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We explore the impact of choosing different sets of time-delay interferometry (TDI) variables for
detecting and reconstructing stochastic gravitational wave background (SGWB) signals and estimating the
instrumental noise in LISA. Most works in the literature build their data analysis pipelines relying on a
particular set of TDI channels, the so-called AET variables, which are orthogonal under idealized
conditions. By relaxing the assumption of a perfectly equilateral LISA configuration, we investigate to
which degree these channels remain orthogonal and compare them to other TDI channels. We show that
different sets of TDI variables are more robust under perturbations of the perfect equilateral configuration,
better preserving their orthogonality and, thus, leading to a more accurate estimate of the instrumental
noise. Moreover, we investigate the impact of considering the noise levels associated with each
instrumental noise source to be independent of one another, generalizing the analysis from two to twelve
noise parameters. We find that, in this scenario, the assumption of orthogonality is broken for all the TDI
variables, leading to a misestimation of measurement error for some of the noise parameters. Remarkably,
we find that for a flat power-law signal, the reconstruction of the signal parameters is nearly unaffected in
these various configurations.
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I. INTRODUCTION

The Laser Interferometer Space Antella (LISA) [1] is a
space mission led by the European Space Agency (ESA),
also involving NASA, which is planned to be launched
in the mid-2030s. LISA will consist of a constellation of
three satellites separated by nearly 2.5 million kilometers,
operating as a gravitational wave (GW) observatory in the
milliHertz (mHz) range. LISA is expected to detect tens
of thousands of resolvable sources during the expected
4-year mission duration, including stellar origin binary
black holes (SOBBHs), compact galactic binaries (CGBs)
comprised mostly of double white dwarfs (DWDs), super-
massive black holes (SMBHs) and extreme mass ratio
inspirals (EMRIs). For a review of detection prospects for
all these sources see, e.g., [2] and references therein. In
addition to the resolvable sources enumerated above, a
much larger number of weak and unresolvable sources will

superimpose incoherently, leading to the generation of a
stochastic GW background (SGWB). There are (at least)
two guaranteed components contributing to the astrophysi-
cal SGWB in the LISA band1: at frequencies lower than a
few mHz, the dominant contribution will come from CGBs
[3,4], while at higher frequencies another contribution is
expected to originate from SOBBH mergers [5]. Beyond
the astrophysical components, LISA could also be sensitive
to cosmological SGWBs generated by violent processes
taking place in the very early Universe. Detecting these
signals would open a new window on energy scales beyond
the reach of all the other probes used in particle physics/
cosmology. Among the possible sources of cosmological
SGWBs for LISA, let us mention inflation [6], cosmo-
logical phase transitions (PTs) [7], cosmic string (CS)
networks [8], and second-order scalar induced tensor
perturbations, typically associated with primordial black
holes production [9]. For reviews see, e.g., [10,11]. One of
the main challenges for SGWB detection is that these
signals appear in the detector data stream as an additional*olaf.hartwig@obspm.fr
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1Depending on the detection rate, the SGWB due to EMRIs
signal might, or might not, be detectable with LISA [2].
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noise source that has to be distinguished from the instru-
mental one. For this reason, SGWB detection and charac-
terization requires dedicated methods [12,13] that are
quite different from the ones commonly employed for
resolvable sources.
For what concerns instrumental noise sources, the

main contribution in LISA will come from laser frequency
noise [14]. This critical noise source needs to be suppressed
by several orders of magnitude to allow any GW detections
with LISA. This noise suppression will be achieved using
an on-ground data processing technique called time-delay
interferometry (TDI) [15]. The results of the TDI algorithm
are synthesized data streams representing several laser-
noise-free virtual interferometers. As shown in [16–23], it
is possible to form several TDI channels which can have
different sensitivities to GW signals and instrumental noise.
The most commonly used TDI channels for LISA data
analysis are the three Michelson-like variables, typically
dubbed X, Y, and Z, often recombined into the (quasi)
orthogonal channels, typically dubbed A, E, and T [17].
Note that there are several motivations to advocate the
search for orthogonal channels. For example, working in a
diagonal TDI basis is convenient for data analysis algo-
rithms. Indeed, since a diagonal matrix is trivial to invert,
this avoids problems related to numerical inversion, thus
improving the numerical stability and possibly significantly
speeding up likelihood evaluations.
The AET basis is exactly orthogonal if LISA is a perfect

equilateral triangle and if all secondary noise sources, i.e.,
noises that dominate the LISA data stream after laser noise
suppression through TDI, such as test mass (TM) accel-
eration and optical metrology system (OMS) noise, are
perfectly equal in all three spacecraft. In fact, for realistic
motion of the satellites, the arm-lengths will be unequal
(and time-varying) at the percent level [24], and LISAwill
not be a perfectly equilateral triangle. Moreover, the noises
appearing in the different spacecraft will not be equal,
breaking another assumption underlying the idealized
derivation of the A, E, and T variables. Therefore the
standard expressions for these channels will not be per-
fectly orthogonal when computed using actual LISA data.2

In this work, we first quantify the impact that a LISA
configuration with unequal fixed arm-lengths and different
noise levels among the satellites would have on the
orthogonality of different sets of TDI variables by an
explicit calculation of the noise and signal power spectral
density (PSD) and cross-spectral density (CSD). For
simplicity, we focus on the so-called first-generation TDI
variables [16], which only fully suppress laser noise for a
static LISA constellation, i.e., with arm-lengths that do not

evolve in time. We expect the main conclusions of this
work to remain valid under our working assumptions
for the second-generation variables [25], which achieve
laser noise suppression even for time-varying arm-lengths.
Besides the most commonly used GW-sensitive Michelson
variables XYZ and the corresponding quasiorthogonal
AET channels, we consider the Sagnac variables αβγ
and their corresponding set of quasiorthogonal channels,
which we denote AET . In addition, we consider the fully
symmetric Sagnac variable ζ, which shares with T and T
the property that it is quasi-insensitive to GWs and can be
used instead of these channels to form a quasiorthogonal set
with A, E or A, E.
We then focus specifically on AET and AEζ and use

simulated data together with Markov chain Monte Carlo
(MCMC) parameter estimation (PE) as well as the Fisher
information matrix (FIM) formalism to further study the
sensitivity of both sets of TDI variables to a power law
SGWB and to instrumental noise as defined in [1], when
cross-correlations are included or neglected. While both
sets of variables are expected to be orthogonal sets and
perfectly equivalent in the idealized situation of equal LISA
arms and equal noise amplitudes, differences arise when the
assumptions underlying the construction of the orthogonal
channels are broken.
The paper is organized as follows. In Sec. II, we describe

the data model employed and derive the signal response of
LISA to a SGWB for unequal LISA arms. We also show
how the two dominant noise sources left after TDI (TM and
OMS) appear in the LISA measurements. We then intro-
duce the TDI formalism and derive a general formula for
the noise and signal PSD and CSD for all the TDI channels
considered in this work. In Sec. III, we discuss the noise
and signal PSDs and CSDs when the noise levels are
assumed to be the same for all TM and OMS components,
or when each TM and OMS component is assumed to be
different. In either case, we compare the signal and noise
correlations for equal and unequal LISA arms. In Sec. IV,
as mentioned above, for a specific set of noise parameters
and for a power-law SGWB signal, we produce simulated
LISA data and perform PE using MCMC to compare the
performance of two sets of TDI variables, namely AET
and AEζ, when the cross-correlations in the TDI matrix
are neglected. Using FIM, we also study the impact of
including or neglecting those cross-correlations on the PE
results. We do so for both equal and unequal noise levels
and report on the results obtained for the SGWB in the main
text, while those for the noise parameters can be found in an
appendix. We then conclude in Sec. V.
Our paper includes four appendixes. Appendix A dis-

cusses the relationships among the different sets of TDI
variables considered. In Appendix B we provide useful
analytic approximations for the signal and noise spectra. In
Appendix C, we give an overview of the data analysis
method employed in Sec. IV. Finally, Appendix D contains

2While, in principle, it is still possible to find other sets of TDI
variables that form an orthogonal basis, this computation would
have to be performed on the fly on the real data, vastly increasing
the computational costs of the data analysis pipelines.
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a detailed analysis of the noise reconstruction which serves
to complement the SGWB signal parameter reconstruction
provided in Sec. IV.

II. MEASUREMENT CHARACTERIZATION

In this section, we describe the signal and noise
components of the LISA data stream. After writing down
a general model for the data as a superposition of signal and
noise in Sec. II A, we derive the instrument response for an
isotropic SGWB signal and the propagation of the different
noise components in a single LISA link in Sec. II A 1 and
Sec. II A 2, respectively. In Sec. II B we introduce the TDI
variables that we will use in this paper. After providing the
definitions of the base variables in Sec. II B 1, we intro-
duce, in Sec. II B 2, a general method to compute the TDI
PSDs and CSDs using the single link spectra computed in
Sec. II A 1 and Sec. II A 2.

A. Data model

Let us start by assuming that all transient signals and
glitches in the noise have been subtracted from the data
stream, which is necessary to assume the noise to be
stationary and Gaussian. For the moment, let us also restrict
to the case of a single detector. Under these assumptions,
the time domain data dðtÞ, can be expressed as a combi-
nation of the GW signal sðtÞ plus the instrumental noise
nðtÞ as

dðtÞ ¼ sðtÞ þ nðtÞ: ð2:1Þ

While in reality, data will be sampled at a finite rate, in the
following, we assume them to be continuous functions in
the interval ½−T=2; T=2�, with T the observation time.3

Assuming that signal and noise are uncorrelated, these
quantities can be discussed separately. We start by discus-
sing the signal properties, whose Fourier transform reads

s̃ðfÞ ¼
Z

T=2

−T=2
e2πiftsðtÞdt: ð2:2Þ

Since sðtÞ is real, s̃ obeys s̃ðfÞ ¼ s̃�ð−fÞ. Assuming
stationarity, the expectation value of the signal’s Fourier
modes reads

hs̃ðfÞs̃�ðf0Þi ¼ 1

2
δðf − f0ÞSGWðfÞ; ð2:3Þ

where SGWðfÞ is a real and positive function with
SGWðfÞ ¼ SGWð−fÞ, which for a homogeneous and

isotropic power spectrum4 Pλ
h, with λ denoting the two

GW polarizations, see Eq. (2.10) for the definition of the
polarization tensors, can be expressed as

SGWðfÞ ¼
X
λ

RλðfÞPλ
hðfÞ; ð2:4Þ

where Rλ, is the sky-averaged LISA response function.
Note that since the LISA spacecraft lie in a plane, LISA
cannot distinguish between chiralities without making use
of the motion of the constellation [26–29]. Here, we assume
the signal to be nonchiral i.e., PL

h ¼ PR
h , so that Eq. (2.4)

reduces to SGWðfÞ ¼ 2RðfÞPhðfÞ. Absorbing the factor 2
into R and assuming the signal to be parity even [i.e.,
Pλðk⃗Þ ¼ PðkÞ] leads to

SGWðfÞ ¼ RðfÞPhðfÞ: ð2:5Þ

We conclude our discussion of the signal by recalling the
expression of the signal power spectrum in units of the
energy density parameter,

ΩGWh2 ≡ 4π2

3ðH0=hÞ2
f3PhðfÞ; ð2:6Þ

where H0 ≈ 3.24 × 10−18h0 Hz is the Hubble constant
today and h0 ¼ 0.6766� 0.0042 is its dimensionless
value [30].
The expectation value of the noise’s Fourier modes reads

hñðfÞñ�ðf0Þi ¼ 1

2
δðf − f0ÞSNðfÞ; ð2:7Þ

where we have introduced the noise power spectrum SNðfÞ,
which satisfies the same properties as SGWðfÞ. Note that in
the following sections, we consider the case of several data
streams. In this generalized and more realistic scenario, the
response function and noise spectra will be replaced by
positive-definite Hermitian matrices.

1. Single link signal response

To compute the GW response, we start by expressing
a GW signal habðx⃗; tÞ as a superposition of plane
waves [13,28,31] (note that c ¼ 1),

3This choice would only impact the high-frequency part of the
data, where the frequency gets close to the Nyquist frequency.
Since for LISA, the sampling rate is expected to be ≳2 Hz, and
since in the analysis we only consider data up to 0.5 Hz, this
assumption should not impact the main results of this work.

4In general, the spectrum Pλλ0
h , with λ, λ0 running over the two

GW polarizations, defines a 2 × 2 matrix. The four entries of this
matrix are typically expressed in terms of the Stokes parameters I,
V, Q, U. In the L/R basis [see Eq. (2.10)], I and V, with I the
intensity and V the circular polarization, only contribute to the
diagonal while Q and U appear in the off diagonal terms only.
Homogeneity and isotropy correspond to vanishing Q and U
Stokes parameters, implying that PAB

h is diagonal with PRR
h ¼

I þ V and PLL
h ¼ I − V. Finally, for a nonchiral background,

V ¼ 0, which implies PRR
h ¼ PLL

h ¼ Ph.
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habðx⃗; tÞ ¼
Z

∞

−∞
df

Z
dΩk̂e

2πifðt−k̂·x⃗ÞX
A

h̃Aðf; k̂ÞeAabðk̂Þ;

ð2:8Þ

with f the GW frequency, k̂ the outward vector in the
direction of the incoming GW, dΩk̂ the infinitesimal solid
angle and eAabðk̂Þ the polarization tensors. Following
the convention of [29,32,33], given the normalized wave
vector k̂, we can introduce the two vectors,

ûðk̂Þ≡ k̂ × êz
jk̂ × êzj

; v̂ðk̂Þ≡ k̂ × û; ð2:9Þ

where × denotes the external product and êz is the
z-component vector of an arbitrarily oriented reference
system. The þ=× and L=R polarization tensors are defined
in terms of ûðk̂Þ and v̂ðk̂Þ as

eþabðk̂Þ≡ ûaûb − v̂av̂b; e×abðk̂Þ≡ ûav̂b þ v̂aûb;

eL=Rab ðk̂Þ≡ eþabðk̂Þ ∓ ie×abðk̂Þ; ð2:10Þ

expressed in the L/R or þ=× bases. We proceed by
assuming that the LISA constellation is static and in a flat
background spacetime. The time delay induced by GWs
on a photon leaving at time t − Lij (Lij being the distance
jx⃗i − x⃗jj) from x⃗j and reaching x⃗i at time t, can be
expressed, at lowest order in hab, as

ΔtijðtÞ ≃
Z

Lij

0

l̂aijl̂
b
ij

2
habðtðsÞ; x⃗ðsÞÞds; ð2:11Þ

where l̂ij ¼ ðx⃗j − x⃗iÞ=jx⃗j − x⃗ij is a unit vector pointing
from i to j, and tðsÞ≡ t − Lij þ s, x⃗ðsÞ ¼ x⃗j − sl̂ij are
respectively the time and position along the photon path
expressed in terms of the affine parameter s. By inserting
Eq. (2.8) into Eq. (2.11), and by considering the fractional
frequency shift rather than the time delay induced by the
GWs, we obtain

ηGWij ðtÞ¼ d
dt
ΔtijðtÞ

¼ i
Z

∞

−∞
df

f
fij

e2πifðt−LijÞ

×
Z

dΩk̂

�
e−2πifk̂·x⃗i

X
A

ξAijðf;k̂Þh̃Aðf;k̂Þ�
�
; ð2:12Þ

where we have introduced the characteristic frequencies
fij ≡ ð2πLijÞ−1 and the functions ξAijðf; k̂Þ defined as

ξAijðf; k̂Þ ¼ e−2πifk̂·L⃗ijMijðf; k̂ÞGAðk̂; l̂ijÞ; ð2:13Þ

with

Mijðf; k̂Þ≡ eπifLijð1þk̂·l̂ijÞsincðπfLijð1þ k̂ · l̂ijÞÞ and

GAðk̂; l̂ijÞ≡ l̂aijl̂
b
ij

2
eAabðk̂Þ: ð2:14Þ

Using Eq. (2.3), the CSD for η̃GWij ðfÞ, i.e. the Fourier
transform of Eq. (2.12), then reads5

Sη;GWij;mnðfÞ≡
X
A

RA
ij;mnP

AA
h ðfÞ

¼ f2

fijfmn
e−2πifðLij−LmnÞ

X
A

PAA
h ðfÞϒA

ij;mnðfÞ;

ð2:15Þ

with

ϒA
ij;mnðfÞ ¼

Z
dΩk̂

4π
e−2πifk̂·ðx⃗i−x⃗mÞξAijðf; k̂ÞξAmnðf; k̂Þ�;

ð2:16Þ

where we have used the statistical properties of
hhAðf; k̂Þh�Bðf0; k̂0Þi for a homogeneous, isotropic and
nonchiral SGWB, i.e.,

hh̃Aðf; k̂Þh̃�Bðf0; k̂0Þi ¼ δðf − f0Þδðk̂ − k̂0ÞδAB
PAB
h ðfÞ
16π

;

hh̃Aðf; k̂Þh̃Bðf0; k̂0Þi ¼ 0; ð2:17Þ

with PAB
h ðfÞ the one-sided PSD. The integral appearing in

Eq. (2.15) can generally be computed numerically and in
the low-frequency approximation, it can be computed
analytically (see Appendix B, in particular Appendix B 3).

2. Single link noise spectra

In this section we discuss the two main unsuppressed
secondary noises limiting the performance of LISA. We
consider TM acceleration noise, and OMS noise [1]. These
noise sources enter the single link measurement as6

ηNijðtÞ ¼ nOMS
ij ðtÞ þDijnTMji ðtÞ þ nTMij ðtÞ; ð2:18Þ

where Dij is the delay operator, which in the static
LISA arm approximation used in this work acts on any

5This equation assumes Tf ≫ 1, so that the finite-time delta
functions, arising from the Fourier transform, can be replaced
with real delta functions.

6For a more detailed computation considering the “split
interferometry” scheme see [34]. Note that the TM and OMS
noise contributions have different correlation properties, which
will ultimately cause the two components to have different
transfer functions in the various TDI channels.
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time-dependent function xðtÞ as DijxðtÞ ¼ xðt − LijÞ. We
formally define the single links noise CSDs as

hη̃NijðfÞη̃N�lm ðf0Þi ¼
1

2
Sη;Nij;lmðfÞδðf − f0Þ; ð2:19Þ

and assume the individual noise terms to be stationary, zero
mean, and uncorrelated, such that cross terms between
noises vanish, with the only nonzero terms given by

hñOMS
ij ðfÞñOMS�

ij ðf0Þi ¼ 1

2
SOMS
ij ðfÞδðf − f0Þ; ð2:20aÞ

hñTMij ðfÞñTM�
ij ðf0Þi ¼ 1

2
STMij ðfÞδðf − f0Þ: ð2:20bÞ

Here, SOMS
ij ðfÞ and STMij ðfÞ are the PSDs of the individual

OMS and TM acceleration noise terms. Considering the
definition of the noise CSD and the single link measure-
ment, given Eq. (2.18) and Eq. (2.20), we can then directly
compute the nonzero entries of the noise CSD of the single
links as

Sη;Nij;ijðfÞ ¼ SOMS
ij ðfÞ þ STMij ðfÞ þ STMji ðfÞ; ð2:21aÞ

Sη;Nij;jiðfÞ ¼ e2πifLjiSTMij ðfÞ þ e−2πifLijSTMji ðfÞ: ð2:21bÞ

In the following, we will further assume all noises of the
same type to have the same spectral shape given by [1]

STMij ðfÞ ¼ A2
ij × 10−30 ×

�
1þ

�
0.4 mHz

f

�
2
��

1þ
�

f
8 mHz

�
4
�
×

�
1

2πfc

�
2

× ðm2=s3Þ; ð2:22aÞ

SOMS
ij ðfÞ ¼ P2

ij × 10−24 ×

�
1þ

�
2 × 10−3 Hz

f

�
4
�
×

�
2πf
c

�
2

× ðm2=HzÞ; ð2:22bÞ

such that each noise depends only on a single constant
amplitude parameter Aij for TM and Pij for OMS. These
parameters are dimensionless so that the overall noise PSDs
are given in units of fractional frequency deviations. In this
work, we consider two scenarios:
(1) The noise amplitudes of TM on the one hand and

OMS on the other are equal, i.e., Aij ¼ A and
Pij ¼ P, with central values respectively given by
A ¼ 3 and P ¼ 15 [35].

(2) The noise parameters Aij and Pij have random
values lying within a standard deviation of 20%
around the central values.7 The exact values of the
Aij and Pij (with fijg∈I ¼f12;23;31;21;32;13g)
are given in Sec. III B.

For reference, a plot of the noise levels for the case
Aij ¼ A ¼ 3 and Pij ¼ P ¼ 15, is shown in Fig. 1.

B. TDI variables

The TDI variables that we will consider throughout this
paper are based on the standard X, Y, and Z Michelson
combinations, as well as the α, β, and γ [16] Sagnac
variables. We will also discuss the orthogonal channels A,

E, and T and A, E and T built out of these sets of base
variables as well as the fully symmetric Sagnac (null
channel) ζ [15,23,37]. For simplicity, we consider the
first-generation versions of all these variables, which fully
suppress laser noise only for a constellation with three
unequal but constant arms,8 and compute their signal and

7Randomly drawing the noise amplitudes with a standard
deviation of 20% causes the largest and smallest noise terms to
be approximately within a factor 2. This is roughly in line with
what was observed in LISA PathFinder (LPF), where the observed
noise levelswerewithin a factor of a few of their anticipated values
[36].Note thatwhile the LPFnoisemeasured in flight did not agree
with the predicted noise level nor with its shape (especially at
frequencies below 10−3 Hz), here, we make the rather strong
assumption that the noise shapes are perfectly known.

8Laser noise suppression with more realistic time-varying
orbits requires additional “virtual loops” in the photon paths
that make up the TDI combinations. There exist several second-
generation versions for each of the first-generation TDI variables
[21–23,25]. While the full expressions must be used to suppress
laser noise, for what concerns the response to GWs and secondary
instrumental noises, the standard second generation TDI choices
that are found in the literature can be approximated as [25]

X2 ¼ ð1 −D2
31D

2
12ÞX; ð2:23aÞ

α2 ¼ ð1 −D12D23D31Þα; ð2:23bÞ

ζ2 ¼ ðD31 −D12D23Þζ: ð2:23cÞ

Note that ζ2 here refers to the variable recently found in [22], not
the traditional variable given in [20], which is less effective at
suppressing laser noise than other second-generation TDI vari-
ables. The additional prefactors in the above expressions should
not significantly impact the sensitivity of the TDI variables taken
individually, as they apply equally to both noise and signal.
However, the factors applied to X2, Y2 and Z2 are different, such
that the full CSD matrix of the second-generation Michelson
variables cannot be trivially derived from the first-generation
versions. The situation is different for the Sagnac variables, where
all three permutations are modified by the same overall factor.
This means we expect the results forAET to be unaffected, while
the results for AET might change slightly.
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noise CSDs in terms of the single-link CSDs given in the
previous sections.

1. Base variable definition

Let us start by defining the first-generation version of the
XYZ Michelson variables. The X variable is defined as

X ¼ ð1 −D13D31Þðη12 þD12η21Þ
þ ðD12D21 − 1Þðη13 þD13η31Þ; ð2:24aÞ

while Y and Z are cyclic permutations of X. The Sagnac
variable α is defined as

α ¼ η12 þD12η23 þD12D23η31

− ðη13 þD13η32 þD13D32η21Þ; ð2:24bÞ

with again β, γ defined as cyclic permutations of α. Finally,
the fully symmetric ζ variable is defined as

ζ ¼ D12ðη31 − η32Þ þD23ðη12 − η13Þ þD31ðη23 − η21Þ:
ð2:24cÞ

Following [17], we introduce the so-called quasiorthogonal
TDI channels, which are usually given as

A ¼ γ − αffiffiffi
2

p ; E ¼ α − 2β þ γffiffiffi
6

p ; T ¼ αþ β þ γffiffiffi
3

p ;

ð2:25Þ

for the Sagnac variables. An analogous procedure can be
carried out for the Michelson variables, giving

A ¼ Z − Xffiffiffi
2

p ; E ¼ X − 2Yþ Zffiffiffi
6

p ; T ¼ Xþ Yþ Zffiffiffi
3

p :

ð2:26Þ

These channels are designed to be orthogonal for both
signal and noise, at least in the idealized case of equal
arms and equal and symmetric noise levels in the three
base variables. Having orthogonal channels drastically
simplifies the computation of the inverse of the covari-
ance matrix appearing in the likelihood, which makes
these channels attractive for the practical application of
LISA data analysis. We will discuss in Sec. III the extent
to which the orthogonality of these channels survives if
one relaxes some of the assumptions used to derive
them. Note finally that the different TDI variables
discussed here are not independent; see Appendix A
for more details.

2. Signal and noise projection on the TDI variables

In order to compute the noise PSDs and the response to a
SGWB, we first need to evaluate the Fourier transform
of any TDI variable V, for which we use the compact
vector notation,

ṼðfÞ ¼
X
ij∈I

cVijðfÞη̃ijðfÞ; ð2:27Þ

where, as in Sec. II A 2, I ¼ f12; 23; 31; 21; 32; 13g
denotes the pairs of indices that define the six intersatellite
links and where the coefficients cVij map the single-link
measurements onto the TDI variable V. Since we work
under the assumption of constant delays, we can directly
read off the coefficients cVij from Eq. (2.24) by replacing
each delay in the time domain, Dij, with the corresponding
frequency domain expression e−i2πfLij . Assuming Ũ and Ṽ
to be any two TDI variables, which, similarly to Eq. (2.19),
obey

hŨðfÞṼ�ðf0Þi ¼ 1

2
SUVðfÞδðf − f0Þ; ð2:28Þ

we can substitute Eq. (2.27) into this expression to get

hŨðfÞṼ�ðf0Þi ¼
X

ij;mn∈I
cUijðfÞcV�mnðf0Þhη̃ijðfÞη̃�mnðf0Þi;

ð2:29aÞ

¼ 1

2

X
ij;mn∈I

cUijðfÞcV�mnðfÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
CUV
ij;mnðfÞ

Sηij;mnðfÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SUVðfÞ

δðf − f0Þ:

ð2:29bÞ

FIG. 1. TM and OMS PSDs as a function of frequency in units
of 1=Hz.
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For any particular ðŨ; ṼÞ combination, the coefficients
cUijðfÞ and cVijðfÞ can be combined to form a 6 × 6 matrix9

CUV . We remark that this procedure is similar to what has
very recently (and independently from our work) been
proposed in [38]. Note that the coefficient matrices CUV

depend only on the choice of TDI variables, while the
actual noise or signal correlations are encoded in the
previously computed single-link correlation matrix Sη. In
the following sections, we will use

SUV;N ¼ CUVSη;N; SUV;GW ¼ CUVSη;GW; ð2:30Þ

to identify the noise and signal TDI covariance, respec-
tively. Explicit expressions for the CSDs are given in
Appendix B.

III. RELAXING THE EQUILATERAL
ASSUMPTION: SPECTRAL ANALYSIS

In this section, we present the signal response, the noise
spectra, and the GW sensitivities for all the TDI variables
considered in this work. We consider both the case of an
equilateral and that of a nonequilateral LISA configuration.
We perform a detailed correlation analysis to test the
robustness of the orthogonalization procedure for the
different TDI bases. The section is divided into two parts:
the first part concerns the case of equal noise levels while
the second part treats the case of unequal noise levels. All
plots presented in this section will show the equal-arm
model with solid lines while the unequal-arm results are
plotted using dashed lines. Analytic expressions for the
noise CSDs in the equal and (in the low-frequency limit)
unequal arms case are provided in Appendix B. The full
expressions for the noise spectra are provided as
Supplemental Material [39]. The signal response shown
in the plots was evaluated numerically (analytic expressions
for the signal exist only in the low-frequency approxima-
tion, which are also provided in appendix B).

A. Equal noise levels

Let us focus on the case where all the noises of the same
type are characterized by a single amplitude parameter, i.e.,
Aij ≡ A, Pij ≡ P so that SOMS

ij ≡ SOMS and STMij ≡ STM for
all links. Figure 2 shows the three quantities that best
describe the self-correlations of the XYZ Michelson
variables, the AET orthogonal variables, and as well as
the ζ channel. In the top row, we plot the quadratic signal
response R, as defined in Sec. II A, in units of squared
fractional frequency deviation. We observe that while the

equal and unequal arms models agree with one another for
the signal-dominated channels A and E, they disagree at
low frequencies for the null channels T and ζ, especially for
T. In the second row, we show the full noise spectra, SUU;N ,
in units of squared fractional frequency deviation per Hz.
We notice that the equal and unequal arms models agree for
all channels with the exception of T. Finally, the third row
shows the strain sensitivity10 computed as the ratio between
the noise PSD SUU;N and the signal response R. We
observe that the strain sensitivities of X, Y, Z, A, and E
are well approximated by the equal arm model, while there
are sizeable differences for the two null channels. T, in
particular, is no longer a null channel below 1 mHz, and
becomes as sensitive to the signal as A and E (as also
reported in [40] and more recently in [23]). Notice that ζ
also becomes more sensitive to GWs but remains signifi-
cantly less sensitive than A and E.
In Fig. 3 we show the same quantities as in Fig. 2, but for

the Sagnac variables, the orthogonal variables A, E and T ,
and again the channel ζ. Once again, the base variables α, β,
γ as well as the sensitive channels A, E are well approxi-
mated by the equal arms model. The null channel T
behaves very similarly to ζ, meaning that its noise spectrum
is also well described using an equal arms model. It remains
a valid null channel at low frequencies and slightly out-
performs ζ for unequal arms. Let us also note that the noise
spectra of the base variables α, β, γ, and ζ have no zeros
within the LISA band. While this property is not fully
retained byA and E, they do have fewer zeros than A and E
(compare Fig. 2).
In Fig. 4 we show the square root of the noise coherence,

defined by jSUV;Nj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUU;NSVV;N

p
, for the three Michelson

and Sagnac variables, for their orthogonal combinations,
using the signal-insensitive variables T, T and ζ. In the first
row, we show the noise coherence for the base variables X,
Y, and Z and α, β, and γ. Both sets of three channels are
strongly correlated, and the Sagnac channels are almost
100% correlated at low frequencies. In the second and third
rows, we show the results obtained for the orthogonal
channels. AEζ, AET and AEζ remain strongly uncorre-
lated (except close to the zeros). AET is slightly less
correlated than AEζ at low frequencies while it is more
strongly correlated in the oscillatory region at high frequen-
cies. AEζ and AEζ are very similar. T, however, becomes
strongly correlated to A and E across a broad range of
frequencies. Note that there are no solid lines in the second
and third rows. Indeed, by construction, the orthogonal
variables are fully uncorrelated when assuming equal arms
and equal noise levels.
In Fig. 5 we show the square root of the signal response

coherence jRUV j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RUURVV

p
for all TDI variables9A compact notation one could use in order to consider several,

say n, TDI variables would require for the coefficients to be
arranged into n × 6 matrices, and the CUV to be replaced by a
rank 4 tensor (n × n × 6 × 6), which maps the 6 × 6 single-link
correlations onto the n × n TDI variable correlations.

10Note that the strain sensitivity is a function of the noise
model, the instrument response, and the TDI variable, but is
independent of the GW signal.
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considered. In the first row, we give the square root of the
signal coherence for the base XYZ variables and for αβγ.
Both sets of TDI variables are strongly correlated. The
equal and unequal arms models agree very well at low
frequencies but show some differences near the peaks
around the zeros at high frequencies. Note that while the
noise spectra of α, β, and γ do not have any zeros in the
LISA band, the CSDs do have zeros, but not as densely
spaced as the ones for the Michelson variables. The second
row shows the square root of the signal response coherence
for the orthogonal AET and AET variables. Note that A
and E, and similarly A and E, are not as correlated as the
other pairs of TDI variables in the orthogonal sets. This is
also true when T and T are replaced with ζ, as shown in the
third row, such that all null channels show strong low-
frequency correlations with the other variables. We note
that, at the same time, the T variable becomes significantly
more sensitive to GWs than T or ζ, as shown in in Figs. 2
and 3. This implies that the same loss in signal orthogon-
ality for T, T and ζ more significantly impacts the overall
orthogonality of AET than that of the other sets.

B. Unequal noise levels

In this section, we consider the more general and realistic
case in which all the individual TM and OMS noise levels,
Aij and Pij (with ij ∈ f12; 23; 31; 21; 32; 13g) are unequal.
The values of Aij and Pij are generated as explained in
Sec. II A 2, and, in the specific example we discuss here,
they take the following values:

Aij ¼ f3.61; 3.02; 2.87; 3.43; 2.65; 3.45g;
Pij ¼ f14.00; 16.93; 9.43; 21.55; 17.04; 20.83g ð3:1Þ

As before, the equal arms results are shown using solid lines
while the unequal arms results are shown with dashed lines.
Note that we do not show plots for the overall noise PSDs of
the variables, as they remain qualitatively unchanged
with respect to the equal noise case ones. In addition, given
that only the instrumental noise levels are changed, the
conclusions reached for the signal response and sensitivity
discussed in Sec. III A remain valid.

FIG. 2. Signal response (first row), noise spectra (second row), and strain sensitivities (last row) defined as in Eq. (2.30), for the XYZ
Michelson variables (first column) and for their orthogonal AET combinations as well as for the ζ variable (second column) considering
equal (solid lines) and unequal (dashed-line) arm-lengths.
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The first row of Fig. 6 shows the square root of the noise
coherence for X, Y, and Z and for α, β, and γ. Both sets of
variables behave similarly to the equal noise case, with the
exception that some of the zeros are smoothed out and that
the Michelson variables have slightly different levels of
coherence at low frequencies. The results for the orthogonal
channels are shown in the second row of the figure. Both
AET and AET now show levels of coherence that reach
∼10% for AE at all frequencies, and several percent for AT
andETeven for equal arms. These levels are typically higher
than those induced by the inequality of the arm-lengths
discussed in the previous section, that is to say, the inequality
in the levels of the noise has a stronger impact than the
inequality of the LISA arms for most pairs of variables. The
results obtained for unequal noise levels are approximately
identical for all variables (with the exception of the peaks
near the zeros), whether the LISA arms are equal or not, the
only exception beingT,which shows stronger correlations to
A and E when the LISA arms are unequal.
Finally, the third row of Fig. 6 shows the correlations

obtained when replacing T and T with ζ. In both cases, the

overall behavior is very similar to that ofAET and seems to
be dominated by the correlations due to unequal noise
levels at almost all frequencies, such that the equal arm and
unequal arm results are superimposed. Differences again
appear near the peaks close to the zeros, for which AEζ
seems to slightly outperform both AEζ and AET .

IV. SGWB AND NOISE PARAMETER
RECONSTRUCTION FOR AET AND AEζ

As shown in the previous section, relaxing the assumption
that all arms are of equal length significantly breaks the
orthogonality of the AET channels while that of AEζ,AET ,
and AEζ is preserved to a large degree. Moreover, relaxing
the assumption of equal secondary noises on each spacecraft
also breaks the orthogonality of all TDI variable sets. In this
section, we restrict ourselves to the unequal arms case and
study how, in practice, neglecting the off diagonal terms
impacts the uncertainty in SGWB reconstruction in the equal
and unequal noise cases. For each of the two cases, we
perform Fisher forecasts, validated with Markov chain

FIG. 3. Signal response (first row), noise spectra (second row) and strain sensitivities (last row) defined as in Eq. (2.30), for the Sagnac
α, β, γ variables (first column) and for their orthogonal combinations A, E, and T as well as for the ζ variable (second column).
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Monte Carlo (MCMC) runs11 to test the goodness of the
Gaussian approximation.We restrict the following analysis to
AET and AEζ. The MCMC runs are performed considering
only the diagonal terms of the AETand AEζ TDI matrices.12

We proceed by comparing the results obtained with pure
Fisher analyses, including, or neglecting, the off diagonal
terms in the TDI matrices, in order to assess their impact on
the precision with which the determination of signal param-
eters can bemade. A similar analysis for the noise parameters
is presented in Appendix D. We conclude by comparing the
MCMCposteriors for the signal parameters obtainedwith the

different levels of complexity for the LISA configuration we
have discussed throughout this work.
For all the analyses discussed in this section, we assume

the LISA frequency range to be 3×10−5≤f≤5×10−1 Hz
and the signal to be described by a simple power-law
template,

ΩGWh2ðfÞ ¼ 10α
�
f
f�

�
nT
; ð4:1Þ

where the pivot frequency f� is chosen to be the geometric
mean of the minimal and maximal frequency, i.e.,
f� ≃ 3.873 × 10−3 Hz. In all analyses presented in this
section (and similarly in Appendix D), we consider a signal
with zero slope, i.e., nT ¼ 0, and α ¼ −11.5, correspond-
ing to a signal-to-noise ratio (SNR) ≃ 271 [see Eq. (C4)].
Finally, the single link TDI transfer function is computed as
outlined in Sec. II A 1, and the noise is modeled as
indicated in Sec. II A 2. Again, note that for brevity, we
only focus on the AET and AEζ TDI variables. The
MCMC runs and the Fisher analyses are performed on a

FIG. 4. Noise correlations considering equal noise levels for the TM acceleration and OMS noises and equal (solid) vs unequal arms
(dashed lines). The first column shows XYZ (first row), AET (second row), and AEζ. The second column shows αβγ (first row), AET
(second row), and AEζ.

11The reader is referred to Appendix C for the technical details
of the MCMC data analysis.

12The main reason to restrict our analysis to this simplified
scenario is that the present version of the data compression
techniques described in Appendix C are not suitable for appli-
cation to problems including off diagonal terms in the TDI
matrix. Including those terms would thus require considering the
full (and uncompressed) dataset, which would significantly
increase the computational cost of the MCMC runs.
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set of four parameters, fα; nT; A; Pg, for the equal noise
case, and a set of 14 parameter fα; nT; Aij; Pijg with ij ∈
f12; 23; 31; 21; 32; 13g for the unequal noise case.
In the following (and also in Appendix D), we denote

quantities recentered on zero and normalized by the fiducial
values with an overbar, and we denote quantities shifted
with respect to the chain means and normalized using the
fiducial value parameter values with a tilde. Thus, while the
latter provide information on the posterior widths but also
on the best-fit parameter values, the former are best suited
to compare posterior widths and shapes.
Let us first present, in Fig. 7, the reconstruction of the

signal and noise spectra (in Ω units) for unequal arms but
equal noise levels using the diagonal of the AEζ matrix.
Both the signal parameters and the two noise parameters,
and thus the signal and noise levels plotted in Fig. 7,
are compatible at two sigmas with the injected signal and
noise [as shown by the green contours in Fig. 10(a) for the
signal and as shown also in Fig. 12(b)]. Note that the noise

reconstruction for the different TDI channels is so accurate
that the error bands are not visible in Fig. 7. On the other
hand, while the reconstructed signal is still compatible with
the injection, the error band for the signal, shown in the
bottom right panel, is sufficiently large to be clearly visible.
Although we do not include a plot of the reconstructed
signal and noise spectra obtained for AET, the posteriors
for the signal parameters are shown in Fig. 10(a), while
those for the noise are shown in Fig. 12(b).
Let us conclude our discussion of the unequal arms but

equal noise case by comparing the results of the MCMC
runs with those of the FIM analysis; see Fig. 9(a). This
comparison focuses on the posterior widths, i.e. the error
bars, and the degeneracies between parameters, such that
all posteriors are recentered on zero. This figure illustrates
that there is nearly perfect agreement between the results
obtained with the FIM analysis performed using the
diagonal of the TDI covariance matrix and the MCMC
results, and also between AEζ and AET. It also shows a

FIG. 5. Signal response correlations for the Michelson variables XYZ (first row, first column), the Sagnac variable αβγ (first row,
second column), their respective orthogonal channels AET (second row, first column), AET (second row, second column) and
combinations including the null channels AEζ (last row, first column),AEζ (last row, second column). Equal arms are shown with solid
lines and unequal arms with dashed lines.
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comparison with the FIM results that include the CSDs in
the AET and AEζ analyses and demonstrates that the
reconstruction of the signal parameters would only be
marginally affected by the inclusion of these terms.
Let us now discuss the case in which the TM and OMS

noise levels are unequal, with amplitudes Aij and Pij given
in Eq. (3.1). The signal and noise reconstructions in the
AEζ basis are shown in Fig. 8. As for the equal noise case
considered above, a detailed discussion of the noise
parameter reconstruction is presented in Appendix D 3.
Let us simply mention here that all the noise parameters are
compatible with the injection parameters at the one or two-
sigma level; see Figs. 14(a) and 14(b). As far as the signal
reconstruction is concerned, we can see from the
bottom-right panel of Fig. 8 and from the blue contours
in Fig. 10(a), that the reconstructed values are within the
two sigma region from the injected values. Once again,
as can be seen in Fig. 9(b), we find excellent agreement
between the FIM analysis and the MCMC results for both
AET and AEζ, and find that the precision with which the

signal parameters can be recovered is similar for both
choices of TDI variables. Finally, Fig. 9(b) also demon-
strates that the results for the signal parameters remain the
same whether one includes or excludes the off diagonal
terms of the TDI covariance matrix.
To sum up, using Fig. 9(a) and Fig. 9(b), we can

conclude that, for the simple power-law model considered
in this work, the precision with which the reconstruction
of the SGWB parameters can be achieved is not sensitive
to the inclusion of the off diagonal terms in the TDI
covariance matrix, and that AET and AEζ give comparable
results.
Let us end this section by further commenting on the

contour plots shown in Fig. 10. The figure provides a
comparison of the MCMC results obtained for three
different scenarios: (1) equal arms and equal noises, (2)
unequal arms and equal noises, and lastly (3) unequal arms
and unequal noises. Figure 10(a) demonstrates that the
reconstructed signal is compatible with the injection
parameters for all cases. Figure 10(b) demonstrates that

FIG. 6. Noise correlations considering six unequal levels for the TM and OMS noises and equal (solid) vs unequal arms (dashed lines).
The first column shows XYZ (first row), AET (second row), and AEζ. The second column shows αβγ (first row), AET (second row),
and AEζ.
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the posterior widths remain largely unchanged across all
scenarios. These plots demonstrate that the reconstruction
of the signal parameters is only marginally sensitive to the
complexity of the underlying LISA scenario. This is one of
the main results of the present work.

V. CONCLUSIONS

In this work, see in particular Sec. III, we first studied the
impact of a non-equilateral but stationary configuration for
the LISA constellation and the effect induced by considering
independent noise levels for each test mass (TM) and optical
metrology system (OMS) on the orthogonality of the most
well-known TDI bases, namely the Michelson XYZ, AET,
andAEζ, and the Sagnacαβγ,AET andAEζ.While the two
noises propagate differently in the TDI variables, leading to
different cross-correlations in the TDI bases, TM noise
contributions dominate the low frequencies for signal-
sensitive variables. On the other hand, for signal-orthogonal
variables, OMS noise dominates thewhole frequency range.
For the case of equal noise levels, we confirmed the result,
already known in the literature [40], that the null channel T,
built from theMichelson XYZ variables, loses its signal and
TM noise orthogonality if the constellation is not perfectly

equilateral, becoming similar to the signal-sensitive varia-
bles. Interestingly, the loss of orthogonality between the
signal-sensitive A and E channels and the null channel, T, is
worse at low frequencies.
We also showed, for the first time, that other null

channels, e.g., the T channel, built from the αβγ Sagnac
TDI variables [17], or the variable ζ [16], prove to be more
robust under perturbations of the equilateral configura-
tion. Moreover, these alternative TDI bases achieve the
same level of laser noise suppression when extended to
second generation, requiring fewer loops around the LISA
satellites in their definitions [22]. Accordingly, this
would generate fewer zeros in the response functions,
reducing the frequency window lost in the TDI definition
process [25]. For both unequal arms and unequal noises,
we demonstrated that all TDI bases exhibit sizeable
cross-correlations in the noise and signal. For the T
channel, the arm-length mismatch still produces the
largest effect at low frequencies, while for the other
channels, the impact of unequal noises is most significant
across the whole band.
We then studied the signal and noise parameter

reconstruction in Sec. IVand Appendix D respectively, using
a Fisher information matrix (FIM) approach and Markov

FIG. 7. Signal (bottom right) and noise (AA in top left, EE in top right, ζζ in bottom left) reconstruction using the AEζ TDI basis
assuming unequal arm-lengths with equal noise levels.
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chain Monte Carlo (MCMC) runs for two out of the total of
six TDI bases, namelyAETandAEζ.While the FIManalysis
is a convenient tool that provides information on the posterior
widths, the MCMC is computationally costly but also
determines the best-fit parameters by confronting the signal

and noisemodels with the LISA data. In ourMCMC runs, for
the reasons explained in Sec. IV, we ignored the cross-
correlations among various TDI variables. On the other hand,
we used FIM analysis to compare results obtained when the
cross-correlations were either included or excluded.

FIG. 8. Signal (bottom right) and noise (AA in top left, EE in top right, ζζ in bottom left) reconstruction using the AEζ TDI basis
assuming unequal arm-lengths with unequal noise levels.

FIG. 9. GW parameter posteriors in the case of unequal arms and equal or unequal noises. The results of the MCMC runs, the FIM
analyses using the diagonal or the entire TDI covariance matrix are shown to superimpose for AET and AEζ. Note that the results are
centered on zero and rescaled by the values of the fiducial parameters.
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For the equal noise case, the large cross-correlations
among the AET (quasi)orthogonal TDI variables induced
by the nonequilateral configuration of the LISA spacecraft
result in a mild underestimation of the TM acceleration
amplitude parameter A and a slight overestimation of the
OMS noise parameter P in the signal and noise parameter
reconstruction performed using MCMC and the FIM
analysis. This can be understood using the toy model of
Appendix D 1. Note that, as mentioned already, the
frequency range over which the analysis is performed
can play an important role, as shown by comparing the
two contours plots of Fig. 12. These findings do not apply
to the AEζ basis, which, rather than being sensitive to the
arm-length mismatch, is only affected by the inequality in
the noise amplitudes. Both in the equal and unequal noise
cases, the OMS noise parameters are typically better
determined than the TM noise parameters. This is mainly
due to the fact that, while the information on the TM noises
mostly comes from the low-frequency part of the frequency
band, information on OMS noises comes from the high-
frequency spectrum (for the null channels, OMS noise
dominates the entire frequency range), which contains
more data and thus carries more weight in the likelihood.
While the above discussion pertains to the MCMC runs,
which were performed using only the diagonal of the TDI
matrices, we remind the reader that, as shown in the FIM
results of Fig. 16, including cross-correlations has a
significant impact on the uncertainty with which these
noise parameters can be obtained.
Let us stress that even if some of the noise parameters are

rather loosely constrained, the overall signal and noise
shapes can be recovered with sufficient accuracy for all the
scenarios tested in this work. While some previous analy-
ses, e.g., [40–42], have already considered different levels
for the TM and OMS noises, we also studied and quantified
their impact on signal parameter reconstruction for different

sets of TDI variables, going beyond the usual XYZ and
AET bases. It is particularly noteworthy that the signal
parameter reconstruction does not vary significantly among
the different configurations considered, see Fig. 10, and
that it is not sensitive to the inclusion of the off diagonal
terms of the TDI matrix; see Fig. 9(a) and Fig. 9(b). For all
these reasons, the results presented in this work represent
an important contribution to the community’s understand-
ing of cosmological SGWB data analysis for LISA.
We conclude by commenting on some of the assump-

tions of our work and on the possibility of relaxing them in
future analyses. First, let us stress that a major limitation of
our work resides in the fact that we assume perfect
knowledge of the functional form of the instrumental noise,
while it is possible that unknown sources of noise will be
present in the real data. Future studies are needed in order to
test the impact of these effects on noise and signal
reconstruction. For existing works setting the path in this
direction, see, e.g., [38,43,44].
Let us point out that the present analysis does not include

any of the possible time dependencies that might be present
in the data. Beyond transients, the arm-lengths are expected
to change over time, and the noise levels, or even the signal
(e.g., the SGWB due to CGBs is expected to feature an
annual modulation [41]) might have some modulations
over time, making the configuration nonstatic. Similarly,
while we have restricted our study to isotropic SGWBs, the
signal might have a nontrivial angular structure, whose
reconstruction should be one of the targets to be included in
a SGWB data analysis pipeline. Existing works in this
direction range from more theoretical studies [45] to
numerical techniques involving the decomposition of the
LISA response function in pixel space [46] or in spherical
harmonics [47].
Finally, in this work, we have considered a simplified

scenario where a single SGWB of cosmological origin,

FIG. 10. Comparison of MCMC SGWB parameter reconstruction for AETand AEζ, for all the configurations considered in this work,
with “UA” and “EA” standing for unequal and equal arms, respectively, and “UN” and “EN” standing for unequal and equal noise
amplitudes, respectively. Note that for this particular figure, the posteriors are not normalized by the fiducial.
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described by a simple power-law mode with zero tilt, is
present in the LISA band. One obvious and straightforward
extension of this work would be to test the sensitivity of
those results to the amplitude of the SGWB and the signal-
to-noise ratio. Furthermore, in reality, and as already
mentioned in this work, at least two SGWBs of astro-
physical origin will be present in the data, implying that the
measurement of any single SGWB will require component
separation techniques to disentangle the different contri-
butions to the signal observed. See [48,49] for studies
estimating some of the astrophysical SGWBs for LISA,
using an iterative source subtraction technique [50], and
see, e.g., [33,51–54] for studies attempting a simultaneous
detection of astrophysical and cosmological SGWBs.
Furthermore, given that several cosmological mechanisms
can generate spectra with a more elaborate frequency
structure, one should test the robustness of the results
obtained in this work when the assumption of a power-law
signal is relaxed. More generally, future studies aiming to
be more realistic would have to include a combination of
some of, and possibly all, these effects.
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APPENDIX A: USEFUL RELATIONSHIPS
AMONGST TDI VARIABLES

In this appendix, we provide some useful relationships
between the different TDI channels introduced in Sec. II B.
In particular, in Appendix A 1, we show how the Sagnac
variables are related to the Michelson variables in the
unequal arms case, such that we would expect any
independent set of three TDI channels to contain almost
the same information. Then, in Appendix A 2, we give
explicit relationships between the different sets of (quasi)
orthogonal channels. These expressions are given assuming
equal LISA arms, where they can be formulated concisely
as properties of the TDI variables themselves, regardless of

the noise or signal correlations in the actual data. We also
provide simplified low-frequency expansion of these rela-
tionships, which remain valid in the more general unequal-
arm case for all covariance matrices not involving the
Michelson T channel.

1. Unequal arms

It is known that for a constellation with three constant,
but unequal arms, one can exactly reproduce any TDI
variable as a linear combination of four generators, with the
set fα; β; γ; ζg as one possible basis [55]. Furthermore,
these four generators are themselves not fully independent,
but can be related by [16]

ð1 −D23D31D12Þζ ¼ ðD23 −D31D12Þα
þ ðD31 −D23D12Þβ
þ ðD12 −D23D31Þγ: ðA1Þ

This means that we can derive time-delay relationships
between different variables using just three variables as a
basis. For example, the following relationships can be used
to express α and ζ in terms of X, Y, and Z

ðD2
23 − 1ÞðD2

31 − 1ÞðD2
12 − 1Þα

¼ ð1þD23D31D12ÞðD2
23 − 1ÞX

þ ðD23D31 þD12ÞðD2
31 − 1ÞY

þ ðD31 þD23D12ÞðD2
12 − 1ÞZ; ðA2aÞ

ðD2
23 − 1ÞðD2

31 − 1ÞðD2
12 − 1Þζ

¼ ðD23 þD31D12Þð1 −D2
23ÞX

þ ðD31 þD23D12Þð1 −D2
31ÞY

þ ðD12 þD23D31Þð1 −D2
12ÞZ: ðA2bÞ

If we exclude Fourier frequencies at which some of the
delay operator combinations in the previous equations lead
to an exact cancellation of the signal,13 we expect all sets of
three independent TDI variables to contain exactly the
same information. This is verified by the fact that we get
identical results in all cases when using the full TDI
covariance matrices.
However, as we discuss in this paper, some TDI variables,

such as the traditionally used Michelson T channel, prove to

13For instance, the Fourier transform of terms of the type
ð1 −DN

ijÞ is ð1 − e−2πfNdÞ, which is exactly zero if fd is an
integer. At such “singular” frequencies, the response of one
variable can be exactly zero (while that of another is not). In this
case, the two variables are no longer equivalent. In reality, we
expect these zeros to be smoothed out to some extent due to
numerical limitations and other noise sources, such that the
discrepancies between two related variables will be extended to a
small frequency band around each zero [21,25].
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be particularly sensitive to deviations from the equal-arm
assumption. This means they potentially require more
elaborate models to achieve the same scientific output as
more robust channels, such as T or ζ. Furthermore, the exact
cancellation of the TDI channels at some Fourier frequencies
leads to zeros in the corresponding covariance matrix,
making it noninvertible. Since parameter estimation typically
requires inverting the noise covariance matrix, this favors
variables with fewer zeros, for which fewer Fourier frequen-
cies need to be excluded from the analysis. From this
viewpoint, among the sets considered in this work, AEζ
is the optimal one, with the first singular value of the
covariance matrix appearing at f ¼ 1=L ≈ 0.12 Hz.

2. Relationship between orthogonal channels
in the equal arms limit

In the limit of equal LISA arms, we can derive simple
relationships between the TDI coefficient matrices CUV , as
defined in Eq. (2.29), for the different sets of quasiorthog-
onal channels considered in this manuscript. We can further
perform a low-frequency expansion of these relationships,
the results of which are given alongside the full expressions
after the ≃ signs,

CAA=EE=AE ¼ 4 cos2ðπfLÞCAA=EE=AE

≃ 4CAA=EE=AE ; ðA3aÞ

CTT ¼ 16

3
sin2 ðπfLÞ sin2 ð2πfLÞCζζ

≃
64

3
L4π4f4Cζζ; ðA3bÞ

CT T ¼ ½1þ 2 cosð2πfLÞ�2
3

Cζζ

≃ 3Cζζ; ðA3cÞ

CAT=ET ¼ −
4 sin2ð2πfLÞ

1þ 2 cosð2πfLÞC
AT =ET

≃ −
16L2π2f2

3
CAT =ET ; ðA3dÞ

CAT=ET ¼ e4iπfL − 2i sinð2πfLÞ − 1ffiffiffi
3

p CAζ=Eζ

≃ −
8L2π2f2ffiffiffi

3
p CAζ=Eζ; ðA3eÞ

CAT =ET ¼ 1þ 2 cosð2πfLÞffiffiffi
3

p CAζ=Eζ

≃
ffiffiffi
3

p
CAζ=Eζ: ðA3fÞ

The notation CUV=WL indicates that the same expression is
valid for CUV and CWL independently but does not imply
any relationship between CUV and CWL.

Let us first note that the coefficient matrices of the
different sets of quasiorthogonal channels can be related
by overall frequency-dependent scaling factors. This
implies that the CSD and PSD terms in the matrix SUV

[see Eq. (2.29)] will inherit the same relationships,
irrespective of the single-link correlation matrix Sη.
Since this applies equally to either noise or signal in
the data, this further implies that the different sets all
have almost exactly the same signal-to-noise ratio and are
therefore almost equivalent for the purpose of data
analysis, at least in the equal-arm approximation. The
only caveat of this statement, as mentioned already in
Appendix A 1, is that the frequency-dependent factors
can be vanishing at singular frequencies. Therefore, the
“simpler” variables with fewer zeros, such as A, E or ζ, in
principle contain slightly more information than the more
“complex” ones, like A, E, T, and T .
Going to the low-frequency expansion simply gives a

constant scaling factor for most cases. The T channel,
however, shows a significantly stronger low-frequency
suppression when compared to the otherwise equivalent
T or ζ channels. We remark that T is also the only channel
for which these low-frequency expansions do not remain
valid approximations for the unequal arm scenario.
This might explain why we find it to be more susceptible
to deviations from the equal-arm assumptions at low
frequencies.

APPENDIX B: NOISE AND SIGNAL ANALYTIC
APPROXIMATIONS

In this appendix, we provide the analytic expressions of
the noise PSDs and CSDs for the different configurations
considered in this work. In Appendix B 1, we consider
identical TM and OMS noise terms on all spacecraft for
both the Michelson and Sagnac variables, as well as for
their orthogonal channels, for the case of equal LISA arms.
In Appendix B 2, we provide the corresponding expres-
sions in the case of unequal but constant arms. Given that
the full expressions are not particularly enlightening,
we shall write down only their low-frequency [i.e.,
f ≪ c=ð2πLÞ] expansions. The full expressions are made
available as Supplemental Material [39]. It is possible to
compute the signal response over the entire LISA band by
performing a numerical integration of Eq. (2.16). In order
to obtain an analytic expression, one instead has to expand
this expression at low frequencies. We do so for equal
and unequal arms in Appendix B 3 and Appendix B 4,
respectively.
All the expressions involving unequal arms which we

consider below are computed by assuming that LISA can
undergo two main distortion modes, namely δc and δd [23].
These distortions leave the average arm-length unchanged
and can therefore be used to characterize arm-length
mismatches across the three LISA arms. This approach
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helps in identifying the effects of each mode on the PSDs
and CSDs of the TDI variables.

1. Noise PSDs and CSDs
for an equal arms configuration

Let us write down the expressions for the noise CSDs
and PSDs of all channels assuming equal arms. We have

SXX;N ¼ SYY;N ¼ SZZ;N

¼ 16sin2ð2πfLÞf½3þ cosð4πfLÞ�STM þ SOMSg;
ðB1aÞ

SXY;N ¼ SXZ;N ¼ SYZ;N

¼ −4 sinð2πfLÞ sinð4πfLÞðSOMS þ 4STMÞ; ðB1bÞ

for the Michelson variables, and

Sαα;N ¼ Sββ;N ¼ Sγγ;N

¼ 6SOMS þ 4½3 − 2 cosð2πfLÞ − cosð6πfLÞ�STM;
ðB2aÞ

Sαβ;N ¼ Sαγ;N ¼ Sβγ;N

¼ 2½2 cosð2πfLÞ þ cosð4πfLÞ�SOMS

− 4½1 − cosð2πfLÞ�STM; ðB2bÞ

for the Sagnac variables.
For the orthogonal channels A, E, we find

SAA;N ¼ SEE;N ¼ 8sin2ð2πfLÞfSOMS½cosð2πfLÞ þ 2�
þ 2½3þ 2 cosð2πfLÞ þ cosð4πfLÞ�STMg; ðB3aÞ

SAE;N ¼ SAT;N ¼ SET;N ¼ 0: ðB3bÞ

As expected, the CSDs between the orthogonal channels in
the case of equal arm-lengths are zero, since A, E, and Tare
defined to be orthogonal. Finally, the expression for ζ reads

Sζζ;N ¼ 6fSOMS þ 2½1 − cosð2πfLÞ�STMg: ðB4Þ

The expressions for any other set of orthogonal variables
follow from Eq. (A3).

2. Noise PSDs and CSDs
for an unequal arm-lengths configuration

While it is possible to obtain exact expressions for the
noise CSDs and PSDs in the unequal arm case, as
mentioned before, the resulting expressions are rather large
and cumbersome, and thus not particularly enlightening.
For this reason, we shall only write down simpler expres-
sions, by working in the low-frequency limit. Furthermore,
as discussed in [22], one can express the arm-lengths Lij in

terms of the breathing modes of the LISA triangle, δc and
δd [56], defined as

L23ðtÞ ¼ L

�
1þ 1

2
ð

ffiffiffi
3

p
δc − δdÞ

�
; ðB5aÞ

L31ðtÞ ¼ Lð1þ δdÞ; ðB5bÞ

L12ðtÞ ¼ L

�
1 −

1

2
ð

ffiffiffi
3

p
δc þ δdÞ

�
; ðB5cÞ

and further expand the noise CSDs and PSDs in powers
of δc and δd. Indeed, while L ¼ L12þL23þL31

3
≈ 8.3 s is the

average arm-length, the small parameters δc and δd are
typically of the order 1 ms to 10 ms for realistic orbits.
Evidently, the case δc ¼ δd ¼ 0 corresponds to the equal
LISA arms scenario.
Aside from STT;N, none of the PSDs are modified by the

arm-length mismatch at leading order in δc;d. In particular,
we have14

STT;N ≃ 12ðδ2c þ δ2dÞð2πfÞ2L2ðSOMS þ 4STMÞ: ðB6Þ

Furthermore, none of the CSDs between quasiorthogonal
channels remain exactly zero if the arm-lengths are
unequal. They read,

SAE;N ¼ −12δcδdL2ð2πfÞ2ðSOMS þ 4STMÞ ¼ 4SAE;N;

ðB7aÞ

SAT;N ¼ 12
ffiffiffi
2

p
δcL2ð2πfÞ2ðSOMS þ 4STMÞ; ðB7bÞ

SAζ;N ¼
ffiffiffi
6

p
δcL2ð2πfÞ2ðSOMS þ 12STMÞ; ðB7cÞ

SET;N ¼ 12
ffiffiffi
2

p
δdL2ð2πfÞ2ðSOMS þ 4STMÞ; ðB7dÞ

SEζ;N ¼
ffiffiffi
6

p
δdL2ð2πfÞ2ðSOMS þ 12STMÞ; ðB7eÞ

SAT ;N ¼ −6
ffiffiffi
2

p
δcL2ð2πfÞ2STM; ðB7fÞ

SAζ;N ¼ 2
ffiffiffi
6

p
δcL2ð2πfÞ2ðSOMS þ 3STMÞ; ðB7gÞ

SET ;N ¼ −6
ffiffiffi
2

p
δdL2ð2πfÞ2STM; ðB7hÞ

SEζ;N ¼ 2
ffiffiffi
6

p
δdL2ð2πfÞ2ðSOMS þ 3STMÞ: ðB7iÞ

14Expanding the TDI coefficient matrix CTT computed accord-
ing to Eq. (2.29) to leading order in frequency shows that it only
contains terms that are second order in δc and δd. This implies
that T’s leading order dependence on the arm-length mismatch is
a generic effect, and we should expect STT;N to exhibit low-
frequency deviations for any kind of noise correlations we model
in Sη.
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We note that SAT and SET are proportional to δc and δd, and
are thus 2 orders of magnitude larger than STT, assuming
δc ≈ 0.01. This highlights the importance of the CSDs in
the low-frequency regime when using A, E, and T with
unequal arms. This is shown explicitly in Appendix D 2 in a
comparison of AET and AEζ using FIM and MCMC in the
low frequency range. SAE, on the other hand, is propor-
tional to δcδd and is therefore 4 orders of magnitude smaller
than SAA or SEE. SAζ and SEζ are again proportional to δc
and δd, such that they are also suppressed by 2 orders of
magnitude with respect to the diagonal terms SAA, SEE and
Sζζ. We can therefore conclude that A, E, and ζ remain
almost orthogonal even in the unequal arms case. This is
consistent with the discussion of Sec. III and with the
results of Appendix D 2.

3. Low-frequency signal response for
an equal arm-length configuration

One can obtain an analytic expression for Eq. (2.16) by
first expanding its kernel for low frequencies. Doing so, one
obtains in turn an analytic expression for the Sη;GWij;mnðfÞ CSD
given by Eq. (2.15). This expression can then be used in
Eq. (2.29) with the TDI coefficients, and the resulting
expression expanded in powers of frequency. By doing so,
one obtains the following expressions in the equal arm
approximation:

SXX;GW ¼ SYY;GW ¼ SZZ;GW ¼ 384

5
ðfLπÞ4; ðB8aÞ

SXY;GW ¼ SXZ;GW ¼ SYZ;GW ¼ −
1

2
SXX;GW; ðB8bÞ

for the Michelson variables, and

Sαα;GW ¼ Sββ;GW ¼ Sγγ;GW ¼ 96

5
ðfLπÞ4; ðB9aÞ

Sαβ;GW ¼ Sαγ;GW ¼ Sβγ;GW ¼ −
1

2
Sαα;GW; ðB9bÞ

for the Sagnac variables. Finally, we can compute equiv-
alent expressions for AET, AEζ, AET and AEζ,

SAA;GW ¼ SEE;GW ¼ 3

2
SXX;GW; ðB10aÞ

SAA;GW ¼ SEE;GW ¼ 3

2
Sαα;GW; ðB10bÞ

STT;GW ¼ 256

63
ðfLπÞ10; ST T ;GW ¼ 4

7
ðfLπÞ6; ðB10cÞ

Sζζ;GW ¼ 4

21
ðfLπÞ6; ðB10dÞ

with all cross-terms vanishing.

4. Low-frequency signal response for an unequal
arm-length configuration

In order to obtain reasonably short expressions in the
case of unequal arms, we follow the same procedure as
in Appendix B 3 but also expand the resulting expressions
in powers of the breathing modes δc and δd introduced
in Eq. (B5). Similarly to the results obtained in
Appendix B 2, we again find that most channels are
unaffected by the leading order in δc and δd. Contrary to
Appendix B 2, we now find that all three null channels T, T ,
and ζ are modified with respect to the equal arm case.
Concretely, we get

STT;GW ¼ 16ST T ;GW ¼ 16

3
Sζζ;GW ¼ 288

5
f4π4L4ðδ2c þ δ2dÞ;

ðB11Þ

such that each of the three channels now shows the same
low-frequency behavior as the GW-sensitive channels.
However, comparison with Eqs. (B10c) and (B10d) shows
that for T and ζ, this deviation corresponds to a change in
slope by f2 with respect to the equal arm scenario, while for
T, the slope changes by a factor f6. This, together
with the findings in Appendix B 2, explains the qualitatively
very different behavior between the T channel and
the other null channels observed in Sec. III. Furthermore,
we observe that we now have ST T ;GW ¼ 1

3
Sζζ;GW , whereas

we had ST T ;GW ¼ 3Sζζ;GW in the equal arm case. Since the
noise curves of these two channels are, at leading order,
unaffected by the arm-length mismatch, this explains why
we found T to be a slightly better null channel than ζ in
Sec. III.
Finally, we note that while the CSDs of the base

Michelson XYZ and Sagnac αβγ variables are again
unaffected at leading order, all orthogonal channels exhibit
nonvanishing cross terms, given by

SAE;GW ¼ −
ffiffiffi
2

p

2
SAT;GW ¼ −

576

5
f4π4L4δc; ðB12aÞ

SET;GW ¼ 288

5

ffiffiffi
2

p
f4π4L4δd; ðB12bÞ

SAζ;GW ¼ 72

5

ffiffiffi
6

p
f4π4L4δc; ðB12cÞ

SEζ;GW ¼ 72

5

ffiffiffi
6

p
f4π4L4δd; ðB12dÞ
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SAζ;GW ¼
ffiffiffi
6

p

4
SAE;GW ¼ −

36

5

ffiffiffi
6

p
f4π4L4δc; ðB12eÞ

SAT ;GW ¼ −
36

5

ffiffiffi
2

p
f4π4L4δc; ðB12fÞ

SEζ;GW ¼
ffiffiffi
3

p
SET ;GW ¼ −

36

5

ffiffiffi
6

p
f4π4L4δd: ðB12gÞ

APPENDIX C: DATA ANALYSIS
TECHNICAL DETAILS

As discussed in Sec. II a LISA data stream (and in
general of any GW experiment) can be modeled as a
superposition of some signal and detector noise. Let us
assume that the data diðtÞ, with the index i labeling the TDI
channel, are provided in the time domain, and for simplicity
let us assume diðtÞ to be stationary. This corresponds to
assuming rigid arms during the full mission duration.
This assumption is clearly not going to be valid for
LISA, but for the sake of our discussion, which rather
focuses on the impact of unequal arm-lengths and noise
levels on the orthogonality, as well as on the constraining
power, of the different TDI variables, we restrict ourselves
to this simplified scenario. Given the total observation time
of the detector Td, which in this paper is always assumed to
be 4 years with 100% efficiency, we can divide diðtÞ into a
given number, say Nd, of segments, of duration Td=Nd

each. We can thus define the data d̃si ðfkÞ, in the frequency
domain, where the index s runs over all segments, and the
index k runs over frequencies in the detector range. The
frequency resolution for any given segment is directly
given by Δf ¼ Nd=Td. In the following, we will assume
the time duration of each segment to be ∼11.5 days
corresponding to Δf ∼ 10−6 Hz. We also assume different
frequencies to be uncorrelated. As discussed in Sec. II,
both signal and noise are also assumed to be Gaussian-
distributed with vanishing mean and variance given by their
respective power spectral densities. Under all these
assumptions, we can generate Nd statistical realizations
of the signal and of all the noise components. Following the
procedure described in [33,57], we define a new set of
(averaged) data D̄k

IJ ≡ d̃iJðfkÞd̃iIðfkÞ=Nd, which we down-
sample using a coarse-graining procedure. By applying
these techniques, we obtain a new datasetDk

IJ, where k now
runs over a sparser set of frequencies fkIJ, with weights wk

IJ
corresponding to the number of points we average over in
the coarse-graining procedure. The down-sampled dataset
will have statistical properties similar to the ones of the D̄k

IJ
while being easier to handle numerically [33,57].
It would seem natural to describe the data using a

Gaussian likelihood of the form,

lnLGðθ⃗jDk
IJÞ ¼ −

Nd

2

X
k

X
I;J

wk
IJ½1 −Dk

IJ=D
Th
IJ ðfk; θ⃗Þ�2;

ðC1Þ

where θ⃗ ¼ fθ⃗s; θ⃗ng is the vector of parameters (with θ⃗s, θ⃗n
being the signal and noise parameters, respectively), and
DTh

IJ ðfk; θ⃗Þ ¼ ΩIJ;GWðfk; θ⃗Þ þ ΩIJ;nðfk; θ⃗Þ is the theoreti-

cal model for the data [with ΩIJ;GWðfk; θ⃗Þ and ΩIJ;nðfk; θ⃗Þ,
being the signal and noise model, respectively]. However, it
is known [58–61] that this compressed likelihood does not
account for the mild non-Gaussianity of the full likelihood,
giving systematically biased results. This bias might be
corrected by introducing a log-normal likelihood,

lnLLNðθ⃗jDk
IJÞ ¼ −

Nd

2

X
k

X
I;J

wk
IJ ln

2 ½DTh
IJ ðfk; θ⃗Þ=Dk

IJ�;

ðC2Þ

and considering the final likelihood to be

lnLðθ⃗Þ ¼ 1

3
lnLGðθ⃗jDk

IJÞ þ
2

3
lnLLNðθ⃗jDk

IJÞ: ðC3Þ

Consistently with the discussion in Sec. II A 2, we include a
prior for all the noise parameters in our analysis. These
priors are chosen to be Gaussian, centered around the face
values, i.e., Aij ¼ 3, Pij ¼ 15, ∀ fijg combinations, and
with a 20% width. We also introduce flat priors on the
SGWB spectral slope and amplitude but these are suffi-
ciently large so as to have no impact on parameter
estimation. Finally, to sample the parameter space we
use the emcee sampler [62], and results are visualized
in contour plots using Chainconsumer [63].
For completeness, we report the expression of the

SNR [13],

SNR≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Td

X
i

Z
df

�
SGWi
SNi

�
2

s
; ðC4Þ

where the index i runs over all the TDI channels, which for
simplicity, are assumed to be orthogonal.

APPENDIX D: NOISE PARAMETER
RECONSTRUCTION FOR AET AND AE ζ

In this section, we present the analysis of the noise
parameter reconstruction, which is complementary to
the discussion of Sec. IV. For this purpose, we start, in
Appendix D 1, by considering a simple toy model, which
provides useful insight for the interpretation of our results.
We then proceed, in Appendix D 2 and Appendix D 3, with
the discussion of the noise parameter reconstruction for the
equal and unequal noise level cases, respectively.
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1. Toy model

Let us consider two time series, D1 ¼ N1 þ N2 and
D2 ¼ N1, where N1 and N2 are uncorrelated noises with
PSDs a and bðf=f⋆Þ respectively, i.e., while the PSD of N1

is a constant, that of N2 has a frequency dependence.
The covariance Cij, with fi; jg ∈ f1; 2g, of the two data-
sets is given by

Cij ≡ CovðDi;DjÞ ¼
�
aþ b f

f⋆ a

a a

�
: ðD1Þ

Assuming the data to be Gaussian, the log-likelihood reads

− logLðDija; bÞ ∝
X
f

fln ½detðCijÞ� þDiC−1
ij D

�
jg; ðD2Þ

and it is easy to show that the Fisher matrix Fij can be
computed as

Fij ≡ −
∂
2 logL
∂θi∂θj

����
θ⃗¼θ⃗0

¼
X
f

Tr

�
C−1 ∂C

∂θi
C−1 ∂C

∂θj

�
; ðD3Þ

where θ⃗0 are the best-fit parameters, which for Eq. (D2)
are given by Cij ¼ DiD�

j. To simplify the analysis, in the
following, we replace the sum over finite frequencies with a
continuous integral over the frequency range (going from
some fmin to fmax) multiplied by the total observation
time T.15 From the equations above, it is easy to compute
the covariance matrix (which is given by the inverse of the
Fisher matrix) of the parameters a and b. It reads

Covða; bÞ ¼ 1

Tðfmax − fminÞ
�
a2 0

0 b2

�
: ðD4Þ

Since D2 gives an independent readout of N1, and N2 can
be estimated from D1 −D2, we can get independent
estimates of the two parameters a and b, whose variances
scale with a2 and b2, respectively. To have better insight
into the impact of the off diagonal terms of Eq. (D1) on
Eq. (D4), we repeat this calculation in the case in which
these terms are neglected. Before entering into details, let
us first note that if we consider a frequency range defined
by fmin ¼ 0 and fmax → ∞, the information diverges,
the variance goes to zero, and we recover the above
result. Let us proceed by considering fmax ≫ fmin, with
bfmax=f⋆ ≪ a. In this case, the signal D2 is subdominant
over the entire frequency range and Eq. (D4) evaluates to

Covða; bÞ ≃ 1

Tfmax

0
B@ 0.8a2 −1.2a2 f⋆

fmax

−1.2a2 f⋆
fmax

4.8a2 f2⋆
f2max

1
CA; ðD5Þ

implying that the variance of a is underestimated compared
to the true value (which is equal to a2), while that of b
depends on a and is large compared to the true value (which
is b2). The second case we consider is fmax ≫ fmin, with
bfmax=f⋆ ¼ 2a. Then, the two signals are of similar
amplitude, and Eq. (D4) reads

Covða; bÞ ≃ 1

Tfmax

�
0.88a2 −0.8ab
−0.8ab 5b2

�
: ðD6Þ

In this case, the covariance of a continues to be under-
estimated by a factor of order 4=5, while that of b is
overestimated by a factor ∼5. Finally, we consider
fmax ≫ fmin, with bfmax=f⋆ ≫ a, so that D2 is much
larger than D1 and Eq. (D4) reads

Covða; bÞ ≃ 1

Tfmax

0
B@ a2 a2f⋆

fmax

a2f⋆
fmax

b2

1
CA: ðD7Þ

In this case, the frequency band is sufficiently broad such
that either signal is clearly visible in at least part of it, and
it is possible to recover the true covariance to a good
approximation despite our having neglected the off diago-
nal terms. Notice that in all three cases, neglecting off
diagonal terms in Eq. (D1), introduces degeneracies in the
estimates of a and b.
The findings of this toy model are consistent with the

rationale that the off diagonal elements add information
that helps break degeneracies between model parameters,
and that when they are neglected, the dominant signal, if
present in multiple data streams, will have artificially more
statistical weight and will thus be recovered with artificially
small error bars, while the subdominant signal will be
difficult to identify with much accuracy.

2. Equal noises

In order to better understand the constraints on the noise
parameters, we start by presenting in Fig. 11 the PSDs
of the TM, OMS, and GW signal for the AA, TT,
and ζζ variables in the left-hand plot, and the CSDs of
TM, OMS and GW divided by the square root
of the product of the PSDs for AA and TT or ζζ in
the right-hand plot (i.e., the component-wise square-
root of the coherence). For example, “AT TM” is compu-
ted as jSAT;TMj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSAA;N þ SAA;GWÞðSTT;N þ STT;GWÞ

p
.

Restricting the focus to the low-frequency range
(f < 10−3 Hz), and to the variable T, we find that OMS
is suppressed with respect to TM, reaching levels almost as
small as GW. The TM cross-correlations in AT are at the
10% level, while those for OMS and GWare several orders

15Assuming the integration time is sufficiently long to have a
reasonably fine sampling in f, the results in the two cases will
coincide.
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of magnitude smaller. Turning our attention to ζ, we find
that in the low-frequency range, contrary to T, the TM and
OMS PSDs remains large compared to GW. Moreover, the
cross-correlations for AEζ are significantly smaller than
those of AET. It is also worth noting that the hierarchy
between the TM, OMS, and GW PSDs remains the same
throughout the entire frequency range (3 × 10−5 to 0.5 Hz)
for ζζ, whereas the TM and OMS spectra intersect at
10−3 Hz for TT. The TM and OMS cross-correlations
intersect at f ≃ 5 × 10−3 Hz for both ATand Aζ. Finally, at
frequencies above 10−2 Hz, TM, OMS, and GW have
comparable amplitudes in AET and AEζ. What differs is
mainly the oscillatory features introduced by the TDI
transfer functions. While the GW cross-correlations are
strongly suppressed at large frequencies, the TM and OMS
ones are much larger and of order 1% and 10% respectively.
Let us proceed by discussing the parameter

reconstruction in the case of equal noise levels, first
restricting the analysis to the low-frequency (f ≤ 10−3 Hz)
range. The results of the MCMC runs for this configuration
are presented in Fig. 12(a). As shown in Fig. 11, at low
frequencies, while the AEζ basis is nearly orthogonal,
correlations are relevant for AET. Indeed, for AET, neglect-
ing off diagonal terms significantly impacts the posterior
for the OMS amplitude [see the marginalized posterior for
parameter P in Fig. 12(a)] which becomes largely under-
constrained. This is due to the fact that OMS is strongly
suppressed relative to TM in AET, such that much
information could be gained from including the relatively
large CSDs shown in the right-hand plot of Fig. 11. The
situation is in fact similar to that of N2, and its associated
parameter b, discussed in the toy model of Appendix D 1.
On the other hand, the posteriors for all other parameters
are slightly narrower than when considering the full AET
matrix. This is once again consistent with what was found
in Appendix D 1, for N1 and associated parameter a. It is
also worth noting that α and nT are strongly degenerate in

both AET and AEζ. This happens in the low-frequency
range, since the pivot frequency (f⋆ ¼ 3.873 × 10−3 Hz) is
located outside this range such that a change in nT induces a
strong change in the GW signal’s amplitude within the
frequency range. In this sense, including the pivot fre-
quency in the frequency range considered, or widening the
frequency range would break this degeneracy. This is
indeed what happens once we consider the full frequency
range, as we discuss below.
We conclude this section by including the higher

frequency range (up to 5 × 10−1 Hz, consistent with the
analysis in Sec. IV), which we expect will include
significant information to the GW and noise parameters
for both AET and AEζ. Indeed, the results shown in
Fig. 12(b) show a great improvement in the determination
of most parameters. In particular, the OMS noise parameter
P gains a factor of order 500 in the width of the
marginalized posterior for AET, and a factor of order
50 for AEζ. This is consistent with the findings obtained in
the example of Appendix D 1, where it was found that by
extending the frequency range, one could capture addi-
tional information on subdominant components in the
signal. Finally, comparing with Fig. 12(b), we notice that
including higher frequencies breaks the degeneracy
between α and nT parameters. Indeed, as shown in Fig. 11,
the GW PSD grows at frequencies above 10−2 Hz, while
the CSD drops significantly. While not explicitly shown in
Fig. 12, all these results are consistent with the correspond-
ing Fisher matrix analyses.

3. Unequal noises

In this section, we discuss the situation of most interest,
the case of unequal arms and unequal noise levels.
Comparing the left-hand plot of Fig. 13 with the one of
Fig. 11, one finds that the TM, OMS, and GW PSDs in AA,
TT, and ζζ, are practically unchanged with respect

FIG. 11. Left: TM, OMS, and GW PSDs in the case of unequal arms but equal noise spectra. Right: TM, OMS, and GWCSDs divided
by the square root of the product of the PSDs for AA and TTor ζζ (i.e., the square root of the component-wise coherence), in the case of
unequal arms but equal noises.
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to the equal noise levels case. Turning one’s attention to the
right-hand plot of Fig. 13, one can make the following
observations. Firstly, the OMS noise cross-correlation in
Aζ is much larger than its counterpart in the equal noise
case, over the entire frequency band. Indeed, this quantity is
of the same order as the one for AT for frequencies
≳5 × 10−4 Hz and is larger for lower frequencies.
Secondly, the Aζ TM cross-correlations are also enhanced,
by close to an order of magnitude in the band between 10−5

and 10−1 Hz. Thirdly, as expected, the GW cross-correla-
tions are not affected by the introduction of independent
noise levels and, contrarily to the equal noise level case,

they stay smaller than the TM and OMS ones over the
entire range. Finally, while the cross-correlations reach
above the 10% for both noises and for both TDI basis, the
GW signal off diagonal terms remain below 10% for both
TDI variables and are significantly smaller for Aζ. Drawing
from these observations, one anticipates that the largest
impact of neglecting off diagonal terms will be seen in the
OMS noise.
Let us now focus on the AET and AEζ MCMC results.

Figure 14(a) and Fig. 14(b) show the results of the AET
and AEζ runs for the TM and OMS parameters, respec-
tively. As shown in the right-hand plot of Fig. 13, the TM

FIG. 12. AET diag. MCMC vs. AEζ diag. MCMC stochastic background and noise parameter reconstruction for unequal arms and
equal noises.

FIG. 13. Left: TM, OMS, and GW PSDs in the case of unequal arms and unequal noise spectra. Right: TM, OMS, and GW CSDs
divided by the square root of the product of the PSDs for AA and TTor ζζ (i.e., the square root of the component-wise coherence), in the
case of unequal arms and unequal noise spectra.

STOCHASTIC GRAVITATIONAL WAVE BACKGROUND … PHYS. REV. D 107, 123531 (2023)

123531-23



cross-correlations are significantly larger in AET than in
AEζ while the OMS cross-correlations are non-negligible
and of similar amplitude in both AEζ and AET.
Furthermore, as shown in the left-hand plot of that figure,
the TM and OMS power spectral densities are significantly
larger in ζ compared to T over a significant fraction of the
frequency band. One can therefore conclude that similarly
to what was found in the toy model of Appendix D 1,
ignoring cross-correlations will induce differences in the
TM and OMS posterior widths larger for AET than for
AEζ, and in particular, may lead to variance underestima-
tion for AET. This is true for four out of the six Aij’s and
three out of the six Pij’s. Let us recall that a Gaussian prior
centered around the face values A ¼ 3, P ¼ 15, and with a
standard deviation equal to the 20% of the central value was
used for all the TM and OMS noise parameters. With this in
mind, we note that, while all the Pij have posteriors that are
considerably narrower than the priors, some of the Aij

constraints are actually comparable in size, implying that
the data fails to provide significant information on those
parameters. Finally, we note that there exist degeneracies
between the Aij and Aji, and Pij and Pji pairs. This is
expected because whether AET or AEζ, all measurements
that involve the quantity ηij also involve its time-delayed
counterpart ηji. For what concerns the comparison between
the AET and AEζ results obtained via MCMC sampling
and the FIM analysis using the diagonal of the TDI

covariance matrix, while we do not present the full corner
plots, we show in Figs. 15(a) and 15(b) the 1D posteriors
for AETand AEζ, respectively. As is clear from these plots,
the constraints obtained with the approaches agree.
We conclude this appendix with a comparison of the

Fisher analyses performed with the diagonal and full TDI
covariance matrices. Since AET and AEζ show slightly
different, but qualitatively similar behaviors, we only show
the corner plot for the latter; see Fig. 13. Given that the AEζ
TM noise CSDs are relatively small, the constraints on
the Aij parameters constraints are not expected to change
significantly in going from a diagonal to a full correlation
matrix analysis. This is verified in the 1D marginalized
posteriors of Fig. 16(a). The introduction of correlations in
the analysis does introduce correlations among parameters,
with the result that the surface area of 2D contours shrinks
when considering the full matrix. Let us now turn our
attention to OMS. Given the CSDs of Fig. 13, which for
AEζ (and also for AET), exhibit correlations that are
greater than 10% for a broad set of frequencies, we expect
that including or excluding correlations of the TDI variable
will significantly modify the constraints on the Pij’s.
Indeed, as illustrated in the toy model of Appendix D 1,
ignoring cross-correlations means that the amplitude
parameters of all subdominant noise components are
largely unconstrained. This is confirmed by the contour
plots of Fig 16(b).

FIG. 14. AET diag. MCMC vs AEζ diag. MCMC for the TM and OMS parameter posteriors obtained from the MCMC runs in the
case of unequal arms, unequal noises, and over the full frequency range.
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FIG. 15. TM and OMS one-dimensional parameter posteriors obtained from Fisher forecasts and MCMC runs in the case of unequal
arms and unequal noise levels.

FIG. 16. TM and OMS posterior widths obtained from FIM analysis in the case of unequal arms and unequal noise levels when
including or neglecting the off diagonal terms in the TDI correlation matrix.
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