2–24]. Static and stationary
axisymmetric spacetimes were considered in [25–27] and
dynamical solutions in time-dependent spherically sym-
metric spacetimes were found in [28–30]. Static spherically
symmetric wormhole solutions in the Einstein-Dirac-
Maxwell system were considered in [31–33].
In all of these studies, an independent Dirac field is

introduced in the Lagrangian for each particle that is in a
distinct state. Each field is then described by a classical
solution to the equations of motion. In some cases,
motivated by the Pauli exclusion principle, the classical
solutions are normalized, which implements a one-particle
restriction for the respective field. In this case, the classical
solutions can be interpreted as first quantized wave
functions. In spherical symmetry, multiple Dirac fields
are always introduced. This is explained as being necessary
to preserve spherical symmetry, in that only with multiple
fields can the total angular momentum of the system be
made to vanish.
In this paper, we introduce a single Dirac field. We

canonically quantize the Dirac field using the formalism of
quantum field theory in a curved spacetime background
[34–36]. We preserve spherical symmetry by focusing
on excitations of the vacuum with zero total angular

momentum. Using the semiclassical gravity approximation,
in which the Einstein field equations are sourced by the
expectation value of the stress-energy-momentum tensor
[34–37], we construct static spherically symmetric self-
gravitating configurations of spin-1=2 particles in quantum
field theory. Our configurations are therefore populated by
identical quantum particles.
The use of semiclassical gravity to describe self-

gravitating spherically symmetric systems was recently
undertaken by Alcubierre et al. in a study of a single real
scalar field [38]. They found that excitations of the
quantized real scalar field can be reduced to the classical
Einstein-Klein-Gordon system. In particular, the single
quantum real scalar field can describe boson stars [39–41]
as well as their relatives, such as l-boson stars [42] and
configurations not previously considered in the literature.
Reference [38] was the inspiration for our study of the
quantum Dirac field and, similar to [38], we find that
excitations of the quantized Dirac field can describe the
configurations presented in [1], as well as configurations
not previously considered in the literature.
This paper is organized as follows. In Sec. II, we review

the Dirac equation minimally coupled to general relativity.
In Sec. III, we canonically quantize the Dirac field in a
classical curved spacetime background and decompose the
Dirac field operator in terms of mode functions, which are
solutions to the classical equations of motion. In Sec. IV,
we solve for the mode functions and show that they can be
classified as being positive or negative frequency solutions.
This allows us to identify a preferred vacuum state and to
construct spherically symmetric excitations of the vacuum
state, which we do in Sec. V. In Sec. VI, we briefly review
the semiclassical gravity approximation. We also present
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equations for determining the metric fields, which follow
from the Einstein field equations, and compute the expect-
ation value of the stress-energy-momentum tensor. The
complete system of equations, whose solutions describe
static spherically symmetric semiclassical configurations of
the Einstein-Dirac system, must be solved numerically. In
Sec. VII, we describe our numerical methods and present
example solutions. We conclude in Sec. VIII. Throughout,
we use units such that c ¼ ℏ ¼ 1.

II. EINSTEIN-DIRAC SYSTEM

We study the static spherically symmetric Einstein-Dirac
system. For the static spherically symmetric spacetime, we
parametrize the metric as

ds2 ¼ −α2ðrÞdt2 þ a2ðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð1Þ

This metric describes a spacetime that is foliated by time-
independent, and hence identical, spatial hypersurfaces Σ.
The induced spatial metric γij on Σ and the future directed
normal vector nμ to Σ are given by [43]

γij ¼ diagða2; r2; r2 sin2 θÞ; nμ ¼ ðα−1; 0; 0; 0Þ: ð2Þ

In the matter sector, we have a single four-component
Dirac spinor ψ minimally coupled to gravity and described
by the Lagrangian

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
ðψ̄γμ∇μψ −mψ ψ̄ψÞ; ð3Þ

where detðgμνÞ is the determinant of the metric, ψ̄ is the
adjoint spinor, γμ is a curved space γ matrix, mψ is the
mass parameter, and ∇μ is a metric compatible covariant
derivative.
We couple the Dirac spinor to curved space using the

vierbein formalism [44,45], where the vierbein eaμ is
defined by

gμν ¼ eaμeaν; ηab ¼ eaμebμ; ð4Þ

where ηab ¼ diagð−1; 1; 1; 1Þ is the flat space Minkowski
metric. Curved space γ matrices γμ are related to flat space γ
matrices γ̃a through the vierbein,

γμ ¼ eaμγ̃a; ð5Þ

where curved and flat space γ matrices are defined by

fγμ; γνg ¼ 2gμν; fγ̃a; γ̃bg ¼ 2ηab; ð6Þ

where fx; yg≡ xyþ yx is the anticommutator. From the
vierbein, one can construct the spin connection,

wμab ¼
1

2
eaαð∂μebα − ∂αebμÞ þ

1

2
ebβð∂βeaμ − ∂μeaβÞ

−
1

2
ecμeaαebβð∂αecβ − ∂βecαÞ; ð7Þ

and then the spinor connection,

Γμ ¼ −
1

4
γ̃aγ̃bωμab: ð8Þ

With the spinor connection, we can define the covariant
derivative of spinors,

∇μψ ¼ ∂μψ − Γμψ ; ∇μψ̄ ¼ ∂μψ̄ þ ψ̄Γμ: ð9Þ

In our framework, we include a single Dirac field in the
matter sector. This is notably different from previous
studies of the spherically symmetric Einstein-Dirac system,
in which at least two Dirac fields are included. The
inclusion of two fields is explained as being necessary
for preserving spherical symmetry. More generally, 2jþ 1
fields are included when the total angular momentum of
the system is given by j. We stress that, in these previous
studies, these fields were never quantized. In our frame-
work, we quantize a single field and construct spherically
symmetric configurations through excitations of the
vacuum.
From the Lagrangian in (3), we can derive the classical

stress-energy-momentum tensor,

Tμν ¼ −
1

4

h
ψ̄γμ∇νψ þ ψ̄γν∇μψ − ð∇μψ̄Þγνψ − ð∇νψ̄Þγμψ

i
;

ð10Þ

and the classical equations of motion,

0 ¼ γμ∇μψ −mψψ

¼ γμð∂μ − ΓμÞψ −mψψ ; ð11Þ

which is the Dirac equation.
Given a Dirac spinor ψ, the charge conjugated spinor is

given by

ψc ≡ Cψ̄T; ð12Þ

where C is the charge conjugation operator defined by
CT ¼ −C and Cγ̃aTC−1 ¼ −γ̃a. It is straightforward to show
that if ψ satisfies the Dirac equation, ψc does as well. If we
were to couple the Dirac field to the electromagnetic field,
one can show that if ψ satisfies the charged Dirac equation,
then ψc also satisfies the charged Dirac equation, but with
an opposite sign for its charge. In flat space, this indicates
that if ψ describes a particle, ψc describes the antiparticle.
This interpretation continues to hold in curved space for the
static metric in (1).
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When performing calculations, we will use the Dirac
representation for the flat space γ matrices,

γ̃0 ¼ i

�
1 0

0 −1

�
; γ̃j ¼ i

�
0 σj

−σj 0

�
; ð13Þ

where j ¼ 1, 2, 3 and where the σj are the Pauli matrices,

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ð14Þ

Our convention for the adjoint spinor is

ψ̄ ¼ ψ†ð−iγ̃0Þ: ð15Þ

The charge conjugated spinor is then given by

ψc ¼ γ̃2ψ�; ð16Þ

where C ¼ iγ̃0γ̃2.
We will also make a choice for the vierbein. There are

two standard choices available. The two choices lead to
identical radial equations of motion, but to different,
although of course equivalent, descriptions for the angular
part of the Dirac field. One choice is

γt ¼ γ̃t

α
; γr ¼ γ̃r

a
; γθ ¼ γ̃θ

r
; γϕ ¼ γ̃ϕ

r sin θ
; ð17Þ

which gives the vierbein through (5), where

γ̃t ¼ γ̃0;

γ̃r ¼ γ̃1 sin θ cosϕþ γ̃2 sin θ sinϕþ γ̃3 cos θ;

γ̃θ ¼ γ̃1 cos θ cosϕþ γ̃2 cos θ sinϕ − γ̃3 sin θ;

γ̃ϕ ¼ −γ̃1 sinϕþ γ̃2 cosϕ: ð18Þ

For this vierbein, the spinor connection works out to

Γt ¼
∂rα

2a
γ̃tγ̃r;

Γr ¼ 0;

Γθ ¼
1

2

�
1 −

1

a

�
γ̃θγ̃r;

Γϕ ¼ 1

2

�
1 −

1

a

�
sin θγ̃ϕγ̃r; ð19Þ

from which

γμΓμ ¼
1

a

�
a
r
−
∂rα

2α
−
1

r

�
γ̃r; ð20Þ

which is needed for the Dirac equation in (11). A benefit
of using this vierbein is that it leads to solutions to the
equations of motion that are similar to the standard
solutions for the flat space Dirac equation in spherical
coordinates [46,47]. Further, angular momentum is
described through the familiar functions of spherical
harmonics and two-component spinors.
The other choice for the vierbein is

γt ¼ γ̃0

α
; γr ¼ γ̃3

a
; γθ ¼ γ̃2

r
; γϕ ¼ γ̃1

r sin θ
: ð21Þ

Note that this vierbein is not diagonal. By associating the
off-diagonal Pauli matrices σ1 and σ2 with the angular γ
matrices γθ and γϕ, it becomes straightforward to introduce
the raising and lowering operators for spin weighted
spherical harmonics.
We find that solving the equations of motion is simpler

using the vierbein in (21). However, intuition for quantum
angular momentum is typically based on the properties of
spherical harmonics and two-component spinors, not on
spin weighted spherical harmonics. For this reason, we use
the vierbein in (17). For completeness, we also solve the
Dirac equation using the alternative choice in (21) in
Appendix C.

III. QUANTUM DIRAC SPINORS IN CURVED
SPACETIME

In this section, we canonically quantize the Dirac field
in a static spherically symmetric curved spacetime back-
ground. Quantum theories live in Hilbert space, i.e., a
complex vector space with an inner product. We therefore
begin by identifying an inner product. First, we note that
the current

jμ ¼ iψ̄1γ
μψ2 ð22Þ

can be shown to be divergence-free, ∇μjμ ¼ 0, with the
help of the equations of motion in (11). We can then define
an inner product on the space of solutions to the Dirac
equation,

ðψ1;ψ2Þ≡
Z
Σt

d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
nμjμ: ð23Þ

We shall assume that ψ1 and ψ2 decay sufficiently quickly
at spatial infinity. As a consequence, this inner product is
independent of the hypersurface Σt, over which the integral
is evaluated. Moving to the static spherically symmetric
metric in (1) and to the vierbein in (17), the inner product
can be written as

ðψ1;ψ2Þ ¼
Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
ψ†
1ψ2; ð24Þ
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where detðγijÞ ¼ a2r4 sin2 θ and d3x ¼ drdθdϕ. The inner
product is linear in both arguments and obeys the identities

ðψ1;ψ2Þ� ¼ ðψ2;ψ1Þ;
ðψc

1;ψ
c
2Þ ¼ ðψ2;ψ1Þ;

ðψ1;ψc
2Þ ¼ ðψ2;ψc

1Þ: ð25Þ

The momentum conjugate to ψ is given by

π ¼ ∂L
∂ð∂tψÞ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
ψ̄nμγμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
iψ†; ð26Þ

where in the final equality we used the metric in (1) and the
vierbein in (17). We now promote ψ and π to operators ψ̂
and π̂ and impose the equal time anticommutation relations,

fψ̂aðt; x⃗Þ; π̂bðt; y⃗Þg ¼ iδabδ3ðx⃗ − y⃗Þ;
fψ̂aðt; x⃗Þ; ψ̂bðt; y⃗Þg ¼ 0;

fπ̂aðt; x⃗Þ; π̂bðt; y⃗Þg ¼ 0; ð27Þ

where a, b label the Dirac spinor components.
Let fI be a set of classical solutions to the equations of

motion,

ðγμ∇μ −mψÞfI ¼ 0; ð28Þ

where the subscript I represents some set of quantum
numbers. Since the static metric in (1) is time independent,
it possesses the hyperspace-orthogonal timelike Killing
vector ξμ ¼ ð1; 0; 0; 0Þ. The existence of this vector allows
for a coordinate invariant definition of positive frequency
solutions [34,45],

ξμ∂μfI ¼ ∂tfI ¼ −iωIfI; ð29Þ

and negative frequency solutions,

ξμ∂μfI ¼ ∂tfI ¼ þiωIfI; ð30Þ

for real positive ωI . Labeling the positive frequency
solutions with a þ and the negative frequency solutions
with a −, we assume that the f�I are orthonormal in the
sense that

ðfþI ; fþJ Þ ¼ ðf−I ; f−J Þ ¼ δIJ;

ðfþI ; f−J Þ ¼ ðf−I ; fþJ Þ ¼ 0: ð31Þ

The f�I can then be used as mode functions in the
expansion of ψ̂ ,

ψ̂ðt; x⃗Þ ¼
X
I

h
b̂If

þ
I ðt; x⃗Þ þ d̂†I f

−
I ðt; x⃗Þ

i
; ð32Þ

which defines creation and annihilation operators. The
fact that we can classify mode functions as having posi-
tive or negative frequency allows for a natural definition
of particles and antiparticles and we can interpret the
corresponding creation and annihilation operators in the
field decomposition in (32) as being able to create and
annihilate particles and antiparticles. We may solve for the
creation and annihilation operators using the inner product.
Specifically,

b̂†I ¼ ðψ̂ ; fþI Þ; b̂I ¼ ðfþI ; ψ̂Þ ð33Þ

are creation and annihilation operators for particles and

d̂†I ¼ ðf−I ; ψ̂Þ; d̂I ¼ ðψ̂ ; f−I Þ ð34Þ

are creation and annihilation operators for antiparticles.
Using Eqs. (33) and (34), the definition of π in (26), and

the canonical anticommutation relations in (27), we can
derive

fb̂I; b̂†Jg ¼ ðfþI ; fþJ Þ;
fd̂†I ; d̂Jg ¼ ðf−I ; f−J Þ;
fb̂I; d̂Jg ¼ ðfþI ; f−J Þ;
fd̂†I ; b̂†Jg ¼ ðf−I ; fþJ Þ; ð35Þ

with all other anticommutators vanishing. Since we
are assuming our mode functions satisfy the orthonor-
mality relations in (31), then the anticommutation rela-
tions in (35) reduce down to standard anticommutation
relations for creation and annihilation operators for a
Dirac field.

IV. SOLUTIONS TO THE CLASSICAL
EQUATIONS OF MOTION

Our goal in this section is to solve the classical equations
of motion, i.e., the Dirac equation,

½γμð∂μ − ΓμÞ −mψ �fI ¼ 0; ð36Þ

using the vierbein in (17), for the mode functions fI and to
show that the mode functions satisfy the orthonormality
conditions in (31) and the positive and negative frequency
conditions in (29) and (30). Over the course of doing this,
we will determine the precise quantum numbers that are
included in the subscript I. For completeness, we also solve
the equations of motion using the alternative choice for the
vierbein in (21) in Appendix C.
To write the equations of motion in a convenient form,

we recall the standard quantum operators for orbital angular
momentum [46,47],
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L̂1 ¼ −ið− sinϕ∂θ − cot θ cosϕ∂ϕÞ;
L̂2 ¼ −iðþ cosϕ∂θ − cot θ sinϕ∂ϕÞ;
L̂3 ¼ −i∂ϕ: ð37Þ

We introduce the spin operator for a four-component Dirac
spinor,

Ŝ ¼ 1

2
Σ̂; ð38Þ

where

Σ̂1 ¼
�
σ1 0

0 σ1

�
Σ̂2 ¼

�
σ2 0

0 σ2

�
Σ̂3 ¼

�
σ3 0

0 σ3

�
:

ð39Þ

Using the Dirac representation for γ matrices in (13), Σ̂j can
be written as

Σ̂j ¼ −iγ̃jγ̃1γ̃2γ̃3: ð40Þ

With L̂ and Σ̂, we define the operator

K̂ ≡ −iγ̃0ð1þ L̂ · Σ̂Þ; ð41Þ

where L̂ · Σ̂ ¼ L̂1Σ̂1 þ L̂2Σ̂2 þ L̂3Σ̂3. The quantum oper-
ator for total angular momentum is given as usual by

Ĵ ¼ L̂þ Ŝ; ð42Þ

and K̂ can also be written as

K̂ ¼ −iγ̃0
�
Ĵ2 − L̂2 þ 1

4

�
: ð43Þ

Returning to the equations of motion in (36), we allow f
to have arbitrary dependencies,

f ¼ fðt; r; θ;ϕÞ; ð44Þ

and, for the moment, suppress the subscripted I. Using the
vierbein in (17) and Eqs. (20) and (41), the equations of
motion can be written,

Ĥf ¼ i∂tf; ð45Þ

where

Ĥ ≡ iα
a
γ̃0γ̃r

�
∂r þ

∂rα

2α
þ 1

r

�
−
α

r
γ̃rK̂ − iαmψ γ̃

0: ð46Þ

One can show that the operators i∂t, Ĥ, Ĵ2, Ĵ3, and K̂
commute with one another. This is somewhat tedious to do,

but the calculations are aided by first showing that γ̃r

commutes with K̂ and Ĵ. Since all five operators commute
with one another, we can assume f is a simultaneous
eigenfunction of them.
For i∂t, we have the eigenvalue equation

i∂tf ¼ ωf: ð47Þ

It is not difficult to show that i∂t is Hermitian with respect
to the inner product in Eq. (24),

ðf; i∂tfÞ ¼ ði∂tf; fÞ; ð48Þ

as long as f decays sufficiently quickly at spatial infinity,
and hence ω is real. We now assume that the time
dependence of f is separable, so that f can be written as

fðt; r; θ;ϕÞ ¼ e−iωtuðr; θ;ϕÞ: ð49Þ

The equations of motion can now be written,

Ĥu ¼ ωu: ð50Þ

We have also

K̂u ¼ κu; ð51Þ

where κ are the eigenvalues of K̂.
The next step in our solution is to write u as

uðr; θ;ϕÞ ¼
�
χðr; θ;ϕÞ
ηðr; θ;ϕÞ

�
; ð52Þ

where χ and η are two-component objects. Plugging this
into Eq. (51) and using the definition of K̂ in (41), we find
the two equations

ð1þ L̂ · σ⃗Þξ ¼ þκχ;

ð1þ L̂ · σ⃗Þη ¼ −κη; ð53Þ

where L̂ · σ⃗ ¼ L̂1σ
1 þ L̂2σ

2 þ L̂3σ
3. The eigenfunctions

and eigenvalues of 1þ L̂ · σ⃗ are well known [46,47],

ð1þ L̂ · σ⃗ÞYmj

j�1=2 ¼ ∓ðjþ 1=2ÞYmj

j�1=2; ð54Þ

where the Y
mj

l are the spin-angle functions
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Y
mj

j−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþmj

2j

s
Y
mj−1=2
j−1=2

�
1

0

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j −mj

2j

s
Y
mjþ1=2
j−1=2

�
0

1

�
;

Y
mj

jþ1=2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1 −mj

2jþ 2

s
Y
mj−1=2
jþ1=2

�
1

0

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1þmj

2jþ 2

s
Y
mjþ1=2
jþ1=2

�
0

1

�
; ð55Þ

where the Yml
l are spherical harmonics. We can see that

Y
mj

j−1=2 is the linear combination of products of spherical
harmonics with orbital angular momentum l ¼ j − 1=2
and two-component spinors with spin angular momentum
s ¼ 1=2 with the appropriate Clebsch-Gordon coefficients
such that the total angular momentum is j and the total
angular momentum three component is mj. An identical
statement can be made about Y

mj

jþ1=2, except l ¼ jþ 1=2.
Since total angular momentum is the sum of l and s ¼ 1=2,
j ¼ 1=2; 3=2; 5=2;… and mj ¼ −j;−jþ 1;…; j − 1; j.
Comparing Eqs. (53) and (54), we have found the eigen-
values of K̂,

κ ¼ �ðjþ 1=2Þ: ð56Þ

We now assume that the radial (r) and angular (θ;ϕ)
dependence separates. Again comparing Eqs. (53) and (54),
we can see that the eigenfunctions to Eq. (51) are

u�ðr; θ;ϕÞ ¼
 
Rð1Þ
� ðrÞYmj

j∓1=2ðθ;ϕÞ
Rð2Þ
� ðrÞYmj

j�1=2ðθ;ϕÞ

!
; ð57Þ

where Rð1Þ
� and Rð2Þ

� are four arbitrary one-component
functions and where the upper/lower signs are consistent
with those for the eigenvalues in (56).
It is not difficult to show that u� are eigenfunctions of Ĵ2

and Ĵ3,

Ĵ2u� ¼ jðjþ 1Þu�; Ĵ3u� ¼ mju�: ð58Þ

That they are eigenfunctions of Ĵ3 is easy to see using
Ĵ3 ¼ L̂3 þ Ŝ3 and the standard formulas for L̂3 and Ŝ3
acting on their respective eigenfunctions. That they are
eigenfunctions of Ĵ2 can be shown by writing Ĵ2 in terms of
L̂2 and the operator in Eq. (54). We have now established
that u� in (57) are simultaneous eigenfunctions of Ĥ, K̂, Ĵ2,
and Ĵ3.
Before turning to the radial equations of motion, we

outline the derivation of a useful result. We previously
mentioned that γ̃r commutes with K̂. This means that γ̃ru�
are eigenfunctions of K̂ since

�ðjþ 1=2Þγ̃ru� ¼ γ̃rK̂u� ¼ K̂γ̃ru�: ð59Þ

Using this, and that γ̃r can be written as

γ̃r ¼ i
�

0 σr

−σr 0

�
; ð60Þ

where

σr ≡ σ1 sin θ cosϕþ σ2 sin θ sinϕþ σ3 cos θ; ð61Þ

one can show that

σrY
mj

j�1=2 ¼ Y
mj

j∓1=2; ð62Þ

and thus that

γ̃ru� ¼ γ̃r

 
Rð1Þ
� Y

mj

j∓1=2

Rð2Þ
� Y

mj

j�1=2

!
¼ i

 
Rð2Þ
� Ym

j∓1=2

−Rð1Þ
� Ym

j�1=2

!
: ð63Þ

We now plug the results derived so far into the equations
of motion in (50). We find that the angular dependence
cancels out, leaving us with the radial equations of motion

ωRð2Þ
� ¼ −

iα
a

�
∂r þ

∂rα

2α
þ 1

r

�
Rð1Þ
� − αmψR

ð2Þ
�

� iα
r

�
jþ 1

2

�
Rð1Þ
� ;

ωRð1Þ
� ¼ −

iα
a

�
∂r þ

∂rα

2α
þ 1

r

�
Rð2Þ
� þ αmψR

ð1Þ
�

∓ iα
r

�
jþ 1

2

�
Rð2Þ
� : ð64Þ

We have found that solutions are distinguished by the
quantum numbers j,mj, and�, where j¼1=2;3=2;5=2;…,
mj ¼ −j;−jþ 1;…; j − 1; j, and � is the sign of the
eigenvalue κ. In Sec. VII, we will find that the outer
boundary conditions we impose when solving the radial
equations of motion lead to an additional quantum number,
n ¼ 0; 1; 2;…, which equals the numbers of nodes in the
solution to the radial equations of motion. For our solutions
to the classical equations of motion fI , we have
I ¼ fn; j;mj;�g. The radial equations in (64) are inde-
pendent of mj and we can therefore take their solutions to

also be independent of mj: R
ð1Þ
nj�, R

ð2Þ
nj�, and ωnj�.

At this point, we recall that if fI is a solution to the
equations of motion, then the charge conjugated fcI is also a
solution to the equations of motion. From (16) and (49),

fcI ¼ eþiωI tucI ; ð65Þ

where ucI ¼ γ̃2u�I . Plugging this into (45), we have
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ĤucI ¼ −ωucI : ð66Þ

We can also derive this by multiplying Eq. (50) by γ̃2 from
the left and noting that ðγ̃2γ̃0Þ� ¼ γ̃0γ̃2, ðγ̃2γ̃rÞ� ¼ γ̃rγ̃2, and
ðγ̃2K̂Þ� ¼ −K̂γ̃2. Comparing (66) to (50), we find that if uI
solves the equations of motion with eigenvalue ωI , then ucI
solves the equations of motion with eigenvalue −ωI.
We expect the general form for our solution in Eq. (57) to

accommodate both uI and ucI . The charge conjugation of
Eq. (57) works out to

ucnjmj� ¼ γ̃2u�njmj� ¼ ð−1Þm∓1=2

 
Rð2Þ�
nj�Y

−mj

j�1=2

Rð1Þ�
nj�Y

−mj

j∓1=2

!
: ð67Þ

Dropping the irrelevant global phase and comparing fnjmj�
with fcn;j;−mj;∓, we can identify

ωnj� ¼ −ωnj∓; R
ð1Þ
nj� ¼ Rð2Þ�

nj∓: ð68Þ

It is straightforward to show that Eq. (68) is a symmetry of
the radial equations of motion in (64).
We are nearly ready to write down the final form for our

solutions to the classical equations of motion. The radial
equations of motion simplify when written in terms of

PnjþðrÞ≡ r
ffiffiffiffiffiffiffiffiffi
αðrÞ

p
Rð1Þ
njþðrÞ;

Pnj−ðrÞ≡ ir
ffiffiffiffiffiffiffiffiffi
αðrÞ

p
Rð2Þ�
njþðrÞ: ð69Þ

We include the factor of i in the definition of Pnj− because
it leads to the cancellation of all i’s in the radial equations of
motion. The final form for our solutions is then

fnjmj�ðt; r; θ;ϕÞ ¼
e∓iωnjt

r
ffiffiffiffiffiffiffiffiffi
αðrÞp � Pnj�ðrÞYmj

j∓1=2ðθ;ϕÞ
iP�

nj∓ðrÞYmj

j�1=2ðθ;ϕÞ

�
:

ð70Þ

We no longer include the� in the subscript of ωnj and take
ωnj to be positive. It is easily seen that the mode functions
in (70) satisfy the positive and negative frequency con-
ditions in (29) and (30), with the positive and negative
frequency solutions being labeled by �. We have not
included a normalization constant because the method we
use to normalize the mode functions, which we present
in Sec. VII A, does not require one. Finally, we note that
fcnjmjþ ¼ ið−1Þmjþ1=2fn;j;−mj;−, and hence that fcnjmjþ and

fn;j;−mj;− differ by an irrelevant global phase.
In terms of Pnj�, the radial equations of motion in (64)

become

∂rPnj� ¼∓ a
α

�
ðωnj � αmψ ÞP�

nj∓ −
α

r

�
jþ 1

2

�
Pnj�

�
: ð71Þ

As promised, all factors of i have disappeared. This
suggests that the Pnj� are real. We will show in Sec. VI
that the Pnj� being real leads to a diagonal stress-energy-
momentum tensor and hence to a spherically symmetric
and static spacetime.
Having found the solutions to the equations of motion,

it remains to show that they satisfy the orthonormality
conditions in (31). The spin-angle functions in (55) satisfy

Z
dθdϕ sin θ

�
Y

mj

j�1=2

�†
Y

m0
j

j0�01=2 ¼ δj;j0δmj;m0
j
δ�;�0 ; ð72Þ

which can be shown using the standard orthonormality
formulas for spherical harmonics and two-component
spinors. Plugging Eq. (70) into the inner product in (24)
and using (72), we have

ðfnjmj�; fn0j0m0
j�0Þ ¼ δj;j0δmj;m0

j
δ�;�0e�iðωnj−ωn0jÞt

×
Z

∞

0

dr
a
α
ðP�

nj�Pn0j� þ Pnj∓P�
n0j∓Þ:

ð73Þ

We find that orthogonality of the mode functions comes
down to orthogonality with respect to the quantum number
n. We proceed as follows. The mode functions may be
written as fI ¼ e−iωI tuI. The uI are eigenfunctions of Ĥ
with eigenvalue ωI, ĤuI ¼ ωIuI , where Ĥ is given in (46).
The inner product in (24) becomes

ðfI; fJÞ ¼ e�iðωI−ωJÞtðuI; uJÞ: ð74Þ

In Appendix A, we show that Ĥ is Hermitian with respect
to ðuI; uJÞ,

ðuI; ĤuJÞ ¼ ðĤuI; uJÞ: ð75Þ

As a consequence, mode functions are orthogonal with
respect to the quantum number n as long as they have
distinct eigenvalues ωnj. Finally, it follows from (73) that
our normalization requirement for a mode function is

N nj ≡ ðfI; fIÞ ¼
Z

∞

0

dr
a
α
ðjPnjþj2 þ jPnj−j2Þ ¼ 1: ð76Þ

Since the integrand is positive definite, it is possible to scale
the Pnj�, and hence scale the fI , to satisfy this normali-
zation condition. We explain the way in which we impose
this normalization requirement in Sec. VII A. We have now
shown that our mode functions in (70) satisfy the ortho-
normality conditions in (31).
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V. SPHERICALLY SYMMETRIC STATES

In Sec. III, we canonically quantized the Dirac field.
We found creation and annihilation operators that obey
the anticommutation relations in (35). Since our mode
functions obey the orthonormality conditions in (31), our
anticommutation relations are the standard ones for a Dirac
field. The creation and annihilation operators may therefore
be used to define a basis for the Hilbert space in the usual
way. Introducing the vacuum state j0i, which is normalized
and defined by

b̂Ij0i ¼ d̂Jj0i ¼ 0; ð77Þ

basis states are constructed from repeated application of
creation operators,

jNb
I1
; Nb

I2
;…; Nd

J1
; Nd

J2
;…i

¼ � � � ðd̂†J2Þ
Nd

J2 ðd̂†J1Þ
Nd

J1 � � � ðb̂†I2Þ
Nb

I2 ðb̂†I1Þ
Nb

I1 j0i; ð78Þ

where Nb
I and N

d
J are occupation numbers. These states are

normalized, orthogonal, and are eigenstates of the number
operators,

N̂b
I jNb

I1
;…; Nd

J1
;…i ¼ Nb

I jNb
I1
;…; Nd

J1
;…i;

N̂d
J jNb

I1
;…; Nd

J1
;…i ¼ Nd

J jNb
I1
;…; Nd

J1
;…i; ð79Þ

where the number operators are given by

N̂b
I ¼ b̂†I b̂I; N̂d

J ¼ d̂†Jd̂J: ð80Þ

Since the creation operators satisfy anticommutation rela-
tions, these states are totally antisymmetric in the nonzero
occupation numbers and the occupation numbers can only
equal Nb

I ; N
d
J ¼ 0, or 1. A general state in the Hilbert space

is an arbitrary linear combination of basis states,

jψi ¼
X1

Nb
I ;N

d
J¼0

CNb
I ;N

d
J
jNb

I1
; Nb

I2
;…; Nd

J1
; Nd

J2
;…i; ð81Þ

such that the complex numbers CNb
I ;N

d
J

satisfyP
1
Nb

I ;N
d
J¼0

jCNb
I ;N

d
J
j2 ¼ 1.

Since we are restricting spacetime to be spherically
symmetric, we must also restrict the basis states to be
spherically symmetric. Spherically symmetric states have
zero total angular momentum [4,42,48]. For convenience,
we focus on b-type excitations (which correspond to
positive frequency mode functions). Analogous results
apply to d-type excitations. An example of a spherically
symmetric state is

jn; j;þi≡ Yj
mj¼−j

b̂†njmj
j0i: ð82Þ

That is, for fixed quantum numbers n and j, all possible mj

are excited. We shall show that this state has zero total
angular momentum, even though its individual excitations
have nonzero angular momentum. One can also excite
multiple values of n and j as long as all possible mj are
excited for each excited j.
Consider first the single-excitation state

jn; j; mj;þi≡ b̂†njmj
j0i: ð83Þ

Since this state has definite quantum number mj, it must be
an eigenstate of the Ĵ3 operator,

Ĵ3jn; j; mj;þi ¼ mjjn; j; mj;þi: ð84Þ

This implies that Ĵ3 ¼ mjN̂
b
njmj

, from which

Ĵ3;tot ¼
X
I

Ĵ3 ¼
X
I

mjN̂
b
I ; ð85Þ

where I ¼ n; j; mj. Applying this to the spherically sym-
metric state in (82),

Ĵ3;totjn; j;þi ¼
 Xj

mj¼−j
mj

!
jn; j;þi ¼ 0; ð86Þ

and the three component of total angular momentum is
zero. It remains to show that the one and two components
are also zero.
Next consider the ladder operators Ĵ� ¼ Ĵ1 � iĴ2, which

change mj to mj � 1. Applied to the single-excitation state
in Eq. (83),

Ĵ�jn; j;mj;þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ−mjðmj � 1Þ

q
jn; j;mj � 1;þi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ−mjðmj � 1Þ

q
b̂†n;j;mj�1j0i:

ð87Þ

This implies that

Ĵ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mjðmj � 1Þ

q
b̂†n;j;mj�1b̂njmj

; ð88Þ

from which

Ĵ1;tot ¼
1

2

X
I

�
Ĵþ þ Ĵ−

�
; Ĵ2;tot ¼

1

2i

X
I

�
Ĵþ − Ĵ−

�
;

ð89Þ
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where I ¼ n; j; mj. We now apply these to the spherically
symmetric state in (82). Since every value of mj is
excited in the spherically symmetric state, an additional
excitation must give zero by the Pauli exclusion principle
and thus

Ĵ1;totjn; j;þi ¼ Ĵ2;totjn; j;þi ¼ 0: ð90Þ

Since all components of Ĵ are zero for jn; j;þi, this state
has zero total angular momentum and is a spherically
symmetric state.

VI. SEMICLASSICAL GRAVITY

In the semiclassical gravity approximation, the Einstein
field equations are sourced by the expectation value of the
stress-energy-momentum tensor [34–37],

Gμν ¼ 8πGhT̂μνi; ð91Þ

where Gμν is the Einstein tensor, G is the gravitational
constant, and hT̂μνi ¼ hψ jT̂μνjψi for some state jψi.
Gravity, as described by the left-hand side of Eq. (91),
is treated classically, while a quantum description of matter
is used in the right-hand side.
The classical stress-energy-momentum tensor for a

Dirac spinor field was given in (10). Promoting this to
an operator gives

T̂μν ¼ −
1

4

h
ˆ̄ψγμ∇νψ̂ þ ˆ̄ψγν∇μψ̂ − ð∇μ ˆ̄ψÞγνψ̂ − ð∇ν

¯̂ψÞγμψ̂
i
:

ð92Þ

Inserting the field decomposition for ψ̂ in (32), we find

T̂μν ¼
X
I;J

h
TμνðfþI ; fþJ Þb̂†I b̂J þ TμνðfþI ; f−J Þb̂†I d̂†J

þ Tμνðf−I ; fþJ Þd̂Ib̂J þ Tμνðf−I ; f−J Þd̂Id̂†J
i
; ð93Þ

where

TμνðfI; fJÞ≡ −
1

4

h
f̄Iγμ∇νfJ þ f̄Iγν∇μfJ

− ð∇μf̄IÞγνfJ − ð∇νf̄IÞγμfJ
i
: ð94Þ

Since the stress-energy-momentum tensor contains prod-
ucts of the field operator, products of the creation and
annihilation operators are found in Eq. (93). This leads to
the expectation value of the stress-energy-momentum
tensor being divergent, which must be handled through a

regularization and renormalization procedure [34–36].
Following [38], in this initial work on the Einstein-Dirac
system in semiclassical gravity, we normal order the
stress-energy-momentum tensor. The Einstein field equa-
tions we make use of are then

Gμν ¼ 8πGh∶T̂μν∶ i; ð95Þ

which leads to sensible finite results. While it may be
beneficial to make use of a more sophisticated renormal-
ization scheme, we find it useful to compare the system of
equations derived from quantization and normal ordering
with the multifield system of equations derived in the
literature.
The only term in Eq. (93) that changes upon normal

ordering is ∶d̂Id̂
†
J∶ ¼ −d̂†Jd̂I and

h∶T̂μν∶i ¼
X
I;J

h
TμνðfþI ; fþJ Þhb̂†I b̂Ji þ TμνðfþI ; f−J Þhb̂†I d̂†Ji

þ Tμνðf−I ; fþJ Þhd̂Ib̂Ji − Tμνðf−I ; f−J Þhd̂†Jd̂Ii
i
:

ð96Þ
The Einstein field equations in (95) lead to the following
two equations for determining the metric functions αðrÞ
and aðrÞ [43]:

∂rα ¼ þ αða2 − 1Þ
2r

þ 4πGrαa2hSrri;

∂ra ¼ −
aða2 − 1Þ

2r
þ 4πGra3hρi; ð97Þ

where

hρi ¼ 1

α2
h∶T̂tt∶ihSrri ¼

1

a2
h∶T̂rr∶i ð98Þ

are the expectation values of the energy density and spatial
stress. The two equations in (97), in combination with the
radial equations of motion in (71) and the normalization
requirement in (76), constitute the full system of equations
to be solved for the static spherically symmetric semi-
classical Einstein-Dirac system. In the next section, we
describe our methods for solving them numerically and
present example solutions. In the remainder of this section,
we compute the expectation value h∶T̂μν∶i, present the
spherically symmetric equations for Tμνðf�I ; f�I Þ, and
construct hρi and hSrri.
We compute expectation values using the basis states

constructed in Sec. V. Physically, the basis states are states
for a definite number of particles. We do not consider the
more general possibility of expectation values with states
made from linear combinations of the basis states, as given
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in Eq. (81), though it would be interesting to do so. Using
an arbitrary basis state from Eq. (78), the expectation values
needed in Eq. (96) are

hb̂†I b̂Ji ¼ δIJNb
I ; hd̂†Jd̂Ii ¼ δIJNd

I ;

hb̂†I d̂†Ji ¼ 0; hd̂Ib̂Ji ¼ 0: ð99Þ

Plugging these into (96), we have

h∶T̂μν∶ i ¼
X
I

½Nb
I TμνðfþI ; fþI Þ − Nd

I Tμνðf−I ; f−I Þ�: ð100Þ

Since our spacetime is spherically symmetric, we must
only make use of spherically symmetric basis states. As
explained in Sec. V, spherically symmetric states have all
possible values of mj excited for each excited j. We
have then

h∶T̂μν∶ i ¼
X
n;j

Nb
nj

Xj
mj¼−j

Tμνðfnjmjþ; fnjmjþÞ −
X
n;j

Nd
nj

Xj
mj¼−j

Tμνðfnjmj−; fnjmj−Þ; ð101Þ

where the mode functions fnjmj� are given in (70) and where Nb
nj ¼ 1 for particles with excited quantum numbers n and j

and equals 0 otherwise and similarly for Nd
nj for antiparticles.

The final thing we need are the components of Tμνðf�I ; f�I Þ summed overmj. For the static spherically symmetric metric
in (1), the stress-energy-momentum tensor must be diagonal and the nonvanishing components work out to

Xj
mj¼−j

Tttðf�I ; f�I Þ ¼ �ωnjð2jþ 1Þ
4πr2

ðjPnjþj2 þ jPnj−j2Þ;

Xj
mj¼−j

Trrðf�I ; f�I Þ ¼ � a2ð2jþ 1Þ
4πr2α2

h
ðωnj − αmψÞjPnjþj2 þ ðωnj þ αmψ ÞjPnj−j2 −

αð2jþ 1Þ
r

ReðPnjþPnj−Þ
i
;

Xj
mj¼−j

Tθθðf�I ; f�I Þ ¼ � ð2jþ 1Þ2
8πrα

ReðPnjþPnj−Þ;

Xj
mj¼−j

Tϕϕðf�I ; f�I Þ ¼ � ð2jþ 1Þ2
8πrα

ReðPnjþPnj−Þsin2θ: ð102Þ

We explain how to derive these formulas in Appendix B.
For completeness, we also present the off-diagonal com-
ponent

Xj
mj¼−j

Ttrðf�I ; f�I Þ ¼∓ ωnjað2jþ 1Þ
2παr2

ImðPnjþPnj−Þ: ð103Þ

It is clear that this component will vanish, as required, if
Pnjþ and Pnj− are both purely real, which we will assume
from this point forward. We anticipated in Sec. IV that Pnj�
would be purely real when we were able to write the radial
equations of motion in Eq. (71) such that all i’s canceled
out. We see now that Pnj� being purely real leads to a
spherically symmetric and static spacetime.
In the next section, we present example solutions. For

simplicity, we will consider b-type excitations only so
that Nd

I ¼ 0. Combining Eqs. (101) and (102), the energy
density and spatial stress in (98) are given by

hρi ¼
X
n;j

Nb
nj
2jþ 1

4πr2α2
ωnjðP2

njþ þ P2
nj−Þ;

hSrri ¼
X
n;j

Nb
nj
2jþ 1

4πr2α2

h
ðωnj − αmψ ÞP2

njþ

þ ðωnj þ αmψ ÞP2
nj− −

αð2jþ 1Þ
r

PnjþPnj−

i
:

ð104Þ

VII. EINSTEIN-DIRAC SYSTEM IN
SEMICLASSICAL GRAVITY

Configurations of the semiclassical Einstein-Dirac sys-
tem are described by self-consistent solutions to the
equations of motion and the Einstein field equations. In
general, self-consistently solving this system of equations
is highly nontrivial [38,49]. However, for the static space-
time we are considering, it is possible to classify solutions
to the equations of motion as positive and negative
frequency, as we saw in Sec. IV. This allows for the
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identification of a preferred vacuum state. By using the
basis states to the Hilbert space that are formed from
excitations of the vacuum state, we were able to compute
the expectation value of the stress-energy-momentum
tensor before actually having solved for the stress-
energy-momentum tensor, as shown in Eq. (100). These
facts allow us to self-consistently solve the system of
equations. In Sec. VII A, we write our system of equations
in a form that is better suited for solving numerically and
discuss our numerical methods. In Sec. VII B, we present
example solutions.

A. Numerical methods

Our system of equations comprises the radial equations
of motion in (71), the metric field equations in (97),
the expectation values of the energy density and spatial
stress in (104), and the normalization requirement in (76).
Since the metric in Eq. (1) is written in terms of the
Schwarzschild radial coordinate, we have also the mass
function

mðrÞ≡ r
2G

�
1 −

1

a2ðrÞ
�
; ð105Þ

which gives the Arnowitt-Deser-Misner mass M in the
large r limit, mðr → ∞Þ ¼ M.
These equations have scaling symmetries. We can use

these scaling symmetries to write the equations in terms of
dimensionless variables, which is convenient to do when
solving equations numerically. We define the dimension-
less variables

r̄≡mψr; ω̄nj ≡ ωnj

mψ
;

P̄nj�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Gmψ

p
Pnj�ðrÞ; m̄ðrÞ≡GmψmðrÞ; ð106Þ

where we note that α, a, and N are already dimensionless.
When our system of equations is written in terms of these
variables, all factors ofmψ andG cancel out and they do not
have to be specified.
Although N is dimensionless, it is modified when

written in terms of the dimensionless variables, becoming
N nj ¼ ðmPl=mψÞ2N̄ nj, where mPl ¼ 1=

ffiffiffiffi
G

p
is the Planck

mass and

N̄ nj ≡
Z

∞

0

dr̄
a
α

�
P̄2
njþ þ P̄2

nj−

�
: ð107Þ

From the normalization requirement in Eq. (76), N nj ¼ 1

and the normalization requirement becomes

mψ

mPl
¼

ffiffiffiffiffiffiffiffiffi
N̄ nj

q
: ð108Þ

In particular, all N̄ nj must equal the same value. This can
be a nontrivial constraint on solutions. We explain below
how we impose this constraint.
Since the system of equations is independent of mψ after

moving to the dimensionless variables, one might expect
solutions to be valid for arbitrary values of mψ , but this is
not true. Each solution is only valid for a single value ofmψ

as given by (108), since only for this specific value are the
mode functions normalized. Since mψ is used to define the
dimensionless variables, Eq. (108) leads to the additional
results

tPlωnj ¼
ffiffiffiffiffiffiffiffiffi
N̄ nj

q
ω̄nj;

M
mPl

¼ M̄ffiffiffiffiffiffiffiffiffi
N̄ nj

q ; ð109Þ

where tPl ¼
ffiffiffiffi
G

p
is the Planck time and M̄ ¼ m̄ðr̄ → ∞Þ.

The radial equations of motion in (71) and the metric
field equations in (97) are first order ordinary differential
equations. They may be solved by numerically integrating
them outward from r ¼ 0. This requires inner boundary
values for α, a, and P̄nj� and specification of the ω̄nj.
For α, we use that the system of equations has an

additional scaling symmetry, allowing us to define

α̃ðr̄Þ≡ αðr̄Þ
αð0Þ ; ω̃nj ≡ ω̄nj

αð0Þ ; P̃nj�ðr̄Þ≡ P̄nj�ðr̄Þffiffiffiffiffiffiffiffiffi
αð0Þp :

ð110Þ

When the system of equations are written in terms of these
quantities, αð0Þ cancels out and we have the inner boundary
condition α̃ð0Þ ¼ 1. We assume the spacetime is asymp-
totically Schwarzschild. As a consequence, in the large r
limit αðrÞ ¼ 1=aðrÞ. After a solution is found, αð0Þ can be
determined from

αð0Þ ¼ 1

α̃ðr̄ → ∞Þaðr̄ → ∞Þ ; ð111Þ

which can then be used to give αðr̄Þ ¼ αð0Þα̃ðr̄Þ,
ω̄nj ¼ αð0Þω̃nj, and P̄nj�ðr̄Þ ¼

ffiffiffiffiffiffiffiffiffi
αð0Þp

P̃nj�ðr̄Þ.
For the remaining fields, inner boundary values can be

determined by plugging Taylor series expansions of α̃ðr̄Þ,
aðr̄Þ, and P̃nj�ðr̄Þ into the system of equations and then
solving them for small r̄. One finds

α̃ðr̄Þ ¼ 1þOðr̄2jminþ1Þ;
aðr̄Þ ¼ 1þOðr̄2jminþ1Þ;

P̃njþðr̄Þ ¼ pnjr̄jþ1=2 þOðr̄jþ5=2Þ;

P̃nj−ðr̄Þ ¼ pnj
ω̃nj − 1

2ðjþ 1Þ r̄
jþ3=2 þOðr̄jþ7=2Þ; ð112Þ
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where jmin is the smallest value of j that is excited and
where the pnj are undetermined constants.
To solve the equations, we still need values for the ω̃nj

and the pnj. We choose to specify one of the pnj ourselves
and to solve for the remaining pnj and for all of the ω̃nj

using the shooting method. That is, we begin with trial
values for the remaining pnj and for all of the ω̃nj. We then
vary these values until the normalization condition in (108)
and the outer boundary conditions are satisfied. The
normalization condition in (108) requires that all N̄ nj

equal one another and the outer boundary conditions are
that the expectation value of the energy density hρi
asymptotically heads to zero. This is achieved by requiring

P̃nj�ðr̄ → ∞Þ → 0: ð113Þ

The complete set of scaled equations that we solve
numerically are

∂r̄P̃nj� ¼∓ a
α̃

h
ðω̃nj � α̃ÞP̃nj∓ −

α̃

r̄
ðjþ 1=2ÞP̃nj�

i
;

∂r̄α̃ ¼ þ α̃ða2 − 1Þ
2r̄

þ 4πr̄ α̃ a2hS̄rri;

∂r̄a ¼ −
aða2 − 1Þ

2r̄
þ 4πr̄a3hρ̄i; ð114Þ

where

hρ̄i ¼
X
n;j

Nb
nj
2jþ 1

4πr̄2α̃2
ω̃njðP̃2

njþ þ P̃2
nj−Þ;

hS̄rri ¼
X
n;j

Nb
nj
2jþ 1

4πr̄2α̃2

h
ðω̃nj − α̃ÞP̃2

njþ þ ðω̄nj þ α̃ÞP̃2
nj−

−
α̃ð2jþ 1Þ

r̄
P̃njþP̃nj−

i
; ð115Þ

along with

N̄ ¼
Z

∞

0

dr̄
a
α̃
ðP̃2

njþ þ P̃2
nj−Þ;

m̄ ¼ r̄
2

�
1 −

1

a2

�
: ð116Þ

Solutions to these equations are distinguished by the
quantum numbers n and j and the value of one of the pnj.
If Nb

nj ≠ 0 for a single value of n and for j ¼ 1=2, the
equations above are equivalent to those in [1]. If Nb

nj ≠ 0

for a single value of n and a single value of j, the equations
are consistent with those in [4], which studied the Einstein-
Dirac-Maxwell system for arbitrary j. Our framework
therefore reproduces the results in the literature.
However, all previous studies of the spherically symmetric
Einstein-Dirac system, including Refs. [1,4], postulated

2jþ 1 independent Dirac fields. This was explained as
being necessary to preserve spherical symmetry, where a
different Dirac field was needed for each value ofmj. In our
framework, we have a single quantum Dirac field. We
preserve spherical symmetry by exciting all values of mj,
so that our system is a self-gravitating configuration of
2jþ 1 identical quantum particles. Further, our framework
can straightforwardly accommodate multiple values of n
and j, which has not previously been considered.

B. Example solutions

In this subsection, we present some static spherically
symmetric semiclassical Einstein-Dirac configurations. At
the end of Sec. VI, we explained that we are focusing on
b-type excitations only and are therefore not including
antiparticles. Configurations are labeled by the quantum
numbers n and j, where j ¼ 1=2; 3=2; 5=2;…, and the
value of one of the pnj.
We begin with configurations that have a single n and a

single j excited. In this case, the system of equations is
relatively easy to solve because there is only a single
shooting parameter, ω̃nj. In Fig. 1, we display various
solutions. The left column is for j ¼ 1=2, the middle
column is for j ¼ 3=2, and the right column is for
j ¼ 5=2. In each plot, there is a curve for n ¼ 0, 1, and
2. One thing to take note of is that we can see that the
quantum number n is equal to the number of nodes in P̄nj�
and can therefore be interpreted as a radial quantum
number. The values of various quantities for these solutions
are listed in Table I.
We now present multi-n and multi-j solutions, which has

not previously been considered in the literature.
Specifically, we show solutions with two ðn; jÞ pairs
excited. Since each pair has associated with it a pnj, one
of which we specify, and an ω̃nj, we have three shooting
parameters. In Fig. 2, we show in the left column a multi-n
solution, in the middle column a multi-j solution, and in the
right column a multi-n multi-j solution. The values of
various quantities for these solutions are listed in Table I.
One question we might ask about these solutions is

whether or not they are stable. The nonlinear stability of the
n ¼ 0; j ¼ 1=2 solutions was studied in [30] for classical
gravity. In that work, the normalization requirement in (76)
was not used. However, for single-n, single-j solutions, the
normalization requirement is trivially satisfied for a par-
ticular value of the mass parameter, as given by (108). It
was shown in [30] that a large class of n ¼ 0; j ¼ 1=2
solutions are nonlinearly stable and that the unstable
solutions migrate to stable solutions. The nonlinear stability
of higher n and higher j solutions has not been studied.
Unfortunately, it is unclear how to perform a nonlinear
stability analysis in quantum field theory with the semi-
classical gravity approximation, since in this case the
metric is no longer static.
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We end this section with a brief comparison of the
solutions presented here for spin-1=2 fermions and those
presented in [38] for spin-0 bosons. At first glance, our
Fig. 2 and Fig. 1 in [38] suggest a similar structure for
radial functions and metric fields. Unsurprisingly, there
exists a significant difference between the systems because
fermions obey the Pauli exclusion principle, which is
implemented through the normalization requirement in
(76). The analogous expression in [38] gives the number

of bosons in each state and is not required to be equal to 1.
In practice, this makes the fermionic system more chal-
lenging to solve for multi-n, multi-j solutions, since in this
case the normalization requirement is a nontrivial constraint
on solutions. For single-n, single-j solutions, the fermionic
system is only valid for a single value of the mass
parameter, as given by (108), while the bosonic system
in [38] is valid for arbitrary values of the analogous mass
parameter.

TABLE I. Values of various quantities for all example configurations shown in Figs. 1 and 2.

n, j pnj ω̃nj αð0Þ N̄ nj tPlωnj mψ=mPl M=mPl

0; 1=2 0.5 1.8754 0.3933 0.2931 0.3993 0.5414 1.0976
0; 3=2 0.5 2.8789 0.2729 0.1231 0.2756 0.3508 1.8786
0; 5=2 0.5 3.8272 0.2501 0.0693 0.2520 0.2633 2.6760
1; 1=2 0.5 2.1492 0.3815 0.5636 0.6155 0.7507 1.5210
1; 3=2 0.5 2.9843 0.2750 0.2630 0.4208 0.5128 2.3168
1; 5=2 0.5 3.8289 0.2525 0.0842 0.2805 0.2902 2.7308
2; 1=2 0.5 2.2644 0.3726 0.8869 0.7946 0.9418 1.8901
2; 3=2 0.5 3.0415 0.2776 0.4036 0.5365 0.6353 2.7368
2; 5=2 0.5 3.8628 0.2329 0.2566 0.4558 0.5066 3.5119
0; 3=2 0.1 1.6404 0.4267 0.1613 0.2811 0.4017 3.2694
1; 3=2 0.1184 1.8978 0.1613 0.3252
0; 1=2 0.1 1.1314 0.7176 0.1846 0.3488 0.4296 2.4796
0; 3=2 0.0206 1.2127 0.1846 0.3738
0; 1=2 0.1 1.1123 0.7692 0.2688 0.4436 0.5185 3.0401
2; 3=2 0.0116 1.2346 0.2688 0.4923

FIG. 1. Example semiclassical configurations with a single value of n and a single value of j excited. (a)–(c) j ¼ 1=2; (d)–(f) j ¼ 3=2;
(g)–(i) j ¼ 5=2. In each plot, the solid green curve is for n ¼ 0, the dashed blue curve is for n ¼ 1, and the dot-dashed maroon curve is
for n ¼ 2.
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VIII. CONCLUSION

We constructed static spherically symmetric self-
gravitating configurations of quantum spin-1=2 particles
in quantum field theory using the semiclassical gravity
approximation. We began with a single Dirac field min-
imally coupled to general relativity. We canonically quan-
tized the Dirac field in a static spherically symmetric
curved spacetime background. By considering a static
spacetime, we were able to identify a preferred vacuum
state, from which we constructed spherically symmetric
basis states to the Hilbert space through repeated applica-
tion of creation operators. Using these states, we were able
to compute the expectation value of the stress-energy-
momentum tensor. This allowed us to derive a system of
equations whose solutions describe static spherically sym-
metric semiclassical Einstein-Dirac configurations. We
self-consistently solved these equations and presented
example configurations.
Limiting cases of the semiclassical system of equations

that we derived agree with the multifield system of
equations derived in the literature. As a consequence, the
multifield configurations given in, say, Ref. [1] are equiv-
alent to the analogous semiclassical configurations, at least
for the normal ordering renormalization scheme used in this
work. Although equivalent, the semiclassical equations are
derived from the excitations of a single quantum Dirac
field, while the multifield equations require introducing
multiple independent Dirac fields. The semiclassical sys-
tem of equations are also more general, since they can
naturally accommodate multi-n and multi-j configurations,
examples of which we presented, as well as configurations
with both particles and antiparticles.

APPENDIX A: HERMITICITY OF Ĥ

In this appendix, we show that the operator Ĥ in (46) is
Hermitian with respect to the inner product

ðuI; uJÞ ¼
Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
u†I uJ

¼
Z
Σ
drdθdϕar2 sin θu†I uJ; ðA1Þ

that is, we show that

ðuI; ĤuJÞ ¼ ðĤuI; uJÞ: ðA2Þ

We begin with some convenient results. From (13), we
have ðγ̃0Þ† ¼ −γ̃0, ðiγ̃0Þ† ¼ iγ̃0, and ðγ̃jÞ† ¼ γ̃j. It follows
from (18) that ðγ̃rÞ† ¼ γ̃r. From (40), we can see that γ̃0

commutes with Σ̂j. It is obvious that γ̃0 commutes with L̂,
and hence γ̃0 commutes with Ĵ and Ĵ2. Since γ̃0 commutes
with all terms in K̂ in (43), γ̃0 commutes with K̂. Since γ̃0

also commutes with all terms inside the parentheses in (43),
we have K̂† ¼ K̂, where we used the well-known identities
Ĵ2† ¼ Ĵ2 and L̂2† ¼ L̂2.
Having established these results, we turn to Ĥ in (46),

Ĥ ¼ iα
a
γ̃0γ̃r

�
∂r þ

∂rα

2α
þ 1

r

�
−
α

r
γ̃rK̂ − iαmψ γ̃

0: ðA3Þ

We have previously mentioned that γ̃r commutes with K̂
and thus, for each of these terms,

FIG. 2. Example semiclassical configurations with two pairs of ðn; jÞ excited, as indicated above each column. (a),(b) Multi-n
configuration; (c),(d) multi-j configuration; (e),(f) multi-n multi-j configuration.
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ðiγ̃0γ̃rÞ† ¼ −iγ̃0γ̃r; ðγ̃rK̂Þ† ¼ γ̃rK̂; ðiγ̃0Þ† ¼ iγ̃0: ðA4Þ

Inserting Ĥ into the inner product gives

ðuI; ĤuJÞ ¼ U1 þ U2 þU3; ðA5Þ

where

U1 ¼
Z
Σ
drdθdϕar2 sin θu†I

�
iα
a
γ̃0γ̃r

�
∂r þ

∂rα

2α
þ 1

r

�
uJ

�
;

U2 ¼
Z
Σ
drdθdϕar2 sin θu†I

�
−
α

r
γ̃rK̂uJ

�
;

U3 ¼
Z
Σ
drdθdϕar2 sin θu†I ð−iαmψ γ̃

0uJÞ: ðA6Þ

Using (A4), we immediately have

U2 ¼
Z
Σ
drdθdϕar2 sin θ

�
−
α

a
γ̃rK̂uI

�†
uJ;

U3 ¼
Z
Σ
drdθdϕar2 sin θð−iαmψ γ̃

0uIÞ†uJ; ðA7Þ

and these terms in Ĥ are Hermitian.
U1 requires a little more work because of the r derivative.

We have first, using (A4),

U1 ¼
Z
Σ
drdθdϕαr2 sin θð−iγ̃0γ̃ruIÞ†

�
∂r þ

∂rα

2α
þ 1

r

�
uJ:

ðA8Þ

Some of the terms can be rewritten using

αr2
�
∂r þ

∂rα

2α
þ 1

r

�
uJ ¼

1

2
∂rðαr2uJÞ þ

1

2
αr2∂ruJ: ðA9Þ

Performing an integration by parts and assuming the
solutions decay sufficiently quickly at spatial infinity so
that the boundary terms can be dropped, we have

U1 ¼
Z
Σ
drdθdϕ sin θ

×
1

2

n
αr2∂rðiγ̃0γ̃ruIÞ þ ∂r½αr2ðiγ̃0γ̃ruIÞ�

o†
uJ

¼
Z
Σ
drdθdϕαr2 sin θ

��
∂r þ

∂rα

2α
þ 1

r

�
iγ̃0γ̃ruI

�†
uJ

¼
Z
Σ
drdθdϕar2 sin θ

�
iα
a
γ̃0γ̃r

�
∂r þ

∂rα

2α
þ 1

r

�
uI

�†
uJ;

ðA10Þ

where in the second equality we again used (A9). We have
now shown that Ĥ satisfies the Hermiticity condition
in Eq. (A2).

APPENDIX B:
Pj

mj = − j Tμνðf�I ;f�I Þ
In this appendix, we explain how the formulas in

Eq. (102) are derived. These formulas give the diagonal
components of the spherically symmetric

Xj
mj¼−j

Tμνðfnjmj�; fnjmj�Þ; ðB1Þ

where Tμνðf�I ; f�I Þ is defined in Eq. (94) and is evaluated
with the same mode function in both slots and where the
mode functions are given in Eq. (70).
It is possible to rewrite Tμνðf�I ; f�I Þ into the more

convenient form

Tμνðf�I ; f�I Þ ¼ −
1

2
Reðf̄�I γμ∂νf�I þ f̄�I γν∂μf

�
I Þ

þ 1

4
f̄�I ðfγμ;Γνg þ fγν;ΓμgÞf�I ; ðB2Þ

where Γμ is the spinor connection in (19). Notice that the γ
matrices have lowered indices. Since γμ ¼ gμνγν, it follows
from the metric in (1) and the vierbein in (17) that

γt ¼ −αγ̃t; γr ¼ aγ̃r; γθ ¼ rγ̃θ; γϕ ¼ r sin θγ̃ϕ:

ðB3Þ

The only nonvanishing fγμ;Γνg þ fγν;Γμg can be shown
to be fγt;Γθg þ fγθ;Γtg and fγt;Γϕg þ fγϕ;Γtg, which
contribute to the off-diagonal components of Tμνðf�I ; f�I Þ
and will not be considered.
In the course of deriving the formulas in Eq. (102), we

make heavy use of the sum formula

Xj
mj¼−j

ðYmj

j�1=2Þ†Y
mj

j�1=2 ¼
2jþ 1

4π
; ðB4Þ

where the Ym
j�1=2 are the spin-angle functions in (55). This

formula can be derived by changing the summation variable
toml and then using the standard sum formula for spherical
harmonics,

P
l
ml¼−l jYml

l j2 ¼ ð2lþ 1Þ=4π.
The tt component in Eq. (102) is obtained by straight-

forward calculations after plugging the mode functions in
Eq. (70) into (B2) and then summing over mj. For the rr
component, one must also use Eq. (63), but rewritten for the
mode functions in the form in (70). The result contains r
derivatives of Pnj�, which can be removed using the radial
equations of motion in (71).
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The θθ and ϕϕ components in Eq. (102) can be derived
as follows. For a spherically symmetric spacetime, it must
be that Tϕϕ ¼ Tθθ sin2 θ. We can therefore write

Tθθðf�I ; f�I Þ ¼
1

2

�
Tθθðf�I ; f�I Þ þ

Tϕϕðf�I ; f�I Þ
sin2θ

�
: ðB5Þ

Using Eq. (B2) for Tθθ and Tϕϕ inside the square brackets,
this can be written as

Tθθðf�I ; f�I Þ ¼ −
r
2
Re

�
f̄�I

�
γ̃θ∂θ þ

1

sin θ
γ̃ϕ∂ϕ

�
f�I

�

¼ −
r
2
Re½f̄�I γ̃rð1þ iγ̃0K̂Þf�I �; ðB6Þ

where the operator K̂, first defined in (41), can be written

K̂ ¼ −iγ̃0
�
1 − γ̃rγ̃θ∂θ −

1

sin θ
γ̃rγ̃ϕ∂ϕ

�
: ðB7Þ

Since K̂f�I ¼ �ðjþ 1=2Þf�I , it is straightforward to evalu-
ate (B6). After summing over mj, the θθ and ϕϕ compo-
nents in Eq. (102) can be obtained.

APPENDIX C: SOLUTIONS TO THE CLASSICAL
EQUATIONS OF MOTION USING THE

ALTERNATIVE CHOICE FOR VIERBEIN

In Sec. IV, we solved the classical equations of motion,
i.e., the Dirac equation,

½γμð∂μ − ΓμÞ −mψ �fI ¼ 0; ðC1Þ

using the vierbein in (17). In this appendix, we instead
solve the Dirac equation using the alternative choice for the
vierbein in (21). This alternative choice leads to the angular
dependence of the Dirac field being described by spin
weighted spherical harmonics [50,51], instead of by stan-
dard spherical harmonics and two-component spinors (for a
pedagogical review of spin weighted spherical harmonics,
see Appendix D of [43]). We find the derivation presented
in this appendix to be simpler than that presented in Sec. IV.
However, a typical understanding of quantum angular
momentum is based on spherical harmonics and two-
component spinors and not on spin weighted spherical
harmonics. For this reason, we focused on the solutions
derived in Sec. IV.
For the vierbein in (21), the spinor connection works out

to be

Γt ¼ γ̃0γ̃3
∂rα

2a
;

Γr ¼ 0;

Γθ ¼ γ̃3γ̃2
1

2a
;

Γϕ ¼ γ̃3γ̃1
sin θ
2a

þ γ̃2γ̃1
cos θ
2

; ðC2Þ

from which one can derive

γμΓμ ¼ −γ̃3
1

a

�
∂rα

2α
þ 1

�
− γ̃2

cot θ
2r

; ðC3Þ

which is needed in (C1).
Just as in Sec. IV, we drop the subscripted I on fI and

allow f to have arbitrary dependencies, f ¼ fðt; r; θ;ϕÞ.
Using the vierbein in (21) and Eq. (C3), the equations of
motion can be written

Ĥf ¼ i∂tf; ðC4Þ

where

Ĥ ≡ iα
a

�
∂r þ

∂rα

2α
þ 1

r

�
γ̃0γ̃3 − iαmψ γ̃

0 þ α

r
γ̃3Ω̂;

Ω̂≡ i
�
∂θ þ

cot θ
2

�
γ̃3γ̃0γ̃2 þ i

sin θ
∂ϕγ̃

3γ̃0γ̃1: ðC5Þ

It is not difficult to show that the operators i∂t, Ĥ, and Ω̂
commute with one another. We can therefore assume f is a
simultaneous eigenfunction of all three operators.
For i∂t we have the eigenvalue equation i∂tf ¼ ωf. One

can show that i∂t is Hermitian with respect to the inner
product in Eq. (24), ðf; i∂tfÞ ¼ ði∂tf; fÞ, and hence ω is
real. We now assume that the time dependence of f is
separable, so that f can be written

fðt; r; θ;ϕÞ ¼ e−iωtuðr; θ;ϕÞ: ðC6Þ

The remaining eigenvalue equations are then

Ĥu ¼ ωu; ðC7Þ

which is our equation of motion, and

Ω̂u ¼ λu; ðC8Þ

where λ are the eigenvalues of Ω̂.
The next step in our solution is to assume that the radial

(r) and angular (θ;ϕ) dependence separates,
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uðr; θ;ϕÞ ¼

0
BBB@

R1ðrÞΘ1ðθ;ϕÞ
R2ðrÞΘ2ðθ;ϕÞ
R3ðrÞΘ3ðθ;ϕÞ
R4ðrÞΘ4ðθ;ϕÞ

1
CCCA: ðC9Þ

We will find that Eq. (C7) leads to the radial equations of
motion and Eq. (C8) determines the angular dependence.
We focus first on the angular equations that follow from

(C8). Separating (C8) into four equations, we find

λR1Θ1 ¼ þiR2ð
ð−1=2Þ
þ Θ2;

λR2Θ2 ¼ þiR1ððþ1=2Þ
− Θ1;

λR3Θ3 ¼ −iR4ð
ð−1=2Þ
þ Θ4;

λR4Θ4 ¼ −iR3ððþ1=2Þ
− Θ3; ðC10Þ

where

ððsÞ� ¼ −∂θ � s cot θ ∓ i
sin θ

∂ϕ ðC11Þ

are the raising and lowering operators for spin weighted
spherical harmonics. The effect these operators have on
spin weighted spherical harmonics sYjmj

is

ððsÞ� ðsYjmj
Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj ∓ sÞðj� sþ 1Þ

p
ðs�1Yjmj

Þ; ðC12Þ

where s is the spin weight. It follows from (C12) that
spin weighted spherical harmonics satisfy the eigenvalue
equations

ððsþ1Þ
− ððsÞþ sYjmj

¼ −½jðjþ 1Þ − sðsþ 1Þ�sYjmj
;

ððs−1Þþ ððsÞ− sYjmj
¼ −½jðjþ 1Þ − sðs − 1Þ�sYjmj

: ðC13Þ

By applying the appropriate raising or lowering operator to
each equation in (C10) we can derive

ððþ1=2Þ
− ðð−1=2Þþ Θ2 ¼ −λ2Θ2;

ðð−1=2Þþ ððþ1=2Þ
− Θ1 ¼ −λ2Θ1;

ððþ1=2Þ
− ðð−1=2Þþ Θ4 ¼ −λ2Θ4;

ðð−1=2Þþ ððþ1=2Þ
− Θ3 ¼ −λ2Θ3; ðC14Þ

where the radial parts cancel out and we obtain eigenvalue
equations for spin weighted spherical harmonics. As a
consequence, Θ1 and Θ3 are spin weighted spherical
harmonics with s ¼ þ1=2 andΘ2 andΘ4 are spin weighted
spherical harmonics with s ¼ −1=2. Θ1 and Θ3 must then

be proportional to one another and similarly for Θ2 and Θ4.
Proportionality constants can be absorbed into the radial
part and we use the same convention used in [30],

Θ1 ¼ Θ3 ¼ ðþ1=2ÞY
jmj

; Θ2 ¼ −Θ4 ¼ ð−1=2ÞY
jmj

: ðC15Þ

Plugging these into (C14) and comparing to (C13), we find
the eigenvalues

λ ¼∓ ðjþ 1=2Þ: ðC16Þ

Plugging Eqs. (C15) and (C16) into Eq. (C10), the angular
terms cancel and we find

R2 ¼ �iR1; R4 ¼ �iR3; ðC17Þ

where the upper/lower signs in this equation are associated
with those for the eigenvalues in (C16). The eigenspinors
associated with the eigenvalues in (C16) are then

u�ðr; θ;ϕÞ ¼

0
BBBBB@

R1�ðrÞðþ1=2ÞY jmj
ðθ;ϕÞ

�iR1�ðrÞð−1=2ÞY jmj
ðθ;ϕÞ

R3�ðrÞðþ1=2ÞY
jmj

ðθ;ϕÞ
∓ iR3�ðrÞð−1=2ÞY

jmj
ðθ;ϕÞ

1
CCCCCA; ðC18Þ

where R1� and R3� are four arbitrary functions and where
Ω̂u� ¼∓ ðjþ 1=2Þu�.
We now plug the results derived so far into the equations

of motion in (C7). All angular dependence cancels out,
leaving behind radial equations of motion. uþ and u− each
lead to four equations, one equation for each component.
In both cases, only two of the equations are independent.
Putting everything together, the radial equations of motion
are

ωR3� ¼ −
iα
a

�
∂r þ

∂rα

2α
þ 1

r

�
R1� − αmψR3�

� iα
r

�
jþ 1

2

�
R1�;

ωR1� ¼ −
iα
a

�
∂r þ

∂rα

2α
þ 1

r

�
R3� þ αmψR1�

∓ iα
r

�
jþ 1

2

�
R3�: ðC19Þ

Comparing these equations to those in (64), we find that
they are identical.
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