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Nonlinear gravitational instability is a crucial way to comprehend the clustering of matter and the
formation of nonlinear structures in both the Universe and stellar systems. However, with the exception of a
few exact particular solutions for pressureless matter, there are only some approximations and numerical
and phenomenological approaches to study the nonlinear gravitational instability instead of mathematically
rigorous analysis. We construct a family of particular solutions of the Euler-Poisson system that exhibits the
nonlinear gravitational instability of matter with inhomogeneous pressure and entropy (i.e., the cold center
and hot rim) in the expanding Newtonian universe. Despite the density perturbations being homogeneous,
the pressure is not, resulting in significant nonlinear effects. By making use of our prior work on nonlinear
analysis of a class of differential equations, we estimate that the growth rate of the density contrast is
approximately ∼ expðt23Þ, much faster than the growth rate anticipated by classical linear Jeans instability

(∼t23). Our main motivation for constructing this family of solutions is to provide a family of reference
solutions for conducting a fully nonlinear analysis of inhomogeneous perturbations of density contrast. We
will present the general results in a mathematical article separately. Additionally, we emphasize that our
model does not feature any shell-crossing singularities before mass accretion singularities since we are
specifically interested in analyzing the mathematical mechanics of a pure mass accretion model, which
poses limitations on the applicability of our model for understanding the realistic nonlinear structure
formation.

DOI: 10.1103/PhysRevD.107.123534

I. INTRODUCTION

Gravitational instability characterizes the mass accre-
tions of self-gravitating systems, clustering of matter and
helps us understand the formations of stellar systems and
the nonlinear structures in the Universe. It traces back to
Jeans [1] for Newtonian gravity in 1902 (thus called “Jeans
instability”). However, it is worth noting Jeans’ work is
only in the linear regime since he linearized the Euler-
Poisson system. It was generalized to general relativity by
Lifshitz [2] and extended to the expanding universe by
Bonnor [3], and later the linearized Jeans instability is
widely applied (see Refs. [4,5]). However, the linear Jeans
instability has some inconveniences. The first inconven-
ience comes from the linearization of the Euler-Poisson
system. Due to the linearizations, the linear Jeans instability
can be only applied to the case with small perturbations of
the uniform density distribution [i.e., the density contrast
ϱ ≔ ðρ − ρ

∘Þ=ρ∘ < 1] and only for a time before the pertur-
bations growing large, since the larger perturbations will

lead to larger deviations from the linearized scheme. With
the accretions of the mass, the derivations of the linear
Jeans instability will be completely spoiled since the
increasing density leads to significant derivations from
the linear regime. The second inconvenience is the growth
rate of the density contrast predicted by the classical
linearized version of the Jeans instability cannot yield
the observed large inhomogeneities of the universe nowa-
days and formations of galaxies, because this growth rate
(∼t23, see Refs. [3–6]) is too slow and thus is much less
efficient (see also [4,5]). Therefore, it is urgent to study the
fully nonlinear Jeans instability and, as pointed out by
Rendall [7] in 2002, there are no results on Jeans instability
available for the fully nonlinear case, and it becomes a
long-standing open problem. The main goal of this paper is
to construct a family of gravitationally unstable solutions
with homogeneous density and inhomogeneous pressure
and entropy distributions, which serves as a family of
reference solutions for the fully nonlinear analysis of
solutions with slightly inhomogeneous density. We will
present this result separately for slightly inhomogeneous
density in a mathematical article [8].*chao.liu.math@foxmail.com
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On the other hand, although it is worthy to understand
the fully nonlinear Jeans instability and the mathematical
mechanics of a pure mass accretion model, it is important to
acknowledge that the model presented in this article is
idealized and simplified, lacking shell crossings and other
singularities. In reality, things are not as simple as this.
Usually, the evolution of density perturbations is believed
to occur primarily in the linear regime because initial
perturbations are small and require considerable time to
grow. Then once the perturbation becomes of order unity,
comparing with our model, the most cases are that the non-
linear approach may be of interest for only a short period
due to shell-crossing causing violent relaxation and break-
ing down fluid approximations. In such cases, N-body
simulations have been applied in modern cosmology.
In fact, the model presented in this article can approxi-

mate some local portion of a giant gas cloud. Its density is
almost homogeneous in this portion and the center of it is
very cold but the rim of the cloud is extremely hot. In
addition, all the fluxes by the thermodynamics forces are
negligibly small. We further idealize this model by assum-
ing the cloud initially has homogeneous density; the initial
temperature distribution of this cloud is spherical symmet-
ric and proportional to the square of the radius of the
position (the accurate descriptions in §II). The key result of
this article is that, by using the mathematical tools
developed in our previous paper [9] and taking the full
nonlinear effects into account, the growth rates of the
density contrast are at least of order ∼ expðt23Þ [see later
(3.8) for detailed expressions] or even blow up at the finite
time [see Eq. (3.9)]. This is much faster than that given by
the classical linearized Jeans instability (∼t23, see Ref. [5],
§6.3). It may contribute to the explanations of the observed
large inhomogeneities of the Universe nowadays and the
formations of galaxies. As Peebles [[10], Chap. 1, §4.B]
pointed out, the exponential growth rates of the density
contrast “often has been cited as what is wanted.” Although
he also claim the exponential growth rates is not possible
for the Einstein–de Sitter model, in our current model, the
exponential growth does happen.
Some nonlinear strategies involving approximations

and numerical methods (e.g., the famous Zel’dovich
solutions) have been discussed in several references (see
Refs. [4,5,11,12]). Another famous exact solution describ-
ing the evolutions and collapses of the inhomogeneity is the
Tolman solution (see Ref. [5], §6.4.1 and [13]) which gives
an exact spherical symmetric dust solution, but it cannot be
generalized to include the nonvanishing pressure effects,
and the inconvenience of the parametric form of the
solution is too complex to visualize the actual behaviors
of it.
In addition, the most important thing, compared with the

Tolman solution, is that our method is robust. It can allow
the presence of the pressure and can be generalized to more
general cases by studying the corresponding dominant

equations [e.g., the ordinary differential equation (ODE)
(B1)] of the reference solutions first, then near every
reference solutions, we can perturb the density contrast
to obtain more general solution with inhomogeneous
density as we will present in [8]. This paper is an example
stating this idea and we will present this idea with other
unstable models in future. Additionally, we emphasize that
our model does not feature any shell-crossing singularities
(see §VI for the proof) before mass accretion singularities
since we are specifically interested in analyzing the
mathematical mechanics of a pure mass accretion model.
Therefore, it is important to recognize its limitations on
the applicability of our model for understanding realistic
nonlinear structure formation in the Universe, since most of
the outcomes of nonlinear evolutions, as demonstrated by
N-body simulations in modern cosmology, is the break-
down of the fluid approximation due to shell crossing,
which goes beyond the scope of the calculations presented
in this paper.

II. MODELS AND ASSUMPTIONS

We use the Newtonian universe as an approximation of a
local universe. Under the following assumptions, although
the universe has the homogeneous density, it is inhomo-
geneous for the distributions of the pressure and entropy. It
is of course an ideal model due to these perfect assump-
tions, but we want to develop a method for fully nonlinear
gravitational instability with effective pressure resisting the
gravity. We will prove, in either case, the growth rate [at
least ∼ expðt23Þ, see Eq. (3.8)] of the density contrast due to
the nonlinear Jeans instability is way faster than the one
predicted by the classical linear Jeans instability (∼t23).
For the nonlinear version of the Jeans instability, we can

not use Fourier analysis to solve the nonlinear differential
equations derived from the Euler-Poisson system (see
Ref. [6] for alternative non-Fourier based proof of the
linear Jeans instability). In [9], we developed some prepar-
ing techniques for a class of the nonlinear ODEs and
hyperbolic equations for the nonlinear Jeans instability. We
intend to apply it to conclude the result of this article.
Let us now give the assumptions (and remarks for

detailed meanings) of the model. According to the non-
equilibrium thermodynamics (see, for example, [ [14],
Eqs. II.(5), II.(19), and III.(19)] or [15], §69), we assume
the following:
(1) The fluids filled in the Newtonian universe are the

ideal fluids and there is no chemical reactions, thus
all the viscosity coefficients and chemical affinities
of reactions vanish; All the phenomenological co-
efficients Lij (see [14], Chap. IV for the definitions)
are relatively small and negligible during the con-
sidered process, i.e., we assume all the Lij ¼ 0, then
all the fluxes in the entropy production vanish
simultaneously with the thermodynamic forces
(due to the facts that the entropy production satisfies
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σ ¼ P
k Jk · Xk and the linear phenomenological

law gives Ji ¼
P

k LikXk). Therefore, every comov-
ing parcel is adiabatic (isentropic).

(2) The initial entropy is distributed proportionally to
jxj2, while the adiabatic comoving parcel ensures
that the entropy remains proportional to the comov-
ing position jqj2.

In other words, these assumptions means the Newtonian
universe can be described by the following reduced
Euler-Poisson system (we use the Einstein summation
convention),

∂tρþ ∂iðρviÞ ¼ 0; ð2:1Þ

∂tvi þ vj∂jvi þ
∂
ip
ρ

þ ∂
iϕ ¼ 0; ð2:2Þ

∂tSþ vi∂iS ¼ 0; ð2:3Þ

Δϕ ¼ δij∂i∂jϕ ¼ 4πGρ; ð2:4Þ

where ρ, vi, p, ϕ, and S are the density, velocities, pressure
of the fluids, gravitational potential and specific entropy,
respectively. The equation of state is presumed by

p ¼ Ke
S−S0
cV ργ þ p; for γ ¼ 4

3
and K ≥ 0: ð2:5Þ

where p ∈ R is a constant. The initial data at t ¼ t0 are
given by

ρ
∘ðt0Þ ¼

ι3

6πGt20
; v

∘ iðt0; xkÞ ¼
2

3t0
xi; ð2:6Þ

ϕ
∘
ðt0; xkÞ ¼

2

3
πGρ

∘ðt0Þδijxixj and

Sðt0; xkÞ ¼ S0 þ cV lnðκt−
4
3

0 δklxkxlÞsgnð1−ι3Þ; ð2:7Þ

where κ > 0 is a constant and sgn is a sign function,1 and ι
is a constant determined by

ι≔ ιðK̃Þ¼
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ18K̃

p
þ1

2

�1
3

−
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ18K̃

p
−
1

2

�1
3

∈ ð0;1� and K̃≔
K3κ3

πG
;

Before proceeding, about this model, let remark some
notable facts:
(1) Note K̃ and ι are dimensionless constants depending

on the molar mass of the fluids and the distributions

of the entropy or temperature (see Appendix A for
details).

(2) If K̃ ¼ 0 (equivalently, ι ¼ 1), then this model
reduces to an isentropic case Sðt0; xkÞ≡ S0 with a
constant pressure p, thus the data and the solution
(2.16) and (2.17) given below reduce to the classical
Newtonian solutions for the homogeneous and
isotropic Newtonian universe given in, e.g., [5],
§1.2.3 or [4], §10.2. The results of this article reduce
to the case of Tolman solutions.

(3) If ι ≠ 1, then the data of the entropy (2.7) implies the
initial distribution of the temperature T ∝ jxj2 (see
Appendix A for detailed explanations).

(4) In the equation of state (2.5), the inclusion of the
term p does not alter the mathematical derivations;
rather, it is included to increase the generality of
the model.

(5) Note that ι satisfies an important identity (crucial in
later derivations),

ι3 þ 9

�
K̃
6

�1
3

ι − 1 ¼ 0; ð2:8Þ

and ιðK̃Þ is a decreasing function,2 limK̃→0 ιðK̃Þ ¼ 1,
and limK̃→þ∞ ιðK̃Þ ¼ 0.

To simplify calculations, letting s ¼ ðS − S0Þ=cV and
along with the nondimensionalizations in Appendix A, we
proceed with the dimensionless and normalized Euler-
Poisson system:

∂tρþ ∂iðρviÞ ¼ 0; ð2:9Þ

∂tvi þ vj∂jvi þ
∂
ip
ρ

þ ∂
iϕ ¼ 0; ð2:10Þ

∂tsþ vi∂is ¼ 0; ð2:11Þ

Δϕ ¼ δij∂i∂jϕ ¼ 4πρ: ð2:12Þ

The equation of state becomes

p ¼ Kesρ
4
3 þ p; for K ≥ 0: ð2:13Þ

The initial data at t ¼ 1 is given by

1The sign function implies sgnðαÞ ¼ 1 ifα > 0, and sgnðαÞ ¼ 0
if α ¼ 0.

2Since one can verify that its derivative

ι0ðK̃Þ ¼ 3ffiffiffi
23

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18K̃ þ 1

p
0
B@ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18K̃ þ 1
p

þ 1
�
2=3

−
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18K̃ þ 1
p

− 1
�
2=3

1
CA < 0:
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ρjt¼1¼
ι3

6π
; vijt¼1¼

2

3
xi; and sjt¼1¼ lnðδklxkxlÞsgnð1−ι3Þ:

ð2:14Þ

Let us try to find a homogeneous and expanding
Newtonian solution in the meaning of a homogeneous
density and the Hubble law dominated velocity field, we
then obtain

ρðt; xkÞ ¼ ρ
∘ðtÞ; viðt; xkÞ ¼ v∘ iðt; xkÞ ¼HðtÞxi: ð2:15Þ

There is an exact solution to the Euler-Poisson system
(2.9)–(2.12) and the data (2.14) on ðt; xkÞ ∈ ½t0;∞Þ ×R3,

ρ
∘ðtÞ ¼ ι3

6πt2
; p

∘ ðtÞ ¼ Kt−
4
3δklxkxlρ

∘ 4
3 þ p;

v
∘ iðt; xkÞ ¼ 2

3t
xi; ð2:16Þ

ϕ
∘
ðt; xkÞ ¼ 2

3
πρ
∘
δijxixj ¼

ι3

9t2
δijxixj; and

s
∘ðt; xkÞ ¼ lnðt−4

3δklxkxlÞsgnð1−ι3Þ; ð2:17Þ

III. MAIN RESULTS AND IDEAS

This article intends to conclude the nonlinear behavior of
the homogeneous perturbations of the density contrast ϱ ≔
ðρ − ρ

∘Þ=ρ∘ by the following two steps and the main results
are given by the following estimates (3.8) and (3.9)
of the lower bounds of the growth rate of the density
contrast.
Step 1: Let us assume that β and γ are two given positive

constants and that the initial data (at t ¼ 1) of (2.9)–(2.12)
have an homogeneous initial perturbations and are char-
acterized by two positive parameters β and γ in the
following ways:

ρjt¼1 ¼ ð1þ βÞ ι
3

6π
; vijt¼1 ¼

�
2

3
− γ

�
xi and

sjt¼1 ¼ lnðð1þ βÞ23δklxkxlÞsgnð1−ι3Þ: ð3:1Þ

Then we will prove the solution of the Euler-Poisson
system (2.9)–(2.12) becomes [we use notation
ð·Þ0 ≔ dð·Þ=dt]

ρðtÞ ¼ ð1þ fðtÞÞρ∘ðtÞ ¼ ι3ð1þ fðtÞÞ
6πt2

; ð3:2Þ

viðt; xiÞ ¼ 2

3t
xi −

f0ðtÞ
3ð1þ fðtÞÞ x

i; ð3:3Þ

ϕðt; xiÞ ¼ 2

3
πρ
∘ð1þ fðtÞÞjxj2 ¼ ι3ð1þ fðtÞÞjxj2

9t2
; ð3:4Þ

sðt; xkÞ ¼ lnðt−4
3ð1þ fÞ23δklxkxlÞsgnð1−ι3Þ: ð3:5Þ

and the density contrast ϱðtÞ ¼ fðtÞ, where jxj2 ≔ δijxixj

and fðtÞ is a solution of the following nonlinear ODE,

f00ðtÞ þ 4

3t
f0ðtÞ − 2

3t2
fðtÞð1þ fðtÞÞ − 4ðf0ðtÞÞ2

3ð1þ fðtÞÞ ¼ 0;

ð3:6Þ

fjt¼t0 ¼ β and f0jt¼t0 ¼ 3ð1þ βÞγ: ð3:7Þ

Moreover, the pressure becomes pðtÞ ¼ Kι4

ð6πÞ43t4
ð1þ fÞ2

δklxkxl.
Step 2: In Step 1, we have represented the perturbation

solution in terms of functions fðtÞ and its derivative
f0ðtÞ ≔ f0ðtÞ. To understand the behaviors of the pertur-
bation solution, especially the growth rates of the density
contrast ϱ, we have to know the detailed behaviors of the
functions f and f0. In fact, the behaviors of f and f0 can be
acquired by solving the ODE (3.6) and (3.7) which has
been well studied in our companion article [9]. We list the
conclusions of the solutions to the ODE (3.6) and (3.7) in
Appendix B and using it, we conclude the density contrast
has the lower bound estimate, for t ∈ ð1; tmÞ,

ϱðtÞ ¼ fðtÞ

> exp
�
3ðlnð1þ βÞ þ 3γÞt23 þ 2ðlnð1þ βÞ − 9

2
γÞt−1

5

�
− 1: ð3:8Þ

In addition, by Theorem B.1, if further the initial data
satisfies γ > 1=3, we have an improved lower bound
estimate on the growth rate of ϱ, for t ∈ ð1; tmÞ,

ϱðtÞ ¼ fðtÞ > 1þ β

ð1 − 3γ þ 3γt−
1
3Þ3 − 1: ð3:9Þ

The lower bound of ϱ blows up at t⋆ ¼ ð1 − 1
3γÞ−3 >

t0 ¼ 1. These lower bounds give an estimate of the growth
rates of the density contrast ϱ.
In the rest of this article, we will only need to elaborate

Step 1, i.e., solving the Euler-Poisson system (2.9)–(2.12)
under the perturbed data (3.1) and further the perturbation
equations.

IV. EQUATIONS OF PERTURBATIONS

Let us first decompose the variables ðρ; vi; p;ϕÞ to the
exact background solution (2.16) and (2.17) and the
perturbed parts, and define a density contrast ϱ,
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ρ¼ ρ
∘ þ ρ̃; vi ¼ v

∘ i þ ṽi; ϕ¼ ϕ
∘
þ ϕ̃; s¼ s

∘ þ s̃;

ð4:1Þ

p ¼ p
∘ þ p̃; and ϱ ≔

ρ̃

ρ
∘ : ð4:2Þ

Next we introduce the Lagrangian coordinates qk

defined by xk ¼ aðtÞqk where3 að1Þ ≔ 1, and the time
derivatives are obtained at qk (i.e., the material derivatives).
We also denote

Dt ≔ ∂tjqk ¼ ∂tjxk þ v
∘ i
∂i ¼ ∂tjxk þHxj∂j; ð4:3Þ

Di ≔ aðtÞ∂i: ð4:4Þ

Note in the next, we will slightly abuse the notations and do
not distinguish the variables in terms of the Eulerian xi and
Lagrangian coordinate qi, that is, we abuse, e.g., ṽkðt; xiÞ
and ṽkðt; qiÞ for the simplicity of the expressions and
readers should be clear according to the contexts.
Let us review how to reexpress the Euler-Poisson

system (2.9)–(2.12) in terms of the perturbation variables
ðϱ; ṽi; s̃; ϕ̃Þ given by (4.1) and (4.2). First, let us consider
the conservation of mass. Substituting the decomposition
(4.1) and (4.2) into Eq. (2.9), using the Hubble laws (2.15)
and applying the Lagrangian coordinates (4.3)–(4.4), the
conservation of mass (2.9) becomes

Dtρ̃þ 3Hρ̃þ ρ
∘
a−1Diṽi þ ρ̃a−1Diṽi þ ṽia−1Diρ̃ ¼ 0:

Using (4.2) and ∂tρ
∘ þ 3Hρ

∘ ¼ 0, and after straightforward
calculations, we obtain

Dtϱþ ð1þ ϱÞa−1Diṽi þ ṽia−1Diϱ ¼ 0: ð4:5Þ

Second, by (4.2) and (4.4), the Poisson equation in terms
of the Lagrangian coordinate qi becomes

δijDiDjϕ̃ ¼ 4πa2ρ
∘
ϱ ¼ 2ι3

3t
2
3

ϱ: ð4:6Þ

In the end, we turn to the balance of momentum (2.10).
By subtracting the background (2.16) and (2.17) from
(2.10), and in terms of Lagrangian coordinates, using (4.3)
and (4.4), with the help of (4.2), the balance of momentum
(2.10) becomes

Dtṽi þHṽi þ ṽja−1Djṽi þ
a−1Diðp̃=ρ∘Þ

1þ ϱ

−
2Kι

ð6πÞ13t43
ϱ

1þ ϱ
qi þ a−1Diϕ̃ ¼ 0: ð4:7Þ

Then we consider the conservation of the entropy. In
terms of Lagarangian coordinates, direct calculations that
imply (2.11) become

Dts̃þ sgnð1 − ι3Þ · 2δijq
iṽj

aδklqkql
þ ṽia−1Dis̃ ¼ 0: ð4:8Þ

Gathering the above equations (4.5)–(4.8) together, the
Euler-Poisson system (2.9)–(2.12), in terms of the
Lagrangian coordinates, becomes

Dtϱþ
ð1þ ϱÞ

a
Diṽi þ

ṽi

a
Diϱ ¼ 0; ð4:9Þ

Dtṽi þHṽi þ ṽja−1Djṽi þ
a−1Diðp̃=ρ∘Þ

1þ ϱ

−
2Kι

ð6πÞ13t43
ϱ

1þ ϱ
qi þ a−1Diϕ̃ ¼ 0; ð4:10Þ

Dts̃þ sgnð1 − ι3Þ · 2δijq
iṽj

aδklqkql
þ ṽia−1Dis̃ ¼ 0; ð4:11Þ

δijDiDjϕ̃ ¼ 2ι3

3t
2
3

ϱ: ð4:12Þ

V. PERTURBATION SOLUTIONS

In this section, let us focus on solving Eqs. (4.9)–(4.12)
under the initial perturbation (3.1). In this assumption, we
have that the density contrast is independent of the spatial
variables and the velocity satisfies the Hubble’s law, thus
we assume the forms of ϱ and ṽi by

ϱðt; qkÞ≡ ϱðtÞ and ṽiðt; qkÞ ¼ H̃ðtÞqi; ð5:1Þ

where the function H̃ðtÞ is to be determined variable. In this
case, by (4.12), direct calculations imply

ϕ̃ ¼ 2

3
πa2ρ

∘
ϱjqj2 ¼ ι3ϱjqj2

9t
2
3

and

δijDiϕ̃ ¼ 4

3
πa2ρ

∘
ϱqj ¼ 2ι3ϱ

9t
2
3

qj; ð5:2Þ

where jqj2 ≔ δijqiqj.
Now our task becomes solving ϱðtÞ and H̃ðtÞ from

Eqs. (4.9) and (4.10). Taking the divergence of ṽi leads to
Diṽi ¼ 3H̃ðtÞ, noting (5.1) yields Diϱ ¼ 0, (4.9) implies

3In fact, aðtÞ ¼ að1Þt23 ¼ t
2
3 provided að1Þ ¼ 1, since by the

Hubble law (2.15) and the Lagrangian coordinates xk ¼ aðtÞqk,
we obtain HðtÞ ≔ _aðtÞ

aðtÞ. Then by H ¼ 2
3t [see Eqs. (2.15) and

(2.16)], we can solve aðtÞ.
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H̃ðtÞ ¼ −
t
2
3

3
ðlnð1þ ϱðtÞÞÞ0

⇒ ṽi ¼ −
t
2
3

3
qiðlnð1þ ϱðtÞÞÞ0 ¼ −

t
2
3ϱ0ðtÞ

3ð1þ ϱðtÞÞ q
i: ð5:3Þ

By the data (2.14) and (3.1), we have the data
s̃jt¼1 ¼ lnð1þ βÞ23sgnð1−ι3Þ, which is a homogeneous pertur-
bation of the entropy, thus we assume s̃ is also independent
of xi and is homogeneous, thenDis̃ ¼ 0. Using the velocity
(5.3), direct integrating (4.11) imply

s̃ðtÞ ¼ ln½ð1þ ϱðtÞÞ23sgnð1−ι3Þ�:

Next, we solve ϱðtÞ. Noting, if ι ≠ 1, then

p̃ ¼ Kδklqkqlρ
∘ 4
3½ð1þ ϱÞ2 − 1� ¼ Kδklqkqlρ

∘ 4
3ϱðϱþ 2Þ, and

substituting (5.2)–(5.3) into (4.10), straightforward calcu-
lations imply

H̃0 þ 2

3t
H̃ þ H̃2a−1 þ 2Kιϱ

ð6πÞ13t43 þ
2ι3ϱ

9t
4
3

¼ 0:

Then the crucial step is using the identity (2.8), i.e., ι3 þ
9K

ð6πÞ13
ι ¼ 1 in terms of the dimensionless K, which leads to

H̃0 þ 2

3t
H̃ þ H̃2a−1 þ 2ϱ

9t
4
3

¼ 0: ð5:4Þ

If ι ¼ 1, then K ¼ 0 and p ¼ 0. We also arrive at (5.4).
Noting that (5.3) yields

H̃0 ¼ −
2

9

t−
1
3ϱ0

1þ ϱ
−
t
2
3

3

ϱ00

1þ ϱ
þ t

2
3

3

ðϱ0Þ2
ð1þ ϱÞ2 ;

and substituting it and (5.3) into (5.4), we arrive at4

ϱ00ðtÞ þ 4

3t
ϱ0ðtÞ − 2

3t2
ϱðtÞð1þ ϱðtÞÞ − 4

3

ðϱ0ðtÞÞ2
ð1þ ϱðtÞÞ ¼ 0:

ð5:5Þ

By the data (3.1) and the definition of the perturbed
variables (4.1) and (4.2), we obtain the data of ϱjt¼1,

ϱjt¼1 ¼ β: ð5:6Þ

Since (5.5) is a second order ODE, to solve this equation,
we have to know the initial data of ϱ0jt¼1. In order to find this
data and solve the Euler-Poisson system (4.9)–(4.12), we
note that (4.9) must hold at the initial time t ¼ 1. Thus, with

the help of (3.1) and the data ṽijt¼1¼ðvi−v∘ iÞjt¼1¼−γqi

[by (2.14) and (3.1), and noting að1Þ ¼ 1], notingDiϱ ¼ 0,
we have

ϱ0jt¼1 ¼ −
�
1þ ϱ
a

Diṽi
�����

t¼1

−
�
ṽi

a
Diϱ

�����
t¼1

¼ 3ð1þ βÞγ:

ð5:7Þ

Using the ODE (5.5) and the data (5.6) and (5.7), with
the help of Theorem B.1 (see Appendix B), we obtain
ϱðtÞ ¼ fðtÞ, where fðtÞ is given by Theorem B.1. Further,
we conclude the solutions (3.2)–(3.5). This completes Step
1. In summary, we obtain a family of solutions depending
on two parameters β and γ.

VI. CONCLUSIONS AND DISCUSSIONS

Let us firstly compare the nonlinear growth rates (3.8)–
(3.9) of the density contrast with that (∼t23) predicted
by the classical linear version of the Jeans instability. By
using t−1 ≤ t

2
3 for lnð1þ βÞ − 9

2
γ < 0 and t−1 > 0 for

lnð1þ βÞ − 9
2
γ ≥ 0, (3.8) implies

ϱðtÞ > expðAt23Þ − 1 ¼ At
2
3 þ Oðt43Þ; ð6:1Þ

where A ≔ minflnð1þ βÞ; 3
5
ðlnð1þ βÞ þ 3γÞg is a con-

stant and Oðt43Þ means the remainder terms are at least of
order t

4
3. We note the growth rate (∼t23) by the classical Jeans

instability is just the first order approximation of the lower
bound estimate (6.1) if expanding expðAt23Þ with respect to
t
2
3. The nonlinear effects indeed significantly boost the
growth of the density contrast as ϱ grows larger. According
to the Taylor expansion (6.1), we see that, when t is small
enough, it consists of the result of the classical linearized
Jeans instability. From these improved faster growth rates
due to the nonlinear effects, we can see that indeed the
classical linearized Jeans instability can only be applied to
the small initial perturbation of the density and only work
for a short time before the density grows large enough.
However, the nonlinear method proposed by this
article does not require the initial perturbations small
and it works for a long time before the Euler-Poisson
system breaks down.
The method of this article relies on the nonlinear analysis

of a type of nonlinear differential equations, which is
mathematically rigorous without approximations and
numerical calculations. This method is robust and system-
atic, and if we also use the ideas and method (the Cauchy
problem of the Fuchsian formulation of a second order
hyperbolic equation which allows certain pressure) from
our previous paper [9], §3, it is possible to study the general
cases of the nonlinear Jeans instability, at least for the case
with nonvanishing pressure and small inhomogeneous
perturbations.

4Note the same equation has also been obtained in [16] for
spherical collapse model.
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Although this model of the Universe in the present paper
is a simplified model, it can still capture some of the main
nonlinear effects on the local Newtonian universe. Thus
this result helps us have a better understanding of the
formation of the nonlinear structures in the universe and
stellar systems. The lower bound estimates (3.8) and (3.9)
of the growth rates of the density contrast are far more
efficient than the one predicted by the classical linear Jeans
instability. Therefore, it may be possible that these non-
linear results of the growth rates can contribute to the
explanations of the observed large inhomogeneities of the
Universe nowadays and the formations of galaxies. Due to
these much larger and more efficient growth rates of the
density contrast, we may not require substantial initial
perturbations of the density contrast at the early times of the
Universe and weaken the constraints on the initial spectrum
of perturbations.
In the end, we would like to note that there are no shell-

crossing singularities5 present in our model. This is evident
when observing the velocity field (3.3) in spherical coor-
dinates,

vðt; rÞ ¼
�
2

3t
−

f0ðtÞ
3ð1þ fðtÞÞ

�
r;

where r ≔ jxj. This velocity field implies

∂rv ¼ 2

3t
−

f0ðtÞ
3ð1þ fðtÞÞ :

Using relations in the companion article [ [8], Eqs. (3.18)
and (3.89)], i.e.,

ðf0Þ2
ð1þ fÞ2 ¼

χf
Bt2

and
χðtÞ
B

¼ 4þGðtÞ
B

⇒
f0

1þ f
¼ 2

t

ffiffiffi
f

p �
1þ G

4B

�1
2

;

we conclude

lim
t→tm

∂rv ¼ lim
t→tm

2

3t

�
1 −

ffiffiffi
f

p �
1þ G

4B

�1
2

	
¼ −∞ and

j∂rvj < ∞ for t ∈ ½1; tmÞ;

since lim
ffiffiffi
f

p
=t ¼ ∞ by Theorem B.1.(3) and

limt→tm GðtÞ ¼ 0 (by [ [8] Proposition B.4]). This result
implies the characteristic curves generated by the velocity
field do not intersect for t ∈ ½1; tmÞ until t ¼ tm (the mass
accretion singularities lie on the whole ftmg ×R3) and it
means there is no shell crossing singularities for t ∈ ½1; tmÞ.
In summary, this model gives mathematically rigorous

and physically decent nonlinear estimates on the growth
rates [at least ∼ expðt23Þ] of the density contrast ϱ on the
local portion of the Universe characterized by the
Newtonian expanding universe. The mathematical tools
and methods have the potential for general cases of the
nonlinear version of the Jeans instability. Based on these
tools and methods developed by our prior article [9], the
fully nonlinear Jeans instabilities both for the Newtonian
universe and general relativity are in progress.
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APPENDIX A: NONDIMENSIONALIZATIONS
AND PARAMETERS

First note the dimensions of variables in this article are

½xi� ¼ L; ½t� ¼ TðTimeÞ; ½T � ¼ TðTemperatureÞ; ½s� ¼ 1; ½p� ¼ M
LT2

; ½ρ� ¼ M
L3

;

½G� ¼ L3

MT2
; ½ϕ� ¼ L2

T2
; ½vi� ¼ L

T
; ½KT � ¼

L3

T2M
1
3

:

To introduce dimensionless variables, we define

ρ ¼ ρT ρ̂; K ¼ KTK̂; and T ¼ T T T̂

where ρT , KT , and T T are the typical values for the density, the coefficient of the equation of state and the temperature.
Then let

5See, for instance, [17,18] for related cases.
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p̂ ¼ p

KTρ
4
3

T

; x̂i ¼
ffiffiffiffiffiffiffiffiffiffiffi
GρT

KTρ
1
3

T

s
xi ¼ ρ

1
3

T

ffiffiffiffiffiffi
G
KT

s
xi; t̂ ¼

ffiffiffiffiffiffiffiffiffi
GρT

p
t; ϕ̂ ¼ 1

KTρ
1
3

T

ϕ;

vi ¼
ffiffiffiffiffiffiffiffiffiffiffi
KTρ

1
3

T

q
v̂i and κ ¼ G

1
3

KT
κ̂:

Then ½K̂� ¼ ½p̂� ¼ ½v̂i� ¼ ½ρ̂� ¼ ½x̂i� ¼ ½t̂� ¼ ½T̂ � ¼ ½κ̂� ¼ 1.
Thus all our dynamical variables and coordinates are
dimensionless and the three constants ρT , KT , and T T
can be used to fix the length, time, and temperature scales
by using units so that

ρT ¼ 1

t20G
; KT ¼ G

1
3

κ
; and T T ¼ 1

where t0 is the initial time. In this case, we have t̂ ¼ t=t0
and κ̂ ¼ 1.
We claim K̃ is dimensionless quantity and further so is ι,

since

K̃ ¼ K3κ3

πG
¼ K3

TK̂
3Gκ̂3

K3
TπG

¼ K̂3κ̂3

π
:

Recalling [ [19], Chap. II] if we assume the specific heat
cV (at constant volume) is a constant, for polytropic
changes, we have T̂ ¼ Θγ0 ρ̂

γ0−1 and p ¼ RT ρ (note

½R� ¼ L2

T2T) where Θγ0 is the polytropic temperature and
γ0 ¼ cp−c

cV−c
is the polytropic exponent and R ¼ R̄=M is the

specific gas constant and R̄ ¼ 8.314 J=ðmol · KÞ is the
universal gas constant and M is the molar mass. We then

arrive at p ¼ RT TΘγ0ρ
1−γ0
T ργ

0
. In view of the expression of

the entropy,

S¼ S0 þ cV ½lnΘγ0 þ ðγ0 − γÞ ln ρ̂� ⇒ Θγ0 ¼ e
S−S0
cV ρ̂γ−γ

0
;

ðA1Þ

where γ ¼ cp
cV

¼ 1þ R
cV
. We reexpress p ¼ Ke

S−S0
cV ργ , where

K ¼ R̄T Tρ
1−γ
T =M. If γ ¼ 4=3, the nondimensionalized

equation of state becomes p̂ ¼ K̂esρ̂
4
3, where denoting

s ¼ ðS − S0Þ=cV ,
K̂ ¼ R̄T T=ðMKTρ

1
3

TÞ. By (A1), we have

es ¼ T̂ ρ̂−
1
3

Thus, the initial condition of entropy (2.14) implies the initial
distribution of the temperature T ∝ jxj2.
To simplify notation, we will drop the “hat” from the

hatted variables throughout main body of this article.

APPENDIX B: MATHEMATICAL PREPARATION
OF A NONLINEAR ODE

The main mathematical tool is a type of ODEs developed
in our previous article [9], §2. For readers’ convenience, we
quote the results without proofs in this appendix and
readers can find detailed proof in [9], §2. We consider
the solutions fðtÞ to the following type ODE,

f00ðtÞ þa
t
f0ðtÞ − b

t2
fðtÞð1þ fðtÞÞ − cðf0ðtÞÞ2

1þ fðtÞ ¼ 0; ðB1Þ

fðt0Þ ¼ β > 0 and f0ðt0Þ ¼ β0 > 0; ðB2Þ

where β; β0 > 0 are positive constants and

a > 1; b > 0; and 1 < c < 3=2: ðB3Þ

From now on, to simplify the notations, we denote

△ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −aÞ2 þ 4b

q
> −ā; ā ¼ 1 −a < 0;

c̄ ¼ 1 − c < 0

and introduce constants A, B, C, D, and E depending on
the initial data β and β0 to (B1)–(B2) and parameters a, b,
and c,

A ≔
t
−ā−△

2

0

△

�
t0β0

ð1þ βÞ2 −
āþ△

2

β

1þ β

�
;

B ≔
t
−āþ△

2

0

△

�
ā −△

2

β

1þ β
−

t0β0
ð1þ βÞ2

�
< 0;

C ≔
2

2þ āþ△

�
lnð1þ βÞ þ āþ△

2b
t0β0
1þ β

�
t
−āþ△

2

0 > 0;

D ≔
āþ△

2þ āþ△

�
lnð1þ βÞ − 1

b
t0β0
1þ β

�
t0;

E ≔
c̄β0t1−ā0

āð1þ βÞ > 0:

We define the following two critical times t⋆ and t⋆.

(1) LetR ≔ ftr > t0jAt
ā−△
2

r þ Bt
āþ△

2
r þ 1 ¼ 0g anddefine

t⋆ ≔ minR.
(2) If tā0 > E−1, we define t⋆ ≔ ðtā0 − E−1Þ1=ā ∈

ð0;∞Þ, i.e., t ¼ t⋆ solves 1 − Etā0 þ Etā ¼ 0.
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We are now in a position to state the main theorem on
ODE (B1) and (B2) and the proof can be found in [9], §2.
Theorem B.1. Suppose constants a, b, and c are

defined by (B3), t⋆ and t⋆ are defined above and the
initial data β; β0 > 0, then
(1) t⋆ ∈ ½0;∞Þ exists and t⋆ > t0.
(2) There is a constant tm ∈ ½t⋆;∞�, such that there is a

unique solution f ∈ C2ð½t0; tmÞÞ to the equation (B1)
and (B2), and

lim
t→tm

fðtÞ ¼ þ∞ and lim
t→tm

f0ðtÞ ¼ þ∞:

(3) f satisfies upper and lower bound estimates,

1þ fðtÞ > expðCtāþ△

2 þ Dt−1Þ for t ∈ ðt0; tmÞ;
1þ fðtÞ < ðAtā−△

2 þ Bt
āþ△

2 þ 1Þ−1 for t ∈ ðt0; t⋆Þ:

Furthermore, if the initial data satisfies β0 > āð1þ βÞ=
ðc̄t0Þ, then
(4) t⋆ and t⋆ exist and finite, and t0 < t⋆ < t⋆ < ∞.
(5) There is a finite time tm ∈ ½t⋆; t⋆Þ, such that there is

a solution f ∈ C2ð½t0; tmÞÞ to Eq. (B1) with the
initial data (B2), and

lim
t→tm

fðtÞ ¼ þ∞ and lim
t→tm

f0ðtÞ ¼ þ∞:

(6) The solution f has improved lower bound estimates,
for t ∈ ðt0; tmÞ,

ð1þ βÞð1 − Etā0 þ EtāÞ1=c̄ < 1þ fðtÞ:
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