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We use numerical relativity simulations to describe the spacetime evolution during nonlinear structure
formation inΛCDM cosmology. Fully nonlinear initial conditions are set at an initial redshift z ≈ 300, based
directly on the gauge invariant comoving curvature perturbationRc commonly used to model early-universe
fluctuations. Assigning a simple 3-D sinusoidal structure to Rc, we then have a lattice of quasispherical
overdensities representing idealized dark matter halos connected through filaments and surrounded by voids.
This structure is implemented in the synchronous-comoving gauge, using a pressureless perfect fluid (dust)
description of CDM, and then it is fully evolved with the Einstein Toolkit code. With this, we look into whether
the top-hat spherical and homogeneous collapse model provides a good description of the collapse of
overdensities. We find that the top-hat is an excellent approximation for the evolution of peaks, where we
observe that the shear is negligible and collapse takes place when the linear density contrast reaches the

predicted critical value δð1ÞC ¼ 1.69. Additionally, we characterize the outward expansion of the turn-around
boundary and show how it depends on the initial distribution of matter, finding that it is faster in denser
directions, incorporating more and more matter in the infalling region. Using the EBWeyl code we look at
the distribution of the electric and magnetic parts of the Weyl tensor, finding that they are stronger along and
around the filaments, respectively. We introduce a method to dynamically classify the different regions of the
simulation box in Petrov types. With this, we find that the spacetime is of Petrov type I everywhere, as
expected, but we can identify the leading order type in each region and at different times. Along
the filaments, the leading Petrov type is D, while the center of the overdensities remains conformally flat,
type O, in line with the top-hat model. The surrounding region demonstrates a sort of peeling-off in action,
with the spacetime transitioning between different Petrov types as nonlinearity grows, with production of
gravitational waves.
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I. INTRODUCTION

As small fluctuations in an otherwise homogeneous
universe grow, they become the large-scale structures we
observe today [1–3]. To describe this evolution nonlinearly,
multiple approaches have been created [1–5], starting with
the simple top-hat spherical and homogeneous collapse
model [6]. The top-hat describes a homogeneous spherical
overdensity in the matter-dominated era, with a dust fluid
describing pressureless cold dark matter (CDM). This
overdense sphere is modeled by a closed (positive spatial

curvature) FLRW “separate universe” within an external
FLRW background universe, usually spatially flat (zero
curvature). The radius of the top-hat overdensity expands at
a slower rate than the background, gradually slowing
down, as it is bound by its positive curvature (equivalent
to the conserved and negative mechanical energy in the
Newtonian description of the top-hat). It eventually reaches
its maximal size, turns around, and then contracts into itself
to collapse. However simple this seems, the top-hat model
provides the critical value of the linear density contrast
corresponding to collapse, δð1ÞC ¼ 1.69, a crucial bench-
mark1 to estimate virialization and for the Press-Schechter
mass function and the Sheth-Tormen extension [7,8].*robyn.munoz@port.ac.uk
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1This value assumes that the cosmological constant Λ is
negligible, i.e. that the collapse occurs well before Λ becomes
relevant in the Friedman equation for the background.
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More complex models have since been created with
either inhomogeneity, a nonspherical shape, or with angular
momentum [2,9], most notably the Zel’dovich approxima-
tion, in the context of Newtonian structure formation,
informs us on how pancakes are formed [10] and how
they represent the attractors for the dynamics [11]. Yet, all
these models lack relaxation mechanisms that would bring
the structure to its final virialized stable state. The first
attempt to describe this was with statistical mechanics [12],
however, analytical limitations have led the field to work
with numerical simulations instead. With these tools, an
inhomogeneous universe is either modeled with a fluid or
particle description of matter.
N-body simulations have the advantage of going beyond

shell crossing and inform us on the virialization process
and the shape of large-scale structures [13–17]. With some
caveat, it has been shown that in the Newtonian case the
simulations accurately portray structure formation when
compared with general relativistic simulations, except
when the weak gravity regime does not hold [18]. To
make the description of gravity in N-body simulations
somehow general relativistic, multiple approaches have
been attempted. A simple approximation has been used
in [19], where matter is coupled to the expansion of
distances with the average expansion-rate approximation.
A fully relativistic approach neglecting only tensor modes
has been used in [20–22], based on the constant mean
curvature and minimal distortion gauge. In [23,24] a weak
field expansion has been used, based on the Poisson gauge
with six degrees of freedom in the metric, see also [25].
Alternatively, a relativistic post-processing treatment of
Newtonian simulations can measure vector modes [26–28],
even for fðRÞ gravity [29]. Finally, some relativistic effects
can be extracted from Newtonian simulations with ray-
tracing, see e.g. [30–32]. To make the gravitational
description fully relativistic, one may instead simplify
the matter description and consider collisionless particles
that evolve according to the global distribution [33–35].
These types of simulations then meet similar challenges to
fluid simulations.
The fluid description of matter lends itself more con-

veniently to the 3þ 1 formalism of numerical relativity
[25,36–42]. While convenient for early times cosmology,
together with scalar fields [43–51], it finds its limitations at
the first shell crossing. As structures decouple from the
background and subsequently virialize, particles should go
into a multistream regime, while in a fluid description shell
crossing crashes simulations with comoving coordinates.
Gauge choices can be made to avoid evolving such regions;
however one main focus of this paper is on the collapse of
overdensities and comparison with the top-hat model.
Therefore, we work in the synchronous-comoving gauge,
with the advantage of identifying collapse in terms of the
proper time in the matter frame.

The goal of this paper is to study the nonlinear evolution
of the basic elements of the cosmic web, namely over-
densities filaments [52] and voids, extending the analysis
in [39], where a 3-dimensional (3-D) sinusoidal inhomoge-
neity in the matter density was evolved with varying
amplitudes, and backreaction was found to be measurable,
but extremely small. This periodic 3-D structure effectively
represents a basic cosmic web, used also in [16,18,39,42,49],
a periodic lattice of overdensities (OD) and underdensities
(UD), such that close to its peak each OD is approximately
spherically symmetric. OD peaks are connected by over-
dense filaments and are separated by voids, thus automati-
cally satisfying the periodic boundary conditions that we
use. Here we evolve this 3-D structure in full general
relativity, describing CDM as a pressureless fluid with the
same evolution codes in Einstein Toolkit [53–55]. However,
we take a different approach to set the initial conditions,
implementing the 3-D sinusoidal structure in the comoving
curvature perturbation Rc, originally introduced in [56].
This is convenient becauseRc is a gauge-invariant and time-
independent variable at first order in perturbation theory
and in the long wavelength approximation [57], and it is
commonly used to model inhomogeneities in the early
universe, e.g. in inflationary models, see [58] and Refs.
therein. Starting from the scalar potential Rc, following the
method described in [59] we set the initial spatial metric γij
and the extrinsic curvature Kij as if these were first-order
scalar perturbations, but then we treat them exactly, with no
approximations, and use γij to compute the 3-Ricci scalar
ð3ÞR in full nonlinearity, and this ð3ÞR and Kij are used in the
Hamiltonian constraint to construct the matter density
distribution ρ, so that the Hamiltonian constraint is auto-
matically satisfied on the initial slice. By the same token,
the momentum constraint is satisfied at first-perturbative
order [59].
This novel method to set up initial conditions for

numerical relativity cosmological simulations has two
advantages: (i) it directly implements a purely growing
mode, the only one that should exist in the early matter era
and (ii) it can be used to directly implement initial curvature
perturbations predicted by inflationary models [57–59].
After summarizing the necessary ΛCDM perturbations
results [59] in Sec. II C our method of setting up nonlinear
initial conditions and how they are implemented is
described in Sec. III.
Using this method we obtain a reliable evolution of the

simple and reasonably realistic scenario provided by the
3-D structure described above. In particular for the non-
spherical overdensities, whose evolution can be reliably
compared to the top-hat model [1–6]. Our initial conditions
depend on three parameters, namely the amplitude, wave-
length, and initial redshift, whose impact on the initial
inhomogeneities is explored in Sec. III C. The Fortran thorn
ICPertFLRW [60] adapted to the Cactus code [61] was
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developed to implement these initial conditions in the
Einstein Toolkit [55]; it is described in Section IV.
We describe the evolution at the center of the OD and

UD in Sec. VA and, to explain this evolution, we consider
the contributions to the Raychaudhuri equation in Sec. V B.
We also look at how the turnaround (TA) boundary evolves,
describing the infalling domain, in Sec. V C, and we
consider the evolution of a domain contained within a
comoving sphere of various comoving radii in Sec. V D.
Furthermore, our simulations are in full general relativity,

hence we also consider the gravitational description of
our 3-D structure using the Weyl tensor. The electric and
magnetic parts of the Weyl tensor [62–69] are computed
in post-processing with EBWeyl, the code presented
in Paper 1 [70,71], we then characterize the gravito-
electromagnetic evolution of the 3-D structure in Sec. V E.
Additionally, the same code can be used to compute the
invariants needed to classify the spacetime according to the
Petrov type [72,73]. The 3-D structure in our fully nonlinear
simulations is general enough to find in Sec. V F that the
spacetime is of Petrov type I, as expected.We then introduce
a novel method for the dynamical Petrov classification of
different space regions by using thresholds: this enables us
to define a leading-order Petrov type in each region and at
different times. In addition, we also show how this Petrov
type depends on the shape of the inhomogeneity.
Assumptions & notations: the speed of light is c ¼ 1, the

Einstein coupling constant is κ ¼ 8πG, the Newton gravi-
tational constant isG ¼ 1. Greek indices indicate spacetime
f0;…3g and Latin indices space f1; 2; 3g. Background
quantities are given an overhead bar and the (n) superscript
is given to a perturbation of order n. Proper time derivatives
are indicated with an overhead dot.

II. THEORETICAL FRAMEWORK

In this paper, we will be using numerical relativity for
cosmological simulations of the evolution of inhomoge-
neities in a ΛCDM universe, starting from initial data at a
redshift zIN ∼ 300. In this section, we first summarize the
fluid-flow description for the kinematics and dynamics of
CDM, represented as a pressureless fluid (dust), and then
we present the method that we use to set up initial
conditions. Finally, we discuss how the initial amplitude
and redshift of the inhomogeneities, together with the ratio
of their length-scale to that of the Hubble scale, determine
the change from linearity to nonlinearity of the initial
conditions, and the long-wavelength regime dominated by
the spatial curvature perturbations.

A. CDM as irrotational dust fluid

In the 3þ 1 approach to numerical relativity [74–76] the
fundamental dynamical variables are the spatial metric γij
and the extrinsic curvature Kij, while lapse α and shift βi

represent the gauge freedom one has in propagating

coordinates from one time slice to the next. In cosmology,
a fundamental 4-vector field is always present, namely the
4-velocity of matter uμ, i.e. the eigenvector of the energy-
momentum tensor2 Tμν; here we will be dealing with
pressureless CDM represented by Tμν ¼ ρuμuν, where ρ
is the rest-frame energy density of matter, a dust fluid. In
this paper, we will use the synchronous-comoving gauge
such that α ¼ 1, βi ¼ 0 and uμ ¼ nμ, where nμ is normal to
the time slices, so that uμ ¼ f1; 0; 0; 0g and

ds2 ¼ −dτ2 þ γijdxidxj; ð1Þ

where τ is the proper time, and in the following derivatives
with respect to τ are denoted with an overhead dot.
In general, the kinematics of a fluid flow can be

characterized by the variation ∇νuμ of the 4-velocity uμ,
defining kinematical quantities. That is [64,66,78], defining
the projector hμν ≡ gμν þ uμuν orthogonal to uμ, we can
decompose ∇νuμ in its irreducible parts

∇νuμ ¼ Θμν þ ωμν − aμuν Θμν ¼
1

3
hμνΘþ σμν; ð2Þ

where aμ ≡ uα∇αuμ and ωμν ≡ hαμh
β
ν∇½βuα� are the

4-acceleration and the anti-symmetric vorticity tensor,
and Θμν ≡ hαμh

β
ν∇ðβuαÞ is the symmetric expansion tensor,

decomposed into its trace and traceless parts, i.e. the
expansion scalar Θ and the shear tensor σμν. For dust,
the 4-acceleration vanishes and fluid elements move along
geodesics. In addition, with the choice of the synchronous-
comoving gauge, the fluid is automatically irrotational
(ωμν ¼ 0) and hμν and Θμν are purely spatial, with the
first coinciding with γij and the second coinciding with the
extrinsic curvature, so that Θij ¼ −Kij ¼ 1

2
_γij. From its

definition, for the expansion scalar Θ we can write

Θ≡∇μuμ ¼
1ffiffiffi
γ

p ∂

∂xμ
ð ffiffiffi

γ
p

uμÞ ¼
_V
V
; ð3Þ

where the last equality holds in the synchronous-comoving
gauge and V ¼ ffiffiffi

γ
p

is the local volume element, with γ the
determinant of the 3-metric γij, so that in this gauge the
expansion scalar coincides with the trace of the extrinsic
curvature, Θ ¼ −K ¼ −Ki

i.
In general, from the conservation equations ∇μTμν ¼ 0

one obtains the energy conservation and the momentum
conservation equations projecting along and orthogonally
to uμ, respectively. For dust, the momentum conservation
is trivial and the energy conservation coincides with the
continuity equation

2This choice, called the energy frame, is not unique for
imperfect fluids, see [77] and Refs. therein.
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_ρ ¼ −ρΘ; ð4Þ
where in general _ρ ¼ uα∇αρ, which in our gauge coincides
with the partial derivative with respect to proper time.
Similarly defining _Θ ¼ uα∇αΘ, the expansion scalar Θ

satisfies the Raychaudhuri equation which, for irrotational
dust, is

_Θ ¼ −
1

3
Θ2 − 2σ2 −

κρ

2
þ Λ; ð5Þ

where σ2 ¼ σμνσ
μν=2, and Λ is the cosmological constant.

Thus in general the Raychaudhuri and continuity equations
are coupled to the evolution of the shear and of the electric
and magnetic parts of the Weyl tensor [64,66,78]. Although
we will not consider their evolution equations here, we will
be dealing with their dynamics in Sec. V E.
These quantities also satisfy various constraints

[64,66,78], here we only explicitly need the Hamiltonian
constraint

ð3ÞRþ 2

3
Θ2 − 2σ2 ¼ 2κρþ 2Λ; ð6Þ

where ð3ÞR is the 3-Ricci scalar of the 3-metric γij.
The continuity equation (4) just expresses conservation

of the proper mass and, using Eq. (3), can be integrated
to give

ρ
ffiffiffi
γ

p ¼ ρV ¼ MðxÞ ð7Þ

where MðxÞ is the proper mass of the local fluid element.
An integral of this quantity in a given coordinate domain
will give the proper mass contained within that domain, see
Appendix A.

B. FLRW flat dust models

In the case of a flat FLRW universe, we indicate
quantities with an overhead bar: the spatial metric then
is γ̄ij ¼ a2δij where a ¼ aðτÞ is the scale factor and δij is
the Kronecker delta, H ¼ Θ̄=3 ¼ _a=a is the Hubble
expansion, ρ̄ ¼ 3H2Ωm=κ is the energy density, where
Ωm is the dimensionless matter density parameter.
Equations (5) and (6) reduce to the Friedmann equations

and, together with Eq. (4) these can be integrated in the flat
ΛCDM case to get:

s¼
�
Ωm0

ΩΛ0

�
1=3

sinh

�
3τH0

2

ffiffiffiffiffiffiffiffi
ΩΛ0

p �
2=3

;

H ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0s−3 þΩΛ0

q
; Ωm ¼ Ωm0=ðΩm0 þΩΛ0s3Þ;

ð8Þ

where H0 and Ωm0 are the values of these parameters
today, and ΩΛ0 ¼ Λc2=3H2

0 ¼ 1 − Ωm0 represents the

cosmological constant contribution and s ¼ a=a0. In our
simulations we use the results from the Planck collabora-
tion (2018) [79]:Ωm0¼0.3147 and cH−1

0 ¼2997.9h−1 Mpc,
with h ¼ 0.6737.
We also consider the special case where Λ ¼ 0, i.e., the

Einstein-de-Sitter model (EdS), where:

s ¼
�
τ

τ0

�
2=3

; H ¼ 2

3τ
; Ωm ¼ 1.0: ð9Þ

We emphasize that our simulations do not assume an
overall ΛCDM or EdS expansion of the box domain, as in
NewtonianN-body simulations, rather we use these models
for comparison.

C. ΛCDM first-order perturbations

Starting from [80], it is customary in the treatment of
perturbations during inflation to introduce a variable that
has the advantage of remaining constant while the pertur-
bation scale is much larger than the Hubble scale, so that
one can easily relate perturbations produced during infla-
tion to when the same perturbations evolve in the radiation
and matter eras, eventually reentering the Hubble horizon.
One such variable is the so-called “gauge-invariant curva-
ture perturbation on uniform density hypersurfaces” [58]

ζð1Þ ¼ −Rc þ
1

3
δð1Þ; ð10Þ

where here δð1Þ represents the gauge-invariant first-order
density perturbation3 on comoving hypersurfaces, there-
fore automatically coinciding with the density contrast
δ ¼ ρ=ρ̄ − 1 in the synchronous-comoving gauge we use
here, and Rc is the first-order gauge-invariant scalar
perturbation potential for ð3ÞRð1Þ, the first-order perturba-
tion of the 3-Ricci scalar, see Eq. (14). For reviews
see [58,81], where a fully nonlinear conserved quantity
related to ζð1Þ and Rc is also introduced.
In the following, we shall summarize the approach to

perturbations in the synchronous-comoving gauge used
in [59], based on Rc, in order to use this approach as a
starting point for our nonlinear initial condition setup. A
parallel nonlinear long-wavelength approximation for inho-
mogeneities on large scales is used in [57]. The advantage of
using Rc as a starting point is twofold: (i) it is directly
related to ζð1Þ by Eq. (10) and it coincides with it at large
scales, where δð1Þ is suppressed with respect to Rc, see
Eq. (16) below; hence our set up for initial condition can be
used to directly implement perturbation predictions from
inflationary models; (ii) for dust,Rc is a conserved quantity
at all times and for all scales, which can be used to
implement all first-order scalar perturbations variables for

3The superscript (1) denotes the perturbation order.
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the growing mode. Let us consider scalar perturbations of a
flat FLRW universe in the matter-dominated era since these
are the only relevant first-order perturbations for structure
formation. In the synchronous-comoving gauge, and with
Cartesian-like coordinates, the line element takes the form
Eq. (1) and now we write the spatial metric γij as

γij ¼ a2½ð1 − 2ψÞδij þ χij�: ð11Þ

The deviations from the FLRW background are ψ and the
trace-less χij, corresponding to the volume perturbation and
anisotropic distortion respectively. Because we are only
considering scalar perturbations, χij at first-order is con-
structed from a scalar potential χð1Þ as follows:

χij ≃
�
∂i∂j −

1

3
δijδ

kl
∂k∂l

�
χð1Þ: ð12Þ

Then, ψ is the only perturbation in the determinant of the
spatial metric up to first order

γ ≃ γ̄ð1 − 6ψ ð1ÞÞ; with γ̄ ¼ a6: ð13Þ

Given this metric, the first order perturbation to the 3-Ricci
scalar, ð3ÞR, is associated with the comoving curvature
perturbation Rc [56] as

ð3ÞRð1Þ ¼ 4∇2Rc; with Rc ¼ ψ ð1Þ þ a2

6
∇2χð1Þ: ð14Þ

We remark that ð3ÞR vanishes in any flat FLRW back-
ground, therefore according to the Stewart and Walker
lemma [82] cf. [77,83,84], ð3ÞRð1Þ and Rc are gauge-
invariant, see Paper 1 [70] for a general discussion on
invariant quantities. The Laplacian ∇2 ¼ γij∇i∇j is such
that for first-order scalar perturbations, it takes the form
a−2δij∂i∂j. It can be shown thatRc is constant in time [59],
so that ð3ÞRð1Þ ∝ a−2. Then, the starting point to express the
first order perturbations δð1Þ, ψ ð1Þ and χð1Þ as a function of
Rc, is to consider [59] the evolution of the density contrast

4H _δð1Þ þ 6H2Ωmδ
ð1Þ ¼ ð3ÞRð1Þ; ð15Þ

which can be derived from the continuity equation (4) and
the Hamiltonian constraint Eq. (6). Equation (15) has two
solutions: the homogeneous one, corresponding to the
Hubble expansion, δ− ∝ H, and therefore called the
decaying mode, and the particular solution, the so-called
growing mode δþ sourced by the 3-curvature, and as such
related to Rc. By solely considering the growing mode
Eq. (15) can be rearranged by introducing the growth factor
f1 ¼ d ln δ=d ln a ≃Ω6=11

m [85,86], to express δð1Þ as a
function of Rc

δð1Þ ¼ ∇2Rc

FH2
; ð16Þ

with F ¼ f1 þ 3
2
Ωm; in the early-matter era, when the EdS

model is a good approximation and Ωm ¼ 1, f1 ¼ 1 and
δð1Þ ∝ a. With Eq. (16), ψ ð1Þ and χð1Þ can be expressed by
using the deformation ϑð1Þ. The expansion tensor,Θij, has a
background part Θ̄ij ¼ a2Hδij and a perturbed part, the
deformation tensor ϑij, such that Θij ¼ Θ̄ij þ ϑij, with the
traceΘ ¼ Θ̄þ ϑ, where Θ̄ ¼ γ̄ijΘ̄ij ¼ 3H. Additionally, in
the synchronous-comoving gauge, the expansion tensor can
be expressed as Θij ¼ 1

2
_γij, then the first order trace is

ϑð1Þ ¼ −3 _ψ ð1Þ. Likewise, the first order continuity equation
is _δð1Þ ¼ −ϑð1Þ. Then, putting these two expressions
together _δð1Þ ¼ 3 _ψ ð1Þ, and so ψ ð1Þ can be expressed as a
function of Rc using Eq. (16), where the integration
constant is identified to be Rc from Eq. (14).
Furthermore, ψ ð1Þ can be introduced into Eq. (14) to
provide χð1Þ, such that

ψ ð1Þ ¼ 1

3
δð1Þ þRc; and χð1Þ ¼ −

2Rc

a2FH2
: ð17Þ

Therefore the spatial metric perturbed with a purely
growing mode expressed up to first order as a function
of Rc is

γij ¼ γ̄ij þ γð1Þij ¼ a2ð1 − 2RcÞδij −
2

FH2
∂i∂jRc: ð18Þ

With our synchronous-comoving gauge choice, the extrin-
sic curvature Kij ¼ −Θij ¼ − 1

2
_γij. Introducing Eq. (16)

into Eq. (15) shows that d
dτ ð1=FH2Þ ¼ ð2þ f1Þ=FH and

since Rc is time independent

Kij ¼ K̄ij þKð1Þ
ij ¼ −a2Hð1− 2RcÞδij þ

ð2þ f1Þ
FH

∂i∂jRc:

ð19Þ

Kij can be separated into its trace K and traceless Aij part

Kij ¼ Aij þ
1

3
γijK; ð20Þ

such that in this gauge both are related to the fluid
kinematical quantities. Aij is associated to the shear tensor
of the matter flow σij, Aij ¼ −σij, at first order

Að1Þ
ij ¼ −σð1Þij ¼ f1

FH

�
∂i∂j −

1

3
δijδ

kl
∂k∂l

�
Rc: ð21Þ

We remark that in the background σ̄ij ¼ 0, hence the shear
is a first-order gauge invariant quantity. Then, K is
associated to the expansion scalar Θ:
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K ¼ −Θ ¼ K̄ − ϑ; with K̄ ¼ −3H; and

Kð1Þ ¼ −ϑð1Þ ¼ f1Hδð1Þ: ð22Þ

In this gauge the momentum density Ji ¼ 0, this means
that the momentum constraint takes the form DiðKi

jÞ−
DjðKÞ ¼ 0. It was shown [59] that at first order this

expression reduces to Djð _RcÞ ¼ 0, and since for dust
_Rc ¼ 0 at all times at all scales at first order, then at this
order the momentum constraint is automatically satisfied.
As δ≡ ρ=ρ̄ − 1 is the density contrast for the matter

field, we can define similar quantities for the contrast of the
volume element γ and expansion K:

δγ ≡ γ=γ̄ − 1; and δK ≡ K=K̄ − 1: ð23Þ

Given Eq. (13), Eq. (17), and Eq. (22) these can be
expressed at first order as:

δγð1Þ ¼ −6
�
1

3
δð1Þ þRc

�
and δKð1Þ ¼ −

f1δð1Þ

3
: ð24Þ

III. FULLY NONLINEAR INITIAL CONDITIONS

A. Motivations

In the standard scenario for the generation of structure
formation in cosmology, the seeds are produced at large
scales, well outside the Hubble horizon, during the infla-
tionary epoch; these scales then reenter the horizon when
the accelerated phase ceases and the seeds can grow.
More precisely, inflation produces an almost scale-invariant
spectrum of fluctuations in the metric variable ζ, with the
line element written as

ds2 ¼ −dτ2 þ a2ðτÞe2ζðτ;xiÞγ̃ijdxidxj; ð25Þ

where detðγ̃ijÞ ¼ 1, see [57–59,81] and references therein.
In this scenario, ζ is nonlinear, but coincides with ζð1Þ in
Eq. (10). At large scales, in the long-wavelength approxi-
mation (AKA gradient expansion), at leading order ζ is
constant and γ̃kj ≃ δkj, so that in this approximation
the spatial metric in Eq. (25) is conformally flat, and the
3-Ricci scalar is then given by a beautifully simple
expression in terms of ζ and its gradients [57]; at first
perturbative order this expression simplifies to Eq. (14)
above, and ζð1Þ ¼ Rc at large scales, where δð1Þ is sup-
pressed in Eq. (10). It actually turns out [57] that at leading
order in this large-scales approximation, the equations
for the inhomogeneities are formally exactly the same as
those for first-order perturbations [59]. This nonlinear ζ is
also used to model the birth of primordial black holes,
see [87,88] and Refs. therein, cf. [46,89,90] for different
approaches in numerical relativity. In single-field slow-roll
inflation, the primordial ζ is an almost Gaussian random

field [91,92]. In practice, therefore, non-Gaussianities are
commonly modeled in terms of an expansion of ζ in terms
of ζð1Þ, parametrized by fNL and higher order parameters,
ζ ¼ ζð1Þ þ fNLζð1Þ2 þ � � �. Motivated by these standard
modeling of primordial inhomogeneities, we now set up
fully nonlinear initial conditions using the scalar curvature
variable Rc.

B. Ansatz and implementation

To this end, to set up initial conditions we have
developed a new thorn ICPertFLRW [60]. The starting
ansatz is that the metric and the extrinsic curvature are
precisely given by their expressions Eqs. (18) and (19), but
should otherwise be thought of as quantities to be used in
full nonlinearity, generated by the scalar potential Rc.
From γij and Kij, we then compute the 3-Ricci scalar ð3ÞR,
the trace K, and the magnitude KijKij. Given our ansatz,
based on Rc and its derivatives, these quantities are
computed analytically by ICPertFLRW [60]. We can then
use the Hamiltonian constraint to compute the initial
matter density

ρ ¼ 1

2κ
ðð3ÞRþ K2 − KijKji − 2ΛÞ

¼ 1

2κ

�
ð3ÞRþ 2

3
K2 − 2A2 − 2Λ

�
; ð26Þ

with A2 ¼ AijAji=2. We emphasize that in setting up initial
conditions in full nonlinearity, we introduce vector and
tensor modes, in particular in the shear σij ¼ −Aij that
sources the magnetic part of the Weyl tensor Bij: this is
nonzero, as it will be shown in Sec. V E, while at first order

Bð1Þ
ij ¼ 0 (in all gauges) for the purely scalar perturbation of

the previous section.
The main advantage of using the Hamiltonian constraint

to set up the initial distribution of the matter density ρ in
Eq. (26) is twofold: (i) its algebraic use makes the constraint
automatically satisfied in the initial time step, (ii) in order to
set up the initial conditions we do not need to solve an
elliptic equation, as it is the case if the starting point is the
distribution of ρ itself, as in [39]. The Hamiltonian con-
straint was also used to nonlinearly provide ρ in [40],
although not usingRc. Note that we could have set up initial
conditions exclusively using first-order quantities: we
emphasize the benefit of our fully nonlinear method in
Appendix B, where we show that even starting from small
initial perturbations nonlinear effects are important in
general relativity.
All that remains is to define the comoving curvature

perturbationRc. A fully realistic initial setup should consist
of generating a spatial realization of Rc starting from a
Gaussian (or quasi-Gaussian) scale-invariant spectrum, but
this is beyond our current scopes. Instead, we chose a single
3-D sinusoidal mode:
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Rc ¼ Apertðsin ðxkpertÞ þ sin ðykpertÞ þ sin ðzkpertÞÞ; ð27Þ

with kpert ¼ 2π=λpert and the simulation box spanning
x; y; z ∈ ½−λpert=2; λpert=2�. λpert is the comoving wavelength
at the reference redshift aðzRÞ ¼ 1, such that the physical
wavelength is retrieved as λphy ¼ aλpert. We work with
aðzR ¼ 0Þ ¼ 1 so that the comoving wavelength corre-
sponds to a physical wavelength today, as defined in a
reference ΛCDM FLRW spacetime, which would be the
background in a perturbative setting. The impact of λpert on
the initial inhomogeneity is discussed in Sec. III C and in the
simulations of this paper λpert is chosen such that the initial
physical scale is superhorizon λphy;IN ¼ 4=HIN, as we are
interested in large-scale relativistic effects and we would
like to compare to the simulations of [68]. Furthermore, if a
spatial region of a given comoving scale contains an OD
that grows nonlinearly, then its physical size today4 will
eventually be much smaller than the corresponding FLRW
physical scale.
A simulation box containing a “compensated inhomo-

geneity”, i.e., one as that in Eq. (27), such that its linear
average vanishes, essentially expands as the reference
FLRW spacetime, i.e. backreaction is negligibly small
[34,39,93,94]. Note that averages discussed here are proper
domain averages obtained by integrating with the deter-
minant of the spatial metric, see Appendix A. We empha-
size that in general with our setup, averaged quantities do
not exactly coincide with those of the FLRW model: even
in the initial conditions, the nonlinearity of general rela-
tivity implies that the nonlinear average of Eq. (27) is
nonzero. This can be intuitively seen for the initial non-
linear density contrast in Fig. 2 where δOD ≠ −δUD and
other quantities as seen in Fig. 5.
The spatial distribution Eq. (27) allows us to focus on

some specific relativistic features that emerge clearly in this
simple set-up, features that would be probably harder to
characterize in a more realistic scenario. Specifically, it
will enable us to study the growth of an OD whose center is
at x ¼ y ¼ z ¼ −λpert=4 and an UD whose center is at
x ¼ y ¼ z ¼ λpert=4. It produces the initial δ presented in
Figs. 1, 2, 3. Figure 1 shows the initial δ distribution in the
simulation box with the center of the OD exposed, while
Fig. 3 shows the isosurface where δ ¼ 0.01. These figures
emphasize the nonspherical shape of this distribution.
Indeed, the equation

P
3
i¼1 sinðxikpertÞ ¼ 1 parameterizes

an octahedron, so when close to the peak of the OD,
spherical symmetry is approximated, further out an octahe-
dron geometry creates filamentary-like structures periodi-
cally connecting each OD peak. We satisfy the boundary
conditions by using periodic boundaries. However, we
emphasize that the nonspherical nature of the distribution

is not due to the boundary conditions in the simulation [95],
but due to the choice of the initial distribution.
Centring an octahedron around the OD we identify three

main directions of interest from the center of the OD: along
the vertices, the center of the edges and the center of the
faces. A half period of δ along each direction is presented in
Fig. 2. Close to the peak of the OD, the three directions
overlap, highlighting the proximity to spherical symmetry.
Beyond that, we see the axis going through the vertices
never goes through an UD region, since this direction goes

FIG. 1. Initial distribution at zIN ¼ 302.5 of the density contrast
δ in the simulation box, for a ΛCDM universe. The x, y, and
z > −0.25λpert region is removed exposing the center of the
overdensity at x ¼ y ¼ z ¼ −0.25λpert, where δIN;OD ¼ 0.03.
The full lines go through the vertices and dash-dotted lines
through the center of the edges of an octahedron centered at the
overdensity.

FIG. 2. Initial radial profile at zIN ¼ 302.5 of the initial density
contrast δ starting from the center of the overdensity to its
minimum in three different directions, toward the vertices, edges,
and faces of the octahedral distribution in Eq. (27) plotted against
the proper radius from the overdense peak. Error bars, when
visible, are indicated as shaded regions.

4The size agreed by a network of comoving observers with
synchronized clocks.
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through the filaments (full white lines in Fig. 1, and full
blue lines in Fig. 2), and the axis going through the center
of the faces goes through the center of the UD (not in Fig. 1,
and green dashed lines in Fig. 2). Although the spatial
distribution that we derive from Eq. (27) is unrealistic, it
contains the three basic elements of the cosmic web,
namely ODs, filaments [52], and voids and as such can
be viewed as a skeleton description of large-scale structures
and it is more realistic than the spherical top-hat model.

C. Nonlinear and long-wavelength regimes

The above initial distribution lets us freely choose the
amplitude and wavelength of the inhomogeneity, Apert and
λpert, as well as the initial redshift zIN. The impact of these
parameters on the initial amplitude of δγ, δK, δ, and ð3ÞR at
the peak of the OD is presented in Fig. 4. The thin lines are
the first-order quantities from Eqs. (14), (16) and (24)
whereas the thick lines are the fully nonlinear quantities
obtained from Eqs. (18), (19), (23) and (26). Each panel
shows their dependencies on Apert, zIN and λpert (left to right
respectively) while keeping the other two parameters
constant (with their values listed in the top box).
In the left panel, we consider inhomogeneities on a scale

well inside the Hubble horizon at that time. This shows that
the inhomogeneities are proportional to Apert when Apert is
small enough. However, when Apert is large there is a
separation between the thick and thin lines: this identifies
the emergence of the nonlinear regime. This is also visible
in the other panels for low redshift and small scales,
domains where local dynamics become dominant.
Otherwise, inhomogeneities in the linear regime are given
by the Laplacian of Rc and as such, they are proportional
to λ−2pert for the right panel and proportional to aðτÞ in the
middle panel, except ð3ÞR ∝ a−2ðτÞ. In the middle panel,

at low redshift linear curves are no longer straight because
in ΛCDM we depart from the δ-dominated era.
We emphasize that the inhomogeneity in the proper

volume at the OD δγIN;OD has a peculiar dependence on
Apert, zIN, and λpert even in the linear regime, as clearly
visible in the middle and right panels in Fig. 4. To
understand this, consider Eq. (24), which shows that
δγð1Þ is composed of two terms: Rc and δð1Þ. Given the
Rc sinusoidal distribution Eq. (27), the Laplacian in δð1Þ,
Eq. (16), creates a sign difference between these two terms.
δγ then has Rc-dominated and δ-dominated regimes and
the transition is highlighted by a sign change (the down-
ward spike in the log-plot Fig. 4). Rc and δð1Þ are both
proportional to Apert, which can even be factored out in
Eq. (24), so that the relative weight of Rc and δð1Þ in the
left panel is constant; in practice, for the given zIN and λpert
in this panel, δγIN;OD is δ-dominated. Considering now the
middle and right panel in Fig. 4, zIN and λpert impact the
amplitude of δð1Þ, while Apert, the amplitude of Rc, is

constant in these panels. Then, when jRc;ODj > jδð1ÞODj, in the
Rc-dominated regime (at large zIN and λpert) δγIN;OD shows a
plateau,while δγIN;OD ∝ aðτÞλ−2pert in the δ-dominated regime,

when jRc;ODj < jδð1ÞODj.
Intuitively, in an OD region (δ > 0 and Rc < 0) you

would expect the volume to be smaller than the background
average, meaning that δγ is negative, as that region of space
is more compact. However, in the Rc-dominated regime,
jRc;ODj > jδODj, the volume element is larger than that of
the background in the OD, δγOD > 0. This counter-intuitive
behavior is observed when:

λphy >
2π

H
ffiffiffiffiffiffi
3F

p : ð28Þ

FIG. 3. Isosurface for δ ¼ 0.01 in the initial distribution of the matter density contrast at zIN ¼ 302.5. The two different panels show
different points of view. The periodic boundary conditions insure that this distribution is a lattice of overdensities connected by filaments
and separated by voids.
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This Rc-dominated regime then occurs when the wave-
length is much bigger than the Hubble horizon (> c=H), so
we also call it the long-wavelength regime. This phenome-
non has previously been discussed [96–99], where long
wavelength modes were proposed to be acting as a form
of cosmological constant. Note that δγ per-se is not a
gauge-invariant quantity, rather the δγ in the synchronous-
comoving gauge we are using is the value that the
gauge-invariant quantity corresponding to δγ would have
in this gauge.

IV. CODE DESCRIPTION AND NUMERICAL
IMPLEMENTATION

In numerical relativity [74–76], Einstein’s field equa-
tions are separated into constraint equations and evolution
equations. So to run simulations an initial spacetime and
matter distribution satisfying the constraints is set, then
evolved according to the evolution equations, and the
constraint equations are used to monitor accuracy through-
out the evolution. While the initial quantities can be set
using the ADM formalism [100,101], in this formalism the
evolution equations take a form that is not strongly
hyperbolic, this will then cause stability issues in the
simulation. These quantities need to be transformed to a

formulation where the evolution equations are expressed in
a strongly hyperbolic form, such as BSSNOK [102–104].
The quantities associated with the fluid that are sourcing
Einstein’s evolution equations are called the primitive
hydrodynamics variables, these are evolved with the con-
servation equations ∇μTμν ¼ 0. Typically these variables
are also transformed, in this case to the corresponding
conserved quantities see e.g. [54], according to the Valencia
formulation [74,105], such that high-resolution shock-
capturing numerical schemes can be applied to the evolu-
tion equations. This is particularly relevant to turbulent
scenarios and so are not applied here.
For our simulations we use the open-source code

Einstein Toolkit [53,55]. This code is a compilation of
multiple modules, named thorns, that communicate within
the Cactus framework [61]. These thorns have different
tasks and capacities and may be written in Cþþ or Fortran
adapted to Cactus code or inMathematica or Python to then
be converted to Cþþ Cactus code by Kranc [106] or
NRPyþ [107]. To manage this infrastructure, the simfac-
tory job manager [108] is used for compilation and
running jobs.
The initial distributions for our simulations are calcu-

lated by our new thorn ICPertFLRW [60], developed in

FIG. 4. Amplitude of initial (IN) δγ, δK, δ, and ð3ÞR in the center of the overdensity (OD) as a function of Apert, zIN, and λpert presented
in each panel left to right. While each is varied the other parameters are kept constant as presented in the top box. The thinner lines
correspond to the first-order expressions of these quantities, while the thicker lines correspond to their nonlinear expressions, thus the
separation of these two lines emphasizes nonlinearity. The vertical dashed black lines indicate the instance where the physical
wavelength corresponds to the Hubble distance λphy ¼ c=H hence separating sub and super Hubble horizon regimes. Left panel: for the
given initial redshift zIN and perturbation wavelength λpert, nonlinearities start to be relevant when Apert > 10−4. Middle panel: for the
given Apert and λpert nonlinearities would only be relevant for zIN ≲ 50. The first-order thin lines become curved when Λ becomes
relevant. The proper volume perturbation δγIN;OD shows a plateau during the Rc-dominated regime, see Eqs. (24) and (28), when
δγIN;OD > 0, and its sign changes in the transition to the δ-dominated regime δγIN;OD < 0. Right panel: for the given Apert and zIN
nonlinearities are only relevant on scales smaller than λpert ≲ few × 10 h−1 Mpc. TheRc-dominated regime is again identifiable with the
plateau in δγIN;OD on large scales.
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Fortran and adapted to Cactus code for this project. It
defines the initial ADM variables: γij Eq. (18),Kij Eq. (19),
with α ¼ 1, βi ¼ 0, and ρ given by Eq. (26). As explained
in Sec. III, defining ρ using the Hamiltonian constraint
implies that this is initially automatically satisfied, while
the momentum constraint is initially satisfied at first-order.
ICPertFLRW then provides the ADM quantities to the
ADMBase [53] and CT_Dust thorns [54]. The variables are
provided on a Cartesian grid, supported by Carpet [109];
this has mesh refinement capacities although we have not
used these in this paper.
To evolve the geometrical variables they are transformed

into the BSSNOK formalism [102–104] and the subsequent
variables are evolved by the ML_BSSN thorn [110].
The primitive hydrodynamics variables are transformed
to their conserved form and evolved by CT_Dust [54]
without hock-capturing schemes. They are all integrated
with the 4th order Runge-Kutta scheme provided by the
MoL thorn [53]. The coupling between the metric and the
matter field is ensured by the TmunuBase thorn [53].
The simulations were run on the Sciama HPC

Cluster [111] with box sizes of 323, 643 and 1283 data
points. Sciama’s job manager Slurm [112] was made to
communicate with simfactory [108].

V. SIMULATION RESULTS

In this section we describe two simulations with the initial
conditions of Sec. II, one with Λ, and one without. Both
are compared to the spherical collapse model in Sec. VA,
and the simulation with Λ is then described more in the
following subsections. We fix some of the parameters as
in [39], namely λphy;IN ¼ 4=HIN ¼ 6 Mpc and δIN;OD ¼
3 × 10−2, where we assume H0 ¼ ch=2997.9 Mpc−1, with
c ¼ 1 and h ¼ 0.6737 [79]. As such the simulation without
Λ starts at zIN ¼ 205.4 with λpert ¼ 1206 Mpc and the
simulation with Λ at zIN ¼ 302.5 with λpert ¼ 1821 Mpc.
The initial δOD is chosen in order for the OD to collapse
at 2 < z < 5.
These initial conditions are evolved up until the OD

collapses on itself, in practice the simulation “crashes” as
NaN5 values appear. This is due to our fluid description of
matter and use of synchronous-comoving coordinates, while
such a structure would otherwise be expected to relax into a
virialized dark matter halo. With other gauge choices such
as the 1þ log or harmonic gauges the lapse would decrease
during the contraction, gradually slowing down the evolu-
tion of the center of the OD, freezing it such that it would
not collapse while the rest of the cosmic web would freely
evolve. Thus those gauges, particularly the harmonic gauge,
are common choices for cosmological simulations in
numerical relativity [18,34,113]. Because we are dealing
with an irrotational dust perfect fluid these gauges will still

be comoving with the fluid and therefore still be subject to
shell crossing at γ ¼ 0, those regions will just be frozen
beforehand. To no longer be comoving with the fluid one
may consider gauge choices such that the shift is no longer
zero. However, whatever the gauge, so long as one uses
the fluid description, the virialization process cannot be
described, one would need to consider a different method of
implementing matter [35]. Here it is precisely the collapse
of the structure in the fluid frame that is of interest, hence the
use of the synchronous-comoving gauge [39] which helps in
the comparison with the top-hat model.

A. Overdensity peak evolution and top-hat model

The evolution of the inhomogeneities at the peak of the
OD and at the bottom of the UD is presented in Fig. 5 for the
ΛCDM case. For the top row, from left to right, we show:
the density contrast δ, the volume contrast δγ and the
expansion contrast δK in Eq. (23). The dashed lines are the
first-order expectations from Eq. (16), Eqs. (24) and (14)
while the full lines are the results of the simulation. The
separation between those lines shows a departure from
linearity, which happens early on in the simulation. The
unphysical regions (ρ and γ need to be positive) and Milne
model limit (a ∝ t [3]) in the plots show that these
departures from linearity are indeed in a sense necessary
for this system to remain physical.
In the center of the OD, still on the top row from left to

right: δOD becomes very large, the volume element tends
toward zero, so that δγOD → −1, the initial expansion is
more and more decelerated until it turns around (TA) and
contraction begins, when KOD ¼ 0 and δKOD ¼ −1. The
reverse is observed in the center of the UD: the density
tends to zero δUD → −1, the volume element becomes
much larger than the reference FLRW and the expansion is
faster. In the center of the simulation box, where initially
Rc ¼ 0, the first-order quantities all remain zero, but the
nonlinearity introduced by ð3ÞR in the initial conditions
makes all quantities in the figure measurably nonzero
(beyond numerical error) although they remain very small.
Notice the sign change in the volume contrast δγ at

a=aIN ≃ 3.1. This behavior is representative of the tran-
sition experienced by long wavelength perturbations as
they evolve from theRc-dominated to δ-dominated regime,
according to Eq. (28) [96–99].
Then the second row of panels in Fig. 5 show, first on

the left, the conformal 3-Ricci scalar defined with respect
to the ΛCDM FLRW scale factor, a2ð3ÞR [57,59]. At first
order this quantity is conserved at all scales for dust, as
shown by the dashed lines, however in the OD the
curvature is positive and grows larger and larger up until
the crash, while in the UD it is initially negative and
tends toward zero. The middle panel on the other hand
shows the conformal 3-Ricci scalar defined with respect
to the nonlinear scale factor from the simulation, γ

1
3
ð3ÞR:

for the OD, essentially this is conserved throughout the5Not a number.
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evolution up until just before the crash. Indeed when
normalized with its initial value, as can be seen in the
rightmost panel, only subpercent fluctuations are observed
in the UD and OD (when error bars are reasonable), but a
more notable deviation can be seen in the central location.
This shows that the locations at the top/bottom of the
inhomogeneity conserve their local nonlinear conformal
curvature, which is essentially consistent with the closed
FLRW description of the top-hat model. As the volume
element in the OD shrinks, the curvature grows, therefore
the two effects evolve together such that nonlinear con-
formal curvature is constant, conversely in the UD the

volume element grows and the curvature tends toward zero
such that the conformal curvature is also constant. In the
central region the volume element shrinks and the curva-
ture grows like in the center of the OD, although these
deviations are too small to be seen in Fig. 5; however in
this location the nonlinear conformal curvature is not
conserved. This may be due to this location having a
much greater density gradient ∂iRc ¼ Apertkpert than the
OD and UD center ∂iRc ¼ 0.
The exact values of various quantities at TA, at times

corresponding to virialization according to two different
definitions [1–3,6], and at the collapse/crash time are

FIG. 5. Evolution of various quantities at the peak of the over and under-density (OD in orange and UD in blue) as well as the central
location of the simulation box (in green). Top: the matter density, volume, and expansion contrasts δ, δγ, and δK. Bottom: the conformal
3-Ricci scalar defined with the ΛCDM FLRW scale factor a2ð3ÞR; conformal 3-Ricci scalar defined with the nonlinear scale factor γ

1
3
ð3ÞR;

the same quantity normalized with its initial value ðγ1=3ð3ÞRÞ=ðγ1=3IN
ð3ÞRINÞ − 1. The dashed lines are the first-order projections from

Eqs. (16), (24) and (14), and the full lines are the simulation results. Initial conditions are δIN;OD ¼ 3 × 10−2, zIN ¼ 302.5 and
λpert ¼ 1821 Mpc, and Λ is present. Error bars, when visible, are indicated as shaded regions.
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listed in Table I. Defining R as the radius of the top-hat
sphere, in this model R increases to reach its maximal size
at TA, RTA, when KOD changes sign, from expansion
to contraction, so TA measurements are taken when
KOD ¼ 0. At TA the kinetic energy is zero, EKin;TA ¼ 0

and so the total energy is contained in the potential energy
ETot ¼ EPot;TA ∝ 1=RTA. After that, R shrinks and collap-
ses to R ¼ 0. While the top-hat model does not have the
mechanisms to enable virialization, there are two different
definitions typically used to approximate it. Virialization
happens when the potential energy is double the kinetic
energy, with a sign change, EPot;V ¼ −2EKin;V . As energy
is conserved, this means that the potential energy at
virialization can be related to the potential energy at
TA, EPot;V ¼ 2EPot;TA, therefore at virialization the radius
becomes RV ¼ RTA=2. The first definition of virialization
is then when R, evolving according to the top-hat model,
reaches RTA=2 [1]. The second definition also works with
RV ¼ RTA=2 but assumes that relaxation mechanisms are
present, and so establishes thatRwould reach this value at the
time of the collapse τC [1,3]. This means that this second

definition has a discontinuity in the R evolution, which is
assumed to be filledwith relaxationmechanisms. Eitherway,
these two definitions predict specific nonlinear δOD, so here
we record a=aIN when δOD reaches those values.
Recording the values reported in Table I was done in

multiple ways. The proper times when KOD ¼ 0, δOD ¼
145.84 or δOD ¼ 176.65 occur between recorded iterations,
so they were obtained with a linear interpolation and then
passed toEq. (9), Eq. (8) or Eq. (16) to obtaina=aIN, z or δð1Þ.
The nonlinear values γ1=6OD=γ

1=6
IN;OD, hγ1=6iD=hγ1=6iD;IN and

δOD were obtained by linear interpolation to the previously
determined time. Then, for the collapse/crash, the last valid
values are recorded giving the nonlinear terms and a last
proper time that was used to compute the corresponding
a=aIN, z or δð1Þ. For each case (Λ ¼ 0 orΛ ≠ 0) this process
was repeated for the three simulations of varying resolution,
the high-resolution result is reported in Table I and the two
lower resolution results are used to compute the correspond-
ing error bars according to Eq. (B4).
In our simulations, the TA and collapse/crash, with and

without Λ, occur at an earlier time than the time in [39].

TABLE I. Various variables during the evolution of an overdensity (OD) whose initial (IN) density contrast is δIN;OD ¼ 0.03 and physical
size λphy;IN ¼ 4=HIN. These variables are recorded for four scenarios at different stages of the evolution: the turn around (TA), the collapse/
crash of the OD, and its virialization according to two different definitions, when the radius of the top-hat sphere is half its radius at TA, and
when that property happens at the time of the collapse. The four scenarios are the theoretical top-hat spherical and homogeneous collapse
model (first column [1–3,6]) and three numerical relativity simulations of a 3-D sinusoidal peak. These are: our simulations with a purely
growing mode with Λ ¼ 0 (second column), and with Λ ≠ 0 (third column); from [39], with a growing and decaying mode with Λ ¼ 0
(fourth column). The variables are the normalized background scale factor a=aIN, with its corresponding redshift z and linear density

contrast δð1ÞOD (δð1ÞOD ¼ δIN;ODa=aIN for EdS), this is to be compared to the local scale factor γ1=6OD=γ
1=6
IN;OD, the domain average scale factor

hγ1=6iD=hγ1=6iD;IN (averaged over the whole simulation box), and the nonlinear density contrast δOD. For the two definitions of
virialization a=aIN is recorded at the given δOD. The asterisk indicates a factor of three correction to the value reported in [39].

Top-Hat, Λ ¼ 0 Here, Λ ¼ 0 Here, Λ ≠ 0 E.B. & M.B. (2016) [39]

Initially zIN 205.4 302.5 205.4

a=aIN 35.4137 35.24467� 7e-5 35.195� 3e-3 60
z 4.85620� 1e-5 7.6234� 7e-4 2.44

Turn Around (TA) γ1=6OD=γ
1=6
IN;OD

20.10169� 3e-5 20.0600� 1e-4

KOD ¼ 0 hγ1=6iD=hγ1=6iD;IN 35.2064� 1e-4 35.154� 3e-3

δð1ÞOD
1.06241 1.05734� 2e-6 1.05584� 8e-5 1.8*

δOD 4.55165 4.55164� 1e-5 4.5626� 5e-4

a=aIN 56.22 55.9� 1e-1 55.87� 8e-2 96
z 2.692� 7e-3 4.432� 8e-3 1.15

Collapse γ1=6OD=γ
1=6
IN;OD

0.4� 6e-1 0.8� 2e-1

/Crash hγ1=6iD=hγ1=6iD;IN 55.8� 1e-1 55.77� 2e-2

δð1ÞOD
1.686 1.678� 3e-3 1.676� 2e-3 2.88

δOD þ∞ 2eþ 6� 2eþ 6 4eþ 5� 4eþ 5

Virialization a=aIN 52.64 52.5055� 9e-4 52.469� 2e-3
R ¼ RTA=2 δOD 145.84 145.84 145.84

Virialization a=aIN 56.22 52.83625� 7e-5 52.801� 2e-3
R ¼ RTA=2 & τ ¼ τC δOD 176.65 176.65 176.65
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This shows that the presence of the decaying mode in their
case has significantly slowed down the evolution, as was
also shown by [18]. Correspondingly, they also have a

bigger6 δð1ÞOD at those moments, this is simply due to the

longer evolution since δð1ÞOD ¼ δð1ÞIN;ODa=aIN in EdS.
Otherwise, we see that at the peak of the OD we

reach TA and collapse/crash precisely when the top-hat
model predicts it, with the expected a=aIN, δ

ð1Þ
OD and δOD

values in agreement with [18]. With the conservation of
the local conformal curvature, this shows that the top-hat
model provides excellent predictions for the center of
the OD. Furthermore, the domain averaged scale factor,
hγ1=6iD=hγ1=6iD;IN, is also close to the top-hat model
prediction for a=aIN. This is not the case for the local
measurement, γ1=6OD=γ

1=6
IN;OD, which instead shows the com-

pactness of the region.
For virialization, we recover the expected a=aIN for

the first definition of R ¼ RTA=2, but not for the second
R ¼ RTA=2 and τ ¼ τC. The first definition is based on
the exact evolution of R for the top-hat model, while
the second provides an approximation by making the
assumption that, relaxation mechanisms are present. The
matter in these simulations is described as a pressureless
perfect fluid, it therefore does not have any relaxation
mechanism, so instead, as we observe in the center of the
OD, the evolution of the density contrast is well predicted
by the top-hat model.
We see a slight difference depending on the presence of

Λ in the simulation. However, the error estimates overlap in
many cases and we measure up to a maximum ≃0.57%
difference between the Λ ¼ 0 and the Λ ≠ 0 simulations.

B. Raychaudhuri equation: Local evolution
and top-hat approximation

Our results, in either case, show that at the peak of the
OD the top-hat model is an excellent approximation. To
understand this, consider the Raychaudhuri equation (5)
describing the local evolution of the fluid expansion scalar.
Each term contributing to _Θ is plotted along the x ¼ y ¼ z
diagonal, in Fig. 6. This direction goes from the center of
the OD through the center of the face of the octahedron

such that it also goes through the center of the UD (this is
the dashed green line in Fig. 2).
The matter density ρ curve, i.e. the dot-dot-dashed red

line in Fig. 6, clearly shows the OD and UD regions
located at �0.25λpert. The shear contribution, σ2, shown
with the dashed green line, is subdominant everywhere; it
does grow around the OD but it is always essentially zero
at the peak of the OD and at the center of the UD. The
reason that σ2 is negligible in these specific locations is
because of the triaxial symmetry, so that around these
two points the distribution is almost spherical. The fact
that the shear gives a negligible contribution to the
Raychaudhuri equation implies that at the OD and the
UD locations the evolution is in essence independent of
the environment. Mathematically, neglecting the shear
implies that the Raychaudhuri equation is only coupled

FIG. 6. Contributions to the Raychaudhuri equation just after
the turn-around of the peak (top panel) and just before the crash
(bottom panel): since c ¼ G ¼ 1 all these terms have units of
length−2, therefore we measure them in λ−2pert units. Each term is
presented along the x ¼ y ¼ z diagonal of the data box, the peak
of the overdensity is at x ¼ −0.25λpert and the bottom of the
underdensity is at x ¼ 0.25λpert. Error bars, when visible, are
indicated as shaded regions.

6That is, for the linearly extrapolated density contrast we have
δð1ÞTA;OD ¼ 1.8 for a TA at a=aIN ¼ 60 as in [39], thus correcting

the value for δð1Þ at TA reported in [39], δð1ÞT ¼ 0.6. Similarly,
given that the collapse in [39] is at a=aIN ≃ 96, δð1Þ ≃ 0.96 under
the same assumptions, while the correct value is δð1Þ ≃ 2.8, as we
report in Table I. The presence of the decaying mode in [39]
implied that a direct match with the prediction of the top-hat
model was not expected and somehow confused the interpretation
of the results. This was based on assuming that the initial density
contrast was δIN;OD ¼ δi ¼ 10−2, as reported in the text around
Eq. (9) in [39], while the correct value of the initial δ was
δIN;OD ¼ 3δi ¼ 3 × 10−2, as it is clearly visible in the leftmost
panel of Fig. 1 and their Eq. (9).
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to the continuity equation (4): then at the OD these two
equations are formally identical to those in FLRW with
positive 3-curvature, as implied by the Hamiltonian con-
straint (6). Therefore, at the peak, the top-hat model is a
very good approximation.
Then the expansion, Θ, shown with the dot-dashed

orange line, peaks downwards, Θ ¼ −K ¼ 0, in locations
experiencing TA. The peak of the OD experiences TA first,
then its surrounding region. This identifies the infalling
domain discussed in the next section V C.

C. Expansion of the infalling domain

Throughout the evolution of the collapsing region,
the expansion Θ ¼ −K of the OD is positive but more
decelerated than the referenceΛCDM, until it reaches TA at
Θ ¼ 0 and then contracts inwards Θ < 0. The peak of the
OD is the first to reach TA, followed by its surrounding
region, where points at a larger distance from the peak
reach TA at later times.
The infalling region, identified using the TA boundary

Θ ¼ 0, is shown in Fig. 7 at two different times. Initially,
the boundary surface is close to spherical symmetry, but
later, as it encompasses a greater comoving volume and
therefore a larger mass, the nonspherical shape becomes
apparent. As the TA boundary expands outward it tends
toward an octahedron, this appears as an almost square
boundary in the 2-D slicing through the box in the right
panel of Fig. 7, extending beyond the box sides with the
periodic boundary condition.
With octahedrons, there are three directions of interest:

from the center to the vertices, to the center of the edges,
and to the center of the faces. The plane in Fig. 7 shows
the vertex and the center of the edge directions (full and

dash-dotted lines). As the TA boundary Θ ¼ 0 expands
outward, we measure the distance between the peak of the
OD and the TA point in each direction, which we call the
TA radius RTA. The evolution along the three different
directions is presented in Fig. 8, where we depict the
comoving coordinate TA radius RTA;com in the left panel,
and the physical TA radius RTA;phy in the right panel,
see Appendix A.
In the left panel, the TA boundaries grow in the same

way in the three directions, so long as they stay in the region
that is almost spherically symmetric around the peak, and
then they split out according to the direction-dependent
distribution. In the directions with the biggest δ, the TA
radius grows the fastest.
This is also true when we consider the proper distances

RTA;phy, by integrating with the local scale factor, see
Appendix A, which are shown in the right panel of Fig. 8.
Notably, we see that in the two directions that go through an
UD region, edges and faces, RTA;phy stops growing and
starts decreasing. So in these two directions, the region of
infalling material reaches a maximal size and then starts
shrinking, while in the direction where δ is always positive,
the infalling region continues to grow.

D. Evolution of a comoving sphere

We can draw another comparison to the top-hat model by
considering the evolution of a comoving sphere, a region
with constant mass, centered on the peak of the OD and
compare its evolution with that of a homogeneous spherical
top-hat with δ ¼ hδiD. For a given comoving radius, we
integrate to measure the proper physical radius and present
it in the left panels of Fig. 9. Two comoving radii are
considered, one small 0.02λpert, where we see that all three

FIG. 7. Absolute expansion scalar Θ in units λ−1pert in the x-y plane passing by the peak of the overdensity (z ¼ −0.25λpert) at
a=aIN ¼ 40.45 and 53.00. The full lines indicate directions along the vertices and the dash-dotted lines are the directions along the center
of the edges.
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FIG. 8. Evolution of the turn around radius RTA—distance from the peak of the overdensity to Θ ¼ 0 in three directions. On the left,
RTA measured in terms of the comoving length today; on the right the corresponding proper length; we emphasize that the physical
length is an order of magnitude smaller than the comoving length. Error bars, when visible, are indicated as shaded regions.

FIG. 9. Left panels: evolution of proper physical radius of two comoving spheres, one small (top panel) and one large (bottom panel),
centered on the peak of the overdensity, in all three directions, compared to the top-hat spherical and homogeneous collapse model. The
comoving radii are listed as text in the plots. The top-hat models were computed using the domain average δwithin the two spheres, hδiD
see Appendix A. Top right panel: average relative difference between the simulation results and the top-hat model prediction for a range
of comoving radii. The two cases on the left are identified with gray dot-dot-dashed lines. Bottom right panel: shear in the three
directions from the peak of the overdensity. Error bars, when visible, are indicated as shaded regions.
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directions behave in the same way, and one big 0.33λpert,
with a direction-dependent evolution such that the bigger
the δ, the sooner the collapse. In the latter case, we see how
a spherical comoving region gradually gets distorted in
physical space.
The top-hat models, gray dotted lines in the left panels of

Fig. 9, were computed with the domain average δwithin the
given comoving sphere, hδiD, see [114] and Appendix A.
The small comoving radius case closely follows the top-hat
model but falls just short of reaching collapse as the peak
had already reached that point. In the large comoving radius
case, there is a clear departure from the top-hat model, the
region would collapse sooner than what the top-hat model
would have predicted. Indeed for such an inhomogeneity, it
is unfair to compare it to a homogeneous sphere.
The average relative difference between the physical

radius and the top-hat model prediction is measured for a
range of comoving radii and presented in the top right panel
of Fig. 9. The gray dot-dot dashed vertical lines identify the
two cases on the left panels. This indeed shows that as
the radius of the comoving sphere is increased, the bigger
the difference between the results and the corresponding
top-hat model. This indicates the limit with which inho-
mogeneous structures can be predicted with homogeneous
models.
In Sec. V B we identified the subdominance of shear in

the proximity of the peak to be the main reason why the
evolution of this region closely follows the top-hat model
prediction described in Sec. VA. Then, in the bottom right
panel of Fig. 9 we also show the shear as a function of the
comoving radius Rcom. Indeed, further out from the peak
of the OD, the shear is no longer negligible, even if it is
still subdominant at this radius as a contribution to the
Raychaudhuri equation in Fig. 6.

E. Gravito-electromagnetism

The electric and magnetic parts of the Weyl tensor
defined with respect to the fluid flow, uα, are given by
[62–64,66,67,78]:

Eαμ ¼ uβuνCαβμν; Bαλ ¼ uβuσ
1

2
Cαβμνϵ

μν
λσ; ð29Þ

with ϵαβμν the Levi-Civita completely antisymmetric tensor
fixed with ϵ0123 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgαβÞj
p

. Eαβ and Bαβ describe the
nonlocal gravitational field. In general, in 3þ 1 they are
computed with respect to a unit timelike hypersurface-
orthogonal vector field nα.
We compute Eαβ and Bαβ with EBWeyl, the code pre-

sented and tested in Paper 1 [70,71], together with their
divergence ð∇ · EÞα and curl ð∇ × EÞαβ [66] defined in
the hypersurface with metric γij, where nμ ¼ f−α; 0; 0; 0g
and α is the lapse function of the 3þ 1 formalism, see
Paper 1 [70]:

ð∇ · EÞμ ¼ DiEiμ;

ð∇ × EÞμν ¼ −ϵαβσðμnαDβEνÞσ ¼ αϵ0ijðμDiEνÞj; ð30Þ

where Di is the covariant derivative with respect to γij. In
this paper we use the synchronous-comoving gauge, then
the lapse α ¼ 1, the shift βi ¼ 0, and the normal to the γij
hypersurface nμ ¼ uμ, so the derivations of Eq. (30) are
done with respect to the fluid flow. Additionally, because
of the nature of the Levi-Civita tensor and the symmet-
rization applied to the curl, ð∇ × EÞμν only has spatial
components. We compute the magnitude of these tensors

following: jTj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαμTαTμ

p
or jTj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαμgβνTαβTμν

q
.

Figure 10 shows the jEj and jBj distribution in 3-D.
These are made dimensionless by dividing by H2. The
electric part is strongest along the vertices of the OD
gradually moving toward the peak of the OD. To some
extent, the electric part is analogous to the Newtonian
description of gravity as it embodies tidal gravitational pull.
The regions experiencing this the strongest are along the
vertices as the matter is being pulled along the filaments
toward the center of the OD. At the peak, where the
curvature is strongest, jEj is small as the matter is already at
the bottom of the potential well.
Conversely, the magnetic part is strongest around the

vertices. The filaments along the vertex direction, connecting
the ODs periodically present, can be perceived, by analogy
to electromagnetism, to be carrying a gravitational current,
with jEj strong along it, and jBj strong around it. In
perturbation theory, the magnetic part is only constructed
from vector and tensor modes and embodies relativistic
effects. When we set the initial conditions, as explained
in Sec. III, the density is defined nonlinearly from the
Hamiltonian constraint and the simulation freely evolves in
full general relativity. At nonlinear order the scalar, vector
and tensor perturbations couple, explaining the nonzero
magnetic part. Connecting this to the fluid flow, the
magnetic part in general is sourced by shear, vorticity and
acceleration [66]. Yet, in the synchronous-comoving gauge
and with pressureless dust there is no vorticity or accel-
eration. Therefore, in this case, the magnetic part embodies
the curl of the shear

Bαβ ¼ ð∇ × σÞαβ; ð31Þ

and we have shown the shear to be present in Fig. 6
and Fig. 9.
On the leftmost panels of Fig. 11 the dimensionless jEj

and jBj distributions are shown on a 2d plane, where the
notable axes of symmetry are marked in the top panel.
These are to be compared with Fig. 10 to grasp these
distributions. jEj is indeed strongest along the OD vertex,
black full line, and jBj wraps around it. However we also
see that they become negligible in the UD, and along the
faces directions, dashed gray lines, and jBj also disappears
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FIG. 11. Magnitude of the electric and magnetic parts of the Weyl tensor, and their divergences and curls along the x and y ¼ z plane
of the simulation box (with d2 ¼ y2 þ z2) at a=aIN ¼ 40.0, and made dimensionless with the Hubble scalar H. The relevant axes of
symmetry are marked on the top left panel. The directions going from the center of the octahedrons to the vertices are marked with full
lines, to the center edges with dash-dotted, and to the center of the faces with dashed lines. Directions going from the center of the
overdensity are marked with black lines, and from the underdensity with white lines, the directions going along the faces are valid for
both the overdensity and the underdensity and so are in gray.

FIG. 10. Distribution of the electric and magnetic parts of the Weyl tensor (left and right) in the simulation box, made dimensionless
with the Hubble scalar H. The x, y, and z > −0.25λpert region is removed exposing the center of the overdensity. The full white lines go
through the vertices and dash-dotted lines through the center of the edges of an octahedron centered at the overdensity.
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in the UD vertex direction, white full line. These axes of
symmetry are notable features in the divergence and curl
distributions, middle and right panels. The divergence is
strongest close to the peak of the OD, and to the other OD
present through periodic boundaries. Then the curl of jBj
is strongest along the vertex and the curl of jEj is strongest
around the vertex axis.
The presence of jBj in itself is not proof of the benefit

we get from having a fully relativistic simulation, as
frame-dragging can be measured from Newtonian simu-
lations [26,27,115,116] as well as in relativistic simula-
tions [22,23,28]. However, when only gravitational waves
are present jEj ¼ jBj [117], the divergences vanish and
the curls are present [118]. We look at Fig. 12 to see
that here the domain average divergence does not vanish,
and looking at the ratios, jBj is smaller than jEj but still
has a per cent level presence. We also find that for the
electric part, the domain average of the divergence is
stronger than that of the curl, hj∇ · EjiD > hj∇ × EjiD, and
the reverse is true for the magnetic part, hj∇ · BjiD <
hj∇ × BjiD.
The electric and magnetic parts of the Weyl tensor have

previously been measured in numerical relativity cosmo-
logical simulations: (i) for a lattice of black holes, where the
potential bias that is introduced by the magnetic part in
optical measurements is quantified [68,119]; (ii) in more
realistic cosmological simulations, where models with
vanishing divergence of the magnetic part are found to
be a valid approximation on large scales [69]. This differs
from what we find as hj∇ · BjiD is initially present and
grows throughout the simulation, even though it has the

smallest amplitude in Fig. 12. These results do not directly
contradict each other since we are considering very differ-
ent spacial distributions, and here the simulation evolves
into a highly nonlinear regime.

F. Effective Petrov classification

The Weyl tensor is the traceless part of the Riemann
curvature tensor and describes, in essence, the tidal
gravitational fields, far richer in a metric theory of gravity
than in the Newtonian case. It is classified according to the
Petrov classification [120], with complex scalar invariants
I, J, K, L, and N that we compute from Eαβ and Bαβ,
following the methodology provided in Paper 1 [70,71].
These invariants can then be used to classify different
regions of the spacetime as Petrov type I, II, D, III, N, or O
according to the scheme presented in Fig. 13, where we
apply the theory of classification of exact solutions in [72].
Each Petrov type has a specific physical interpretation,
e.g. type D is characteristic of the Schwarzschild and
Kerr black holes, as well as of the tidal field outside a
spherically symmetric gravitational field, while type N is
characteristic of plane gravitational waves; we refer the
reader to Paper 1 [70,71] and Refs. therein for more details.
Numerically we hardly reach exact numbers, additionally,

our simulation can be thought of as containing all types of
perturbations at all orders, so our spacetime is of Petrov
type I, the most general type. However, we consider the
leading order type by introducing thresholds; then, because
the background FLRW is of Petrov type O, that of
conformally flat spacetimes, initially this is the leading

FIG. 12. Top left: domain average magnitude of the magnetic part of the Weyl tensor, of its divergence and curl throughout the
simulation, made dimensionless with the Hubble scalarH. Bottom left: same as above but with the electric part of the Weyl tensor. Right:
ratios between the magnetic and electric terms. Error bars, when visible, are indicated as shaded regions.
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order Petrov type, as the perturbations are initially small. As
nonlinearities grow, the spacetime becomes more general.
To see this transition, we adapt the IF statements described
in Fig. 13 by considering the real and imaginary parts of

each quantity separately, normalizing them, making them
dimensionless, and comparing them to a chosen cutoff value.
This is done by making these invariants have the same power
as the Weyl tensor and dividing by H2. For example for the
real part of I, we then have the value: V ¼ jReðI1=6Þj=H2,
that we compare to a cutoff V < c. We also consider the
numerical error obtained with the lower resolution simu-
lations, see Appendix B. So we adapt the statement to V < c
AND (V > Verror OR c > Verror) where the part in
parenthesis, establishes how reliable the variable is, if it is
not reliable we keep the classification general.
The cutoff value is an arbitrary choice, if it is too small

the whole spacetime is of type I, if it is large then it is of
type O. No matter the choice of cutoff value the order of
transition between the Petrov types remains the same, we
then choose the cutoff values as presented in Fig. 13 to
emphasize this behavior. The cutoff values are not the same
at all stages as we disentangle leading order contributions.
Following this process, Fig. 14 shows the leading order

spacetime on the x and y ¼ z plane throughout the
simulation. Overall the simulation starts as an effective
type O spacetime, that of FLRW, as all the inhomogene-
ities embodied in the invariant scalars are all below the

FIG. 14. Classification of the spacetime regions according to the leading order Petrov type as defined in Fig. 13, along the x and y ¼ z
plane of the simulation box (with d2 ¼ y2 þ z2). Eight points in time in the simulation are presented, and the corresponding normalized
scale factor is on top of each panel. The peak of the overdensity is in the bottom left quadrant, at x ¼ −0.25λpert and d ≃ −0.35λpert, it is
periodically connected to other overdensities with a filament along the d ≃ −0.35λpert direction, and the bottom of the under-density is in
the top right quadrant at x ¼ 0.25λpert and d ≃ 0.35λpert.

FIG. 13. Flow diagram of Petrov classification, with a couple of
modifications this is a replica of Fig. 9.1 in [72]. Cutoff values
used in our analysis are listed here.
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cutoff values; then the spacetime gradually transitions
toward type I. This sort of peeling-off [74,121] goes
as O → N → D → II → I, from most special to least
special. In this transition, we pass through all these
spacetime types, with notable features related to the
OD structure at hand.
Throughout this evolution, the peak of the OD and

bottom of the UD are type O. These regions are con-
formally flat, which is not what we expected a priori from
the peak of the OD. However, as we saw previously, in this
location jEj ¼ jBj ¼ 0, therefore the spacetime is type O
and the spatial curvature is nonzero, but the conformal
curvature is constant as a local closed FLRW. Thus, this is
another reason why the top-hat model describes the
evolution of the peak of the OD very well.
Along the vertex direction, the transition goes as

O → N → D. The focus of a D spacetime along the
filament is interesting as this group includes the
Schwarzschild, Kerr, and Szekeres metrics. The Weyl tensor
of type D spacetimes has been described [121,122] as a
Coulomb-like tidal field, where the matter gets elongated
in a given direction toward a gravitational source, see
Paper 1 [71] for more details. Indeed, we find that along
the filaments matter is being pulled toward the two OD peaks
they connect.
Then, remarkably, we note the strong presence of type N,

the spacetime of gravitational waves. A nonspherically
symmetric collapse is naturally expected to generate
gravitational waves; here, we see tensor modes having a
temporary leading order presence. We leave the study of the
generation of gravitational waves in nonlinear structure
formation in full numerical relativity to future work.

VI. CONCLUSIONS

In this work we have presented numerical relativity
simulations of a simple nonlinear inhomogeneous structure
growing in a ΛCDM universe. The simulations are run with
the Einstein Toolkit [53,55] using the new publicly avail-
able ICPertFLRW thorn [60], then postprocessed with our
EBWeyl code [71] described in Paper 1 [70]. We have used
the synchronous-comoving gauge, i.e. the rest frame of
CDM, represented as a pressureless and irrotational per-
fect fluid.
The inhomogeneities are introduced with the comoving

curvature perturbation Rc, defined as a 3-D sinusoidal.
This creates a periodic lattice of overdensities (OD)
connected by filaments and surrounded by under-dense
(UD) voids. Near the peak of the OD the distribution of the
matter and other fields is close to spherical symmetry, but
this is no longer the case further out, as the structure tends
toward an octahedron-like symmetry, with OD filaments
along the vertices.
We obtain three main results: (i) using Rc, a gauge-

invariant curvature perturbation typically used in early
universe perturbation theory [58], we successfully

implement a purely growing mode in our initial conditions,
following [57,59]; in particular we use Rc to set up our
initial metric and extrinsic curvature inhomogeneity, the
fully nonlinear 3-Ricci curvature ð3ÞR, then defining the fully
nonlinear matter density field from the Hamiltonian con-
straint, which is then automatically satisfied; (ii) we study the
evolution of the peaks through turn-around and collapse,
finding that it is very well described by the top-hat model, to
a level better than 1%, see Table I; (iii) we study the Weyl
tensor, both from the perspective of the electric and magnetic
parts Eαβ and Bαβ and through a novel dynamical Petrov
classification, finding that the gravito-magnetic effects are
stronger around the filaments, and Petrov type N, the
signature of gravitational waves, emerges in the directions
connecting the OD peaks with the UD.
More in details, the main points are the following.
(i) The configuration described above leaves us free to

choose the initial amplitude and wavelength of the
inhomogeneities, as well as the initial redshift. These
are chosen such that initially we are in the linear
regime and the simulation remains within the matter-
dominated era (i.e. Λ is negligible), even if our
treatment is fully nonlinear. Additionally, we iden-
tify the curvature-dominated regime, when the
physical wavelength is larger than the Hubble scale,
see Eq. (28), a regime where the volume element is
larger than the background in the OD region.

(ii) Monitoring the peak of the OD we find that, in this
specific location, the turn-around (TA) and collapse
are reached when the linearly extrapolated density
contrast δð1Þ has values δð1ÞTA ¼ 1.05584� 8 × 10−5

and δð1ÞC ¼ 1.676� 2 × 10−3 in the ΛCDM case,
within 1% of the theoretically predicted values in
the top-hat spherical and homogeneous collapse
model [1–5]. We explain this by looking at the
contribution of the different terms in the Raychaud-
huri equation, finding that the shear is in general
subdominant around the peak and totally negligible
at the peak, so that at this location the evolution is
independent of its environment and in essence
described by the Friedmann equations of a closed
(positively curved) model. Indeed, our analysis also
shows that at the peak location γ1=3ð3ÞR is constant in
time, generalizing into the fully nonlinear regime the
conformal-curvature variable Rc. However, when
considering a comoving sphere with a large comov-
ing radius, containing a more significant inhomo-
geneity, its evolution can no longer be well described
with the top-hat model.

(iii) The peak of the OD is the first location to reach TA,
when the expansion scalar reaches Θ ¼ 0, then the
surface Θ ¼ 0 expands outward in the neighboring
region. This TA boundary distinguishes an infalling
and an expanding region. The infalling region
encompasses more and more material, eventually
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taking the shape of the entire OD region. In the
direction where δ is the biggest the TA radius
increases the most, and in directions going through
an UD region the TA radius eventually stops grow-
ing and shrinks instead. These features are due to the
inhomogeneous nonspherical shape we are work-
ing with.

(iv) Filaments are a fundamental part of the structure of
the cosmic web, due to tidal fields [52]. In computing
the electric and magnetic parts Eαβ and Bαβ of the
Weyl tensor with EBWeyl [70,71], we find that Eαβ is
strongest along the filaments periodically connecting
the ODs, stretching matter toward the OD centers,
while Bαβ wraps around the filaments. On average the
magnetic part is smaller than the electric part, with the
ratio changing from < 10−2 to almost 10% during
the evolution. The divergence of Eαβ is stronger than
Eαβ itself, while the curl of Bαβ is stronger than Bαβ.
For both, the divergence is strongest toward the OD,
and the curl of Eαβ is strongest on the filaments while
the curl of Bαβ is strongest around them.

(v) We also use EBWeyl [70,71] to classify the space-
time as Petrov type I. However, introducing a novel
dynamical Petrov classification using thresholds that
define leading order contribution, we find that the
centers of the OD and UD are of type O, i.e.
conformally flat as an FLRW model at leading
order, while the spacetime is type D along the
filaments, representing a simple tidal stretching
along these directions, and transition as O → N →
III → II → I elsewhere, with a notable presence of
type N, typical of gravitational waves.

We believe that several interesting questions should be
investigated as a follow-up to this work. Here we have
neglected vorticity, for the good reason that it vanishes for
purely scalar first-order perturbations while it is typically
sourced in the multistream regime following the first shell
crossing [123], and it is a subdominant source for gravito-
magnetic effects in N-body simulations [22,26,27], also
in fðRÞ gravity [29]. A rough test-field estimate suggests
that even if vorticity were initially present at the peak of
the OD, its value at the last reliable step of our simu-
lations would only be about twice its initial value.
However, it would be interesting to study the effect of
vorticity in detail, cf. [124], using a more general gauge.
Considering that close to the OD peaks and around UD
voids the spacetime is close to spherical symmetry, it
would be interesting to extend our work to look for self-
similar behavior [125–127]. Here we have considered
an oversimplified structure based on a single initial
wavelength: with this or starting from a more complex
structure, the effects of different wavelengths, mode-
coupling during nonlinear evolution [128] and the effects
of very large-scale tidal fields [129] should be the subject
of further investigations.

Finally, let us note two important points. First, in this
paper we have confirmed how good the top-hat descrip-
tion of collapse is at the peak of the OD. We believe that
this result is robust for profiles around the peak that tend
to be spherically symmetric, but the analysis here should
be extended in two directions: to model the effects of
different quasispherical profiles on virialization [130],
and to understand the effects of introducing some
anisotropy at the peak, in particular to measure how
large the change of collapse time due to shear would be,
cf. [131]. Last but not least, is the issue of how to best
set up initial conditions for large-scale structure simu-
lations in order to optimize computational efficiency
while maintaining the required accuracy of modeling
in the era of precision cosmology. Historically many
approximations have been introduced to model quasi-
linear stages [4,5], and more recently to take into account
relativistic effect [132,133]. Various quasilinear relativ-
istic approximations have been considered in the past
[134–142] and more recently [69,143,144]; we believe
that these should be further investigated, in order to
understand how to improve the setting up of initial
conditions for the modeling of relativistic effects in
nonlinear stages of structure formation, cf. [145].
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APPENDIX A: NUMERICALLY INTEGRATING

The average over a certain domain D of a scalar ϕ is
computed as:

hϕiD ¼ Δx3

V

X
D

ϕγ1=2 ðA1Þ

with γ the determinant of the spatial metric in our
synchronous-comoving gauge and Δx ¼ Δy ¼ Δz are
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the space coordinate intervals between grid points. V is the
proper volume given by

V ¼ Δx3
X
D

γ1=2: ðA2Þ

The proper and comoving lengths along a grid line are
calculated by

Lp ¼ Δx
Ximax

i¼0

γ1=6 and Lc ¼ Δx
Ximax

i¼0

1; ðA3Þ

since Δx is the comoving spatial coordinate element. In the
background the comoving length is related to the proper
length simply by the scale factor: Lp ¼ aðtÞLc.
Computing Lp and Lc as in Eq. (A3) is perfectly fine

along the vertex direction because this direction is aligned
with the grid. However this is no longer the case in the face
and edge directions, so a weighted integration is needed:

Lp ¼ Δx
Ximax

i¼0

wγ1=6 and Lc ¼ Δx
Ximax

i¼0

w ðA4Þ

with the weightw in the range 0 ≤ w ≤
ffiffiffi
3

p
. Each data point

is in the center of a cubic grid cell, so the value of this data
point only applies to the section passing through this cell.
wΔx then represents the comoving length of the section
contained in each cell. It is computed by finding the
intersection between the integrated direction and the grid
cells and then finding the length between these intersection
points.
On occasion, we integrate up to K ¼ 0, or up to a given

comoving radius; in these cases, the last weight to be used
is measured between the last intersection and this boundary
point. In both these cases, the boundary point is found
using a trilinear interpolation within this last cell.
The chosen averaging domain in Sec. V D, is a comoving

sphere. Approximating a sphere on a grid can be done by
only considering the grid points contained within the
sphere, however, we refine this with a weighted integration:

hϕiD ¼ Δx3

V

X
D

wϕγ1=2 and V ¼ Δx3
X
D

wγ1=2; ðA5Þ

with 0 ≤ w ≤ 1. Here wΔx3 is the comoving volume of the
part of the cubic grid cell that is included in the comoving
sphere. The weight w is computed with the SPHEREINT code
[114], where the value of w depends on the number of cubic
grid cell vertices contained in the sphere, if all eight are in
the sphere w ¼ 1, and if there are none w ¼ 0. When the
cell is partially within the sphere, we compute the inter-
secting points, of the sphere and the cube edges, approxi-
mate the spherical boundary contained in the cube as a
plane, and compute the volume of the corresponding
geometry. Most cases take the form of trirectangular

tetrahedrons. That is clear when one cube vertex is in
the sphere, but in other cases, the shape is extended to be a
trirectangular tetrahedron, and then smaller trirectangular
tetrahedrons are removed. When four cube vertices are in
the sphere there is a particular case where a truncated right
square prism needs to be considered.

APPENDIX B: CONSTRAINTS, ERROR BARS,
AND CONVERGENCE

The 3þ 1 decomposition of Einstein’s field equations
[75] provide the Hamiltonian and momentum constraints:

H ¼ ð3ÞRþ 2

3
K2 − 2A2 − 2Λ − 2κρ ¼ 0; and

Mi ¼ Dj

�
Aij −

2

3
γijK

�
− κJi ¼ 0; ðB1Þ

with Ji ¼ −γianbTab is the momentum density, and Dj the
spatial covariant derivative.
We estimate the accuracy of the initial conditions

implemented by quantifying the violation of these con-
straints (H, or Mi) normalized with their relative energy
scales [41,113]:

½H� ¼
�
ðð3ÞRÞ2þ

�
2

3
K2

�
2

þð2A2Þ2þð2ΛÞ2þð2κρÞ2
�
1=2

;

ðB2Þ

½M� ¼
�
DjðAijÞDjðAj

iÞ þ
�
−2
3

�
2

γijDjðKÞDiðKÞ

þ ð−κÞ2JiJi
�
1=2

: ðB3Þ

The momentum constraint is automatically satisfied at first
order so we first focus on the Hamiltonian constraint as
presented in Fig. 15. This enables us to try different
methods to set the initial conditions of the simulation
and find the best approach.
First, we consider pure FLRW simulations (Apert ¼ 0) in

both the ΛCDM Eq. (8) and EdS Eq. (9) models. Their
normalized H, domain averaged over the whole simulation
box, are presented as blue lines in Fig. 15. In both cases, we
find a small error confirming these were implemented
correctly.
Second, various methods of implementing the pertur-

bation in the energy density are tried. We show the impact
of initially setting ρ up to it’s first order as ρIN ¼ ρ̄ð1þ
δð1ÞÞ using Eq. (16), this is the pink curve. Then we show
the impact of including higher order terms by defining ρ
with the Hamiltonian constraint Eq. (26), this is the dotted
black line. Where all terms on the right-hand side of
Eq. (26) are calculated in full from the definition of γij and
Kij, Eqs. (18) and (19). This shows a significant decrease
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FIG. 16. Left: momentum (top) and Hamiltonian (bottom) constraint violation normalized with their respective energy scale measured
at different quartiles of the data distribution during the evolution of the simulation. The simulation with Λ is indicated with full lines
while the one without is indicated with dot-dashed lines. The three momentum constraints i ¼ f1; 2; 3g are all plotted with the same
lines but all overlap so are not distinguishable. Error bars, when visible, are indicated as shaded regions. Right: average median of these
constraints for simulations of different resolution (N3 the number of data points) and amplitude of the initial (IN) density contrast at the
peak of the overdensity (OD) δIN;OD. When perturbed, the energy density is initially defined in full from the Hamiltonian constraint.
λpert ¼ 1821 Mpc and zIN ¼ 302.5 when Λ ≠ 0 initially and λpert ¼ 1206 Mpc and zIN ¼ 205.4 otherwise.

FIG. 15. Domain average violation to the Hamiltonian constraint normalized with its energy scale of 5 different simulations, versus the
redshift z. The initial (IN) amplitude of density contrast δ at the peak of the overdensity (OD) and the presence of Λ in the simulations is
specified in the legend. When δIN;OD ¼ 3 × 10−5, the initial energy density can be defined as ρIN ¼ ρ̄ð1þ δð1ÞÞ (pink full), or as
ρIN ¼ ρHamwithRð1Þ (purple dashed) from the Hamiltonian constraint but with first order 3-Ricci scalar, Eq. (14). We find that a better
definition is ρIN ¼ ρHam (black dotted), in full from the Hamiltonian constraint using the first order γij and Kij, Eqs. (18) and (19), but
the fully nonlinear 3-Ricci scalar of γij. Here λpert ¼ 1821 Mpc and zIN ¼ 302.5 for ΛCDM initially and λpert ¼ 1206 Mpc and
zIN ¼ 205.4 otherwise. Error bars, when visible, are indicated as shaded regions.
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in the initial error, for this perturbation amplitude, it even
matches the simulations without perturbations.
We highlight the importance of including the higher

order terms consistently, with the purple dashed line, where
ρ is initially defined from the Hamiltonian constraint
but instead of being calculated in full from the metric,
the 3-Ricci is provided using only the first order expression,
Eq. (14). The error in the resulting simulation matches that
of the simulation with only first-order terms. So the best
approach, that we use for our simulations, corresponds to
the dotted black line with ρ obtained from the Hamiltonian
constraint in full.
The error bars on Fig. 15, and throughout, are obtained

by using two other simulations of double grid size each,
such that we have 3 simulations, each of 323, 643, and 1283

data points. Consider the result fΔx from a simulation with
grid size Δx, we have accompanying simulations of grid
size 2Δx and 4Δx each having their respective solution
f2Δx and f4Δx. The error on fΔx is then [74]:

ϵΔx ¼
f2Δx − fΔx

C − 1
ðB4Þ

with the convergence

C ¼ jf4Δx − f2Δxj
jf2Δx − fΔxj

¼ 2n ðB5Þ

and n is the order of the finite differencing approximation.
4th order schemes are used for the simulation evolution and
in postprocessing, see Paper 1 [70,71].

To check convergence in the simulations we show in
Fig. 16 the error in the normalized Hamiltonian and
momentum constraints. On the left panels, we plot their
absolute value at different quartiles of the grid distribution,
and then on the right, the average median is considered
versus the resolution [42]. The truncation error that comes
from the finite difference schemes will fit a line, that is
∝ N−n, indicative of the convergence.
For the Hamiltonian constraint, while the amplitude of

the violation may increase as the perturbation amplitude
increases, it still continues to follow 4th order convergence,
as expected.
For the momentum constraint, while the same could be

said for small perturbations, the top right panel of Fig. 16
shows a decreased convergence when δIN;OD ¼ 0.03.
Indeed the momentum constraint is only satisfied a first
order, so in a nonlinear scenario, the solution tends toward
a nonzero solution. However, the top left panel shows that
while there is a violation of the momentum constraint, this
does not grow throughout the simulation. The max curve
may seem concerning but this is because it is amplified
by data points whose momentum energy scale is the
numerical equivalent of zero, thus the shape of the curve
resembles numerical noise. In computing C, with Eq. (B5)
we find the average convergence of the median normalized
violation to the momentum constraint to be C ≃ 13.76 for
the case with Λ and C ≃ 15.47 for the case without,
indicating that this solution has a 3.7–3.9 order conver-
gence toward a nonzero solution that does not grow during
the simulation.
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