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Two major challenges of contemporary cosmology are the Hubble tension and the cosmic dipole tension.
At the crossroads of these, we investigate the impact of peculiar velocities on estimations of the Hubble
constant from time-delay cosmography. We quantify the bias on the inference of the Hubble constant due to
peculiar velocities of the lens, the source and of the observer. The former two, which may cancel from one
system to another, affect the determination of the angular diameter distances in the time-delay formula, and
reconstructed quantities like the angle to the source, via a lens model. On the other hand, the peculiar
velocity of the observer, which is a debated quantity in the context of the cosmic dipole tension,
systematically affects observed angles through aberration, redshifts, angular diameter distance and
reconstructed quantities. We compute in detail the effect of these peculiar velocities on the inference
of the Hubble constant to linear order in the peculiar velocities for the seven lenses of the H0LiCOW/
TDCOSMO collaboration. The bias generated by the observer’s peculiar velocity alone can reach 1.15%
for the lenses which are well aligned with it. This results in a 0.25% bias for the seven combined lenses.
Assuming a typical peculiar velocity of 300 km s−1 for the lens and the source galaxies, these add an
additional random uncertainty, which can reach 1% for an individual lens, but reduces to 0.24% for the full
TDCOSMO sample. The picture may change if peculiar velocities turn out to be larger than expected. Any
time-delay cosmography program which aims for percent precision on the Hubble constant may need to
take this source of systematic bias into account. This is especially so for future ground-based surveys which
cover a fraction of the celestial sphere that is well aligned with the observer’s peculiar velocity.

DOI: 10.1103/PhysRevD.107.123528

I. INTRODUCTION

Persistent tensions in cosmological datasets may be
indicators of new physics or of unknown systematics.
While the former is very exciting, excluding confidently
the latter is notoriously difficult. On the theoretical side,
this is mostly because in extracting cosmological param-
eters, approximations are needed, which require a set of
assumptions that may be broken. Two of these tensions
include disagreement on the kinematic cosmic dipole,
which can be translated into a tension on the peculiar
velocity of the observer [1] and on the Hubble constant [2].

Both of these tensions are between the cosmic microwave
background (CMB) and other datasets.
The CMB dipole allows one to extract the velocity of the

observer, which effectively Doppler shifts the black body
radiation of angular average temperature hTi from the
CMB to higher and lower temperatures ðδT=hTiÞdip ∼
Oð10−3Þ in opposite hemispheres aligned with the observ-
er’s velocity. This works well provided the intrinsic CMB
dipole, which is expected to be of the order Oð10−5Þ, is
small in comparison. This is expected from a nearly scale-
invariant power spectrum of primordial fluctuations of the
inflaton generated at the end of a period of quasi–de Sitter
expansion during inflation. Under the assumption that the
intrinsic CMB dipole vanishes, known as the entirely
kinematic interpretation of the CMB dipole, one obtains
kvdipk ¼ 369.82� 0.11 km s−1 toward v̂dip ¼ ð264.021°�
0.011°; 48.253°� 0.005°Þ in galactic coordinates [3–6].
This defines a reference frame known as the CMB frame.
If the interpretation is correct, the same velocity should
induce correlations between the l and l� 1 multipoles of
the CMB, which was checked in [6–8] and gives consistent
results, albeit the relatively large error bars still leave room
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for an intrinsic dipole which can make up to 40% of the
CMB dipole [9]. It should be noted that spectral distortions
of the CMB monopole, dipole, and quadrupole should let
one separate the intrinsic dipole from its kinematic counter-
part with sufficiently advanced detectors [10].
Alternatively, the peculiar velocity of the observer can be

extracted from source number counts of relatively high
redshift sources (z ≥ 0.1), such as quasars, to avoid con-
tamination from local structures [11,12]. This was pioneered
byG. Ellis and J. Baldwin for flux-limited surveys of sources
with a flux density following a power law frequency
spectrum [13]. Aberration of angles and Doppler shift then
affect these number counts per unit solid angle in such a way
that permits the extraction of the observer’s peculiar velocity
with respect to these sources. This has led to a number count
dipole, which is well aligned with the CMB dipole but about
2–5 times as large as expected from vdip and which has
reached a∼5σ tension [14–18]. In [12], it was suggested that
the redshift evolution of the population of sources may, at
least partially, explain the discrepancy. This was further
investigated by the authors of [19], who also find large
variations in the theoretical expectation of the number count
dipole in the presence of parameter evolution when using
different quasar luminosity function models. The authors of
Ref. [18] reanalyzed the data of [14,15] and concluded that
neithermasking nor parameter evolution can fully explain the
discrepancy, although the latter is subject to further assump-
tions. If the dominantly kinematic interpretation of this
number count dipole is correct, it should show up in the
correlations between the l and l� 1multipoles of the number
counts, which require high-angular resolution surveys
[20,21]. An observer offset from the center of an ultra-large
void was also suggested in [22] as a solution. This would
imply effective large source peculiar velocities as a result of
working with a homogeneous and isotropic background. In
any case, this problem requires further studies [1].
The Hubble tension is somehow more popular [23] and

has been established for a longer period of time. It is the
disagreement between direct measurements of the Hubble
constant and inference of H0 from the CMB, if assuming a
flat homogeneous and isotropic Universe dominated by
cold dark matter and a cosmological constant, the so-called
ΛCDM model. The Hubble constant is inferred from the
angle upon which the scale associated to the horizon at
the last scattering surface is seen in the CMB, which is
extracted from the temperature fluctuations. This results
in H0 ¼ 67.4� 0.5 km s−1 Mpc−1 at 68% confidence level
[24]. In contrast, two of the most competitive local mea-
surements of the Hubble constant come from supernovae
type Ia, which requires calibration via the distance ladder
and from time-delay cosmography with strongly lensed
quasars. Teams performing these experiments reported
relatively high H0 ¼ 74.03� 1.42 km s−1Mpc−1 [25,26]
and H0 ¼ 73.3þ1.7

−1.8 km s−1 Mpc−1 [27], respectively. Com-
bining these two direct measurements leads to a 5.3σ

tension on H0 with the CMB. This has led to a plethora of
alternative models, with various levels of complexity and
success, as demonstrated by the existence of the H0-
olympics [28] (see also [29]).
However, this gravitational lensing estimate of H0 relies

on assumptions about the functional form of the mass
profile of the lens galaxies and it was pointed out that those
choices could result in a bias on H0 if one does not allow
for sufficient freedom on the lens model [30]. Importantly,
it should be noted that using only stellar kinematics instead
of assumptions about the mass profile of the lensing
galaxies to break the so-called mass-sheet degeneracy
[31], led to H0 ¼ 74.5þ5.6

−6.1 km s−1 Mpc−1 with the seven
same strongly lensed systems [32], which is consistent with
Planck [24]. It was also suggested that the high H0 values
from lensing could hint at a dark matter core component in
halos [33]. Using the stellar kinematics of the SLAC lenses
[34], applied to the systems of H0LiCOW with more
general lens models, lowers the expectation value of H0

to the Planck value [32] but relies on the assumption that
the two samples of lenses share similar mass profile
properties.
The peculiar velocity of the observer plays the role of a

foundational stone for cosmological experiments which
work in the CMB frame [35–38]. It is therefore alarming
that some experiments disagree on the peculiar velocity of
the observer vo. For example, directional dependencies of
2 − 3σ level on cosmological parameters extracted from the
CMB were reported in [39]. A remnant of anisotropies on
H0 determined from supernovae type Ia data was reported
in [40] even when working in the CMB frame. The effect
of small systematic redshift errors of the order of 10−4,
potentially due to peculiar velocities, was shown to be able
to bias H0 obtained from supernovae type Ia to the order of
1 km s−1 Mpc−1 [41,42]. The authors of [43] studied
anisotropies on H0 paying particular attention to peculiar
velocities and found that the monopole ofH0 can be biased
to the order of 0.30 km s−1Mpc−1, concluding that it is
unlikely to fully explain the observed tension.
Galaxy clusters also seem to indicate the presence of 9%

anisotropies in H0 as inferred in [44]. Quasars and gamma
ray bursts used as standard candles also point toward 2σ
variations in H0 aligned with the CMB dipole [45].
The authors of [46] found 4 km s−1 Mpc−1 difference in
H0 in opposite hemispheres aligned with the CMB dipole,
although such variations are expected. Similar hints of H0

anisotropies from strongly lensed quasars were noticed in
[47], although these observations are not corrected for
the peculiar velocities of the observer, lenses or sources.
In particular, the H0LiCOW/TDCOSMO collaboration
pointed out a mild 1.8σ significance for an H0 which
decreases with observed lens redshift z0l [27,48]. Two of the
lowest lens redshift systems, which give the highest Hubble
constant estimates, turn out to also be well aligned with the
CMB dipole, as remarked in [47].
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In this work, we focus on the determination of the
Hubble constant from the time delay of strongly lensed
quasars and study the impact of peculiar velocities on this
measurement. One may expect that peculiar velocities of
the order of v=c ≃Oð10−3Þ do not affect the H0 measure-
ment beyond Oð10−3Þ. However, to our knowledge, there
has not been any rigorous study of the accumulation of
effects of aberration and Doppler shift on time-delay
cosmography, and propagation of biases through the lens
model, which may inflate the proportionality constant in
front of v=c. Our goal is to fill this gap and study if there
can be any relation between the Hubble and dipole
tensions.
The paper is structured as follows. In Sec. II, we review the

basics of time-delay cosmography for a singular isothermal
sphere, which allows us to fix notation. In Sec. III, we detail
all effects of peculiar velocities on the observables and also
how these propagate through the lens model and to the
Hubble constant determination. In Sec. IV, we apply our
findings to the seven lenses of TDCOSMO,1 compute the
bias on the Hubble constant for each lens as a function of the
peculiar velocities and discuss our results. Finally, in Sec. V,
we conclude. We suggest that a busy reader principally
interested in the total impact on H0 measurements should
review the form of Eqs. (75) and (77), then move directly to
Sec. IV. Throughout the article, bold symbols denote 2 or 3
dimensional vectors, hats indicate unit vectors kn̂k ¼ 1.
Sometimes unit vectors in R3 are expressed in spherical
coordinates n̂ ¼ ðcos θ cosφ; cos θ sinφ; sin θÞ b¼ ðθ;φÞ,
where θ ∈ ½0; π� and φ ∈ ½0; 2π½ indicate the polar and
azimuthal angle, respectively. We note the speed of light c
and Newton’s constant GN.

II. SINGULAR ISOTHERMAL SPHERE

In this section, we review time-delay cosmography for an
isothermal sphere and fix our notation. Derivations may be
found in [50] and the reader experienced in lensing time
delay formalism can skip to Sec. III. The cosmic time
delay Δtij ≡ ti − tj variations in lensed images i and j for
a comoving observer, lens and source can be expressed
as [50]

cΔtij ¼ ð1þ zlÞ
dlds
dls

½ϕ̂ðθi; βÞ − ϕ̂ðθj; βÞ�; ð1Þ

where zl is the lens redshift, dl, ds and dls are angular
diameter distances to the lens, to the source and between
the lens and the source, respectively. A sketch of the lensing
configuration is displayed in Fig. 1. Contrary to Euclidean
intuition, dl þ dls ≠ ds, in general. See also [51] for a
derivation of Eq. (1) in arbitrary spacetimes and with

arbitrary peculiar velocity configurations. The dimension-
less Fermat potential is given by

ϕ̂ðθ; βÞ ¼ ðθ − βÞ2
2

− ψðθÞ; ð2Þ

where θ ¼ ðθx; θyÞ is a 2 dimensional vector indicating
small observed angles to the images, typically of the order
of a few arcsec on the sky, where the origin is the center of
mass of the lens, which defines the optical axis. The
unobservable 2 dimensional angle β ¼ ðβx; βyÞ indicates
the source position. This first part of the time delay comes
from the geometric difference in the paths followed by
photons, emitted simultaneously and deflected by the lens.
The lensing potential is indicated by ψðθÞ and tracks the
time delay accumulated by Shapiro time dilation, and
requires a lens model to compute. The images form at
sky locations which extremize the Fermat potential. In
other words, these are solutions of the lens equation:

β ¼ θ − αðθÞ; ð3Þ

where the 2 dimensional deflection angle is αðθÞ ¼ ðαxðθÞ;
αyðθÞÞ ¼ ∇ψðθÞ. Gravitational lenses at cosmological dis-
tances have a thickness along the optical axis which can be
considered much smaller than the distance between the
lens, the source and the observer. In this case, one can make
a thin lens approximation to find [50]

αðθÞ ¼ 1

π

Z
R2

d2θ0κðθ0Þ θ − θ0

kθ − θ0k2 ; ð4Þ

where κðθÞ is the convergence, defined as

κðθÞ≡ ΣðθÞ
Σc

; ð5Þ

where ΣðθÞ is the mass surface density (in kg m−2) and the
critical surface density is given by

FIG. 1. We sketch the lensing configuration. The observer, on
the left, sees an image at a small angle θ from the optical axis,
which connects via a null geodesic the observer to the lens’ center
of mass. The unobservable angles to the source β and the
deflection angle α are also displayed. The angular diameter
distance dl, ds and dls at play are displayed in the intuitive
Euclidean case where dl þ dls ¼ ds, although that equality does
in general not hold.

1Six lenses come from H0LiCOW [27] and one from
STRIDES [49]. These seven systems are now analyzed jointly
by the TDCOSMO collaboration [48].
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Σc ≡ c2

4πGN

ds
dlsdl

: ð6Þ

Equation (4) expresses that the deflection angle at an angle
θ is more affected by the massive regions in the lens plane
which are close to θ. For a thin lens, the lensing potential
can be expressed as

ψðθÞ ¼ 1

π

Z
R2

d2θ0κðθ0Þ log kθ − θ0k þ const; ð7Þ

up to an integration constant, which cancels in the time-
delay formula. Note that a photon traveling closer (low
kθ − θ0k ≪ 1) to a region with higher mass density (higher
κðθ0Þ) will experience more Shapiro time delay [more
negative ψðθÞ] than if it travels far from this region. In
the following and throughout the article, we work with a
singular isothermal sphere (SIS), which can be described
by the following mass density

ρðrÞ ¼ σ2v
2πGNr2

; ð8Þ

in (kg m−3) where r is the distance from the center of mass
of the lens, σv is the line-of-sight velocity dispersion, which
is assumed to be constant. This lens model is spherically
symmetric, singular at r ¼ 0 and its mass formally extends
to infinite radius. Until the end of the 1990s, this was the
most popular model for strong lensing time-delay cosmog-
raphy because all lensing quantities can be derived ana-
lytically. The TDCOSMO collaboration has now adopted
more sophisticated models to describe the mass profile of
the lens galaxy such as the power-law elliptical mass
distribution [52] and composite models [53], which explic-
itly includes a baryonic and dark matter component.
Nevertheless, we do not expect these more sophisticated
lens models to change significantly our results, while the
simplicity of the SIS grants us analytic control. The mass
surface density can be obtained by integrating along the
optical axis, between the source and the observer. This is
most easily done in cylindrical coordinates ðr;φ; zÞ, cen-
tered on the lens center of mass. In that case, ρðrÞ ¼
ρðdlθ; 0; lÞ with θ ¼ kθk and we get

ΣðθÞ ¼
Z

lo

ls

dlρðdlθ; 0; lÞ ¼
σ2v

2πGNdlθ
Arccot

�
dlθ
l

����lo
ls

�
:

ð9Þ
Taking the limit of far away source and observer, compared
to the impact parameter jloj; jlsj ≫ dlθ, one finds

ΣðθÞ ¼ σ2v
GNdlθ

: ð10Þ

Making use of axial symmetry, [i.e. κðθÞ ¼ κðθÞ], one
finds, using Eq. (4), that αðθÞ ¼ αðθÞθ=θ with

αðθÞ ¼ 2

θ

Z
θ

0

dθ0θ0κðθ0Þ: ð11Þ

For an SIS, this integral reduces to a constant deflection
angle

αðθÞ ¼ 4πσ2v
c2

dls
ds

≡ α0: ð12Þ

This implies that the source angle β for an SIS can be
reconstructed from only one image θi,

β ¼ θi

�
1 −

α0
θi

�
: ð13Þ

This can also be read as a quadratic equation for θi, which
gives at most 2 images.2 In practice, external shear or
deviations from spherical symmetry of the lens can lead to
the formation of Nimages > 2 images. This implies that if
one attempts to reconstruct β for these systems, one may get
slightly different results for each image, which affect the
determination of the Hubble constant. Therefore, for
practical purposes, one rather estimates a source angle
for each image β ¼ βðθiÞ. Similarly, the lensing potential
for an axially symmetric thin lens can be expressed as

ψðθÞ ¼ 2

Z
θ

0

dθ0θ0κðθ0Þ logðθ=θ0Þ þ const: ð14Þ

which reduces to

ψðθÞ ¼ α0θ; ð15Þ

for an SIS. One can recognize the primitive of α [Eq. (12)],
where the integration constant has been set to zero. In
practice, the angular diameter distances are not measured
directly but can be inferred from the lens and source
redshifts zl and zs, by assuming a cosmological model.3

Throughout the article, we assume a flat ΛCDM model
with Ωm0 ¼ 0.3 and H0 ¼ 70 km s−1Mpc−1. Of course,
the determination of H0 from observables does not require
an assumption onH0 but the relative bias, as we will find in
Sec. III, does depend on H0. The angular diameter
distances can be expressed as

dl ¼ dl½zl� ¼
c

H0ð1þ zlÞ
χ½zl�; ð16Þ

ds ¼ ds½zs� ¼
c

H0ð1þ zsÞ
χ½zs�; ð17Þ

2There is also a third image at θi ¼ 0, which is infinitely
demagnified.

3Note that if one would measure the angular diameter distances
directly, one could check that the time-delay formula holds for
arbitrary peculiar velocity configurations [51].

DALANG, MILLON, and BAKER PHYS. REV. D 107, 123528 (2023)

123528-4



dls ¼ dl½zl; zs� ¼
c

H0ð1þ zsÞ
χ½zl; zs�; ð18Þ

where H0 is the present-day Hubble constant, χ½z1; z2� is
the dimensionless integral

χ½z1; z2�≡
Z

z2

z1

dz
EðzÞ ; ð19Þ

with H½z� ¼ H0EðzÞ≡H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ ð1 −Ωm0Þ

p
and χ½z� ¼ χ½0; z�, which should not be confused with
comoving distances. One can solve Eq. (1) for H0 to get

H0 ¼
χ½zl�χ½zs�
χ½zl; zs�

ϕ̂ðθi; βðθiÞÞ − ϕ̂ðθj; βðθjÞÞ
Δtij

: ð20Þ

The present-day Hubble constant is expressed in terms of
the lens and source redshifts zl, zs, the time delay Δtij, the
images θi, i; j ∈ ½1;…; Nimages� and the velocity dispersion
of the lens σv. Nearly all of these observables are directly
affected by peculiar velocities to some extent; some are also
indirectly affected through the lens model, and we detail
how in the next section.

III. PECULIAR VELOCITY BIAS

The previous section outlined how one may relate the
present-day Hubble rate to time-delayed images of a lensed
source, assuming a comoving observer, lens and source. In
this section, we relax this assumption and compute the bias
that the nonrelativistic peculiar velocities of the observer vo,
the lens vl and the source vs generate on H0 to linear order
in v=c ≪ 1, where v indicates any of the three peculiar
velocities. In particular, we detail the computation of the
biases, which are quite straightforward for time delays,
redshift and angular diameter distances as a function of
redshift. On the other hand, the effect of aberration of
angles turns out to be quite subtle, especially to infer
reconstructed quantities like the source angle or the lensing
potential. Time-pressured readers may directly skip to
Eqs. (75) and (77), which constitute the main results of
this section. We denote the quantities that are observed with
a prime, while the quantities that comoving (virtual)
observers4 would measure are left without a prime.

A. Time dilation

The motion of the observer induces a special relativistic
time dilation, which prevents them from measuring cosmic
time directly. However, this effect is second order in the
velocity of the observer and we neglect it:

Δt0ij ¼
Δtijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2o=c2
p ¼ Δtij½1þOðv2o=c2Þ�: ð21Þ

The velocity of the source does not affect the observed time
delay because one observes the time delay between flux
variations of the quasar that have been emitted simultaneously.

B. Redshifts

The motion of the observer, lens and source affect the
lens and source observed redshifts with respect to back-
ground (cosmological) redshifts through Doppler shift. The
observed redshifts z0l, z

0
s relate to cosmological (or back-

ground) redshift zl, zs in the following way

ð1þ zlÞ ¼ ð1þ z0lÞ
�
1þ ZL

vo
c

�
; ð22Þ

ð1þ zsÞ ¼ ð1þ z0sÞ
�
1þ ZS

vo
c

�
ð23Þ

with

ZL ¼ n̂0 · ðvo − vlÞ
vo

; ð24Þ

ZS ¼
n̂0 · ðvo − vsÞ

vo
: ð25Þ

This apparent expansion invo=c inEqs. (29)–(31) is practical
for bookkeeping, but one should keep in mind that it really is
a simultaneous expansion in vo=c, vl=c and vs=c. This
affects the time delay [Eq. (1)] via the lens redshift zl and via
the background angular diameter distances, which can be
computed from the redshift information. Throughout this
work, we denote biases on a quantity by a corresponding
capital letter, which carries the same units (e.g. ZS is the bias
generated by peculiar velocities on zs).

C. Angular diameter distances

One can compute the background angular diameter dis-
tances from the observed redshift by assuming a cosmologi-
cal model, provided one corrects for the peculiar motion of
the emitter and receiver. By background angular diameter
distance, we mean the distance that would be inferred by a
comoving observer that would measure the subtended angle
on the sky of a standard ruler. For example, the background
angular diameter distance to the source can be expressed as a
function of observed redshift z0s

ds ¼
c

1þ zsðz0sÞ
Z

zsðz0sÞ

0

dz
HðzÞ ð26Þ

¼ 1

1þ zsðz0sÞ
Z

z0sþð1þz0sÞn̂0·ðvo−vsÞ

0

dz
HðzÞ ð27Þ

≃ d½z0s� þ
n̂0 · ðvo − vsÞ

c

�
c

Hðz0sÞ
− d½z0s�

�
; ð28Þ

4It turns out that it is extremely unlikely to be a comoving
observer. In particular, in a Universe with structures such as
galaxies and filaments, the probability for a massive observer to
be comoving is zero. Observers on Earth are certainly not.
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where d½z0s� indicates the naive background angular diameter
distance as a function of observed redshift, as given in
Eq. (33). Therefore, one can compute the background
angular diameter distances dl, ds and dls as follows

dl ¼ d½z0l� þDL
vo
c
; ð29Þ

ds ¼ d½z0l� þDS
vo
c
; ð30Þ

dls ¼ d½z0l; z0s� þDLS
vo
c
; ð31Þ

with

d½z0l� ¼
c

H0ð1þ z0lÞ
χ½z0l�; ð32Þ

d½z0s� ¼
c

H0ð1þ z0sÞ
χ½z0s�; ð33Þ

d½z0l; z0s� ¼
c

H0ð1þ z0sÞ
χ½z0s; z0s�; ð34Þ

where the function χ was defined explicitly in Eq. (19) and
where the lens and source peculiar velocities are included in
the corrections

DL ¼ n̂0 · ðvo − vlÞ
vo

�
c

H½z0l�
− d½z0l�

�
; ð35Þ

DS ¼
n̂0 · ðvo − vsÞ

vo

�
c

H½z0s�
− d½z0s�

�
; ð36Þ

DLS ¼
n̂0 · ðvo − vsÞ

vo

�
c

H½z0s�
− d½z0l; z0s�

�
−

c
H½z0l�

1þ z0l
1þ z0s

n̂0 · ðvo − vlÞ
vo

: ð37Þ

The distances d½z0l�, d½z0s� and d½z0l; z0s� are the naive back-
ground angular diameter distances, which can be computed
from Eqs. (32)–(34). Note that it is only the background
angular diameter distances as a functionof observed redshifts
which are biased in this way. As encountered with Eqs. (22)
and (23),we remind the reader that this apparent expansion in
vo=c really is a simultaneous expansion in vo=c, vl=c and
vs=c. The projection of the lens and sourcepeculiar velocities
along the line of sight are unknown and difficult to measure.

We shall vary vkl ≡ n̂0 · vl and vks ≡ n̂0 · vs to quantify their
impact.

D. Aberration of angles

In this technical subsection, we give explicit expressions
to compute the bias generated by peculiar velocities on the
measured angles to the images, the Einstein angle and on
the inferred source angle. The main results are the biases on
these three angles, which can be found in Eqs. (46), (50),
and (68).
Observed angles on the sky are affected by the peculiar

velocity of the observer. It appears simpler to compute the
effect of aberration in a frame in which the ẑ axis coincides
with the direction of the peculiar velocity of the observer vo.
In this special case, only the polar angle θ is affected by the
boost, while the azimuthal angle φ is left unaffected to first
order

θ0 ¼ θ − sinðθÞ vo
c
; ð38Þ

φ0 ¼ φ: ð39Þ

Note that to first order in vo=c, one can easily invert the
system

θ ¼ θ0 þ sinðθ0Þ vo
c
; ð40Þ

φ ¼ φ0: ð41Þ

While this is convenient from a calculational point of view,
it requires to translate the observations into that coordinate
system, which we call the calculation coordinate system.
To this end, we also introduce an observation coordinate
system, which carries tildes, which are 2-dimensional
angles on the sky in the neighborhood of the lens’ center
of mass, which corresponds to the origin that points toward
n̂0. The θ̃0y vector is the projection of the North pole (J2000)
in the plane orthogonal to n̂0, while θ̃0x points East. This is
the coordinate system in which strong lensing observations
are made. Images are couples θ̃0i ¼ ðθ̃0ix; θ̃0iyÞ in that coor-
dinate system. There is one such coordinate system for
observers with peculiar velocity vo, which carries primes on
top of tildes and one for comoving observers (that have
vo ¼ 0), which is free of primes.

1. Distortion of the images

Each image appears to a boosted observer with polar and
azimuthal angles fθ0i;φ0

ig. These can be computed, given an
observed center of mass lens n̂0 ¼ ðθ0cm;φ0

cmÞ, a rotation
angle δ0, which can be computed for a given n̂0 following
the Appendix and image coordinates θ̃0i

θ0i ¼ θ0cm − θ̂0iy ¼ θ0cm − ðθ̃0ix sin δ0 þ θ̃0iy cos δ0Þ; ð42Þ

φ0
i ¼ φ0

cm − θ̂0ix ¼ φ0
cm − ðθ̃0ix cos δ0 − θ̃0iy sin δ0Þ: ð43Þ
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Applying Eqs. (40) and (41) to infer n̂ and fθi;φig, one can
solve the following system for θ̃i

θi ¼ θcm − ðθ̃ix sin δþ θ̃iy cos δÞ; ð44Þ

φi ¼ φcm − ðθ̃ix cos δ − θ̃iy sin δÞ; ð45Þ

where in particular δ ≠ δ0, in general (see the Appendix).
One then defines the bias Θi ¼ ðΘix;ΘiyÞ on image i
implicitly as

θ̃i ¼ θ̃0i þΘi
vo
c
: ð46Þ

This equation can be used to computeΘi from the observed
images θ̃0i together with the solutions θ̃i of Eqs. (44), (45),
vo and rotation angles δ, δ0 given in the Appendix. Note that
this bias is independent of the peculiar velocity of the lens
and source. The images are affected in slightly different
ways, due to their different sky positions relative to v̂o. This
cannot be captured by an image-independent translation for
one lens, as can be seen from Fig. 3, where we plot the
displaced images for the system RXJ1131-1231 for the
exaggerated case vo ¼ 40vdip. This is why we rather speak
of image distortion, rather than translation.

2. The velocity dispersion from the Einstein angle

The central velocity dispersion of the lens galaxy traces
its total mass and can be either measured directly from
spectroscopic observation or deduced from the Einstein
radius with some assumptions about the mass profile of the
lens. In the former case, this quantity can in principle be
measured independently of peculiar velocities, since these
would only affect the position of the spectral lines while
leaving their width unchanged. The velocity dispersion
inferred from the spectral lines’ width would therefore be
unaffected. However, velocity dispersions obtained with
this technique are limited to a precision of ∼10%, which is
not sufficient to precisely constrain the mass profile of the
lens galaxies. In fact, most of the constraints on the mass
profile in recent time-delay cosmography analysis come
from the lensing observables, including the Einstein radius.
Since the Einstein radius is affected by the aberration on the
measured angle described in the previous section, this error
propagates to the mass profile. In this subsection, we use
the central velocity dispersion of the lens, σv as a proxy to
quantify the error on the mass profile due to the aberration
on the measured Einstein angle. The Einstein angle can be
related to σv from the following relation [50]

θE ¼ 4πσ2v
c2

dls
ds

ð47Þ

for an SIS. This angle corresponds to the angle under which
an observer perfectly aligned with the lens and a pointlike

source would see an Einstein ring. Note that it matches α0,
defined in Eq. (12). For simplicity, we assume that one
measures the Einstein angle in a plane which is spanned by
v̂o and n̂0 [that is, in direction θ̂0y (see Fig. 2)]. In this case,
the aberration of the Einstein ring is maximal. One finds

θE ¼ θ0E þ vo
c
ðsinðθ0cm þ θ0EÞ − sinðθ0cmÞÞ ð48Þ

¼ θ0E þ vo
c
cosðθ0cmÞθ0E: ð49Þ

In this case, biased measurements of z0l, z
0
s and θ0E of zl, zs

and θE induce a bias on the inference σ0v of σv. It can be
estimated to first order in the peculiar velocities by

σv ¼ σ0v þ Sv
vo
c
; ð50Þ

with

FIG. 2. We plot here the coordinate systems involved. Both
observers sit at the origin O. One observer is at rest in this
coordinate system and would observe comoving quantities,
which have no primes. The observer moving with peculiar
velocity vo which is aligned with ẑ works in the observation
coordinate system, spanned by the two vectors fθ̃0x; θ̃0yg which are
denoted with primes. The vector θ̃0y is the projection of the Earth’s
North pole direction in the plane orthogonal to n̂0, while θ̃0x points
East. The moving observer sees the lensed system center of mass
in the direction n̂0 ¼ ðθ0cm;φ0

cmÞ. The more convenient basis is the
hatted one, which is spanned by fθ̂0x; θ̂0yg. This convenient

coordinate system is such that θ̂0x belongs to the plane orthogonal
to ẑ. As such, it is unaffected by the boost. The angle δ0 relates the
two basis such that cos δ0 ¼ θ̂0x · θ̃

0
x.
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σ0v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d½z0s�

d½z0l; z0s�
θ0E
4π

s
c; ð51Þ

Sv ¼
σ0v

2d½z0l; z0s�d½z0s�
½d½z0l; z0s�DS − d½z0s�DLS

þ d½z0l; z0s�d½z0s� cos θ0cm�: ð52Þ

Here the distances d½z0s�, d½z0l; z0s� and their related biasesDS

and DLS can be computed using Eqs. (32)–(37), which
depend on the source, lens and observer’s peculiar veloc-
ities. Note that we use capital letters to denote biases, not
the angular diameter distances themselves. This is rather an
overestimation of the bias on σv, if estimated from the
observed Einstein angle. This is because angles, including
the Einstein angle, are unaffected5 in the direction θ̂0x. It
turns out that the bias Sv on σv increases the bias on H0

generated by peculiar velocities. In the quantitative analysis
presented in Sec. IV, we shall also study what happens if
one measures σv independently (setting Sv ¼ 0), by direct
peculiar velocity dispersion measurements in redshift
space. This would also correspond to the situation in which
the Einstein angle is measured in the direction θ̂0x. In
practice, one can measure the azimuthally averaged
Einstein radius. A perfect circle Einstein ring seen by a
comoving observer would be unaffected in the direction θ̂0x
and maximally affected in the direction θ̂0y. Whether the
enclosed area of the deformed circle is larger or smaller

depends on the sign of cosðθ0cmÞ. We expect the practical
case to lie somewhat in between these two situations.

3. The reconstructed source angle

Reconstructing the source angle β̃ is subtle. This is
because it is a quantity which is inferred, as opposed to
observed, from biased observations like θ̃0, z0l and z0s and
that it appears directly in the time-delay formula [Eq. (1)].
Here, we write a tilde, to remind the reader that it is a two-
dimensional angle in the observation coordinate system.
The reconstruction of β̃ consists of two steps. The first one
consists in estimating the angle β̃00 directly from the
observed quantities θ̃0, z0l, z

0
s. The angle β̃0 to the source

which would be observed in absence of the lens can also be
computed from these observables and knowledge of the
peculiar velocities. In the second step, one can reconstruct
the angle to the source β̃ that a comoving observer would
observe in absence of the lens. We carry on with the first
step. The lens equation for a singular isothermal sphere and
comoving observer, source and lens reads

β̃ ¼ θ̃

�
1 −

α0
kθ̃k

�
: ð53Þ

This equation allows, through the observation of images θ̃i
and an estimate of α0 to reconstruct β̃. However, all of
these quantities are affected by the boost and so is the
reconstruction of β̃. By measuring θ0E, z0l and z0s, one
estimates α00, which is related to a comoving deflection
angle α0 by

α0 ¼ α00 þ A0

vo
c
; ð54Þ

with

α00 ¼
4πðσ0vÞ2

c2
d½z0l; z0s�
d½z0s�

; ð55Þ

A0 ¼
4πσ0v

c2d2½z0s�
ð2d½z0l; z0s�d½z0s�Sv − d½z0l; z0s�DSσ

0
v

þDLSd½z0s�σ0vÞ: ð56Þ

Here the distances d½z0s�, d½z0l; z0s�, their biases DS, DLS and
Sv can be calculated directly from the observables, using
Eqs. (32)–(36) and (52). The deflection angle is therefore
biased by the distance biases and the bias on the veloctiy
dispersion. The inference of β̃0 as should be made by an
observer with peculiar velocity vo is biased because of the
bias in all images θ̃0i, redshift of the lens and source and
because of the bias in α0. There is only one true source
angle β̃. However, since we use an isothermal sphere, which
has only 2 images; for systems which have 3 or 4 images,

FIG. 3. We plot the 4 images θ̃0i of RXJ1131-1231 (in pink) and
the corresponding images θ̃i (in black) that would be seen by a
comoving observer if vo ¼ 40vdip. Each image is displaced by
Θivo=c, as should be clear from Eq. (46). The origin on this plot
corresponds to the directions of n̂0 and n̂ in the appropriate cases.
Note that the θ̃x and the θ̃

0
x axis point in different directions which

are captured by δ and δ0, as in Eqs. (42)–(45).

5This is the reason why the intermediate coordinate system
spanned by fθ̂0x; θ̂0yg was introduced.
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the β̃ inferred via Eq. (53) may give different results
depending on which image is used. This turns out to
impact significantly the determination of the Hubble
constant. Therefore, we compute β̃0i and its corresponding
bias B0

i for each image. We get

β̃0i ¼ β̃00i þ B0
i
vo
c
; ð57Þ

with

β̃00i ¼ θ̃0i

�
1 −

α00
kθ̃0ik

�
; ð58Þ

and

B0
ix ¼ Θix þ

1

kθ̃0ik3
ðα00θ̃0iyðΘiyθ̃

0
ix − Θixθ̃

0
iyÞ − A0θ̃

0
ixkθ̃0ik2Þ;

ð59Þ

B0
iy ¼ Θiy þ

1

kθ̃0ik3
ðα00θ̃0ixðΘixθ̃

0
iy − Θiyθ̃

0
ixÞ − A0θ̃

0
iykθ̃0ik2Þ;

ð60Þ
where Θi and A0 were defined in Eqs. (46) and (56). Those
can be computed directly from the observables. A moving
observer makes a biased inference β̃00 of β̃0, which differs
from image to image. We wish to express this source angle
on the sky β0 ¼ ðθ0β;φ0

βÞ for a comoving observer, which
would rather observe β ¼ ðθβ;φβÞ, given by

θβ ¼ θ0β þ
vo
c
sin θ0β; ð61Þ

φβ ¼ φ0
β; ð62Þ

where the right hand side can be computed directly by the
measured quantities

θ0β ¼ θ0cm − ðβ̃0x sin δ0 þ β̃0y cos δ0Þ; ð63Þ

φ0
β ¼ φ0

cm − ðβ̃0x cos δ0 − β̃0y sin δ0Þ; ð64Þ

together with the rotation angle δ0, which can be computed
for a given direction following the Appendix. Once the left
hand side of Eq. (61) is determined, one can infer β̃ that
would be inferred by a comoving observer by solving the
following equations for β̃

θβ ¼ θcm − ðβ̃x sin δþ β̃y cos δÞ; ð65Þ

φβ ¼ φcm − ðβ̃x cos δ − β̃y sin δÞ; ð66Þ

where δ ≠ δ0 can also be computed following the
Appendix. The solutions can be expressed as

β̃i ¼ β̃0i þ Bi
vo
c
; ð67Þ

where the image index i was reintroduced and which
defines implicitly the bias Bi. Note that in general,
Bi ≠ B0

i. In this way,

β̃i ¼ β̃00i þ B00
i
vo
c
; ð68Þ

B00
i ≡ B0

i þ Bi; ð69Þ

where B0
i was defined in Eqs. (59) and (60) and Bi was

defined implicitly in Eq. (67). Those can be computed
directly from the observables. In this sense, one pays twice
the price in neglecting peculiar velocities in the determi-
nation of β̃. That is because it is a quantity which is inferred
from biased quantities like θ̃0i, z0l and z0s. One first needs to
reconstruct the angle to the source β̃0 that the moving
observer would see in absence of the lens. Only then, one
can compute the angle to the source β̃ that would be seen by
a comoving observer. Equations (68) and (69) are the final
results of this section, which we use for the remainder of
this work. The source angle is biased by the source, lens
and observer’s peculiar velocities.

E. The lensing potential

The lensing potential for an isothermal sphere reads [see
Eq. (15)]

ψðθiÞ ¼ α0kθik: ð70Þ
Expanding this expression to linear order in vo=c, one finds

ψðθiÞ ¼ ψ 0
i þ Pi

vo
c
; ð71Þ

where

ψ 0
i ¼ α00kθ̃0ik; ð72Þ

Pi ¼
1

kθ̃0ik
ðα00Θi · θ̃

0
i þ A0kθ̃0ik2Þ; ð73Þ

where Θi and A0 were defined in Eqs. (46) and (56). It is
affected directly by the peculiar velocity bias on the images
and indirectly by the bias on α0, which comes from the bias
on the distances and on the velocity dispersion. As such, it
is sensitive to the peculiar velocities of the source, lens and
observer.

F. The time delay and Hubble constant

At this point, all necessary contributions to the bias on
the time delay have been computed and we expand the
right-hand side of Eq. (1) to first order in vo=c, while the
left-hand side is invariant, up to Oðv2o=c2Þ [see Eq. (21)].
We get
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cΔtij ≃ cΔt0ij ¼ ð1þ z0lÞ
d½z0l�d½z0s�
d½z0l; z0s�

��ðθ0i − β00Þ2
2

−
ðθ0i − β00Þ2

2

�
− ½ψ 0

i − ψ 0
j�
	
þ cΔTij

vo
c
; ð74Þ

where the (distance) time-delay bias is given by

cΔTij ¼ ð1þ z0lÞ
d½z0l�d½z0s�
d½z0l; z0s�

½ðθ̃0i − β̃00i ÞðΘi − B00
i Þ − ðθ̃0j − β̃00j ÞðΘj − B00

j Þ − ðPi − PjÞ�

þ 1þ z0l
d2½z0l; z0s�

½ZLd½z0l�d½z0l; z0s�d½z0s� þ d½z0l�d½z0l; z0s�DS − d½z0l�DLSd½z0s� þDLd½z0l; z0s�d½z0s��

× ½ϕ̂ðθ̃0i; β̃00i Þ − ϕ̂ðθ̃0j; β̃00j Þ�; ð75Þ

which can be computed directly from observables, following
the steps provided in Secs. III A–III E. In particular, it can be
computed directly from the observed redshifts z0l, z

0
s, their

associated distances [Eqs. (32)–(34)], images θ̃0i, the recon-
structed source angle β̃00 via Eq. (58), the angle biasesΘi,B00

i
defined in Eqs. (46) and (69), the lensing potential biases Pi
defined in Eq. (73), and the distance biasesDL,DS andDLS
defined in Eqs. (35)–(37). One can recognize the contribu-
tions coming from the bias on angles in the first line, together
with the lensing potential. Those are directly affected by the
peculiar velocity of the observer, and indirectly affected by
the peculiar velocities of the source and lens through the lens
model. The second line is due to the direct bias on redshift
and angular diameter distances as a function of observed
redshift from the peculiar velocity of the source, lens and
observer. Solving Eq. (74) for H0, which appears in the
angular diameter distance ratio, one gets

H0 ¼
χ½z0l�χ½z0s�
χ½z0l; z0s�

½ϕ̂ðθ0i; βi00Þ − ϕ̂ðθ0j; βj00Þ�
Δt0ij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼H0
0

�
1þ cΔTij

cΔt0ij

vo
c

�

≡H0
0

�
1þ ΔH0

H0
0

�
; ð76Þ

with

ΔH0

H0
0

¼ ΔTij

Δt0ij

vo
c
: ð77Þ

Equation (77) together with Eq. (75) are the main results of
this work. For a given pair of images with measured
fΔt0ij; z0l; z0s; θ̃0i; θ̃0jg and given peculiar velocities, one can
compute the corresponding bias ΔH0=H0

0 as a function of
H0. This is because ΔTij given in Eq. (75) is inversely
proportional to H0. Alternatively, one can compute ΔH0

independently ofH0 to first order in vo since the ratioH0
0=H0

which would appear on the right-hand side of Eq. (77) only
brings second order corrections. Throughout the manuscript,
we take H0 ¼ 70 km s−1 Mpc−1. In the next section, we
apply these findings to the seven lenses of TDCOSMO
[27,48,49]. It should be noted also that with this definition, a

positive ΔH0 implies that H0
0 is an underestimation of H0.

Therefore, a relatively high H0
0 could be explained by a

negative ΔH0=H0
0.

IV. RESULTS

In this section, we quantify what is the relative bias on
H0 from the peculiar velocities of the observer, lens and
source for the seven lenses of H0LiCOW. We first consider
our results with expected peculiar velocities, before
considering what happens for larger peculiar velocities.

FIG. 4. Blue dots indicate the sky position in galactic coor-
dinates of the 7 lenses of H0LiCOW together with their
corresponding estimation of H0 (in km s−1 Mpc−1), extracted
from [27,49]. Their sky positions are given in Table I. We
superimpose the CMB temperature map from WMAP [54],
where the monopole has been removed, leaving the dipole
apparent, together with contamination from the galactic plane.
The red dot indicates the direction of the velocity obtained from
the CMB dipole vdip. The two lenses RXJ1131 − 1231 and
PG1115þ 080 have the two lines of sight which are best aligned
with the CMB dipole, with cosðθ0cmÞ > 0.96. Coincidentally, they
also have the lower lens redshift and give the highest values of
H0: 78.2

þ3.4
−3.4 km s−1 Mpc−1 and 81.1þ8.0

−7.1 km s−1 Mpc−1, respec-
tively. This was pointed out in [47]. As we shall see, the peculiar
velocity of the observer should be about 8 times larger than vdip,
i.e. ∼3000 km s−1 pointing in the opposite direction of vdip to
explain alone these relatively high H0 values (See Fig. 7). The
CMB dipole in celestial coordinates is v̂dip ≃ ð−7°; 167°Þ, which
is well aligned with the Earth’s equator. In this sense, North or
South hemisphere sky surveys are nearly as orthogonal as they
can be from the CMB dipole.
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We get estimations of the Hubble constant H0
0 which vary

between 47 km s−1Mpc−1 and 112 km s−1Mpc−1. Since
the model is relatively crude, we do not expect to make a
competitive inference of the Hubble constant. The SIS
model is spherically symmetric and fixes the logarithmic
slope of the mass profile to γl ¼ 2. This of course does not
contain enough azimuthal and radial degrees of freedom to
represent accurately massive elliptical galaxies. However,

we expect this model to be sufficient to capture the leading
contributions to a bias on H0 from peculiar velocities. In
Fig. 4, we plot the sky distribution of the 7 lenses. Two are
well aligned with the velocity v̂dip, namely RXJ1131 −
1231 and PG1115þ 080. These two systems coinciden-
tally also happen to have the lowest lens redshifts and the
highest inference of the Hubble constant.
First, we compute the bias generated by the peculiar

velocity of the observer, assuming that it is known
from the entirely kinematic interpretation of the CMB
dipole. That corresponds to vo ¼ 369.82 km s−1 toward
ð264.021°; 48.253°Þ in galactic coordinates. Then, we vary
the source and lens peculiar velocities projected on the line
of sight in the set f0;�300;�600;�900g km s−1, which
spans the expected peculiar velocity amplitudes from
simulations [55] and from observations [56]. We do this
for two different cases. In the first case, we assume that σv
can be measured independently of the peculiar velocities,
from the lens galaxy emission lines’ width. In this case,
only the peculiar velocity of the lens on top of the peculiar
velocity of the observer changes the bias on H0 in a way
that can be seen in Fig. 5, where we plot ΔH0=H0

0 as a
function of the lens redshift. In this plot and in the
following, ΔH0=H0

0 is actually the average over the non-
redundant image pairs available. In practice, for a given

FIG. 5. In this plot, we show the normalized bias on H0, for vo
extracted from the entirely kinematic interpretation of the CMB

and vary vkl , vks ∈ f0;�300;�600;�900g km s−1. For these
plots, we assumed that σv can be measured independently from
the peculiar velocities. This implies that we set the lens parameter
bias Sv ¼ 0, instead of using the expression for Sv given in

Eq. (52). While varying vks does change the bias on H0, the

change is much smaller than that of vkl and the points with

different vks appear to coincide on this plot. In this case, the
amplitude of the bias is bounded by 2.5%.

FIG. 6. In this plot, we show the normalized bias on H0, for vo
extracted from the entirely kinematic interpretation of the CMB

and vary vkl , v
k
s ∈ f0;�450;�900g km s−1. Larger dots indicate

larger source peculiar velocities vks . For this plot, we assumed that
σv is extracted from the observed Einstein angle, as outlined in
Sec. III. This implies that Sv is calculated using Eq. (52), contrary

to Fig. 5, where it was set to zero. While varying vks does change
the bias onH0, the change is smaller than that of vkl . Note that this
is different to the situation presented in Fig. 5, where the velocity
of the source affects less the bias on H0. The largest bias appears
for lens and source peculiar velocities which are anti-aligned. In
this case, the amplitude of the bias on the Hubble constant can
reach 5%. The peculiar velocity of the observer alone gives an
amplitude bias which is bounded by 1.2%.

FIG. 7. In this plot, we show the relative bias ΔH0=H0
0

on H0 for an observer with peculiar velocity vo ∈
f0;�1000;�2000;�3000g km s−1 as a function of the observed
lens redshift z0l. Peculiar velocities of the order of �3000 km s−1

are required to bias the Hubble constant to the order of 10%
for the systems which are best aligned with vdip, which are
RXJ1131 − 1231 and PG1115þ 080. This corresponds to more
than 8 times more than vdip. One might be intrigued by the sign of
the bias for these two lenses. It turns out that a negative velocity
−3000 km s−1 is required, to biasH0

0 to ∼10% higher thanH0. In
this sense, the higher vo expected from number count dipoles
works against lowering the Hubble constant extracted from the
two low redshift lenses RXJ1131 − 1231 and PG1115þ 080.
Here, peculiar velocities of the lens and source are set to zero and
σv is assumed to be extracted from the observed Einstein angle, as
outlined in Sec. III. The system B1608þ 656 at lens redshift
z0l ≃ 0.63 is nearly not affected by the boost because it is quasi-
orthogonal to the CMB dipole direction. The situation would
change if the direction of vo was also varied.
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system, some time delays are more precisely measured
than others and therefore a weighted average may be more
sensible to compute the relative bias on H0. The source
peculiar velocity only affects the bias subdominantly.
The bias for one lens is bounded by 2.5% and the bias
generated by the observer’s peculiar velocity alone is
bounded by 1%.
In the second case, we assume that σ0v is extracted from

the measurement of the Einstein angle, as outlined in
Sec. III. In that case, both the lens and the source peculiar
velocities give significant changes to the bias on H0, as can
be seen in Fig. 6, where we plot ΔH0=H0

0 as a function of
the lens redshift z0l. In this case, the bias ΔH0=H0

0 for a
single lens is bounded by 5% for these seven lenses. The
effect of the peculiar velocity of the observer alone, as
extracted from the CMB dipole, is bounded by 1.2%. This
shows how the effect of vo=c ¼ Oð10−3Þ can give an order

of magnitude larger bias, as the bias piles up from different
observables. In Table II, we give the maximal relative bias
on each quantity that enters Eq. (75) from the velocity of
the observer set to vdip for each of the seven systems of
TDCOSMO. Combining the seven lenses, we find that
the bias generated onH0 by the observer’s peculiar velocity
is of order 0.25%. Assuming that the lens and source
peculiar velocities are normally distributed around zero
with standard deviation 300 km s−1, one finds that this
results in an additional random uncertainty which can reach
1.00% for a single lens. It combines to a 0.24% random
uncertainty for the seven lenses of TDCOSMO. This
uncertainty is expected to drop to zero for a higher number
of systems.
Since the calculation is valid for nonrelativistic veloc-

ities, one may push to larger peculiar velocities, as long as
v=c ≪ 1. One may be curious to see what peculiar
velocities would be necessary to affect the Hubble constant
by 10%, which would constitute an important correction in
the context of the Hubble tension. We plot the bias from
the velocity of the observer for peculiar velocities which
vary in vo ∈ f0;�1000;�2000;�3000g km s−1 in Fig. 7.
Negative peculiar velocities correspond to changing the
direction of the peculiar velocity by a rotation of π. For
vo ¼ �3000, the bias for the best-aligned lenses (system
RXJ1131 − 1231 and PG1115þ 080), at observed lens
redshift z0l ∼ 0.3, reaches �10%. It is intriguing that the
number count dipole measurements point to higher vo,
which argues in favor of positiveΔH0. This suggests that if
the peculiar velocity of the observer is higher than
expected, even by a factor of 10, then the estimation of
the Hubble constant by the H0LICOW collaboration is
rather an underestimation of H0, which would enhance the
tension. For vo ¼ 0, which corresponds to a comoving
observer, the bias vanishes, as expected. The bias changes
in different directions and with different amplitudes for
different systems. This depends on the sign and value of
cosðθ0cmÞ together with the lens and source redshifts, which
are given in Table I. Finally, we play the same game with
peculiar velocities of the lens and source. We vary them in

FIG. 8. We plot the bias on H0 from the peculiar velocity
of the observer, lens and source. Here vo is fixed by the
entirely kinematic interpretation of the CMB dipole, i.e. vo ¼
369.82 km s−1. The lens and source peculiar velocities are
allowed to vary in f0;�1500;�3000g km s−1. Larger dots indi-

cate larger source peculiar velocities vks . Here σv was computed
from the observed Einstein angle, as outlined in Sec. III. In this
case, Sv ≠ 0. This corresponds to what has mostly been done in
practice in [27,49]. In this case, the velocity of the lens influences
significantly the bias on H0 and the source peculiar velocity, less
so. The largest bias in magnitude appears for the source and lens
peculiar velocities which are antialigned.

TABLE I. This table contains the system number, their lens systems with observed lens and source redshift, optical axis directions in
galactic coordinates, projection of the line of sight along the peculiar velocity of the observer vdip and the number Nimages of effective
images that can be used for time-delay cosmography per system. There is also a column indicating the relative bias ΔH0=H0

0 generated
by the observer’s peculiar velocity vdip alone. The latter is averaged over the non redundant pairs of images.

N Lens system z0l z0s n̂0 ðl0; b0Þ [°] cosðθ0cmÞ Nimages ΔH0=H0
0 [%] References

1 B1608þ 656 0.6304 1.394 (98.339, 40.891) 0.000706 4 0.0006 [57,58]
2 RXJ1131 − 1231 0.295 0.654 ð−85.573; 45.888Þ 0.991526 4 1.1353 [53,59]
3 HE0435 − 1223 0.4546 1.693 ð−150.934;−35.060Þ −0.115625 4 −0.2153 [59,60]
4 SDSS1206þ 4332 0.745 1.789 (148.991, 71.244) 0.615891 2 0.2324 [61]
5 WFI2033 − 4723 0.6575 1.662 ð−7.585;−36.556Þ −0.429394 4 −0.5008 [62]
6 PG1115þ 080 0.311 1.722 ð−110.113; 60.644Þ 0.966824 4 1.1461 [59]
7 DES0408 − 5354 0.597 2.375 ð−96.447;−45.304Þ −0.0620664 3 −0.0590 [49]
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f0;�1500;�3000g km s−1. The assumption on σv deter-

mines how less important vks matters compared to vkl for the
bias on H0. Since in practice, σv is extracted from the
Einstein angle, we plot what happens in that case in Fig. 8.
These large peculiar velocities, which are expected to
be rare, can bias H0 by more than 10%. However, the
directions of these lense and source peculiar velocity would
have to conspire to always bias H0 in the same direction,
which is unexpected in isotropic cosmologies.

V. CONCLUSION

In this work, we quantified the effects of peculiar
velocities of the lens, source and observer on the determi-
nation of the Hubble constant from time-delay cosmogra-
phy, carefully taking into account all boost effects on the
observables and their repercussion on the lens model.
We showed in detail how to compute the bias, given
peculiar velocities and assuming that the lens is well
described by a singular isothermal sphere. Even if this
model alone does not allow for more than two images per
lensed quasar, and gives crude estimates of H0, we expect
this model to be sufficient to capture the leading effects of
peculiar velocities on current time-delay cosmography
experiments. For the observer’s peculiar velocities fixed
to kvdipk ¼ 369.82 km s−1, as extracted from the entirely
kinematic interpretation of the CMB dipole, the bias on H0

is, at most, of the order of the percent level for a single lens.
The sign and amplitude of the bias depends on the direction
of the observed lens center of mass, which is captured by
cosðθ0cmÞ. The bias on H0 from the observer’s peculiar
velocity for the combined seven lenses, which span differ-
ent corners of the sky is of 0.25%. These cancellations for
the observer’s peculiar velocity require an isotropic dis-
tribution of lensed quasars, which may be jeopardized by
the specific footprint of time-domain surveys. This is
however mitigated by the fact that the CMB dipole points
to celestial declination −7°, which is close to the Earth’s

equator. In this sense, North or South hemisphere surveys
are nearly as orthogonal as they can be from the observer’s
peculiar velocity.
If one includes the effect of the lens and source peculiar

velocities projected on the line of sight, up to jvkl j,
jvks j ≤ 900 km s−1, then the effect reaches at most 5%.
The sign of these contributions depends entirely on the sign
and amplitude of these peculiar velocities, which vary from
one system to another and may be expected to cancel out
between a source and another, for a sufficiently high
number of systems. Assuming that the lens and source
peculiar velocities are normally distributed around zero
with standard variation of 300 km s−1, we found that these
generate a random uncertainty on H0, which can reach
1.00% for a single lens and which combines to 0.24% for
the seven systems. We also found that the way that the lens
model parameter, i.e. the velocity dispersion σv is deter-
mined, affects how subdominant the source peculiar veloc-
ities are in the Hubble constant bias. If one can determine
the velocity dispersion independently of the peculiar
velocities of the observer and lens, from spectroscopic
measurements, then the bias from peculiar velocities on
the Hubble constant is reduced. This can bring the
bias from 5% to 2.5% in the most extreme cases with

vkl ¼ −900 km s−1 antialigned with vks ¼ 900 km s−1. A
measurement of the peculiar velocities by an alternative
distance measurement would allow to correct for the bias
and remove this source of random uncertainties. In this
regard, the redshift difference between two images of a
strongly lensed source was suggested as a probe of the
source peculiar velocity [63].
Finally, we studied what peculiar velocities are required

to bias the Hubble constant determination to the order of
10%.We found that peculiar velocities projected on the line
of sight of the order of 3000 km s−1 would do the job. This
can be cumulated between the observer, the source and the
lens. This requires unexpectedly large peculiar velocities.

TABLE II. We give the relative biases on each quantity assuming that vl ¼ 0 ¼ vs and that the observer has a peculiar velocity of
amplitude kvdipk ¼ 369.82 km s−1, as extracted from the entirely kinematic interpretation of the CMB dipole. Most of the biases are
below the percent level. When there are several values for a single system, for example for Pi=ψ 0

i, kB00
i k=kβ̃00i k, kTik=kθ̃0ik, we give only

the result for the image which maximizes the bias.

Angular diameter distances
Deflection

angle
Lensing
potential

SIS velocity
dispersion

Source position
angle

Images position
angle

N Lens system DL
d½z0l�

vdip
c [%] DS

d½z0s�
vdip
c [%] DLS

d½z0l ;z0s�
vdip
c [%] A0

α0

vdip
c [%] j Pi

ψ 0
i
j vdipc [%] Sv

σ0v
vdip
c [%] kB00

i k
kβ̃00i k

vdip
c [%] kΘik

kθ̃0ik
vdip
c [%]

1 B1608þ 656 0.0001 0.00001 −0.0001 0.0001 0.0003 0.0001 1.1011 0.2846
2 RXJ1131 − 1231 0.3739 0.1325 −0.1051 0.1221 0.2107 0.1799 0.6470 0.0986
3 HE0435 − 1223 −0.0259 0.0006 0.0161 −0.0143 0.0282 −0.0149 2.3707 0.1293
4 SDSS1206þ 4332 0.0663 0.–0.0064 −0.0925 0.0759 0.1516 0.0810 0.3607 0.0880
5 WFI2033 − 4723 −0.0569 0.0015 0.0627 −0.0530 0.1054 −0.0571 1.2443 0.1443
6 PG1115þ 080 0.3431 −0.0066 −0.1294 0.1191 0.2353 0.1210 5.5110 0.1182
7 DES0408 − 5354 −0.0095 0.0021 0.0094 −0.0076 0.0154 −0.0075 0.9690 0.2024
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Coincidentally, the two systems which are best aligned with
vdip are also the ones which give the higher H0 estimates in
H0LiCOW [27]. It is interesting, in light of the number
count experiments which favor a larger kvok, that a larger
observer peculiar velocity works against resolving the
Hubble tension since it would imply that the H0LiCOW
collaboration rather underestimatesH0 for these two lenses,
which already give the highest H0 estimates. In other
words, lowering the Hubble constant estimates for these
two lenses requires an observer velocity which goes in
the opposite direction of the CMB, with an amplitude
roughly 8 times larger than kvdipk. Future biased estima-
tions of the Hubble constant could also be expected if one
observes systems consistently in the same hemisphere
aligned with the observer’s peculiar velocity. Even more
so if the observer’s peculiar velocity is larger in magnitude
than one expects from the entirely kinematic interpretation
of the CMB dipole.
The small number of sources [Oð10Þ] implies that

cancellations over many different sources which are
distributed isotropically may be spoiled by shot noise.
If it is clear that these large peculiar velocities are rare in
ΛCDM, to rule them out would require distance estimates,
which combined with redshifts, can be used to constrain
the lens and source peculiar velocities. To affect the
Hubble constant consistently over many sources would
require large bulk flows of sources which are not expected
in homogeneous and isotropic cosmologies. In ΛCDM,
one expects the bulk flow velocity of sources on a sphere
centered on the observer to decay with increasing radius.
It should be noted that several anomalies have been
pointed out in such convergence to the Hubble flow
[1,44,64–66] on scales which can reach up to 800 Mpc.
For example, these large peculiar velocities could be
expected for an observer who is offset from the center
of an ultra-large void, which was studied in [22] and
proposed as a solution to the cosmic dipole tension. In this
scenario, these large peculiar velocities could be inter-
preted as artifacts from working with the wrong back-
ground equations of motion.
Finally, we conclude that peculiar velocities of the

observer, source and lens play a significant role in time-
delay cosmography, if one is after percent precision on the
Hubble constant. It seems difficult to accommodate a larger
observer’s peculiar velocity, as suspected from radio source
and quasar number counts, as a simultaneous explanation
for the bias toward higher H0 from time-delay cosmogra-
phy. Future independent constraints on the peculiar veloc-
ities of the lenses, sources and observer could help to
constrain the Hubble constant to percent precision using
time-delay cosmography.
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APPENDIX: ROTATION ANGLE

The rotation angle δ0 serves to translate the coordinates in
the observation frame for a moving observer to the
calculation frame. The rotation angle δ serves to transform
these back to the observation frame of a comoving
observer. The rotation angle δ0 depicted in Fig. 2 can be
obtained from the lens’ center of mass vectors n̂0 and the
vector N̂0 ¼ ð122.932°; 27.128°Þ in galactic coordinates,
which points in the direction of the Earth’s North pole in
J2000. The vector θ̃0y ¼ ðỹ01; ỹ02; ỹ03Þ is the projection of the
North pole direction N̂0 in the plane orthogonal to n̂0, while
θ̃0x points East. That is

θ̃0y ¼ N̂0 − ðn̂0 · N̂0Þn̂0: ðA1Þ

The vector θ̂0x is defined as a vector which is orthogonal
both to v̂o and to n̂0. There are two such vectors which
can be obtained by solving the following system for
θ̂0x ¼ ðx̂01; x̂02; x̂03Þ

n̂0 · θ̂0x ¼ 0; ðA2Þ

v̂o · θ̂
0
x ¼ 0: ðA3Þ

The vector θ̂0y ¼ ðŷ01; ŷ02; ŷ03Þ is orthogonal to θ̂0x and n̂0 and
points toward the positive ẑ axis, meaning that it is a
solution of the following system

θ̂0x · θ̂
0
y ¼ 0; ðA4Þ

n̂0 · θ̂0y ¼ 0; ðA5Þ

θ̂0y · ẑ > 0: ðA6Þ

One can compute δ0 in the following way

cos δ0 ¼ θ̃0y · θ̂
0
y: ðA7Þ

Since the comoving North pole N̂ ¼ ðθN;φNÞ and the
direction n̂ ¼ ðθcm;φcmÞ can be reconstructed using
Eqs. (40) and (41), one can repeat these steps to find δ.
This defines implicitly the bias D on the rotation angle
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δ ¼ δ0 þD
vo
c
: ðA8Þ

Recall that δ0 is the angle between the observation coor-
dinate system spanned by fθ̃0x; θ̃0yg and a convenient

coordinate system fθ̂0x; θ̂0yg as depicted in Fig. 2. This
rotation angle is used to determine how the images on the
sky appear biased to an observer who has a peculiar
velocity vo.
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