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Scalar fields coupled to dark matter by conformal or disformal transformations give rise to a general class
of scalar-tensor theories which leads to a rich phenomenology in a cosmological setting.While this possibility
has been studied comprehensively in the literature for scalar fields, the vector case has hardly been treated.
Hence, we build models based on vector fields which are conformally and disformally coupled to dark matter
and explicitly derive the general covariant form of the interaction term in an independent way of the gravity
theory, whereby this result can be applied to general vector-tensor theories. For concreteness, the standard
Proca theory with a vector exponential potential is taken to describe the vector-tensor sector, and some
specific coupling functions are assumed to study the cosmological background dynamics using dynamical
system techniques. As a first examination about instabilities issues, we derive general conditions to avoid
classical instabilities in a more general setup of the theory. Interestingly, despite choosing such a minimalist
form for the underlying theory, the parameter space is considerably enriched compared to the uncoupled
case due to the novel interactions, leading to new branches of solutions for the vector equation of motion.
Thus, different trajectories can exist in phase space depending on the coupling parameters associated to the
conformal and disformal functions. From here, new emerging vector-dark matter scaling solutions, and
renewed stable attractor points are found to drive the late-time accelerated expansion of the Universe.
Additionally, numerical calculations are performed to investigate more quantitatively the impact of the
conformal and disformal couplings on the cosmological background evolution. These effects depend
essentially on the strength of the coupling parameters and, in some specific cases, on their associated signs.
In all the cases studied we find that the coupling of the vector field to dark matter can significantly affect the
cosmological dynamics during different stages of the evolution of the Universe.

DOI: 10.1103/PhysRevD.107.123535

I. INTRODUCTION

The golden age of cosmology, referred commonly to
unprecedented progress in observational cosmology,
accompanied by impressive development in theoretical
grounds have firmly shaped our understanding of the
Universe. Specifically, James Peebles, awarded a Nobel
Prize in physics in 2019 for theoretical development in
physical cosmology, has contributed, among other promi-
nent cosmologists, to the basis of our contemporary
conception about the Universe [1]. One of the most
fascinating features of the Universe is that most of its
energy content, i.e., around 70% according to the cosmic
radiation background analysis [2,3], is in the form of dark
energy, a mysterious repulsive force pushing galaxies apart
[4–6] and whose nature is still unknown. On the other hand,
high-precision measurements in cosmology such as anisot-
ropies in the cosmic microwave background temperature
and polarization fields, weak lensing, galaxy clustering,
standard candles, and baryon acoustic oscillations [3,7–18],
and recently, the direct detection of gravitational waves by

LIGO and Virgo Collaborations [19,20] have been used as
the major observational discriminators of gravity theories
that attempt to describe the current accelerated expansion
of the Universe consistently. This is indeed of great
concern today because of the emergent tensions in the
ΛCDM cosmological model when confronted with obser-
vations. These discrepancies are specifically due to a lower
rate for the cosmic growth derived from observations of the
redshift-space distorsion [21] and cluster counts [7,22,23],
and a lack of conciliation between early and late measure-
ments which are referred to as the Hubble tension [24,25].
A fundamental and consensual description of the under-

lying physical mechanism for the agent driving the current
accelerated expansion is still lacking. Although the simplest
explanation within the ΛCDM cosmological model [3], is
identifying the cosmological constant as the agent respon-
sible for the accelerated expansion, it leads to a tremendous
discrepancy (of around 120 orders of magnitude due to zero-
point contributions to vacuum fluctuations) when compared
with its observed value [26,27]. One way to evade (not to
solve) this problem, which must be treated in any alternative
scenario to the accelerated expansion, is to resort to some
mechanisms in which the cosmological constant vanishes or
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becomes negligible compared to present cosmological energy
density [27]. Though it is argued sometimes that those
mechanisms are present in dynamical dark energy models,
generally rootedwithin higher-dimensional theories, the truth
is that there is not a clear solution to tackle this problem and
one must assume simply a vanishing cosmological constant.
Traditionally, canonical (quintessence) [28,29] and nonca-
nonical (k-essence) scalar fields [30–32] are identified as
dynamical dark energy [33]. However, one can go beyond
these conventional approaches by modifications of the geo-
metric sector of Einstein gravity by breaking its fundamental
assumptions [34,35], or by including extra fields nonmini-
mally coupled to gravity [36–44].
An intermediate approach to account also for the

aforementioned discrepancies in the ΛCDM cosmological
model is to assume phenomenological interactions between
dark mater and dark energy [45,46]. This idea has been
extensively explored in the literature by examining a wide
variety of interaction types (see e.g., [47,48] and references
therein) but missing, in most of the cases, justification from
the theoretical point of view.1 A more grounded way to
account for the interactions is to build interactions at the
level of the actions by, for instance, conformal and
disformal transformations; the latter was introduced origi-
nally by Bekenstein to relate geometries of the same
gravitational theory [50]. This possibility has been
exploited extensively in the context of scalar-tensor theo-
ries [51–63] but only partially in vector-tensor theories2

(see e.g., [67]); this is what motivates us, therefore,
to investigate such a possibility from a consistent and
comprehensive framework as will be discussed below.
Alternatively, conformal and disformal transformations
have become a complementary mathematical tool in the
understanding of the structure of generalized scalar-tensor
theories [56,68–73]. Although there does not exist a
guiding principle to build interactions from this approach,
there is not a physical reason either, unless some symmetry
principle or fundamental law are imposed, to think that the
metric associated to dark matter is exactly equal to that
of the gravity sector. It is reasonable to think that this
statement can also be valid for theories when fields are
nonminimally coupled to gravity. It should be stressed
that the coupling between different sectors appears
naturally in the context of higher-dimensional theories
and theories of massive gravity [74], and emerges
generically in brane-world scenarios where matter fields
reside on a hidden moving brane [75]. In scalar-vector-
tensor theories, like TeVeS, the two metrics involved
are related by disformal transformations that relate (non-
trivially) the fields involved [76].

On the other hand, models involving vector or gauge
fields have a long-standing history in cosmological con-
texts [77–84]. Although most of the early works have
focused on the role of vector fields during the inflationary
period [85–90], some authors have also been interested in
the possibility of driving the late-time evolution of the
Universe, either when they are coupled minimally to
gravity [67,91–95] or in more general theories of gravity
when the vector field plays the role of a new degree of
freedom of gravity [96–101]. It is important to mention that
some significant progresses in the construction of coupled-
vector dark energy models have been done recently,
following different approaches to the one we are interested
here3 [102–110]. Nevertheless, closer to the spirit of the
present paper, a new class of conformally coupled dark
energy models based on (spacelike) multivector fields
through a conformal transformation was proposed [67].
One might wonder then whether more general interactions
than the one presented in [67] can be built from disformal
transformations following the same mathematical approach
as in coupled scalar fields’ models of dark energy. This is
the main problem we want to deal with in this paper.
Thus, motivated by the salient role of vector fields in

cosmology along with the phenomenological perspectives
of coupled dark energy models, we propose in this paper to
build interactions between the gravitational sector identi-
fied by the vector field, and dark matter via a vector
disformal transformation which relates the geometry
of both sectors. As a concrete example to see how the
resulting interactions operate at the background level, the
standard Proca theory, and a vector exponential potential
assumed to describe dark energy, are taken to describe the
gravitational sector of the model as a proof of concept. On
the other hand, the conformal and disformal couplings are
assumed to be a functional of the (vector) fields only to
guarantee safely second-order field equations and thus to
avoid the presence of Ostrogradski instabilities at this stage.
As a general result, the derived interaction term is quite
independent of the gravity theory and can be applied to
more general vector-tensor theories such as the generalized
Proca theory [41–43,111]. Some particular choices of
the coupling functions are considered by concreteness in
order to investigate the background evolution by dynamical
system analysis. From here, new critical points arise,
enriching considerably the parameter space in comparison
to the uncoupled case. In all the cases studied, the effect of
the associated coupling parameters is quite significant in
the background evolution of the Universe. Thus, these
results constitute an archetype towards building more
general models of coupled vector dark energy involving;
for instance, first-order derivatives of the vector field within
more general vector-tensor theories that can account,1An interesting proposal comes directly from the quantum

field theory of Einstein-Cartan gravity [49].
2Interplay between both sectors can also result in an interesting

cosmological setting [64–66].
3Some of these works rely on phenomenological couplings to

account for the dark sector interaction.
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among other phenomenological aspects, for the accelerated
expansion. These results also suggest that the use of
observational data at different redshifts (depending on
the coupling type) is imperative to put constraints on the
model parameters, along with the ones derived here from
purely theoretical grounds, aiming at ameliorating the
current discrepancies in the ΛCDM cosmological model.
The content of this paper is structured as follows. In

Sec. II, the covariant form of the interaction term is derived
assuming a field-dependent disformal transformation but
independent of the gravity theory. In Sec. III, the evolution
equations that govern the background dynamics are found
for a particular model. In Sec. IV, dynamical system
techniques are implemented to investigate the cosmological
background dynamics for particular choices of the coupling
functions. Complementary to this study, we apply some
numerical methods in Sec. V to assess more quantitatively
the effect of the coupling parameters in the evolution of the
Universe. Finally, a general discussion of the results found
and some perspectives of this work are presented in Sec. VI.

II. VECTOR DISFORMAL COUPLING
TO DARK MATTER

We start with a general class of vector-tensor theories
minimally coupled to gravity but allowing higher-order
derivatives self-interaction,4 through the gauge-invariant
term Y ¼ − 1

4
FμνFμν, with Fμν ≡∇μAν −∇νAν, an explicit

symmetry breaking through the quantity X ¼ − 1
2
gμνAμAν,

and a cold dark matter Lagrangian coupled (nontrivially) to
the gravitational sector. Accordingly, the action can be
expressed in the Einstein frame as

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
M2

p

2
RþLAðX;YÞ

�
þ ffiffiffiffiffiffi

−ḡ
p

L̄c½ḡμν;ψc�
�
;

ð1Þ

whereMp is the reduced Planck mass, R is the Ricci scalar,
and ψc is the matter field. The dark matter Lagrangian
follows; therefore, geodesics defined by the barred metric
ḡμν differ from the ones described by the gravitational
sector gμν. Both metrics are related by a vector disformal
transformation of the form5 [43,112]

ḡμν ¼ CðXÞgμν þ BðXÞAμAν: ð2Þ

The barred inverse metric is given by

ḡμν ¼ 1

C

�
gμν −

B
C − 2BX

AμAν

�
; ð3Þ

and the coupling functions CðXÞ and BðXÞ are arbitrary
vector field dependent functions assumed to depend, as the
main theoretical assumption, on the masslike term X only,
i.e., on the field itself and not on its derivatives. It is also
possible to include here dependence of (powers of) the
Maxwell term Y (and its dual) but it may lead to higher-
order equations of motions. This possibility is then
excluded in the present study in order to avoid safely
Ostrogradski instabilities at this stage of the construction.6

In the context of the generalized Proca theory, other
pieces beyond the L2 (identified here simply as LA), as
the L3, which is absent in the non-Abelian version of the
theory [44,115,116], can be included for generality. The
latter however introduces additional degrees of freedom
that can, in turn, lead to overcloud the already known
conditions for the avoidance of Laplacian and ghost
instabilities [97] due to the nontrivial coupling to dark
matter. By varying the action with respect to the metric, the
gravitational field equations in the Einstein frame yield

M2
p

2
Gμν ¼ TðAÞ

μν þ TðcÞ
μν þ TðiÞ

μν : ð4Þ

where the energy-momentum tensor of each component are
defined respectively as

Tμν
ðAÞ ¼

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LAÞ

δgμν
; Tμν

ðcÞ ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ
δgμν

;

Tμν
ðiÞ ¼

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LiÞ

δgμν
; ð5Þ

where the index i ¼ r; b stands for the radiation and
baryons components, respectively, which evolve in the
standard manner since they are minimally coupled to
the gravitational sector.7 In order to relate the energy-
momentum tensor for dark matter in the Jordan (barred)
and Einstein (unbarred) frames, it is necessary to find the
relation between the determinant of the barred and unbarred
metrics

ffiffiffiffiffiffi
−ḡ

p ¼ ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðC − 2BXÞ

q
: ð6Þ

4A general vector-tensor theory that contains up to two
derivatives with respect to metric and vector field has been built
as an extension of a massive vector theory in curved spacetime
[112,113].

5This kind of vector disformal transformation was firstly intro-
duced in the literature to build general self-interactions of the vector
field in a Minkowski background at the desired order [43].

6Note that although the inclusion of higher-derivative terms
lead inevitably to the propagation of unwanted degree of free-
doms, it is possible to integrated them out by a Hamiltonian
constraint. This approach is used particularly when general
disformal transformations involving powers of the field strength
tensor Fμν are used to build nonlinear extensions of the Einstein-
Maxwell theory [114].

7They may be affected however in an indirect way by the
coupling since gravity acts as a messenger between all the
components.
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From all the above, the energy-momentum tensor of dark
matter in both frames follows from the relation

Tμν
ðcÞ ¼

ffiffiffī
g
g

r
∂ḡαβ
∂gμν

T̄αβ
ðcÞ; ð7Þ

where the energy-momentum tensor in the barred frame has
been defined as

T̄αβ
ðcÞ ¼

2ffiffiffiffiffiffi
−ḡ

p δð ffiffiffiffiffiffi
−ḡ

p
LcÞ

δḡαβ
: ð8Þ

Differentiating explicitly Eq. (2) with respect to the
unbarred metric gives the Jacobian of the transformation
required in Eq. (7) to transform the energy-momentum
tensor from one frame to another. This is showed in the
Appendix along with other useful relations. The explicit
transformation is

Tμν
ðcÞ ¼

ffiffiffī
g
g

r �
CT̄μν

ðcÞ þ
1

2
AμAνðC;Xgαβ þB;XAαAβÞT̄αβ

ðcÞ

�
: ð9Þ

Here the subscript X (and Y to be used later) represents
derivatives with respect to the mass term (and its kinetic
term). Thus, in order to preserve the isotropy of the
background we choose the temporal component of the
vector field only. It leads, as a result, to have a pressureless
fluid in both frames. Nevertheless, we can start from a
situation in which the fluid is defined pressureless in the
unbarred metric but once one assumes, for instance, a
nonvanishing spatial configuration for the vector field,
taking three copies of canonical Maxwell fields to be also
consistent with the background properties, an effective
pressure can arise in the Jordan frame due to the non-
minimal coupling between matter and (spatial) vector
fields. This feature is present in the conformally coupled
multi-Proca vector dark energy model [67] due to the
second term of Eq. (9). This does not happen however for
the scalar field case where the dark energy fluid is always
pressureless in both frames.
After extremizing the action with respect to the vector

field, one gets the relation δLA
δAα

¼ − 1ffiffiffiffi−gp δð ffiffiffiffi
−ḡ

p
L̄cÞ

δAα
, which is the

Euler-Lagrange equation sourced by the coupling8 vector
field to dark matter Qα

∂LA

∂Aα
−∇β

∂LA

∂ð∇βAαÞ
¼ Qα: ð10Þ

It can be written in a more explicit and compact way given
the dependence of the vector Lagrangian as

LA;Y∇βFαβ þ LA;XAα þMβFαβ ¼ Qα; ð11Þ

where Mβ ¼ LA;XXAν∇βAν þ LA;YYFρν∇β∇νAρ and Qα

have been defined as

Qα ¼ −
1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ
δAα

¼ −
1ffiffiffiffiffiffi−gp

�
∂ð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ
∂Aα

−∇μ
∂ð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ
∂ð∇μAαÞ

�
: ð12Þ

This result is quite general in the sense that can be applied
to more general vector-tensor theories, involving higher-
order derivatives self-interactions and nonminimal cou-
pling to gravity, and can be extended to more general
disformal transformations.9 The purpose of this paper
however is to apply these results to a canonical vector-
tensor theory consisting of the piece L2ðFμν; AμÞ, in whose
case such higher self-interactions are absent. Despite the
minimal realization of this theory, we shall see that it can
exhibit interesting features in the dynamics of the Universe
due to the conformal and disformal couplings since the
interacting term depends essentially on the type of the
transformation and not on the vector-tensor theory taken
a priori. On the other hand, in the present model the last
term in equation Eq. (12) vanishes since, by construction,
there is no dependence of the barred metric on derivatives
of the vector field [see Eq. (2)]. This latter aspect is one of
the most notorious differences in comparison to the vastly
explored scalar disformal case. Thus, the chain rule allows
us to rewrite the remaining part of Eq. (12) in terms of the
Jacobian transformation as follows:

∂

∂Aα
ð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ ¼
∂ð ffiffiffiffiffiffi

−ḡ
p

L̄cÞ
∂gμν

∂gμν
∂ḡαβ

∂ḡαβ
∂Aα

¼ −
ffiffiffiffiffiffi
−g

p
Qα: ð13Þ

The Bianchi identities guarantee the covariant conservation
of the total energy-momentum tensor

∇μTðAÞ
μν þ∇μTðcÞ

μν ¼ 0; ð14Þ

which is related to the Euler-Lagrange equation by virtue of
the (first) Noether theorem

∇μT
μ
ðAÞν ¼ −∇μT

μ
ðcÞν ¼ Qμ∇νAμ −∇μðQμAνÞ

¼ QμFνμ − Aν∇μQμ: ð15Þ

8Notice that Qα can be thought of as the component of an
electric current by analogy with electromagnetism.

9For instance disformal transformations containing
higher-order derivatives of the vector field of the form ḡμν ¼
CðY2; Y4Þgμν þ BðY2; Y4ÞFμρgρσFσν will contribute to terms
beyond the second term of Eq. (12) and, therefore, to a more
general coupling. The equations of motions can be however
reduced to second order by finding the associated Hamiltonian
constraint [114].
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It is also important to highlight that the source term in
Eq. (15) does not follow the same structure as its scalar
analog, i.e., it does not have the compact form Q∇νϕ
present in coupled scalar field models, but, on the contrary,
it is more involved by virtue of the second term and because
Qμ is promoted to a tensor quantity.
In a more fundamental physical ground, given that we

expect that our low-energy world (late-time cosmology) is
described by an effective field theory, as the low-energy
description Eqs. (1) and (2), we do not expect that
radiative corrections break the (effective) dark sector
coupling at the scales we are concerned about. In other
words, the theory we propose operates at sufficiently low-
energy scale that quantum corrections are unimportant
since the contributions from the nonrenormalizable oper-
ators will be suppressed (far) below the strong-coupling
scale. Hence, the structure of the couplings remains
untouched and the validity of the derived results are
ensured at the associated low-energy scale. Notice, how-
ever, that in the context of quintessence, a coupling to
ordinary matter can rise even though it receives contri-
butions from the theory at high energies, which should
lead to observable long-range forces [117].

III. CONCRETE MODEL

We consider the standard Proca theory with a
vector potential10 for the vector-tensor sector LA ¼
m2X þ Y − VðXÞ, so the coefficient containing the
higher-order derivative self-interactions Mβ in Eq. (11)
vanishes. The artificial splitting of the potential and
the mass term is done just to be reminiscent of the
generalized Proca theory where the mass term and the
canonical Maxwell term belong to the lowest-order
Lagrangian (L2 ¼ m2X þ Y) and higher-order derivative
self-interactions can be seen as corrections to the mass
term [41,111]. Such derivative self-interactions for the
vector field are precisely responsible of the existence of
a self-accelerating solution [97] in a similar way that the
vector potential does in our case. Hence, a more general
potential can include terms associated to derivative self-
interactions that contribute to the effective mass due to the
presence of a massive vector field in gravity. Though this
splitting is not necessary at all, it allows us to lie somehow
in the spirit of modified gravity theories. We remind the
reader that the results of Sec. II are quite general and
can be applied to more general vector-tensor theories.
So, after explicit differentiation of LA, as indicated by
the left-hand side of Eq. (11), and calculating the

interacting term according to Eq. (13), the equation of
motion for the vector field is reduced to the novel form

∇μFμνþðV;X−m2ÞAν

¼−
B
C
Tνμ
ðcÞAμþ

D
2C

ðC−2BXÞðC;XTðcÞ þB;XT
αβ
ðcÞAαAβÞAν;

ð16Þ

where we have defined the quantity D≡ 1
C−C;XXþ2B;XX2 in

analogy to the scalar case. In the absence of coupling, that
is C ¼ 1 and B ¼ 0, we recover the standard Proca theory
plus a general potential. The energy-momentum tensor of
the vector field reads explicitly

Tμν
ðAÞ ¼ Fμ

σFσν −
1

4
gμνFρσFρσ þm2

�
AμAν −

1

2
gμνAρAρ

�
− V;XAμAν − Vgμν: ð17Þ

We proceed now to compute the field equations in the
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time with line element ds2 ¼ −dt2 þ a2ðtÞδijdxidxj, where
aðtÞ is the scale factor. To do so, we consider the commonly
adopted temporal configuration for the vector field which is
compatible with a homogeneous and isotropic background.
Moreover, another reason why we choose such a particular
configuration is because it can support the disformal (last)
term in Eq. (16), contrary to the purely spatial configuration
(or cosmic triad), given that matter is assumed pressureless.
Accordingly, we take

Aμ ≡ ðAðtÞ; 0; 0; 0Þ; ð18Þ

to allow the generality of the coupling setting proposed.
Here AðtÞ is the temporal component of the vector field.
Accordingly, the field equations read explicitly

3M2
pH2 ¼

�
m2

2
− VX

�
A2 þ V þ ρc þ ρr; ð19Þ

M2
pð3H2 þ 2 _HÞ ¼ V −

1

2
m2A2 −

ρr
3
; ð20Þ

ðm2 − VXÞA ¼ AρcðCX − BXA2 − 2BÞ
BXA4 − CXA2 þ 2C

: ð21Þ

Here an upper dot denotes derivative with respect to cosmic
time and HðtÞ≡ _a=a is the Hubble parameter. It is
instructive to see that the branch A ¼ 0 in Eq. (21) is
allowed as in the case of the standard Proca and generalized
Proca theories. Nevertheless, there can exist other solutions
satisfying the equation of motion of the vector field in

10The self-interacting potential plays mostly the same role as in
the case of higher-order Lagrangians in the generalized Proca
theory (or other modified theories of gravity) providing self-
accelerating solutions and, depending on the structure, contribute
to the effective mass due to the presence of a massive vector field
in gravity.
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comparison to the uncoupled case.11 It means that in this
simple scenario the coupling supports the time evolution of
the vector field which depends clearly on the energy density
associated to dark matter and the coupling functions.
We expect then that the vector field vanishes during the
radiation dominance or it does not play any role when
dark matter is subdominant to the energy density of the
Universe. In other words, the coupling becomes ineffective
and in turn the vector field, by construction, in regions of
low dark matter density. From Eqs. (19)–(20), we define the
energy density ρA and pressure PA for the vector field

ρA ¼
�
m2

2
− VX

�
A2 þ V; ð22Þ

pA ¼ m2A2

2
− V: ð23Þ

From these definitions we can derive the continuity
equation associated to dark energy with equation of state
wA ¼ PA

ρA
and an interaction term12 Q̃,

_ρA þ 3HðρA þ pAÞ ¼ −Q̃: ð24Þ

Assuming a perfectlike fluid for dark matter in the Einstein
frame we get

_ρc þ 3Hρc ¼ Q̃: ð25Þ

It is convenient and possible to split the interaction term
into the conformal and disformal contributions for a better
interpretation and treatment in the subsequent analysis,

as Q̃ ¼ ρc
_A
2A γ ¼ ρc

_A
2A ðγC þ γBÞ, with

γC ¼ −2 CX
C A2 þ A4ðC2

X
C2 − 2 CXX

C Þ
ðCX
C A2 − 2ÞðCX

C A2 − 1Þ ; and γB ¼ A2ð10BXA2 þ 4Bþ A6ðB2
X − 2BXXBÞ þ 2A4ðBXX − 3BXBÞÞ

ð2þ BXA4Þð1þ BXA4 þ BA2Þ : ð26Þ

Thus, the continuity equations tell us that both components
interact with each other through a novel interaction term Q̃
determined by the purely conformal γC and disformal γB
couplings. A very useful quantity that accounts for the
evolution of the Universe is the effective state parameter

weff ≡ pT

ρT
¼ −

�
1þ 2 _H

3H2

�
; ð27Þ

where pT and ρT are respectively the total pressure and
energy density. At this point we have derived all the key
equations for the subsequent analysis of the background
dynamics.

A. Stability analysis

The coupling of the vector field to dark matter may
in principle introduce some classical (and quantum)

instability issues in the theory that can be associated to
the presence of ghost fields; that is, the propagation of
undesired (physical) degrees of freedom. This subject has
been the central concern when building modified theories
of gravity or theories with nonminimal couplings to matter
that aim to go beyond general relativity. There are some
known analytical strategies to tackle this issue, such as the
Stueckelberg trick or perturbative analysis of linearized
field equations around some background spacetime. The
former method sometimes allows a quick examination of
instabilities of the scalar sector of the theory. We then adopt
this approach. In doing so, we follow closely Ref. [119],
which implemented the Stueckelberg trick to unveil ghost
instabilities of vector fields in vectorized neutron stars.13

Let us first check the structure of the vector field equation
of motion Eq. (16). This can be recast, however, in a more
canonical form. To do so, the generalized Lorentz con-
straint gνρ∇ρðĝμνAμÞ ¼ 0 is derived by exploiting the
antisymmetric property of Fμν (∇ν∇μFμν ¼ 0), where
the effective metric

ĝμν ¼ ðVeff
;X þ βÞgμν − B

C
Tμν
c ; ð28Þ

is defined for convenience. Here Veff
;X ¼ m2 − V;X and

β ¼ − D
2C ðC − 2BXÞðC;XTðcÞ þ B;XT

αβ
ðcÞAαAβÞ. Notice that

in the Lorenz constraint ∇ρĝμν ≠ 0. At this point of the

11It implies that the coupling can enhance the vector field
dynamics in periods when dark matter contribute significantly to
the energy density of the Universe. It will be then quite interesting
to investigate the model proposed in [118] where the equation of
motion of the vector field is simply a constraint equation. Hence,
once the coupling is turned on, the equation of motion can now
evolve comprehensively to drive the cosmological acceleration
beyond the de Sitter solution found there.

12This term is exactly equal to the right-hand side of Eq. (15),
so this is not the source term Q in Eq. (11). On the other hand,
note that Q̃ contains time derivatives of ρc but, after some
algebraic manipulations, they all can be rewritten in terms of ρc
and rearranged to recover the canonical form of the continuity
equation.

13Several groups have also argued similar pathologies inherent
to self-interacting vector fields [120–123] and, on the other side,
possible solutions [124,125].
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derivation the equation of motion can be rewritten in a
compact way as

∇μFμν ¼ gμ̂νAμ; ð29Þ

from which one can think mistakenly that gμ̂ν corresponds
to the effective mass squared, but it is not case, as we shall
see below.14 Interestingly, in the more general case of
disformal transformations the function accompanying Aμ in
Eq. (29) is promoted to a 2-rank tensor quantity and reduces
to a scalar function as in the conformal case of Ref. [119].
Finally, after cleverly rearranging Eq. (29) to collect terms
proportional to Aμ and expanding derivatives, one arrives at
the wave equation15

□Aρþ∇ν ln ẑ∇ρAν−∇ρ

�
B
C
Tμν
ðcÞ∇νAμ

�
−∇ν

�
B
C
Tμν
ðcÞ

�
∇ρAμ

¼
�
∇ρ

	
∇ν

�
B
C
Tμν
ðcÞ

�
−∇μ ln ẑ



þRρμþ ĝμρ

�
Aμ; ð30Þ

where we have defined ẑ ¼ ðVeff
;X þ βÞ and used the

commutation rules for covariant derivatives. From here it
is clear that the true effective mass squared corresponds
to the quantity in the squared bracket. This equation
reduces consistently to Eq. (6) of Ref. [119] for the
conformal case as can be checked. One can consider only
higher derivatives of the field to see the principal part of the
equation of motion which gives us, besides, a notion of its
hyperbolic structure. Hence, first and third terms provide at
leading order�

gαβgμρ −
B
C
Tμα
ðcÞg

βρ

�
∇β∇αAμ þ � � � ¼ MμρAμ; ð31Þ

where Tμα
ðcÞ ¼ gμαdiagð−ρc; 0; 0; 0Þ for a pressureless DM

fluid, the dots stand for low-order derivatives of the vector
field and Mμρ accounts for the true effective tensor mass
squared whose associated eigenvalues correspond to the
masses of the physical degrees of freedom. Hence, in order
to keep the right sign of the kinetic energy and thus avoid
the propagation of ghost modes, the coupling functions
should have both the same sign during the whole cosmo-
logical evolution. On the other hand, gradient instabilities
are trivially absent in a theory where the vector field
configuration is purely temporal [like Eq. (18)] and the

spacetime background is isotropic and homogeneous.16

The signature of the coefficient in Eq. (31) is also crucial
to determine the hyperbolic character of the equation of
motion which is ensured under the conditions mentioned
above. In this sense, as long as the coefficient is well-
behaved (i.e., nonsingular) everywhere the field equation
represents hyperbolic evolution. In short, in the purely
conformal case (B ¼ 0) the theory is per se free of ghost
instabilities, and in the purely disformal case (C ¼ 1) the
condition B > 0 must be fulfilled. This is an important
result we have to keep in mind in what follows.
The Stueckelberg field ψ is usually introduced in a

theory to restore the gauge invariance and investigate the
dynamical behavior of different degrees of freedom in the
theory in question. Doing the substitution

Aα → Aα þm−1
V ∇αψ ; ð32Þ

the action is recast in the form

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
M2

p

2
R−

1

4
FμνFμν

−
1

2
gμνðmVAμ þ∇μψÞðmVAμ þ∇μψÞ þ VðAμ;∇μψÞ

�

þ
ffiffiffiffiffiffi
−g

p
L̄c½ḡμνðAμ;∇μψÞ;ψc�

�
: ð33Þ

The Maxwell term is itself invariant under the transforma-
tion Eq. (32). Variation of the new action with respect to the
vector and scalar fields gives, respectively, the equations of
motion

∇μFμν þ ðV;A −mVÞgμνðmVAμ þ∇μψÞ

¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðC − 2BXÞ

q
Σν ð34Þ

and

□ψ þ ðV;ψ −mVÞ∇μAμ ¼ Qψ ; ð35Þ

where

Σν ¼ −T̄ρσ
ðcÞðm2

VA
ν þmV∇νψÞðgρσC;X þ B;Xχρσm−2

V Þ
þ Bð2T̄σν

ðcÞAσ þm−1
V ∇σT̄σν

ðcÞÞ; ð36Þ14This point was noticed in Ref. [119] in vectorized solutions
of neutron stars where tachyonic instability is invoked to trigger
the existence of the vector field inside matter, leading inevitably
to a pathological behavior. This aspect makes a clear distinction
between both theories to advocate that our theory does not suffer
from instability problems.

15Notice that it is possible to eliminate derivatives of Tμν
ðcÞ by

using Eq. (15).

16For instance, in a FLRW background metric with a temporal
vector field configuration that term has the specific form
ð1þ B

C ρcÞÄ.
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Qψ ¼∇μ

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðC− 2BXÞ

q 	
∂ lnC
∂ð∇μψÞ

�
T̄ðcÞ −

B
m2

V
T̄ρσχρσ

�

þ B
m2

V

�
∂ lnB
∂ð∇μψÞ

T̄ρσχρσ þ 2T̄ρμðmVAρ þ∇ρψÞ
�
�

;

ð37Þ

χρσ ¼ ðm2
VAρ þmV∇ρψÞðm2

VAσ þmV∇σψÞ: ð38Þ

As can be seen, the full theory is quite involved to be
studied by this method so we study the conformal case in
what follows and leave for future work the disformal case.
Hence, turning off the disformal part in Eq. (35), the scalar
field equation becomes

□ψ þ ðV;ψ −mVÞ∇μAμ ¼ ∇μ

�
C2

2

∂ lnC
∂ð∇μψÞ

T̄ðcÞ

�

¼ ∇μ½βðmVAμ þ∇μψÞ�: ð39Þ

Accordingly, the Lorenz constraint is reduced to the
constraint equation ∇ν½z̃ðAν þm−1

V ∇νψÞ� ¼ 0, where z̃ ¼
1 − V;X=m2

V þ β=m2
V and β ¼ − C;X

2C T̄ðcÞC2. Hence if z̃ < 0,
a tachyonic instability is developed [see Eq. (29)]. This is
simply avoided by taking, for instance, a general potential
function of the form VðXÞ ¼ fð−λXÞ with λ > 0, and a
general coupling function CðXÞ ¼ gðC0XÞ with C0 > 0 (or
even C0 < 0) such that β > 0, since T̄ðcÞ ¼ −ρ̄. Another
more restrictive possibility is jβj > jV;Xj but independent
of the sign of λ. This condition is precisely the one we
shall consider henceforth because it is consistent with the
dynamical system constraints. Both conditions must be
guaranteed however dynamically. Going further in the
analysis, let us focus on the scalar field equation. We
introduce then an effective metric g̃μν ¼ z̃−1gμν and rewrite
the scalar field equation in terms of such a metric with
the help of the Lorenz constraint from which we get the
relation ∇μðmVAμþ∇μψÞ¼−ðmVAμþ∇μψÞ∇μ log z̃. This
yields

□̃ψ ¼ −g̃μν½ðV;ψ −mVÞ∇μAν þ V;XXm−2
V ðmVAμ þ∇μψÞðmVAν þ∇νψÞ þ ðV;Xm−2

V − 1Þ∇μ log z̃ðmVAν þ∇νψÞ�: ð40Þ

Hence, in both representations, gμν and g̃μν, the signature
must keep fixed otherwise the field ψ becomes a ghost at
least in some region of the spacetime. This depends
crucially whether z̃ changes sign. As we saw above, z̃ is
always positive for the aforementioned conditions. Hence,
the conformal part of theory is not prone to instabilities
issues.
Thus, first examination tells us that if B > 0 ghost

instabilities are absent in the theory either in the purely
disformal case or in the more general case. Even though
we did not analyze the structure of the equation of motion
of the scalar field in the more general case given by
Eqs. (35), (37), and (38), we speculate that the condition
B > 0 is sufficient to avoid ghost instabilities at least in a
FLRW spacetime background with pure temporal con-
figuration for the vector field. For instance, in the

disformal case β ¼ − BXA2ρcð1−A2BÞ
2ð1þBX

2
A4Þ , whereby B > 0 leaves

the theory free of tachyonic instabilities (z̃ > 0) in a
similar manner than the conformal case [see discussion
just below Eq. (39)]. Finally, notice that instabilities can
also occur dynamically whereby the whole evolution of
the coupled system must be checked to determine the
conditions under which this could take place. This must
be addressed numerically to safely avoid any pathological
behavior of the theory.

IV. DYNAMICAL SYSTEM

We proceed now to rewrite the system of Eqs. (19)–(21)
and Eqs. (24)–(25) in the form of an autonomous system.

It is convenient to define firstly the following dimension-
less quantities17 that define the phase-space portrait:

x≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VXA2

3M2
pH2

s
; y≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

3M2
pH2

s
; z≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc

3M2
pH2

r
;

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρr
3M2

pH2

r
; u≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2A2=2
3M2

pH2

s
; v≡ A

Mp
: ð41Þ

According to these definitions, the Friedmann constraint
yields

x2 þ y2 þ z2 þ r2 þ u2 ¼ 1: ð42Þ

With this, we are equipped to obtain the first-order differ-
ential equations:

17The introduction of v is motivated mainly by two technical
reasons: first, it allows us to trace and compact more easily terms
proportional to the vector field which arise from the coupling of
matter to the vector field and the vector potencial once their
explicit forms are specified. Second, it helps us to close the
system and write it in the form of an autonomous system. Hence,
the choice of our variables renders the phase space compact
without increasing the dimension.
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x0 ¼ x

�
−ϵH þ v0

v
ð1 − λv2Þ

�
;

y0 ¼ −yðϵH þ λv0vÞ;

z0 ¼ z
2

�
−2ϵH − 3þ γ

2

v0

v

�
;

r0 ¼ −rð2þ ϵHÞ;
u0

u
¼ v0

v
−
H0

H
;

v0

v
¼ 6u2 þ 3x2

4λ2v4y2 − x2 − 2u2 − γ
2
z2
: ð43Þ

Here the prime denotes derivative with respect to N ≡ ln a.
It is interesting to point out that the last term in the
differential equation of z evidences the coupling between
dark matter and the vector field which is also present in
the equations associated to the vector field. Such a term
enriches the overall dynamics of the cosmological model in
comparison to the uncoupled case. In the above equations
the accelerating equation

ϵH ¼ H0

H
¼ −

3

2
ð1þ weffÞ with weff ¼

r2

3
þ u2 − y2;

ð44Þ

and an exponential potential VðXÞ ¼ V0e−2λX=M
2
p , with λ

being a dimensionless model parameter, have been used.
Note that from Eq. (41) we can get the useful relation
x2 ¼ 2λv2y2 that allows us to reduce the dimension of the
phase space since v is a necessary variable to close the
system. Finally, the equation of state parameter for dark
energy is

wA ¼ −y2 þ u2

x2 þ y2 þ u2
: ð45Þ

It remains to define the functional form of the coupling
functions CðXÞ and BðXÞ entering in γ through Eq. (26).
Hence, some particular forms for the couplings will be
assumed in the next part to have concrete examples of
how the emerging interaction operates at the level of the
background.

A. Critical points and stability

We follow the standard procedure to calculate the critical
points,18 that is, by matching to zero each equation of the

autonomous system and solving a set of simple algebraic
expressions. However, before doing so, it is necessary to
define the conformal and disformal couplings in the
autonomous system as discussed. However, no matter their
functional forms, they are still free of the ghostlike
Ostrogradski instability and can not be determined, as
far as we know, by some physical principle beyond the
assumptions made here.19 Once some functional forms are
given, the stability of the critical points will be analyzed
separately in order to track the effects of each type of
coupling in the dynamical behavior of the system as
identified in Eq. (26).

1. Conformal case

This case corresponds to BðXÞ ¼ 0, leading to γB ¼ 0
everywhere. We first assume a power-law function for the
conformal coupling

CðXÞ ¼ C0

�
X
M2

p

�
q
; ð46Þ

where C0 and q are constants. We will refer to this
particular choice for the coupling function as the confor-
mally coupled power law model henceforth. For this model,
the interaction function in the continuity equations takes
the simple constant form γC ¼ 2q

1−2q. Another possibility we
will explore is the exponential coupling

CðXÞ ¼ C̃0e
4αX
M2
p ; ð47Þ

where C̃0 and α are constants. We call this model the
conformally coupled exponential model henceforth. The
interaction function turns out to be now a function of
the vector field

γC ¼ −
4αv2ð1þ 2v2αÞ
1 − 6αv2 þ 8α2v4

: ð48Þ

With all this, the system is completely determined, it means
that the physical space renders compact and close. We report
then all the critical points in Table I and show the conditions
that determine both their dynamical character and their
existence in phase space. Also, some physical quantities
of interest are shown for a better comprehension of the
dynamical behavior of the system. Both models can be
analyzed in most of the cases (but carefully) together since
they share some similarities in phase space as the existence
of the fixed points ðA�Þ; ðB�Þ; ðE�Þ; ðD1;2Þ; ðD3;4Þ, and (S)
for both types of couplings. Some of them also share the18We strongly suspect that the existence of some unphysical

solutions in this model is due to the nontrivial coupling of the
vector field to matter. The existence of such solutions arise
commonly in theories with noncanonical fields, nonminimal
coupling to gravity and nontrivial couplings between different
fields.

19This kind of assumption has to be made in theories with free
functions, as in the generalized Proca theory where the free
functions Gi are taken ad hoc to realize the de Sitter fixed point
while they are consistent with the stability conditions [97].
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same eigenvalues except for (E). For these points the
conditions for existence and acceleration associated to the
exponential coupling, parametrized by α, are shown in
parentheses. The other points belong either to one coupling
or another as can be read off. In particular, points marked
with a tilde correspond to the exponential coupling only.
Having specified which of the fixed points come from one or
another coupling function, we discuss the main physical
features of each of the fixed points as follows20:

(i) Point (A�): This point describes the standard
radiation dominance with a saddlelike behavior.
Eigenvalues are independent of the model parame-
ters ð−3;−1; 1=2; 2Þ. On the other hand, it is not
surprising the nonexistence of a scaling vector-
radiation solution, contrary to its scalar analog,
because the kinetic term Y vanishes for a purely
temporal configuration in FLRW background,
which does not occur, on the contrary, for purely
spatial configuration of the vector field. Putting it in
another way, the vector degree of freedom is not
propagating.

(ii) Point (B�): This fixed point accounts for fully
matter domination and is a saddle point with
eigenvalues ð3=2; 3=2;−1; 0Þ and, as in the radiation

case, it does not depend on the models parameters by
any means.

(iii) Point (B̃): Despite the vector field does not vanish in
this solution, physically things are not much differ-
ent in this solution in comparison to the standard
dark matter dominated scenario (B�), they even
have the same eigenvalues.

(iv) Point (C): This fixed point has the form of a scaling
solution because of the absence of the potential
parameter λ that can generate acceleration and, even
more, because of the presence of dark energy during
the dark matter domination epoch. Nevertheless, the
dynamical character of this fixed point must be
established by checking the sign of the real parts of
the eigenvalues of the Jacobian matrix associated
to the linear system. Eigenvalues can be reduced to
the form�

3 − 6q
−2þ 5q

;
5 − 17q

2ð−2þ 5qÞ − χ;
5 − 17q

2ð−2þ 5qÞ þ χ;

3ð−1þ 2qÞð1þ v2λÞ
−2þ 5q

�
; ð49Þ

where χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2−5qÞð−1þqÞ2qð−2þ5qÞ8

4qð−2þ5qÞ11
q

. There exist con-

ditions in which eigenvalues have all negative
real part, guaranteeing thereby the stability of this
solution; this is, the attractorlike character of this

TABLE I. Fixed points of the autonomous system described by Eq. (43) for both types of conformal couplings chosen [Eqs. (46)–(47)]
and their main physical features such as the energy density parameter of the vector field (dark energy), its equation of state, the effective
equation of state parameter, conditions for the existence of the critical points in phase space, and the conditions for supporting late-time
accelerated expansion. Critical points marked with a tilde belong to the exponential coupling only but several critical points coexist in
both cases. These are (A�), (B�), (E�), (D), and (S) solutions.

Point rc yc zc uc vc ΩA wA weff Existence Acceleration

ðA�Þ �1 0 0 0 0 0 � � � 1=3 ∀ qðαÞ; λ No
ðB�Þ 0 0 �1 0 0 0 � � � 0 ∀ qðαÞ; λ No
ðB̃1;2Þ 0 0 �1 0 ∓ 1ffiffiffiffi

2α
p 0 � � � 0 α ≠ 0; ∀ λ No

ðB̃3;4Þ 0 0 �1 0 � 1ffiffiffiffi
2α

p 0 � � � 0 α ≠ 0; ∀ λ No

ðC1;2Þ 0 0 �
ffiffiffiffiffiffiffiffiffiffiffi
−2þ6q
−2þ5q

q
∓

ffiffiffiffiffiffiffiffi
q

2−5q

q
0 q

2−5q 1 q
2−5q q ≠ 2=5; 0 < q < 1=3; ∀ λ 2=5 < q < 1

ðC3;4Þ 0 0 �
ffiffiffiffiffiffiffiffiffiffiffi
−2þ6q
−2þ5q

q
�

ffiffiffiffiffiffiffiffi
q

2−5q

q
0 q

2−5q 1 q
2−5q q ≠ 2=5; 0 < q < 1=3; ∀ λ 2=5 < q < 1

ðD̃1;2Þ 0 1 �
ffiffiffiffiffiffi
− λ

α

q
0 ∓ 1ffiffiffiffi

2α
p 1þ λ

α − 1
1þλ

α

−1 α ≠ 0, λ < 0 Yes

ðD̃3;4Þ 0 1 �
ffiffiffiffiffiffi
− λ

α

q
0 � 1ffiffiffiffi

2α
p 1þ λ

α − 1
1þλ

α

−1 α ≠ 0, λ < 0 Yes

ðF̃1;2Þ 0 1 �
ffiffiffiffiffiffiffiffi
− λ

2α

q
0 ∓ 1

2
ffiffi
α

p 1þ λ
2α − 1

1þ λ
2α

−1 α ≠ 0, λ < 0 Yes

ðF̃3;4Þ 0 1 �
ffiffiffiffiffiffiffiffi
− λ

2α

q
0 � 1

2
ffiffi
α

p 1þ λ
2α − 1

1þ λ
2α

−1 α ≠ 0, λ < 0 Yes

ðE�Þ 0 0 0 �1 0 1 1 1 ∀ qðαÞ; λ No
ðD1;2Þ 0 � 1ffiffiffiffiffiffiffiffiffi

1þv2λ
p 0 ∓v

ffiffiffiffiffiffiffiffiffiffiffi
λ

−1−v2λ

q � � � 1 −1 −1 ∀ qðαÞ; Eq: ð50Þ ∀ qðαÞ; λ
ðD3;4Þ 0 � 1ffiffiffiffiffiffiffiffiffi

1þv2λ
p 0 �v

ffiffiffiffiffiffiffiffiffiffiffi
λ

−1−v2λ

q � � � 1 −1 −1 ∀ qðαÞ; Eq: ð50Þ ∀ qðαÞ; λ
(S) 0 1 0 0 0 1 −1 −1 ∀ qðαÞ; λ ∀ qðαÞ; λ

20Note that at late times there is not distinction between the
vector field and dark energy nominations, so we will speak
indistinctly when referring to them.
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point, while they still being consistent with both the
conditions for acceleration (2=5 < q < 1) and exist-
ence of the critical points (0 < q < 2=5). This point
would correspond to an attractor solution supported
by the power coupling function. Nevertheless, as we
can infer from the above ranges, their parameter
spaces are, unfortunately, incompatible with each
other. So this point is discarded to address the late-
time accelerated expansion. On the other hand, it is
easy to see that all eigenvalues can be either negative
or positive, depending on the multiple choices of the
model parameters. It cannot be however a repeller
(eigenvalues with positive real parts) because the
condition for the first eigenvalue to be positive
(2=5 < q < 1=2) is not compatible with any of
the other eigenvalues; 1=4 < q < 2=5 for the second
eigenvalue and 1=4 < q < 2=5 for the third one. As
this fixed point is already discarded as an attractor
point and a repeller, we focus instead on the
possibility of having a saddle point by demanding
that at least one of the eigenvalues has opposite sign.
After exploring the available parameter space we see
that second and third eigenvalues are monotonically
increasing functions for the range 0 < q < 1=3
which cross the zero before 2=5, and the first
eigenvalue is a monotonically decreasing function
for the same range. So the latter has opposite sign at
the time the other eigenvalues cross the zero.
Actually, it does not matter whether this happens
or not because the fourth eigenvalue has always
opposite sign (positive) with respect to the first
negative eigenvalue. This is also true for reasonable
values of v and λ in Eq. (49) as we have checked.
Hence, this fixed point can be classified as saddle
point. Also, notice that the branch λ ¼ 0 (which
leaves v unconstrained) is allowed. It means that the
exponential potential parameter may or may not
affect the dynamical behavior of this fixed point. We
can then conclude that this fixed point corresponds
to a novel vector dark matter scaling solution with
effective equation of state parameter weff ¼ q

2−5q
which deviates from zero for q ≠ 0 and increases
monotonically with it. A small value of q is then
expected so that weff is close to zero (dark matter
domination). This aspect will be better analyzed in
the numerical analysis of the model taking, a priori,
the inferred range 0 < q < 1=3. Notice also that one
can go directly to the standard dark matter domi-
nation point (B�) by making q ¼ 0, however this
branch does not give rise to a new solution because
it is not supported by a constant coupling; γC is
powered, instead, by derivatives of the coupling
function [see Eq. (26)]. On the other hand, the
energy densities associated to dark matter and
dark energy are, respectively, ΩDE ¼ q

2−5q and

ΩDM ¼ −2þ6q
−2þ5q. Here the mass term of the vector

field is the one that supports the presence of dark
energy during dark matter domination.

(v) Point (S): This fixed point is also present in both
type of coupling but independent on the respec-
tive coupling parameters. This solution is a de Sitter
attractor point with negative eigenvalues ð−3;−4;
−3;−3=2Þ. As this fixed point is fully supported by
the exponential potential, it will be interesting to see
deviations from this solution, as those provided by
(D) and (D̃), though the latter seems to deviate more
considerably from a constant dark energy density as
we will see.

(vi) Points (D̃, F̃): These fixed points are scaling solu-
tions modulated by the exponential coupling para-
meter α and both may account, in principle, for the
accelerated expansion (weff ¼ −1). Despite subtle
differences in their critical points (a factor of 1=2),
their physical parameters differ roughly by a factor of
a half so they can be analyzed together. The vector
field contributes to the dark energy density so that
ΩDE ¼ 1 − jλj

2α and, therefore, ΩDM ¼ jλj
2α in accor-

dance with the conditions for the existence. For
λ ¼ 0 we recover the de Sitter point (S) described
above. However, stability must be treated separately.
The fixed point (F̃) is actually a saddle point with
eigenvalues ð0;−4;−3; 4Þ and the fixed point (D̃)
does have an attractorlike character since all nonzero
eigenvalues are negative, taking the simple form
ð0;−4;−3;−3Þ, and they all being independent of
the model parameters. Stability is then guaranteed
trivially without imposing further conditions.21

(vii) Point (D): This fixed point also provides accelerated
expansion (weff ¼ −1) and is present in both type of
couplings. Critical points depend on the exponential
potential parameter λ and the vector field v. The latter
can take in principle any value to satisfy simulta-
neously theFriedmann constraint and the autonomous
system but can be constrained tightly from the
condition for the existence of the critical points itself,

λ < 0 ∧
�
−

ffiffiffiffiffiffiffi
−
1

λ

r
< v < 0 ∨ 0 < v <

ffiffiffiffiffiffiffi
−
1

λ

r �
:

ð50Þ

21Note however that linear stability analysis fails to determine
the stability properties of nonhyperbolic points whereby other
alternative approaches must be implemented (see e.g., [47]). We
have used a heuristic criterion to confirm the attractor character of
this kind of points by assessing whether different trajectories for a
wide range of initial conditions in phase space converge ulti-
mately to the conjectured attractor point. Although this is not
shown here, it can be checked analogously with the numerical
analysis we present later.
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Turning off the vector field v ¼ 0, leads to de Sitter
point (S). Despite the eigenvalues being very lengthy,
these can be reduced after some manipulations and
after exploring the suitable parameter space, to the
simple form ð− 3

2
;−3;−4; 0Þ without loss of general-

ity. Stability is also guaranteed without problems.
(viii) Point (E�): This fixed point is present regularly in

many cosmological models based on scalar and
vector fields and is supported by their kinetic
energies. From here it is called kinetic-dominated
solution or kination in short. This is a saddle point
with eigenvalues ð−3; 3; 2; 3=2Þ and ð−3; 2; 3−9q

2−4q ; 3Þ,
respectively, for the exponential and power law
couplings. For our case, however, it is supported
entirely by the mass term uc ¼ 1 (since Y ¼ 0) and
corresponds to a fully vector-field domination with a
stiff equation of state weff ¼ 1, similar to the usual
kinetic dominated solution.

2. Disformal case

We can proceed in different ways, but looking for the
effects of the pure disformal coupling and keeping a
reasonable number of free parameters. Thus, we take for
this model

CðXÞ ¼ 1; BðXÞ ¼ B0

2βXβ

M2þ2β
p

; ð51Þ

where, unlike the conformal coupling, the disformal
function has units of inverse energy squared. For this
particular disformal function, the interaction term takes the
nonilluminating form

γB ¼ −B0

2v2þ2βð1þ βÞð−1þ βð−2þ B0v2þ2βÞÞ
ð1þ βB0v2þ2βÞð1þ v2þ2βð1þ 2βÞB0Þ

; ð52Þ

which is clearly more involved compared to the conformal
case. So far we have attempted to keep the generality in our
analysis but, unfortunately, by keeping β free there exist
many critical points that make this analysis intractable from
the analytical point of view. We comment some possible
choices after having explored the suitable parameter space
for cosmological implications. For the coupling constant
case β ¼ 0 there are no new critical points compared to the
uncoupled case, though it does not mean that they can not
affect the background dynamics as we will see later in the
numerical analysis. β ¼ −1 leads to the uncoupled case
γB ¼ 0 whose critical points were analyzed together with
the conformal case. That case can also be achieved by, of
course, B0 ¼ 0. For β being positive most of the solutions
are complex and are therefore discarded. So, we focus
mainly on β negative with β ¼ −1=2;−2. The reason why
we take this particular values is because they encompass,
after thorough examination, most of the physical solu-
tions of interest within the available parameter space. Thus,

β ¼ −1=2;−2 provide, respectively, γB ¼ B2
0
v2

2−B0v
and

γB ¼ 2B0ð3v2−2B0Þ
v4−5v2B0þ6B2

0

. Solving the autonomous system for these

interaction terms give rise to several sets of critical points
within which some of them have been already discussed
in the uncoupled and conformal cases. These cover the
standard radiation and matter dominated solutions (A�) and
(B�), respectively, the fixed point (D) that supports
accelerated expansion, the de Sitter solution (S) and the
fixed point (E). So we analyze new emerging solutions
characterized by the disformal coupling only. They are
shown in Table II along with their main cosmological
features. For the case β ¼ −2 many more critical points
appear in phase space in comparison to the case β ¼ −1=2.
The solutions are written in a compact way in terms of the
parameter c, as defined below, for the sake of simplicity. In
the following, we discuss the dynamical character and the
criteria for stability conditions.

TABLE II. Fixed points of the autonomous system given by Eq. (43) for the disformal coupling case with β ¼ −1=2 and β ¼ −2
choices. Fixed points marked with tilde belong to the β ¼ −2 subcase. Their main physical features such as energy density parameter of
the vector field (dark energy), its equation of state, the effective equation of state parameter, conditions for the existence of the critical
points in phase space, and the conditions for supporting late-time accelerated expansion are shown as well.

Point rc yc zc uc vc ΩA wA weff Existence Acceleration

ðH1;2Þ 0 �1 �2
ffiffiffiffiffiffi
−2λ

p
B0

0 ∓ 2
B0

1þ 8λ
B2
0

− 1
1þ 8λ

B2
0

−1 B0 ≠ 0; λ < 0 Yes

ðH3;4Þ 0 �1 �2
ffiffiffiffiffiffi
−2λ

p
B0

0 ∓ 2
B0

1þ 8λ
B2
0

− 1
1þ 8λ

B2
0

−1 B0 ≠ 0; λ < 0 Yes

ðG1;2Þ 0 0 �1 0 � 2
B0

0 � � � 0 B0 ≠ 0 No

ðG3;4Þ 0 0 �1 0 ∓ 2
B0

0 � � � 0 B0 ≠ 0 No

ðH̃1;2Þ 0 �1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2cB0λ

p
0 ∓ ffiffiffiffiffiffiffiffi

cB0

p
1þ 2cB0λ − 1

1þ2cB0λ
−1 B0 > 0; λ < 0 Yes

ðH̃3;4Þ 0 �1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2cB0λ

p
0 � ffiffiffiffiffiffiffiffi

cB0

p
1þ 2cB0λ − 1

1þ2cB0λ
−1 B0 > 0; λ < 0 Yes

ðG̃1;2Þ 0 0 �1 0 � ffiffiffiffiffiffiffiffi
cB0

p
0 � � � 0 B0 > 0 No

ðG̃3;4Þ 0 0 �1 0 ∓ ffiffiffiffiffiffiffiffi
cB0

p
0 � � � 0 B0 > 0 No
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(i) Point (H): This fixed point corresponds to a stable
attractor solution with β ¼ −1=2 and eigenvalues
ð0;−4;−3;−3Þ, they all having (nonzero) negative
real parts, so stability is ensured straightforwardly.
We think of this case as the minimal realization of
the disformal model given the simple form of both
critical points and eigenvalues compared to other
values of β that lead to a more involved stability
conditions. This solution can then drive the late-time
accelerated expansion with weff ¼ −1. From the
condition of existence of the critical points we get
λ < 0 which allows us to write the energy density
parameters as ΩDM ¼ 8jλj

B2
0

and ΩDE ¼ 1 − 8jλj
B2
0

. This

functional form is reminiscent of the energy density
parameters associated to the fixed point ðD̃Þ; B2

0 is
exchanged by 16α. The equation of state for dark
energy reads wDE ¼ − 1

1þ 8λ
B2
0

which depends on both

parameters. For λ going to zero, this fixed point
tends to de Sitter solution; in this sense, therefore,
λ supports the coupling and their effects on the
dynamic evolution from the dynamical system
perspective.

(ii) Point (H̃): This solution, with β ¼ −2, actually
corresponds to two distinct physical solutions but
they can be written in a compact way in terms of
the parameter c (with c ¼ 2, 3), since their main
physical properties can be analyzed together though

it loses its validity when studying the stability
conditions. Hence, the dynamical character of this
point must be treated separately to determine which
of the aforementioned values of c correspond, or not,
to a stable solution. This requirement is set by
demanding that their associate eigenvalues have
all negative real parts. As they are too lengthy to
be reported here and be treated analytically, since
they exhibit explicit dependence on the two param-
eters B0 and λ in nontrivial way, we adopt another
strategy to establish the stability. Before moving on,
the conditions B0 ≠ 0 and λ ≠ 0 must be guaranteed
everywhere to allow eigenvalues take well-defined
values. We notice, when plotting the real part of the
eigenvalues, that they all form a series of constant
planes whose values depend on the region of the
parameter space whereby they can be recast, for
the entire parameter space, in a parametrized way as
follows.

For the case c ¼ 2, eigenvalues can be written as
ðe1; e2; e3; e4Þwith e1 ¼ 0. From Fig. 1, we infer the
value e2 ¼ −3 for any value of the model parameters
λ and B0, e3 ¼ −3 for B0 > 0 and λ > 0, or e3 ¼ −4
for all other cases, among which is the one consistent
with the condition for the existence of the critical
points. Likewise, e4 ¼ −4 for λ > 0 and B0 > 0, or
e4 ¼ −3 for other cases. Here is also included the
condition for existence; these eigenvalues are always

FIG. 1. Real part of eigenvalues associated to the fixed point (H) in the parameter space. These are always negative, so this solution is
stable, corresponding to an attractor solution.
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negative anyway.22 Accordingly, any trajectory in
phase space leaving the matter-dominated period
characterized by a saddle-type behavior will end up
in this stable fixed point. Hence, this fixed point
corresponds to an stable attractor solution and is
refereed to as disformally coupled dark energy
solution with weff ¼ −1, i.e., this fixed point can
drive the late-time accelerated expansion.
For c ¼ 3, the parameter space is a bit more

restricted but still large enough to allows us recasting
the eigenvalues in a similar fashion as before
ðe1; e2; e3; e4Þ with e1 ¼ 0. By examining Fig. 2
we infer the value e2 ¼ −3 for λ > 0 and B0 > 0, or
e2 ¼ −4 for any value of λ and B0 < 0. On the other
hand, e3 ¼ −3 for B0 > 0 and λ < 0. Note that these
two eigenvalues can be positive out of the inferred
regions. Finally, e4 ¼ −3;−4 for any value of λ. The
former case is given by B0 > 0 while the latter one
by B0 < 0. After putting together all the constraints,
we see that there is no allowed parameter space
that leads to a stable solution—that is to say, all
eigenvalues having negative real parts. Moreover,
their real parts are not all simultaneously positive

(repeller) either. As a consequence, this fixed point
has at least one eigenvalue with distinct sign, and can
be classified as a saddle point. It means that some
trajectories in phase space pass close to this point
but never end up here as required for a stable point.
This fixed point hence corresponds to a vector-dark
matter scaling solution.

On the other hand, it is interesting to see that
physical parameters depend on both the disformal
coupling constant B0 and the parameter λ. Even
though they do not explicitly enter into the equation
of weff , they are decisive in setting the stability
conditions as previously discussed. As a final re-
mark ΩDM ¼ 2cB0jλj is a positive definite quantity
consistent with the condition of existence such that
ΩDE ¼ 1 − 2cB0jλj is always less than one, a feature
that is similar to the one found for the fixed
point (H).

(iii) Point (G): This solution corresponds to the case
β ¼ −1=2. This fixed point is a saddle point with
eigenvalues ð3=2; 3=2;−1; 0Þ. It is characterized by
matter dominationΩDM ¼ 1with the presence of the
vector field vc ¼ � 2

B0
but with no contribution to the

content energy of the Universe in the form of dark
energy ΩDE ¼ 0. Despite the presence of the vector
field this solution does not represent properly a
scaling solution. We shall see however that the
presence of the vector field can make things a bit

FIG. 2. Real part of eigenvalues associated to the fixed point ðH̃Þ in the parameter space. These can not be simultaneously negative or
positive for the same parameter values, so this solution corresponds to a saddle point.

22We have also evaluated the numerical value of all eigenval-
ues in the discussed ranges of the parameter space to be sure that
they correspond effectively to the ones we inferred from the plots,
finding thus consistency between both approaches.
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different in comparison to the standard matter-
domination epoch due to the disformal coupling.

(iv) Point (G̃): This point is a saddle point with β ¼ −2
and characterized also by matter domination
ΩDM ¼ 1 with a presence of the vector field in a
renewed form vc ¼ � ffiffiffiffiffiffiffiffi

cB0

p
. We parametrize

the two different emerging solutions in terms of
the same constant c, as was done above for the
point (H̃), but they have indistinguishable eigenval-
ues ð3=2; 3=2;−1; 0Þ. This point, like (G), is analo-
gous to the (B) point of the conformal case, sharing
thus the same physical meaning.

In short, we have investigated the effects of both
conformal and disformal couplings on the physical
phase space by means of dynamical system analysis.
Several critical points exist depending on the coupling
type, enriching thus the suitable phase space compared
to the uncoupled case. In particular we have found
scaling solutions where the vector field does not vanish
during matter domination, and attractor points driving
the late-time accelerated expansion different (or equal)
to de Sitter solution. It remains to investigate, however,
how they impact quantitatively the overall dynamics
of the Universe in comparison to the uncoupled case.
This issue is treated by numerical methods in the
following section.

V. NUMERICAL RESULTS: COSMOLOGICAL
BACKGROUND EVOLUTION

So far, we have gained valuable information about
the suitable parameter space from the dynamical system
perspective that makes the present model cosmologically
appealing in the light of current observations. In this
regard, this analysis has served to examine the conditions
under which the conformal and disformal couplings can
provide stable cosmological solutions, such as scaling
attractor solutions that account for the current accelerated
period. It is necessary for the purpose of better compre-
hension of how this can be visualized in a more realistic
way to solve numerically the coupled system of equa-
tions, and thus to verify all the qualitative features found.
This aspect is explored separately in the next part for each
coupling type.
Overall, to study the background cosmological dynamics

in these models, we integrate numerically the coupled
system Eq. (43), excluding the associated differential
equations for the dynamical variables x and r due to the
constraints x2 ¼ 2λv2y2 and the one given by Eq. (42) that
help us to reduce the number of differential equations. So,
we are left with four differential equations that govern the
evolution of the variables u, v, y, and z. In all the numerical
computations, we set different sets of initial conditions at
N ¼ −12, well within the deep radiation-dominated era,
such that these values lead to a consistent cosmological

evolution.23 These are labeled with the superscript (i). In
addition, we take initial conditions such that the energy
density parameters match the present values (N ¼ 0) [3];

Ωð0Þ
DE ¼ 0.68 and Ωð0Þ

r ≈ 1 × 10−4. To do so, we implement
the trial and error method as a recursive procedure to match
the present values by adapting carefully the initial con-
ditions. In particular, changes in the initial conditions of the
variables y and u impact more notoriously the background
dynamics, so these are allowed to vary until success.
Likewise, we consider respectively the fiducial values
λ ¼ −0.4 and vðiÞ ¼ 0.11, for the potential parameter
and the normalized vector field, unless otherwise stated.
The numerical solution for the ΛCDM cosmological model
is also shown in the plots for comparison. It helps us to
understand better how these coupled models work at the
background level.
Let us make a final remark on the initial conditions. We

recall that ΩDE ¼ x2 þ y2 þ u2 and x2 ¼ 2λv2y2, so if v is
taken to be large enough such that it compensates for
the small value chosen of y as demanded by consistent
cosmological solutions, x can then contribute significantly
to the energy-density parameter of the vector field. This is
not the case however, because once λ is fixed v is
completely constrained [according to Eq. (50)] to allow
for the existence of the attractor solution (D). This is the
reason why, even though v does not vanish, its effect is
almost negligible on the initial conditions. A very different
situation is presented for the conformally and disformally
attractor solutions where v is quite less constrained (see
Tables I and II) and can impact more visibly the cosmo-
logical solutions from the initial conditions as has been
checked. This is not, however, for the purpose of this paper
to explore the entire window of initial conditions. Our main
concern is to investigate the effect of changing the values of
the coupling parameters over a suitable cosmological
evolution.

A. Conformal case

For the conformal case two specific coupling functions
have been studied to figure out their effect in the cosmo-
logical dynamics, both impacting notoriously the evolution
of the Universe at different stages due to the appearance of
novel critical points. The power law coupling, in particular,
supports the emergence of a vector-dark matter scaling
solution (C) that may affect the evolution of structures in a
different way when comparing to the standard ΛCDM

23It worthwhile emphasizing that all initial conditions satisfy
the constraint equation (21), which can be written in terms of the
dynamical variables as 2λv2y2þ2u2

z2 ¼ gðC;CX; B; BXÞ, with g being
a general function of the metric functions. This helps us,
therefore, to control the initial conditions taken in the numerical
solutions. For instance, once the function g is specified and for
certain initial conditions of v, y, and z, the initial value of u is
completely determined.
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scenario and also to the uncoupled case. The first dis-
tinction one notices at once is that dark matter does not
dominate fully the content energy of the Universe but,
instead, there is a novel contribution of the vector field in
the form of dark energy due to the coupling q. Specifically,

ΩDM ¼ −2þ6q
−2þ5q and ΩDE ¼ q

2−5q. It implies that as long as q
increases, ΩDM comes down while ΩDE grows. To check
this feature we perform some numerical computations for
different values of the parameter qwithin the allowed range
(0 < q < 1=3) and plot the evolution of the energy density
parameters in Fig. 3. This feature is clearly evidenced as q
increases. As a merely qualitative aspect, the radiation-
matter equality is slightly shifted as q increases as well; it is
happening later compared to the uncoupled case (q ¼ 0)
and the ΛCDM cosmological model (light dot-dashed
curves). For the coupled cases, it is also observed an early
onset of the growth of dark energy around radiation-matter
equality (see dotted and dashed curves).
It is also instructive to see the evolution of the equation

of state of the vector field and how it tracks the effective
equation of state parameter at late times. This is depicted in
the left panel of Fig. 4. The vector field behaves as a stiff
fluid at early times (wA ¼ 1) and as dark energy (wA ¼ −1)
either shortly after radiation-matter equality or just at the
present epoch, depending on the coupling parameter. In the
right panel of the same figure the effect of changing both q
and λ is shown for the sake of completeness. Varying λ, for
instance, may affect the late-time evolution of the Universe
as expected since the potential energy plays the role of dark
energy. This can be appreciated in the plot because there are
no differences between the solid black and dashed black
curves which have same q and different λ values during
radiation and matter dominations. Here, different colors
stand for different values of q and same λ. Conversely, the
effect of changing λ is visible at late times. It is interesting
to see, on the other hand, that changes in the parameter q
are distinguishable in most of the evolution of the Universe,

FIG. 4. Effective equation of state weff and equation of state for the vector field wA for different values of the model parameter,
describing the uncoupled (q ¼ 0) and the conformally power law coupled case (q ≠ 0). Left panel depicts numerical solutions with
λ ¼ −0.4 and different values of q, as shown in the legend, for the same initial conditions as Fig. 3. The cosmological model ΛCDM has
been also included for comparison purposes (light dot-dashed curves). Right panel, instead, shows numerical solutions of the effective
equation of sate only for two different values of λ with associate q values, the latter describing the uncoupled and coupled cases as
indicated in the legend. As to the initial conditions, we have taken for q ¼ 0 and different λ, uðiÞ ¼ 2 × 10−10; yðiÞ ¼ 2.95 × 10−9 and
q ≠ 0 and same λ, uðiÞ ¼ 2 × 10−4; yðiÞ ¼ 2.11 × 10−9. Here the cosmological model ΛCDM is described by the blue dot-dashed line.
As before, we have chosen for all cases, vðiÞ ¼ 0.11 and zðiÞ ¼ 1.3 × 10−1 as fiducial values.

FIG. 3. Evolution of the density parameters versus the number
of e-folds N ¼ ln a for different values of the conformal
parameter q, describing the strength of the power law coupling
as denoted in the legend. Here q ¼ 0 (solid curves) represents the
uncoupled case which is still different, at the background level, to
the ΛCDM cosmological model (light dot-dashed curves) before
fully matter domination. For each numerical computation we
have taken the following initial conditions: for q ¼ 0, uðiÞ ¼
2 × 10−10; yðiÞ ¼ 2.95 × 10−9; for q ¼ 0.02, uðiÞ ¼ 1.3 × 10−2;
yðiÞ ¼ 2.42 × 10−9; for q ¼ 0.04, uðiÞ ¼ 1.9 × 10−2; yðiÞ ¼
2.1 × 10−9. For all cases, we have chosen vðiÞ ¼ 0.11 and zðiÞ ¼
1.3 × 10−1 as fiducial values. All initial conditions have been

chosen to match approximately the present values Ωð0Þ
DE ¼ 0.68

and Ωð0Þ
r ≈ 1 × 10−4.
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leading to an interaction term γC ∼Oð10−2Þ during all the
cosmic evolution.
As to the exponential coupling case, its dynamical

character is mostly encoded in the critical points (D̃)
and (F̃) with the former describing the current accelerated
expansion. One interesting fact is the appearance of both α
and λ parameters in the physical quantities, in contrast to
the power law coupling, as found from the dynamical
system analysis; α being the parameter that accounts for the
strength of the coupling to dark matter and is the one to
which we must pay much of our attention. Before exploring
the cosmological dynamics, note that α ¼ 0 is excluded by
demanding the existence of the critical points (D̃) and (F̃). It
means that taking α ¼ 0 leads to another trajectory in phase
space given by the uncoupled solution (D). Therefore, two
different trajectories can exist depending on α. One can
immediately ask how different they are from each other and
also from the power law coupling. This is investigated by
computing the evolution of the energy density parameters
of all components considered and showed in the left panel
of Fig. 5. The uncoupled case is identified as solid curves
and the coupled ones as all other types of curves as can be
read from the legend. The ΛCDM cosmological model has
been included for comparison and described by light dot-
dashed curves. Likewise positive and negatives values of α
are allowed and then explored here for the available
parameter space. Note that the sign of α has the effect
of increasing (α > 0) or reducing (α < 0) the energy

density parameter of dark matter (ΩDM ¼ jλj
α ) at the expense

of dark energy ΩA ¼ 1 − jλj
α , this latter being practically

unaffected before matter domination. They are seen above
or below the solid curves as appropriated. Nevertheless, the
most visible effect of changing α is around radiation-matter
equality, with no distinguishable features at late times even
when compared to the uncoupled case. Hence, the coupling
effect is important only before fully dark matter domina-
tion. In the deep radiation-dominated era the coupling
naturally turns off.
In the right panel of the same figure the (absolute value

of) interacting term is plotted, which accounts for the
strength of the vector coupling to dark matter. Here the
cusps represent the change of sign of the vector field v (and
not of γc). Notice also that α > 0 provides γc < 0 and vice
versa. At very early times jγcj ∼Oð0.1Þ, but it decays
quickly to very small values today, leaving a very narrow
room to look for differences between the uncoupled case.
This is, indeed, the reason why all the numerical solutions
for the energy density parameters exhibit small differences
with respect to the uncoupled case as strongly suspected,
fact that becomes nowmore transparent. It indicates also, as
a direct consequence, that fits for high-redshift data (like
BBN and CMB temperature anisotropies) may be more
sensible to the coupling effects than low-redshift data,
whereby implementation of cosmological data at high
redshift is a promising way to proceed in order to constrain
the conformally coupled exponential model.
Also, the effective equation of state parameter and the

vector field equation of state are shown in the left panel of
Fig. 6 for different values of α as before. Similar to the
power law coupling case, the vector field equation of state
is more noticeably affected as the coupling parameter α

FIG. 5. Left panel shows the evolution of the density parameters versus the number of e-folds N ¼ ln a for different values of the
conformal parameter α, describing the strength of the exponential coupling as denoted in the legend. Here α ¼ 0 represents the
uncoupled case which is appreciably different to the ΛCDM cosmological model (light dot-dashed curves) before fully matter
domination. For each numerical computation we have taken the following initial conditions: for α ¼ 0, uðiÞ ¼ 2 × 10−10;
yðiÞ ¼ 2.95 × 10−9; for α ¼ 5, uðiÞ ¼ 5 × 10−2; yðiÞ ¼ 3.05 × 10−9; for α ¼ −15, uðiÞ ¼ 5 × 10−2; yðiÞ ¼ 2.79 × 10−9. For all cases,
we have chosen vðiÞ ¼ 0.11 and zðiÞ ¼ 1.3 × 10−1 as fiducial values. All initial conditions have been chosen to match approximately the

present values Ωð0Þ
DE ¼ 0.68 and Ωð0Þ

r ≈ 1 × 10−4. Right panel shows the evolution of the absolute value of the interaction term for the
exponential coupling for the same initial conditions as left panel. Here the effect of changing the sign of α over the strength of jγcj is
assessed as well.
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changes (see left panel) according to wA ¼ − 1
1þλ

α
. An

interesting difference between the power law coupling
and the present case is the fact that taking α > 0, the
vector field equation of state changes sooner from stiff fluid
(wA ¼ 1) to dark energy (wA ¼ −1). Another feature seen
in the right panel of Fig. 6 is that α has almost negligible
impact on the effective equation of state compared to the
uncoupled case: different colors which stand for different α
are indistinguishable. There are, however, visible differences
with respect to the ΛCDM cosmological model in the early
Universe that would be worth quantifying with the help of
observational data in order to assess the cosmological
viability of the model. Thus, we have investigated so far
some cosmological consequences of the conformally
coupled models and their qualitative differences at the
background level for the available parameter space based
on numerical analysis. It remains to compute numerically the
cosmological evolution of the disformally coupled model in
order to investigate the effects of the coupling parameters on
the background dynamics.

B. Disformal case

We start by plotting the energy-density parameters
for the allowed region of the parameter space in
accordance with the dynamical system analysis performed
in Sec. IVA 2. As anticipated, even thought the case with
β ¼ 0 does not lead to new critical points in comparison
with the uncoupled case, this constant coupling case can
impact the cosmological background evolution in a non-
trivial way because its associated differential equations
have a more involved global structure. Numerical solutions
are depicted in the left panel of Fig. 7 for different values

of the disformal parameter B0. Solid curves represent the
cosmological evolution for the uncoupled case B0 ¼ 0.
Deviation of this solution are given by dotted and dashed
curves due to the disformal coupling with B0 ≠ 0 as
described in the legend. As in the conformally exponential
case, the energy density parameters can be reduced or
increased depending on the sign of B0, with the difference
that here negative coupling parameters increase instead
of the energy density of dark matter. We can see that
numerical solutions can reproduce fairly well the entire
cosmological dynamics with the expected transient periods;
radiation, matter, and dark energy dominations. Hence,
whether β ¼ 0 is preferred over other possibilities, it is a
subject that must be evaluated in the cosmological param-
eter estimation when calculating the best-fit parameters
from observational data. Of course, this goes beyond the
scope of the current study. So, this particular case can not
be discarded a priori at all from the analysis presented here.
In contrast, numerical solutions with β ¼ −1=2 are

plotted in the right panel of Fig. 7 which correspond to
the stable attractor solution (H), they being still dissimilar
to the uncoupled case (solid curves with B0 ¼ 0). We
perform numerical computations for different values of B0

like the previous case (β ¼ 0). However, a key difference
is that, no matter the sign of B0, they always reduce
the energy density of dark matter in comparison to the
uncoupled case since ΩDM ∝ 1=B2

0. These numerical sol-
utions are clearly distinct from to the ΛCDM cosmological
model (see light dot-dashed curves). We strongly suspect
that differences between positive and negative choices of
B0 come from the interacting term [Eq. (52)] where the sign
really matters for the numerical solution. As B0 > 0 leaves
more visible imprints on the cosmological dynamics, we

FIG. 6. Effective equation of state weff and equation of state for the vector field wA for different values of the model parameter,
describing the uncoupled (α ¼ 0) and the conformally exponential coupled case (α ≠ 0). Left panel depicts numerical solutions with
λ ¼ −0.4 and different values of α, as shown in the legend, for the same initial conditions as Fig. 5. The cosmological model ΛCDM has
been also included for comparison purposes (light dot-dashed curves). Right panel, instead, shows numerical solutions of the effective
equation of state only for two different values of λ with associate α values, the latter describing the uncoupled and coupled cases as
indicated in the legend. As to the initial conditions, we have taken for α ¼ 0 and different λ, uðiÞ ¼ 2 × 10−10; yðiÞ ¼ 2.95 × 10−9 and
α ≠ 0 and same λ, uðiÞ ¼ 5 × 10−2; yðiÞ ¼ 2.79 × 10−9. Here the cosmological model ΛCDM is described by the blue dot-dashed line.
As before, we have chosen for all cases, vðiÞ ¼ 0.11 and zðiÞ ¼ 1.3 × 10−1 as fiducial values.
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will focus mainly on this latter for the sake of illustration,
without taking any prejudiced position over the negatives
values. On the other hand, it is appreciable that the
disformal coupling lowers the matter-radiation equality
towards the present, as well as the energy density of dark
matter, more appreciably in comparison to the case β ¼ 0.
Furthermore, increasing B0 and taking λ fixed, ΩDE

gets bigger and ΩDM smaller since ΩDE ¼ 1 − 8jλj
B2
0

and

ΩDM ¼ 8jλj
B2
0

. Notice also that the saddle point (G), corre-

sponding to matter domination period with vc ¼ � 2
B0
, can

be present here once the coupling is turned on. Changing
for instance the initial condition for v, say, 10% it strengths
the interacting term [Eq. (52)] almost a factor of two bigger
for B0 ¼ 15 as we have checked. For smaller values of B0

the effect of v turns out to be less important. Interestingly,
the presence of the vector field can affect the global
cosmological evolution through the disformal coupling
even when it does not contribute to the energy density
in the form of dark energy as can be read from the
numerical solutions.
Incidentally, we display in Fig. 8 the equation of state

parameter for different values of the model parameters
as indicated in the legend. From the left panel we can
conclude that the vector field contributes to the energy
density in the form of stiff fluid in the early Universe
[fixed point (E)], while in the matter domination period, it
begins to behave like dark energy, driving the accelerated
expansion once it dominates the energy content of the
Universe. The precise time depends, in addition to λ, on
the disformal coupling parameters. Also, we can see how

wA tracks weff at very late times. Thus, it is very instructive
to see how the effective equation of state follows the
general and demanded trend with the transitions wr →
wm → wDE, ensuring the radiation, matter, and dark
energy periods as in the conformal cases. In the right
panel of the same figure, the effect of varying λ on the
effective equation of state for β ¼ −1=2 has been
assessed. As expected, the effect of changing λ, keeping
the other model parameters fixed, may be relevant only
once the energy density parameter of the vector field starts
to evolve. This effect is not visible here because it is
compensated for with the fact of taking different initial
conditions that must match the present energy density
parameters as demanded. In contrast, the effect of chang-
ing slightly the value of the disformal coupling parameter
B0, keeping this time λ fixed, is barely appreciable during
radiation-matter equality; compare curves with different
colors for either of the curve styles shown.24

Finally, we plot in Fig. 9 the evolution of the (absolute
value of) interacting term for some cases studied previ-
ously. Here the interacting term can be positive or negative
depending on β and on the sign of B0,

25 with γc ∼Oð1Þ at
very early times. However, they all also decay quickly to

FIG. 7. Evolution of the density parameters versus the number of e-folds N ¼ ln a for different values of the disformal parameter B0 as
described in the legend. Left panel corresponds to the case β ¼ 0 with the following initial conditions associated to each numerical
computation: for B0 ¼ 0, uðiÞ ¼ 2 × 10−10; yðiÞ ¼ 2.95 × 10−9; for B0 ¼ 50, uðiÞ ¼ 5 × 10−3; yðiÞ ¼ 2.59 × 10−9; for B0 ¼ −15,
uðiÞ ¼ 6.1 × 10−2; yðiÞ ¼ 3.08 × 10−9. Right panel shows numerical solutions for the power law β ¼ −1=2 where the attractorlike
solution was found. The following initial conditions have been taken: for B0 ¼ 12, uðiÞ ¼ 6.1 × 10−2; yðiÞ ¼ 2.4 × 10−9; for B0 ¼ −12,
uðiÞ ¼ 6.1 × 10−2; yðiÞ ¼ 2.76 × 10−9. In both cases the solution B0 ¼ 0 represents the uncoupled case which is analogous to
conventional quintessence models and appreciably different to the ΛCDM cosmological model (see light dot-dashed curves) before full
matter domination. For all cases, we have chosen vðiÞ ¼ 0.11 and zðiÞ ¼ 1.3 × 10−1 as fiducial values. All initial conditions have been

chosen to match approximately the present values Ωð0Þ
DE ¼ 0.68 and Ωð0Þ

r ≈ 1 × 10−4.

24Note however that dashed curves are overlapping with
their respective solid ones so that discrimination between
B0 ¼ 10 (black-dashed curve) and B0 ¼ 12 (red dashed curve)
for λ ¼ −20 is not appreciable.

25The red dashed curve represents indeed the only solution for
which γc < 0, corresponding to the choice β ¼ 0 and B0 ¼ −15.
According to the stability constraints found in Sec. III A, this
solution must be however ruled out.
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very small values today as the Universe evolves similar to
the exponential coupled case. Note that here numerical
integration has been stopped around N ¼ 0 because some
numerical solutions beyond this point are essentially zero
for numerical precision purposes.
As a main conclusion from the numerical analysis

performed, the interacting term for the disformal coupling
can be up to five orders of magnitude larger than the one
associated to the conformally exponential coupling during

all the cosmological evolution. Nevertheless, the interact-
ing term for the conformally power law coupling is larger
today γC ∼Oð10−2Þ ¼ const, and only a bit smaller at early
times, though it quickly becomes larger as soon as the
Universe evolves. This shows the rich possibility in
exploring the effects of the conformal and disformal
couplings at different stages of the evolution of the
Universe. Thus, we have assessed in a more quantitative
manner the effects of the coupling parameters and their
main differences by investigating their impact on the
cosmological evolution.

VI. DISCUSSION AND CONCLUSIONS

Coupled dark energy models have brought the attention
because of the rich phenomenology they can provide
when contrasting with observational data. Thus, at the
most phenomenological level these kind of scenarios can
offer a promising alternative to solve some tensions
revealed recently in the ΛCDM cosmological model.
From the side of theoretical foundations one formal way
to build interactions, at the level of the action, is by
assuming that the dark matter sector is described by a
metric that is related to the one of the gravitational part by a
nontrivial disformal transformation that leaves the causal
structure of spacetime unaltered. Following this conception,
in most of the coupled dark energy models the gravitational
sector of the theory is of the scalar-tensor nature with the
scalar field playing the role of dark energy, and the coupling
of the scalar field to dark matter is described via either
conformal or disformal transformations. A natural question
that comes to our minds is, can vector fields identified as

FIG. 9. Evolution of the absolute value of the interaction term
for different values of the disformal model parameters as
indicated in the legend. Here the effect of changing the sign
of B0 over the strength of jγcj is assessed. All numerical
computations correspond to λ ¼ −0.4 with the same initial
conditions as Figs. 7 and 8 as appropriate. For B0 ¼ 15, which
has not been included before in our analysis, the same initial
conditions as for B0 ¼ −15 are chosen.

FIG. 8. Effective equation of state weff and equation of state for the vector field wA for different values of the model parameter,
describing the uncoupled (B0 ¼ 0) and disformally coupled cases (B0 ≠ 0). Left panel depicts numerical solutions with λ ¼ −0.4 and
different values of the coupling parameters β0 and B0, as shown in the legend, for the same initial conditions as Fig. 7. The cosmological
model ΛCDM has been also included for comparison purposes (see light dot-dashed curves). Right panel, instead, shows numerical
solutions of the effective equation of state only for two different values of λ and β ¼ −1=2. For the case λ ¼ −0.4 and B0 ¼ 12 the same
initial conditions as the right panel of Fig. 7 have been taken. For the same λ and B0 ¼ 10, the selected initial conditions are uðiÞ ¼
6.1 × 10−2; yðiÞ ¼ 2.63 × 10−9. For λ ¼ −20, the following initial conditions have been chosen: for B0 ¼ 10, uðiÞ ¼ 5.9 × 10−2;
yðiÞ ¼ 2.96 × 10−9; for B0 ¼ 12, uðiÞ ¼ 6 × 10−2; yðiÞ ¼ 2.68 × 10−9. Here the cosmological modelΛCDM is described by the blue dot-
dashed line. As before, we have chosen for all cases, vðiÞ ¼ 0.11 and zðiÞ ¼ 1.3 × 10−1 as fiducial values.
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dark energy be coupled to dark matter and offer the same
virtues as scalar fields do by conformal/disformal trans-
formations? We have shown in this paper that this question
can be answered favorably, putting thus, from a purely
phenomenological perspective, vector fields in the same
privileged status that scalar fields occupy in coupled dark
energy models. In the process of finding a convincing
response some theoretical and numerical strategies have
been used for the sake of completeness. We summarize here
our main findings based on those approaches.
The resulting interaction term has been derived inde-

pendently of the gravitational sector but demanding up to
second-order derivative contributions sourcing the equa-
tions of motion Eq. (11) through Eq. (12) to prevent the
presence of Ostrogradski instabilities at this stage. This
condition is however easily achieved because of the simple
form of the vector disformal transformation Eq. (2) that
facilitates in turn all the analytical treatments. Higher
derivatives of the vector field can be also regarded in the
conformal and disformal coupling functions but it requires
integrating out the auxiliary degree of freedom to have
second-order equations of motion. This alternative deserves
to be explored as a theoretical possibility to generalize our
results following the spirit of [114]. This result can also be
applied to more general vector-tensor theories like the
surviving part of the generalized Proca theory (L3) and also
to extended vector tensor theories. Interestingly, a more
involved continuity equations have been obtained com-
pared to the scalar counterpart with a novel coupling of the
vector field to dark matter as evidenced in Eq. (15). To put
this in a concrete cosmological setup, the standard Proca
theory minimally coupled to gravity with a vector (expo-
nential) potential has been assumed to describe the gravi-
tational sector. A direct consequence of this choice is that
the nonpropagating degree of freedom can address the
accelerated expansion today in a FLRW universe, feature
that is naturally reminiscent to the generalized Proca theory
and different from what is observed in the scalar field case.
So, the interaction term provides new branches of solutions
satisfying the equation of motion of the vector field in
comparison to the uncoupled case where the trivial solution
A ¼ 0 is allowed only [see Eq. (21)]. This, of course,
enriches the cosmological dynamics in an interesting way,
depending, in turn, on the functional form assumed for the
conformal and disformal couplings.
For the sake of concreteness, we have studied the

cosmological dynamics of the coupled vector dark energy
scenarios, assuming for the conformal coupling a power law
and an exponential functions, and for the disformal case a
general power law. Even though such arbitrary choices do
not prove the complete theoretical consistency of the full
theory, this is taken as a proof of concept to investigate
phenomenological aspects of the coupling in a cosmological
setting. On the other hand, the complete representation of the
theory contains nontrivial interacting terms as a result of the

metric transformation Eq. (1) as evidenced, for instance,
in Eqs. (24)–(26). Notice however, that all terms can be
classified into two large groups belonging either to con-
formal or disformal couplings. It means that we can not
discard (partially) some terms of γc or γB in (26) since all of
them (of γc or γB) correspond to one common source.
Thereby, supposing that we can apply some guiding prin-
ciple to the theory, this would constrain the kind of coupling
itself and not each term derived from it. A more pragmatic
strategy to constrain the models studied is, for instance,
to find observational evidence in favor for or against some
kind of coupling based on the goodness-of-fit criteria in
parameter estimation procedure (see e.g., Ref. [59]).
We have also made substantial progresses on the issue of

stability of the theory. Concretely, general conditions on the
coupling functions to avoid propagation of spurious
degrees of freedom in the theory were found. This is
translated into the specific models studied as follows: the
free parameters q and α for the conformal cases are
unconstrained but for the disformal case we have obtained
the ghost-free condition B0 > 0. This is also consistent
with the dynamical system constraints (see Table II).
Numerical methods to investigate the time evolution of
linearized perturbations on a fixed background are however
required to verify our preliminary findings. Moreover, the
equation of motion for the vector field Eq. (21) corresponds
to a primary constraint, which means that there is no one
degree of freedom propagating because it was eliminated.
Likewise, we have observed that all our numerical solutions
of the background equations are dynamically well-behaved
for the explored parameter space. On the other hand, we
would like to emphasize that the presence of ghost fields
in a theory cannot be determined solely by examining the
structure of the equations of motion, as an overall sign in
front of the Lagrangian has no influence at all. While the
analysis carried out in Sec. III A, have helped to identify
classical instabilities such as tachyonic ghost and Laplacian
instabilities (and a well-posed initial value as well), it does
not guarantee the absence of ghosts in the theory. To
determine the stability of the theory, a proper Hamiltonian
analysis must be carried out to determine whether the
Hamiltonian is bounded from below (see e.g., [126,127]),
which is not an easy task in curved spacetime [128]. If so,
this will prevent the propagation of highly excited modes,
thereby rendering the theory quantum mechanically stable.
This is a crucial aspect that must be assessed for a
theoretical consistency of the theory.
We have first investigated the cosmological solutions of

the system based on dynamical system techniques to set the
stability conditions in terms of the model parameters.
Several novel critical points have been found and reported
respectively in Table I for the conformal coupling cases and
Table II for the disformal case, as well as some inferred
constraints on the model parameters from purely theoretical
grounds. Thus, different types of trajectories can exist
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in phase space describing the evolution of the Universe.
This depends essentially on the model parameters that
allow the existence of the critical points themselves and the
coupling type in consideration. We summarize next the
most intriguing solutions.
The fixed points (C) and (F̃), which are saddle points,

correspond to a vector-dark matter scaling solution for the
conformally power law and exponential coupled models,
respectively. These kind of solutions are particularly
interesting aiming at solving the coincidence problem.
The fixed point (D̃), associated to the exponential coupling,
represents an attractor solution so that it can account for the
accelerated expansion of the Universe. Up to the best of our
knowledge the uncoupled solution (D), in the exact form
proposed here, had not been reported in the literature.
Hence, it corresponds to the minimal realization of the
model. As to the disformal case, several novel critical
points have been obtained as well, apart from those
solutions in common with the conformal cases (A�),
(B�), (E�), (D), and (S). The corresponding novel fixed
points are reported in Table II for two particular choices of
the power law parameter β. In particular β ¼ −1=2 provides
a stable attractor solution (H) whose stability is ensured
trivially and a saddle point (G). β ¼ −2 also provides
several critical points whose dynamical character does
depend on the model parameters. They can be either saddle
points [(H̃) with c ¼ 3 and (G̃)] or a stable attractor solution
[(H̃) with c ¼ 2], so it is possible to find a region of the
parameter space where stability is guaranteed. The latter
point is essentially important to drive the current accel-
erated expansion. We have also identified some solutions
where the vector field does not contribute to the energy
density in the form of dark energy but it can be present in
the dark matter-dominated era so that this solution may
deviate from the standard dark matter-domination solution
and, therefore, to leave some observational imprints on the
structure formation.
In addition to the dynamical system analysis, numerical

methods have been implemented for completeness to
visualize the effects of the coupling parameters on the
cosmological dynamics. As a general conclusion, the
energy density of dark matter can be lowered or increased
depending on the strength on the respective coupling
parameter and in some cases, such as the conformally
exponential coupling and the disformally coupled models,
on their associate signs. Specifically, in the conformally
coupled power law model the coupling parameter can affect
more significantly the cosmological dynamics during
different stages of the evolution of the Universe. The same
conclusion also applies for the disformally coupled model
but with much less distinguishable changes. This suggests
that observational data at different redshifts can be used
strategically in the future to put constraints on the coupling
parameters, in a joint way to the ones derived here from

purely theoretical grounds, by implementing standard
statistical methods for cosmological parameter estimation.
Hence, whether this kind of vector coupled models of dark
energy is statistically preferred by observational data or
not is a subject that must be investigated in the future
to determine their cosmological viability. In particular,
coupled dark energy models have shown great potential to
solve the Hubble tension, and have been categorized as
promising models within the 3σ level to the light of this
tension [129]. Coupled (and uncoupled) scalar fields
models of dark energy are more mainstream, but we have
showed in this paper that coupled vector fields are also
appealing at the cosmological background level. We expect
thereby to push coupled vector field models of dark energy
towards an observational setting by encouraging more
people to work in this arena, specifically those working
in statistical methods to constrain this class of coupled
models with observational data.
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APPENDIX: DISFORMAL TRANSFORMATIONS

We report here some explicit calculations that are needed
to go from one frame to another:

∂ḡμν
∂gαβ

¼ Cδαμδ
β
ν þ 1

2
AαAβðCXgμν þ BXAμAνÞ;

∂gμν
∂ḡαβ

¼ 1

C

�
δαμδ

β
ν −

1

2
DAαAβðCXgμν þ BXAμAνÞ

�
;

∂ḡαβ
∂Aμ

¼ BðδμαAβ þ δμβAαÞ − ðCXgαβ þ BXAαAβÞAμ; ðA1Þ

with C ≠ 0. We remind that the quantity D is defined just
after Eq. (16). The inverse map between the two metrics
ḡμν → gμν exists around any point provided that the Jacobian
has no null eigenvalues. In addition, the well-defined inverse
metric needs to be nonsingular, causal and preserve Lorentz
signature. Also, the inverse transformation requires us to
keep the same functional dependence for each metric either
purely conformal or disformal. So, the transformation only
exists when these regularity conditions are met.
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