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Cross-correlations of CMB lensing reconstructions with other tracers of matter constrain primordial non-
Gaussianity, neutrino masses and structure growth as a function of cosmic time. We formalize a method to
improve the precision of these measurements by using a third tracer to remove structure from the lensing
reconstructions. Crucially, our method enjoys the variance reduction benefits of a joint-modeling approach
without the need to model the cosmological dependence of the ancillary tracer. We present a first
demonstration of variance cancellation using data from Planck and the DESI Legacy Surveys, showing a
10%–20% reduction in both lensing power and cross-correlation variance using the cosmic infrared
background (CIB) or DESI Legacy Survey luminous red galaxies (LRGs) as matter tracers.
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I. INTRODUCTION

The cosmic microwave background (CMB) is the oldest
light we can observe; it is made up of photons which
(for the most part) last scattered at redshift z ≈ 1100. The
CMB we see has been gravitationally lensed by the
distribution of matter—both luminous and dark—that
the photons encountered along their trajectory, an effect
that can be harnessed to reconstruct maps of that very
matter distribution in projection (see [1] for a review).
These reconstructions can in turn be cross-correlated

with other tracers of matter to extract insights that cannot be
gleaned with either tracer alone. This is one of the most
promising ways to measure the growth of cosmic struc-
tures, primordial non-Gaussianity, or the sum of the
neutrino masses [2]. Moreover, cross-correlations make
it possible to isolate contributions from different redshifts,
a prized property in times of tantalizing discrepancies
between probes of early and late cosmic times (see,
e.g., [3–7] and references therein). Heuristically, if κ̂ is a
reconstruction of the CMB lensing convergence1 and g is
some other tracer of the matter distribution—such as a
galaxy survey—with redshift support zg, the “clumpiness”
of matter at the time corresponding to zg can be determined
from a ratio of angular spectra, σ8ðzgÞ ∼ Cκ̂g=

ffiffiffiffiffiffiffi
Cgg

p
,

where σ8 refers to the amplitude of the linear matter power
spectrum on a scale of 8 h−1 Mpc [8,9]. Similarly,
galaxy bias, including any scale dependence induced by

primordial non-Gaussianity, can be extracted from bðzgÞ∼
Cgg=Cκ̂g. For a typical tracer g, its autocorrelation is
measured much more accurately than its cross-correlation
with lensing, so the uncertainty on σ8ðzgÞ and bðzgÞ is
dominated by the error on Cκ̂g.
Reducing the cross-correlation error requires limiting

chance correlations between features in the lensing and
galaxy maps. One way to account for these is to introduce a
third tracer, I, which correlates with structures in κ̂ that
are not correlated with g, and modeling everything jointly
(e.g., [2]). Often times, however, we might be interested
in obtaining constraints that are independent of I, be it
because the tracer cannot be modeled easily or accurately,
or to avoid introducing a dependence on physics from the
cosmic era sourcing I.
In this work, we explore an alternative approach to

variance reduction that relies solely on measurable quan-
tities and limits the dependence on redshifts different from
those we intend to isolate. Our method entails subtracting a
filtered version of I from κ̂ in a procedure analogous to
“delensing.” In Sec. II, we derive the optimal form of these
filters and forecast potential gains in signal-to-noise. Then,
in Sec. III, we demonstrate that the variance reduction seen
on real data from Planck and the DESI Legacy Surveys
matches theoretical expectations. In an Appendix, we
generalize our method to the case where g and I are
correlated, explaining how to account for this in real
analyses.

II. THEORY

Consider Ĉκ̂g
l , the measured angular cross-correlation of

κ̂ and g. In general, Ĉκ̂g
l follows a χ2 distribution with 2lþ 1
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1We write the reconstruction as κ̂ to differentiate it from the

true κ. Note, however, that g and I are noisy observations.
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degrees of freedom, but away from the lowest few multi-
poles the distribution can be approximated as Gaussian by
the central limit theorem. In this regime, the variance of the
ith multipole bin of Ĉκ̂g

l is given by

σ2ðĈκ̂g
i Þ ¼

1

ð2li þ 1ÞfskyΔl
½Cκ̂ κ̂

i Cgg
i þ ðCκ̂g

i Þ2�; ð1Þ

where fsky is the fraction of sky covered by the observa-
tions, Δl is the width of the bins (which we assume to be
uniform for simplicity), and li is the central multipole of
the ith bin. This expression suggests that, by removing
structure from κ̂lm, we can suppress Cκ̂ κ̂

i and thus lower the
variance of the measurement.2

With this goal in mind, let us introduce a third tracer, I,
which is partially correlated with κ̂ (and possibly also with
g). This can be any tracer of low redshift matter such as a
the cosmic infrared background (CIB) or a galaxy density
or weak lensing (shear) field. We can use it to obtain a
“redshift-cleaned” convergence map as3

κ̂clnlm ¼ κ̂lm − flmIlm; ð2Þ

where f is a filter to be optimized shortly; throughout this
work, we will assume that I is statistically homogeneous
such that the optimal f is isotropic (i.e., independent of m),
but the method applies more generally.
Recently, Refs. [10–12] determined the weights that

approximately null contributions from a given redshift
range. Let us instead determine the choice of f that
maximizes the signal-to-noise on a measurement of the
cross-correlation. The signal-to-noise ratio of the ith bin is
defined as

ðS=NÞi ≡ Cκ̂g
i

σðĈκ̂g
i Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1ÞfskyΔl
1þ ðρκ̂gi Þ−2

s
; ð3Þ

where ρκ̂g is the correlation coefficient between the lensing
reconstruction, κ̂, and tracer g, and is defined as4

ρκ̂gi ¼ Cκ̂g
iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cκ̂ κ̂
i Cgg

i

p ; ð4Þ

where we take Cκ̂ κ̂
i and Cgg

i to include reconstruction noise
and shot noise, respectively. It follows that the choice of fl

that maximizes the signal-to-noise is also that which

maximizes ρκ̂
clng
l .

There are two effects we must consider when maximiz-
ing ρκ̂

clng with respect to f: on the one hand, any nonzero
field we add to κ̂ will affect the variance (i.e., “noise”) of
κ̂cln; on the other, if tracers g and I are correlated, the cross-
correlation signal will itself be impacted. Taking both into
account, we determine the optimal filter to be

fl ¼
CκI
l

CII
l

�
ρκ̂gl − ρgIl =ρ

κ̂I
l

ρκ̂gl − ρgIl ρ
κ̂I
l

�
≡ CκI

l

CII
l
γl; ð5Þ

granted ρgIl ≠ 1 (when ρgIl ¼ 1, g and I are one and
the same tracer, and one must logically set fl ¼ 0).
Note that CII

l includes all sources of noise. If tracers g
and I are completely uncorrelated, ρgIl ¼ 0, so γl ¼ 1 and
f → CκI

l =C
II
l —a form familiar from several applications of

variance reduction in cosmology [11,13].
The form of fl given in Eq. (5) guarantees an improve-

ment in the S/N of the cross-correlation. However, the goal
of this work is to achieve this while removing structure in κ̂
that correlates with I; this sets the additional requirement
that fl > 0 [cf. Eq. (2)].5 It can be shown that fl > 0 if and
only if

ρκ̂Il >
ρgIl
ρκ̂gl

or ρκ̂Il >
ρκ̂gl
ρgIl

: ð6Þ

When ρgIl ¼ 0, the first condition is met automatically. On
the other hand, when ρgIl ≠ 0 the situation is more nuanced,

as the ρκ̂Il − ρκ̂gl plane splits into regions where either one or
none of the above conditions are satisfied: for reference, a
prerequisite for the first condition to be met is that
ρκ̂gl > ρgIl ; for the second, the proviso is ρκ̂gl < ρgIl . We
study this general case in detail in the Appendix A.
Though both of these qualitatively-different scenarios in

principle allow for variance cancellation that results in
improved S/N, they differ in their practical benefits. When
ρgIl ≠ 0, our efforts to cancel variance will to some extent
entail a reduction of the signal, making modeling difficult
unless the removed signal can be accounted for accurately
enough; moreover we will have introduced an undesired
dependence on tracer I. In the Appendix A, we show that
when ρκ̂Il > ρgIl =ρ

κ̂g
l , measurement uncertainties are typi-

cally small enough that the removed signal can either be
ignored or restored based on direct measurements of ĈgI

l ,
with the benefits from variance cancellation outweighing
the additional error introduced when characterizing this

2It follows from Eq. (1) that removing the correlated part also
leads to lower variance, though the gain is typically subdominant
to that stemming from a reduction in Cκ̂ κ̂

i .
3The same effect can be achieved by including flCκ̂I

l in the
likelihood.

4This is not to be confused with the correlation between g and
the true lensing convergence, ρκgi ¼ ρκ̂gi ð1þ Nκκ

i =C
κκ
i Þ1=2, where

Nκκ is the power spectrum of the reconstruction noise.

5Assuming I is positively correlated with κ. The converse
holds when they are anticorrelated, as would be the case for a map
of the tSZ effect below 217 GHz, for example.
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correction term empirically. However, when ρκ̂Il > ρκ̂gl =ρ
gI
l

the penalty from restoring the signal is higher, and values of
fρκ̂Il ; ρκ̂gl ; ρgIl g that both satisfy ρκ̂Il > ρκ̂gl =ρ

gI
l and lead to

overall improved precision are in most cases only possible
if ĈgI

l can be measured on a patch of sky larger than the one
where we carry out the redshift cleaning. In fact, it is true
more generally that the balance of factors—and thus the
change in S/N after cleaning—depends on the relative sizes
of these two patches.
Leaving the caveat of signal restoration to the

Appendix A, the fractional change in signal-to-noise
per mode of Cκ̂g

l that can be attained using our optimal
weights is

ΔðS=NÞl
ðS=NÞl

¼
�
1þ½1þðρκ̂gl Þ2�−1

�
1þγlðγl−2Þðρκ̂Il Þ2
ð1−γlρ

gI
l ρ

κ̂I
l =ρ

κ̂g
l Þ2

−1

��−1
2

−1: ð7Þ

Figure 1 shows the improvement in signal-to-noise as a
function of ρκ̂gl and ρκ̂Il in the limit that g and I are
uncorrelated. Improvements of several tens of percent
are achievable with realistic tracers, especially whenever
ρκ̂Il is significantly higher than ρκ̂gl . For a given value of ρ

κ̂I
l ,

the fractional improvement in S/N is larger the smaller ρκ̂gl
is. This is because with lower ρκ̂gl , the term proportional to
Cκ̂ κ̂
l dominates the error in Eq. (1) more clearly, amplifying

the impact of cleaning. The method is thus especially suited
to improve low-significance measurements or to make first
detections.

To illustrate the promise of redshift cleaning, we
consider as a potential application the use of low-redshift
(z < 4) measurements from the future Vera Rubin
Observatory (VRO) LSST [14] to clean CMB-S4 [15]
lensing reconstructions, and subsequently correlating
these with the highest-redshift bin of LSST (z > 4).6

We find that the S/N of the cross-correlation is improved
by ∼100% at l ∼ 50, as shown by the star in Fig. 1.7 This
gain could be important, for instance, when searching for
fNL, the signal of which peaks at high redshifts and
large angular scales [2]. Since CMB-S4 is overwhelm-
ingly signal dominated at these low ls, the only way to
improve measurement significance is by getting around
the cosmic variance of κ. Our method does precisely this
while bypassing the need to model the low redshift
tracers.8

Another promising application is to improve measure-
ments of σ8. With existing data, the gains are modest: the
cross in Fig. 1 shows a 10% gain in precision of Cκ̂g

l¼150

when using GNILC CIB to clean AdvACT DR6 and cross-
correlate with Legacy Survey BGS (assuming ρgI ¼ 0;
more details about these tracers to come). However, the
figure also shows that improvements of a factor of two or
greater on the large-scale amplitude of fluctuations are
possible with upcoming experiments.

III. DEMONSTRATION

We now present a first demonstration of variance
cancellation by cross-correlating CMB lensing data from
Planck with galaxy survey data from the DESI Legacy
Survey (LS) [16]. Since the benefits of our method are
predicated on being able to remove true lensing modes
that do not correlate with g, and the Planck lensing noise
levels are relatively high—only a handful of modes are
signal-dominated [17]—it is at present difficult to find a
combination of datasets for which the S/N improves.
However, this will soon change dramatically as data from
AdvACT [18], SO [19], SPT-3G [20], and CMB-S4 [15]
become available. It is therefore useful to demonstrate that
variance cancellation can be achieved and understood
irrespective of whether the S/N improves for the particular
scenario under consideration. Hence, and in order to
maximize the variance reduction, we set γl ¼ 1 in the
weights for the remainder of this section.

FIG. 1. Fractional change in the signal-to-noise ratio per mode
of Ĉκ̂g

l after cleaning κ̂ with an optimally filtered tracer I, in the
limit that ρgIl ¼ 0. The gray region corresponds to values of ρκ̂gl
and ρκ̂Il incompatible with ρgIl ¼ 0 (see the Appendix B). The star
and cross represent two particular combinations of data outlined
in the legend and described in the main text.

6We assume the LSST bins to be disjoint. Further details about
our parametrization of the tracers are given in the Appendix C.

7Improvements are even larger at lower l, but we do not focus
on those scales here as they require a more refined treatment due
to the Limber approximation breaking down and systematic
effects becoming more important.

8Further work is needed to assess the impact of decorrelation
between κ and I due to scale-dependent bias and nonlinearities.
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A. Data

We work with the minimum variance combination of
CMB lensing reconstructions obtained from temperature
and polarization data from the fourth data release of
Planck [17]. The resulting κ̂ map covers ∼67% of the
sky and is signal-dominated on scales 10≲ L≲ 70.
As per large-scale structure tracers, we consider various

samples of galaxies photometrically selected from Legacy
Survey data for spectroscopic follow-up with DESI. These
were spectroscopically calibrated during DESI survey
validation. We define a “BGS” sample as the “bright”
(r < 19.5) subset of targets to be observed by the DESI
Bright Galaxy Survey (BGS) [21,22]. This sample is
relatively-low redshift: Fig. 18 of Ref. [21] shows its
redshift distribution, which is mostly confined to
z < 0.5. We work also with an “LRG” (Luminous Red
Galaxy) sample, using directly the maps provided by
Ref. [4], which are split into four redshift bins with redshift
distribution given in their Fig. 2; this sample is explained in
detail in [4,23]. Since the first bin has significant overlap
with the BGS sample, we will exclude it whenever we use
the LRGs as tracer I and BGS as tracer g in order to limit
the correlation between the two samples; the remaining
LRG sample spans 0.5 < z < 1. The galaxy maps thus
produced cover ∼50% and ∼44% of the sky for BGS and
the full LRG sample, respectively, and are largely contained
within the Planck κ̂ footprint. Note that while for now we
are restricted to using photometric samples with small
but nonzero redshift overlap, spectroscopic data from
DESI [24] and Euclid [25] will soon allow us to use
samples that are nonoverlapping, better ensuring ρgI ≈ 0.9

Finally, we work also with the cosmic infrared back-
ground (CIB) which is a tracer of star formation and as such
originates from a wide range of cosmic times peaking at
z ∼ 2. Since this closely matches the CMB lensing
kernel, the CIB is highly correlated with CMB lensing
(e.g., [13,26]), making it a paradigmatic candidate to be
used as tracer I (as suggested already in [11]). Specifically,
we use the map extracted from Planck 353 GHz data using
the GNILC algorithm [27], masking modes with l < 100 to
avoid contamination from spurious artifacts and residual
galactic dust on large angular scales. This overlaps with the
κ̂ patch across ∼51% of the sky.

B. Methods

In order to determine the weights fl, and also to later
model the variance reduction, we need fiducial spectra for
all the auto- and cross- spectra between κ̂, I and g. We
follow the approach in [28] to fitting the spectra involving
galaxies, CIB and lensing on the patch where they overlap,
but use the PYCCL code [29] and the galaxy redshift

distributions given in the LS target selection papers cited
above. Note that this does not introduce any unwanted
dependence on cosmology or physics at a different redshift,
since we do not utilize the best-fit parameters for anything
else. The fitting form we use to get fl need not be the actual
physically correct model: all that is required to avoid bias is
a smooth fit, and any deviation of the fiducial spectrum
from the truth will only result in suboptimal variance
reduction [13,28]. Moreover, since the form of fl we are
using was obtained from an optimization procedure, the
cleaning performance has no linear-order response to
inaccuracies in determining fl.
When coadding LRG maps from different redshift bins

to then use them as tracer I, we first re-weight the galaxy
bins using Eq. 20 of [13] to better match the CMB lensing
kernel and thus maximize the cross-correlation with
lensing. Admittedly, this only improves performance mar-
ginally for the tracers we consider.
We measure the angular pseudo- cross-spectrum on

scales 10 < l < 1000 on the same sky patch before and
after redfshift cleaning, and estimate the variance on
estimates of the bandpowers in each of the two cases from
the scatter of the measured Ĉl’s within bins of width
Δl ¼ 90. When doing this, it is important that the
underlying spectrum be flat over the size of the bin. We
ensure this by first dividing the Ĉl’s by a smooth fiducial
spectrum—the appropriate model for each measurement
given in the Appendix E—and multiply the result by the
binned version of this fiducial.
We verify that the pipeline is unbiased by applying it to

1000 Gaussian simulations of all the tracers sharing a
degree of correlation that matches what is seen in the data.10

The scatter of these outputs gives us our error bars.

C. Results

Figure 2 shows that we are able to effectively remove
structure from the lensing maps, and that we do so by an
amount that agrees with theoretical expectations. To state
this more quantitatively, we fit for an amplitude parameter
A, which linearly rescales the fiducial model of
equation (D2) (the solid lines in the figure). Proceeding
by least-squares minimization,11 we obtain best-fit param-
eter values and associated uncertainties that can be inter-
preted as highly-significant detections of lensing removal:
41σ when using GNILC CIB maps to clean Planck PR4 κ̂,
and 25σ when using LRG bins 1–4. We test goodness-of-fit
by calculating the reduced-χ2 of a binned model with the
best-fit value of A and translating this to a probability-to-
exceed (PTE); the latter values, quoted in the figure legend,

9There will be a small contribution from magnification bias; if
significant, it could be handled by following the Appendix A.

10See Appendix F of [30] for details on how to generate such
simulations.

11Since the bins are wide (Δl ¼ 90), we ignore correlations
between them.
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suggest the fits are excellent. Moreover, constraints on A
are consistent with the fiducial value of unity.
The reduction is greatest at low l because it is on those

large scales that the Planck lensing reconstructions have
highest S/N per mode. In addition, whenever we clean with
a galaxy map, such as our LRG sample, this is compounded
with the fact that it is at low-l that contributions from low
redshift structures make up a higher fraction of the total
lensing power (see, e.g., [1]). It is reassuring that below
l < 100, where we masked modes in the CIB map to avoid
the impact of systematics, the variance is unchanged.
This removal of structure from the CMB lensing map

translates to lower variance when cross-correlating it with
other tracers. In Fig. 3, we demonstrate this for two tracer
combinations: in the left column, we clean the Planck κ̂
map with the GNILC CIB map, and subsequently correlate
this with the combination of all four LRG bins; on the right,
we clean it with LRG bins 2–4 (recall that this sample spans
0.5 < z < 1), weighted to match the lensing kernel, and
cross-correlate with the BGS sample (z < 0.5).
We consider two estimators of the variance change. The

first (top row) shows the fractional difference in variance
before and after redshift cleaning. Applying the same
significance test as above, we report reductions in the
variance of Cκ̂g

l with confidence slightly above 3σ. This
effect is well captured by our fiducial models, which are
consistent with the constrained A within 1σ, and yield very
plausible PTEs at the best fit values of A.
This first estimator makes intuitive sense, but it is rather

noisy. In the Appendix E, we derive an alternative one that
agrees with the first in the mean when γl ¼ 1 and ρgIl ¼ 0
but is less noisy in general; heuristically, it quantifies the
variance associated with structures that get removed during
the cleaning process. These conditions are not grossly

violated in the cases we consider here, particularly in the
right column of Fig. 3: γl ¼ 1 by design, and though ρgIl is
strictly speaking not zero, it is small. In this situation, the
two estimators differ slightly—in the Appendix E, we
model exactly by how much—but the second is still a
reasonable estimator of the variance change given the
statistical errors. Results from this estimator are reported
in the bottom two panels, showing a detection significance
of approximately 14σ in the two cases we consider.
For completeness, we show in the Appendix E, Fig. 6,

that we can also successfully reduce the variance of the
CMB lensing power spectrum by the expected amount,
using either the CIB or the LRG samples. We detect this
effect with up to 4σ confidence.

IV. CONCLUSIONS

We have explored a method to reduce cosmic variance in
CMB lensing maps by invoking an ancillary tracer which,
importantly, does not need to be modeled in detail. This is
particularly useful when the tracers are poorly understood,
as is the case with the CIB or low-redshift tracers in the
non-linear regime. Since our formalism is built around
correlation coefficients determined from measurable quan-
tities, it automatically accounts for the gravitational lensing

FIG. 3. Variance cancellation in the cross-correlation of tracer g
with a Planck PR4 κ̂ map after cleaning the latter with a filtered
tracer I (setting γl ¼ 1). Top row: fractional change in the
variance per mode. Bottom row: (minus) the variance associated
with the structures that cleaning removes, as a fraction of the
original variance. According to the Appendix E, top and bottom
rows are equal in the mean in the limit that ρgIl ¼ 0, but the former
is more noisy. Solid lines show fiducial models with A ¼ 1, while
the best-fit values are annotated in each panel.

FIG. 2. Fractional change in lensing power after cleaning a
Planck PR4 κ̂ map with different filtered tracers (setting γl ¼ 1).
To reduce sample variance, we bin the numerator only after
taking differences between spectra. The data are in excellent
agreement with the model (shown as solid lines for a fiducial
A ¼ 1).
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of g and I, as well as their decorrelation with each other and
with κ due to gravitational nonlinearities and nonlinear
bias. With some minor modifications, it is likely that the
method could be applicable to galaxy weak lensing as well.
We identified simple conditions that need to be met for

the technique to result in improvements in the S/N of CMB
lensing cross-correlations. These are automatically satisfied
when ρgIl ¼ 0; hence, the method promises to be useful
when spectroscopic data are available. On the other hand,
when ρgIl ≠ 0, some amount of signal is removed during the
process, and any benefits depend on the hierarchy between
ρgIl , ρ

κ̂I
l and ρκ̂gl (though when ρgIl ≪ 1, the bias from signal

suppression is typically negligible). In the Appendix A, we
explored ways to partially restore the removed signal,
should it be needed, including direct measurements of
ĈgI
l . When the correlation between g and I is significant, the

method is especially suited to enhance deep CMB lensing
measurements limited to compact sky areas, especially
when ĈgI

l can be measured over larger regions. Users
interested in the technique can simply evaluate Eqs. (A9)
or (A10) to assess whether benefits are accessible to them.
We then demonstrate that variance cancellation can

already be achieved using existing tracers. First of all,
we report a reduction in Planck PR4 CMB lensing power
with 41σ confidence when using GNILC CIB, or 25σ using
LS LRGs. These lead to 4σ and 2σ detections of variance
reduction in the CMB lensing autospectrum. We then
demonstrate variance cancellation in the cross-correlation
of CMB lensing with galaxy surveys at 3σ confidence with
standard estimators, or 14σ with a tailor-made estimator.
The theoretical framework we develop proves excellent
when it comes to faithfully modeling empirical results.
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APPENDIX A: GENERALIZATION

In Eq. (6), we identified the two conditions which, if met,
guarantee that fl > 0, meaning that variance cancellation is
possible and will in theory result in improved S/N on Cκ̂g

l .
When ρgIl ¼ 0, the first condition is always satisfied, but the
situation is more nuanced when ρgIl ≠ 0.
In general, when ρgIl ≠ 0, the ρκ̂Il -ρ

κ̂g
l plane can be

divided into regions where fl is positive or negative.
This is illustrated in the left column of Fig. 4: in the green
regions, fl > 0, and conversely for the red ones. The curves
separating these regions are given by the limit where the
inequalities in Eq. (5) become equalities.12

In the regions where fl < 0, there can be no gain in S/N
from variance cancellation, so Eq. (2) is essentially telling
us to fold I in as a tracer of g. In fact, a derivation of fl
using a Lagrange multiplier that constrains fl to be non-
negative returns fl ¼ 0 in this regime.
The regions we are interested in, however, are those

where fl > 0, so we now characterize them in detail. When
ρκ̂gl > ρgIl , either the first of the two conditions is met—
namely ρκ̂Il > ρgIl =ρ

κ̂g
l —or none are. This is telling us that

when gl is more correlated with κ̂l than with Il, it is
necessary (though not sufficient) that Il itself be more
correlated with κ̂l than with gl. Qualitatively, the type of
variance cancellation we can obtain in this branch is a
natural extension of that we see in the ρgIl ¼ 0 limit. At the
dividing line between regions, ρκ̂Il ¼ ρgIl =ρ

κ̂g
l , the weights

are zero because this equality can only be satisfied
when κ̂l ¼ Il, in which case we are better off not doing
anything.
On the other hand, when ρκ̂gl < ρgIl , only the second

condition—that is, ρκ̂Il > ρκ̂gl =ρ
gI
l —can be satisfied. This

time, the necessary (but, again, insufficient) condition is
that when gl is less correlated with κ̂l than with Il, κ̂l must
be significantly more correlated with Il than with gl
(linearly more so). In this case, the weights are undefined
at the boundary between regimes because the one require-
ment in our derivation of fl was that ρκ̂Il ≠ ρκ̂gl =ρ

gI
l .

These conditions are in fact quite idealized. Both they
and Eq. (7) tell us about the S/N in a way we cannot directly
work with, because when ρgIl ≠ 0 we need to know what
has happened to the cross-correlation signal through the
redshift cleaning process. Whenever tracers g and I are
correlated and fl > 0, the signal decreases as

Cκ̂clng
l ¼ Cκ̂g

l − flC
gI
l : ðA1Þ

12In the discussion that follows, it will be useful to note that the
physically allowed region—as determined in the Appendix B—is
tangent to the top axis where ρκ̂gl ¼ ρgIl , and to the right axis
where ρκ̂Il ¼ ρgIl ; these are also the points where the thresholds in
Eq. (6) intersect the axes.
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FIG. 4. Generalization of the theory of variance cancellation to the case of ρgIl ≠ 0. Left column: sign of fl; where positive (green)
variance cancellation can in theory lead to improved S/N. However, the two green branches differ by the extent to which the signal is
reduced. Middle column: ratio of bias from signal suppression to statistical uncertainty after redshift cleaning. The bias-variance tradeoff
can be optimized by minimizing the MSE after a direct measurement of ĈgI

l is used to partially restore the signal. Right panel: fractional

change in S/N per mode of Cκ̂g
l at the MSE optimum after cleaning and restoring the signal from a measurement of ĈgI

l on the same
patch, showing only regions where there is a gain in S/N. Animations at intermediate values of ρgIl can be found online [33].
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As long as the optimal weights in Eq. (5) are used, it is in
principle still advantageous to pursue variance cancellation.
However, attempts to fit the data with a theoretical model
for Cκg

l will be biased, all the while that the variance is
reduced. Moreover, the data will have acquired a depend-
ence on I, and thus on physics at redshifts different from
that which we would like to isolate.
Let us formalize our definition of this bias as

ΔCκ̂g
l ≡ hĈκ̂clng

l i − Cκ̂g
l

¼ −flC
gI
l : ðA2Þ

The ratio of the bias magnitude to the statistical uncertainty
after cleaning is then

jΔCκ̂g
l j

σðĈκ̂clng
l Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þfsky

q �
ðγlρgIl ρκ̂Il Þ−2½1þðρκ̂Il Þ2γlðγl−2Þ�

þ
�

ρκ̂gl
γlρ

gI
l ρ

κ̂I
l

�2

ð1− γlρ
gI
l ρ

κ̂I
l =ρ

κ̂g
l Þ2

�
−1
2

; ðA3Þ

which is larger the more modes are observed—hence the
factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þfsky
p

, where fsky tracks the size of the
patch where cleaning is performed (small patches offer
greater tolerance to bias due to their higher sample
variance). This expression is evaluated in the central
column of Fig. 4 for three values of ρgIl , immediately
revealing a significant qualitative difference between the
two variance cancellation branches identified in Eq. (6):
the fractional bias is smaller when ρκ̂Il > ρgIl =ρ

κ̂g
l than in the

alternative branch where ρκ̂Il > ρκ̂gl =ρ
gI
l . In fact, when

ρgIl ≪ 1, the bias can be safely ignored across the former
branch for most reasonable values of l and fsky (as

expected, since this is the natural continuation of the ρgIl ¼
0 case studied in the main text). On the other hand, when
ρκ̂Il > ρκ̂gl =ρ

gI
l the bias is generally larger than the statistical

uncertainty except at the largest angular scales and smallest
sky patches, for which

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þfsky
p ≲ 1.

If the bias amplitude is unacceptably large for the
application at hand, there are ways to mitigate it. The
approach we consider here is to actively try to restore
the signal we have removed, fitting our theory model to a
corrected cross-spectrum

C̃κ̂clng
l ≡ Ĉκ̂clng

l þ flCcorr
l : ðA4Þ

For example, if we somehow knew the true CgI
l with no

uncertainty, we could set Ccorr
l ¼ CgI

l , and this would
eliminate all bias while also retaining all variance sup-
pression. The gain in S/N would then simply be given by
Eq. (7). Though CgI

l is unlikely to be known perfectly,
it could conceivably be predicted from theory rather

accurately if the redshift distributions of the samples are
known. Alternatively, it could come from a fit to a wide
range of scales and maybe even a larger sky patch, ideally
in a way that remains cosmology-independent despite
having to assume a fitting form.
If none of these approaches are viable, CgI

l can still be
determined from the data on a multipole-by-multipole
basis, but at the cost of increased variance. If we set
Ccorr
l to the measured g-I correlation on the same patch

where we do the cleaning, Ccorr
l ¼ ĈgI

l , we will have
achieved exact unbiasedness but also restored all of the
variance we had originally set out to remove.
We therefore seek solutions that lie between the two

limits we have seen, compromises between bias and
variance reduction.13 These entail setting Ccorr

l ¼ WlĈ
gI
l ,

where Wl is a filter that we must optimize such that this
correction moves us in the direction of unbiasedness but
only insofar as we are willing to see the variance increase.
One could, for example, choose the form ofWl that results
in the largest amounts of variance reduction subject to the
ratio of bias-to-variance,

jhC̃κ̂clng
l i − Cκ̂g

l j
σðC̃κ̂clng

l Þ
¼ jflCgI

l ðWl − 1Þj
σðĈκ̂clng

l þ flWlĈ
gI
l Þ

; ðA5Þ

being smaller than some threshold. Note that this expres-
sion differs from (A3) in that both the numerator and
denominator are calculated after applying the correction. In
particular, the denominator depends on a number of factors,
including the size of the patches where cleaning is
performed and where ĈgI

l is measured. These need not
be the same; if the latter is larger, the uncertainty introduced
when restoring the signal will be comparatively smaller;
and if the patches are disjoint, the covariance between them
will be greatly reduced. In regions where (A3) is already
below the threshold, the constraint should be inactive and
Wl ¼ 0: no signal needs to be restored, so variance
reduction should be maximal. On the other hand, when
the constraint is active, the desired threshold value should
be exactly enforced.
Yet another possibility is to choose the form of Wl that

minimizes the mean-squared-error,14

13The metrics we will be introducing in Eqs. (A5) and (A6) are
not adequate in the regimewhere the optimal weights are negative
—f < 0, where, heuristically, I is included as a tracer of g to
boost the cross-correlation signal. Since the focus of this work is
the regime where f > 0, we show only results appropriate for this
case.

14Though we do not include it here, the impact of systematic
effects in the measurement of ĈgI

l , such as inhomogeneities in
galaxy samples (e.g., [34,35]), could be incorporated at this point
if its contribution to the error budget after redshift cleaning is
known.
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MSE≡ hðC̃κ̂clng
l − Cκ̂g

l Þ2i; ðA6Þ

thus reducing bias and/or variance according to their
relevance in the scenario at hand. This will limit the gains
in S/N promised by Eq. (7), but it will also offer the key
benefit of limiting the bias amplitude to being at worst of
the order of the statistical error. It can be shown that the
weights that accomplish this are

Wl ¼
ðCgI

l Þ2 − Cov½Ĉκ̂clng
l jκ̂∩g∩I; ĈgI

l jg∩I�=fl
ðCgI

l Þ2 þ σ2ðĈgI
l jg∩IÞ

; ðA7Þ

where we have differentiated between measurements made
on the patch where ĈgI

l is measured (which we denote as
g ∩ I) or in the patch where we carry out the redshift
cleaning (κ̂ ∩ g ∩ I).
When the two patches are one and the same, the weights

reduce to

Wl ¼ 1 −
�

ρκ̂gl
γlρ

gI
l ρ

κ̂I
l

þ 1

γlðρgIl Þ2
�

×

�
1þ 1

ðρgIl Þ2
þ ð2lþ 1Þfsky

�
−1
: ðA8Þ

As expected, Wl → 0 when ρgIl → 0, indicating that the
bias is best left untreated, as it is small to begin with. At the
other extreme,Wl → 1 as ρgIl → 1—the bias is so large that
mitigating it costs us practically all variance reduction.

To see this more explicitly, we calculate the change in
S/N after minimizing the MSE when the κ̂ ∩ g ∩ I and
g ∩ I patches are actually the same:

ΔðS=NÞl
ðS=NÞl

¼
�
1þ½1þðρκ̂gl Þ2�−1

�
1þγ0lðγ0l−2Þðρκ̂Il Þ2
ð1−γ0lρ

gI
l ρ

κ̂I
l =ρ

κ̂g
l Þ2

−1

��−1
2

−1; ðA9Þ

where γ0l ≡ γlð1 −WlÞ; notice that this expression reduces
to Eq. (7) whenWl ¼ 0, and gives zero whenWl ¼ 1. The
right column of Fig. 4 evaluates it for l ¼ 100 and
fsky ¼ 0.03, a sky fraction similar to that surveyed by
SPT-3G. These values help us illustrate some important
features without loss of generality. Note, in particular, that
gains in S/N are limited to a subregion of the branch
where ρκ̂Il > ρgIl =ρ

κ̂g
l .

Consider, on the other hand, the case where patches κ̂ ∩
g ∩ I and g ∩ I are disjoint. When this is the case, the
covariance in the numerator of Eq. (A7) can be ignored.15

Furthermore, the precision with which ĈgI
l can be measured

increases with the size of the g ∩ I patch; in the limit where
the error in determining CgI

l is made small this way, Wl

approaches unity as the signal can be accurately restored
without adding significant amounts of variance. To state
this more quantitatively, we once again look at the changes
in S/N that can be achieved, this time specifying that the
patches be disjoint16:

ΔðS=NÞl
ðS=NÞl

¼ ½1 − ð1 −WlÞγlρκ̂Il ρgIl =ρκ̂gl �½1þ ðρκ̂gl Þ2�
1
2

×

�
1þ ðρκ̂Il Þ2γlðγl − 2Þ þ ðρκ̂gl − γlρ

gI
l ρ

κ̂I
l Þ2 þ ðWlγlρ

κ̂I
l Þ2

�
fκ̂∩g∩Isky

fg∩Isky

�
½1þ ðρgIl Þ2�

�
−1
2

− 1: ðA10Þ

Let us use this equation to assess the extent to which
being able to measure ĈgI

l on a larger, disjoint patch
improves prospects for redshift cleaning. Suppose the
CMB lensing reconstructions are obtained by a telescope
on the South Pole while g and I are both measured on
larger footprints by telescopes on the Atacama desert
and/or space. For example, most of the 1500 deg2

(fκ̂∩g∩Isky ≈ 0.03) covered by SPT-3G are contained within

the 5000 deg2 observed by the Dark Energy Survey
(DES) [36] in its Y3 data release. If g and I are both
drawn from DES observations, then fg∩Isky ≈ 0.09 (after

excising the region of overlap with κ̂ ∩ g ∩ I). More
futuristically, if we assume that the 18000 deg2 coverage

of LSST fully contains the SPT-3G patch, fg∩Isky ≈ 0.4.

Finally, if g and I come from satellite observations on
80% of the sky (we exclude regions near the Galactic

plane), then fg∩Isky ≈ 0.8. Figure 5 shows the gain in S/N

associated with these three scenarios for a fixed ρgIl ¼ 0.4
and l ¼ 100, so that they can be readily compared to

Fig. 4(f), for which a single patch with fκ̂∩g∩Isky ¼ fg∩Isky ≈
0.03 is used. Notice that the prospects are significantly
improved both in terms of the gain in S/N for fixed values
of the correlation coefficients, and also in terms of the
situations where gains are at all possible, as certain regions

15Away from the lowest few multipoles.
16It is straight forward to verify that Eqs. (7), (A9), and (A10)

all equal each other when Wl ¼ 0.
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within the ρκ̂Il > ρκ̂gl =ρ
gI
l branch now lend themselves to

improved precision via redshift cleaning.

APPENDIX B: RELATING ρκg, ρκI, AND ρgI

In order to derive a relation between the correlation
coefficients of tracers κ, g, and I, we will exploit an analogy
between the cosine of the angle between vectors X and Y,

cos θXY ¼ X · Y
jXjjYj ; ðB1Þ

and the correlation coefficient between projected fields X
and Y (we drop the multipole dependence for notational
convenience),

ρXY ¼ CXYffiffiffiffiffiffiffiffiffi
CXX

p ffiffiffiffiffiffiffiffi
CYY

p : ðB2Þ

Following this analogy, we promote our tracers to
vectors in three-dimensional space, and seek an expression
for cos θκg in terms of cos θgI and cos θκI, and similarly for
cos θκI . Such a relation exists only if the three vectors are
coplanar; fortunately, this limit suffices to place an upper
bound on cos θκg, once we realize that for fixed θgI and θκI ,
the configuration that maximizes cos θκg is the one where
all the vectors are coplanar. Consequently,

ρκg ¼ cos θκg

≤ cos ðθgI − θκIÞ
¼ cos θgI cos θκI þ sin θgI sin θκI

¼ ρgIρκI þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðρgIÞ2�½1 − ðρκIÞ2�

q
; ðB3Þ

where, in the second line, equality holds only when the
vectors are coplanar. By the same logic,

ρκI ≤ ρgIρκg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðρgIÞ2�½1 − ðρκgÞ2�

q
: ðB4Þ

APPENDIX C: PARAMETRIZING TRACERS FOR
FORECASTS

In this section, we describe the tracer modeling under-
lying the forecasts of Fig. 1.
Our parametrization of the VRO LSST follows [28]. We

assume the galaxies can be split into disjoint tomographic
bins with edges at redshifts 0, 0.5, 1, 2, 3, 4 and 7. The first
five bins (0 < z < 4) are then combined using the weights
of [13] to more closely match the galaxy kernel to that of
CMB lensing. This constitutes our tracer I—we also retain
the last bin (4 < z < 7) to be used as our g tracer. As per
GNILC CIB and DESI BGS (see Sec. III A for details about

FIG. 5. Impact of the size of the patch where ĈgI
l is measured

(g ∩ I, disjoint from κ̂ ∩ g ∩ I) on the possible gains in S/N per
mode of Cκ̂g

l when ρgIl ¼ 0.4, at the MSE optimum. (See text of
the Appendix A for what scenarios these fsky values correspond
to.) This is to be contrasted with Fig. 4(f), which assumes a single
patch with fg∩Isky ¼ fκ̂∩g∩Isky ¼ 0.03 but the same color range given

by the color bar in 4(l). Measuring ĈgI
l on a patch of sky larger

than that where we redshift-clean increases both the magnitude of
gains in S/N and the domain where they are possible.

ANTÓN BALEATO LIZANCOS and SIMONE FERRARO PHYS. REV. D 107, 123532 (2023)

123532-10



these tracers), our models come from theory-inspired fits to
the data, once again following [28].
On the CMB lensing side, we consider experiments with

the characteristics of CMB-S4 and ACT [37] DR6. We
follow [38] in treating the CMB-S4 Gaussian lensing
reconstruction noise as being white on signal-dominated
scales. We take the white noise level to be Δκ ¼ 0.2 arcmin
to match Fig. 3 of [2], which shows the reconstruction
noise for a minimum-variance combination of temperature
and polarization reconstructions—the former up to
lTmax ¼ 3000, the latter to lE;Bmax ¼ 3500 and applied iter-
atively—for a possible Stage-4 experiment with a sym-
metric, Gaussian beam with FWHM of 1 arcmin and
1 μKarcmin white noise. On the other hand, the noise
curve for ACT DR6 was generated by assuming a 1.4 arc-
min beam and a white noise level of 10 μKarcmin.

APPENDIX D: MODELING CHANGES
IN SPECTRA

When the weights in Eq. (5) are employed, the angular
power spectrum of the redshift cleaned convergence map is

Cκ̂clnκ̂cln
l ¼ Cκ̂ κ̂

l

�
1 − 2fl

CκI
l

Cκ̂ κ̂
l

þ f2l
CII
l

Cκ̂ κ̂
l

�
; ðD1Þ

such that the fractional change in lensing power after
variance cancellation is

ΔCκ̂ κ̂
l

Cκ̂ κ̂
l

¼ −2fl
CκI
l

Cκ̂ κ̂
l

þ f2l
CII
l

Cκ̂ κ̂
l

: ðD2Þ

If the fiducials are perfectly matched to the truth, these
expressions simplify to

Ĉκ̂cln κ̂cln
l ¼ Ĉκ̂ κ̂

l ½1þ ðρκ̂Il Þ2γlðγl − 2Þ�; ðD3Þ

and

ΔCκ̂ κ̂
l

Cκ̂ κ̂
l

¼ ðρκ̂Il Þ2γlðγl − 2Þ: ðD4Þ

On the other hand, the cross-correlation of κ̂cln with g
gives

Cκ̂clng
l ¼ Cκ̂g

l − flC
gI
l : ðD5Þ

If the fiducials match the truth, then

Cκ̂clng
l ¼ Cκ̂g

l ð1 − γlρ
gI
l ρ

κ̂I
l =ρ

κ̂g
l Þ: ðD6Þ

All in all, in the limit that the fiducials match the truth, the
correlation of the cleaned convergence map with tracer g
becomes

ρκ̂
clng
l ¼ ρκ̂gl

2
64 1 − γlρ

gI
l ρ

κ̂I
l =ρ

κ̂g
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðρκ̂Il Þ2γlðγl − 2Þ
q

3
75: ðD7Þ

Furthermore, if g and I are completely uncorrelated, then

ρκ̂
clng
l ¼ ρκ̂glffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðρκ̂Il Þ2
q : ðD8Þ

APPENDIX E: MODELING VARIANCE
REDUCTION

We now model the change in variance after applying our
method. In doing so, let us follow a route that highlights the
different contributions to the variance of our estimator. We
begin with the general expression for the variance of the
difference of two correlated random variables,

σ2ðCκ̂clng
l Þ − σ2ðCκ̂g

l Þ ¼ −σ2ðCκ̂clng
l − Cκ̂g

l Þ ðE1Þ

þ2σ2ðCκ̂clng
l Þ ðE2Þ

−2CovðCκ̂clng
l ; Cκ̂g

l Þ: ðE3Þ

Taking the fields to be Gaussian, we find that

Δσ2ðCκ̂g
l Þ

σ2ðCκ̂g
l Þ

¼ −
σ2ðΔCκ̂g

l Þ
σ2ðCκ̂g

l Þ
þ 2flðCκ̂ κ̂

l Þ−1
1þ ðρκ̂gl Þ2

�
Cκ̂I
l

�
fl

CII
l

Cκ̂I
l

− 1

�

ðE4Þ

fl
CgI
l

Cgg
l
ðCgI

l − Cκ̂g
l Þ

�
: ðE5Þ

Heuristically, the first term captures the variance reduction
due to having removed structure common to κ̂ and I. It can
be modeled as

σ2ðΔCκ̂g
l Þ

σ2ðCκ̂g
l Þ

¼ f2l
CII
l

Cκ̂ κ̂
l

�
1þ ðρgIl Þ2
1þ ðρκ̂gl Þ2

�
: ðE6Þ

In the limit that γl ¼ 1 and the fihducial CgI;fid
l and CII;fid

l
used to build fl are well matched to the truth, the term in the
second line of Eq. (E4) is zero in the mean. The same goes
for the term in the third line whenever ρgI ¼ 0. In these
circumstances—which are very similar to some of the cases
considered in the main text, where γl ¼ 1 by construction,
and ρgI is small—Eq. (E6) becomes a less noisy estimator
of the variance change.
Let us also quote, for completeness, the expected frac-

tional change in variance of the convergence bandpowers:

MODEL INDEPENDENT VARIANCE CANCELLATION IN CMB … PHYS. REV. D 107, 123532 (2023)

123532-11



σ2ðΔCκ̂ κ̂
l Þ

σ2ðCκ̂ κ̂
l Þ ¼

�
1 − 2fl

Cκ̂I
l

Cκ̂ κ̂
l

þ f2l
CII
l

Cκ̂ κ̂
l

�
2

− 1: ðE7Þ

If the fiducial spectra are accurate, this gives

σ2ðΔCκ̂ κ̂
l Þ

σ2ðCκ̂ κ̂
l Þ ¼ ðρκ̂Il Þ2γl½−4þ 2γl

þ ðρκ̂Il Þ2γl½4ð1 − γlÞ þ γl��: ðE8Þ

In Fig. 6, we show with actual data that the variance of
estimates of the convergence bandpowers is reduced after
redshift cleaning. The data we work with are the same that
went into producing Fig. 2: we clean Planck PR4 lensing
with the GNILC CIB map, or with the combination of all
four LRG bins. To gauge the statistical significance of this
demonstration, we proceed as in Sec. III C and fit the data
with a rescaled version of the model in Eq. (E8). The best-
fit values for this amplitude parameter A are quoted in the
figure. Thus analyzed, variance cancellation is detected
with approximately 4.3σ confidence when cleaning with
the CIB, and 2.3σ with LS LRGs. The models provide good
fits to the data, as evidenced by the PTE values.
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