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Using the fact that the comoving angular diameter distance to the last scattering surface is strictly
constrained almost model independently, we show that, for any model agreeing with the standard ΛCDM
model on its background dynamics at z ∼ 0 and size of the comoving sound horizon at last scattering, the
deviations of the Hubble radius from the one of the standard ΛCDM model must be a member of the set of
admissible wavelets. The family of models characterized by this framework also offers nontrivial
oscillatory behaviors in various functions that define the kinematics of the Universe, even when the
wavelets themselves are very simple. We also discuss the consequences of attributing these kinematics to,
first, dark energy, and second, varying gravitational coupling strength. Utilizing some simplest wavelets,
we demonstrate the competence of this framework in describing the baryon acoustic oscillation (BAO) data
without any modifications to the agreement with cosmic microwave background measurements. This
framework also provides a natural explanation for the bumps found in nonparametric observational
reconstructions of the Hubble parameter and dark energy density as compensations of the dips suggested by
some BAO data, and questions the physical reality of their existence. We note that utilizing this framework
on top of the models that agree with both the cosmic microwave background and local H0 measurements
but are held back by BAO data, one may resurrect these models through the wiggly nature of wavelets that
can naturally accommodate the BAO data. Finally, we also suggest narrowing the plausible set of
admissible wavelets to further improve our framework by imposing conditions from expected kinematics of
a viable cosmological model or first principle fundamental physics such as energy conditions.
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I. INTRODUCTION

The base Lambda cold dark matter (ΛCDM) model is the
simplest cosmological model that describes most of the
data with remarkable accuracy [1–5]. However, even if we
set aside its persistent theoretical issues associated with the
cosmological constant Λ [6–9], with the increase in the
diversity and precision of observational measurements and
also with advances in data analysis and statistical methods,
it has become increasingly plausible that a more realistic
alternative model may be needed to replace the six-
parameter base ΛCDM model as the new standard model
of cosmology, and it seems that this new model should
phenomenologically exhibit nontrivial/unexpected, if not
significant, deviations from ΛCDM [10–16]. Some of these
deviations, when associated with dark energy (DE) (as an

effective or actual source), suggest phenomenological
features that are difficult to obtain within the canonical/
simple extensions of ΛCDM and are hard to deal with
within the established fundamental theories of physics, for
example, DE models that yield a density that attains
negative values in the past which present at least one
pole in their equation of state (EoS) parameters [17–49],
and/or present nontrivial characteristics such as an oscil-
latory EoS parameter that can even cross below the
phantom divide line [50–60], and/or an oscillatory density
[25,57,59,61–65]. This recent trend in cosmology is closely
related to the fact that it is more challenging than originally
thought to resolve the discordances (if not systematics) that
emerge between different observations when assuming
ΛCDM or its canonical/simple extensions. Although some
of these discordances (e.g., the Ly-α anomaly) have
decreased in significance with new probes, the fact that
others have persisted (e.g., the S8 tension), and some (e.g.,
theH0 tension) have even increased in significance, lead an
increasing number of researchers to think that these
discordances cannot be attributed to unknown systematics.
For a comprehensive reading on cosmological tensions and
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possible systematics in the data, we refer the reader to
Refs. [14–16,66–68] and references therein.
While such deviations are highly nontrivial, the reason

they appear in some observational studies, as we will show,
may be fairly simple. To begin with, let us describe the
deviation of any alternative cosmological model from the
ΛCDM model by ΔHðzÞ≡HðzÞ −HΛCDMðzÞ, where
HΛCDMðzÞ is the Hubble function of the standard cosmo-
logical model, and HðzÞ corresponds to the alternative
model. Within the framework of the spatially flat
Robertson-Walker (RW)metric, fixing the comoving angular
diameter distance DMðzÞ ¼ c

R
z
0 dz

0H−1ðz0Þ of the alterna-
tive model to that of ΛCDM at any redshift z ¼ zs, requires
that

R zs
0 dz0H−1

ΛCDMðz0Þ ¼
R zs
0 dz0H−1ðz0Þ. This is satisfied

only if there exist at least two redshifts z1 and z2 in the
interval ð0; zsÞ for which ΔHðz1Þ=ΔHðz2Þ < 0 unless
ΔHðz < zsÞ vanishes everywhere. Thus, a negative ΔHðzÞ
at any redshift (e.g., the apparent dip at z ∼ 2.3 if the Ly-α
data is taken at face value [3,19,20]) should be compensated
by at least one positive ΔHðzÞ somewhere else (e.g., the
bump found in some DE density reconstructions at 1.5≲
z≲ 2 [25,59,65]). This compensatory behavior implies an
oscillation (not necessarily periodic) on top ofHΛCDMðzÞ as
suggested in the above mentioned observational analyses—
which is in line with such behavior being favored by the
baryon acoustic oscillations (BAO) data. An important
consequence of this is that, due the same compensation,
an observation with strict model-independent constraints on
DMðzsÞ would render reconstructional approaches, or mod-
els with enough phenomenological flexibility, prone to
finding artificial/fake bumps or dips due to overfitting,
e.g., if the constraints on a model prefer a dip (ΔH < 0)
to fit some data at a certain redshift better (for anymeasure of
goodness of fit) than ΛCDM, its compensatory bump may
arise as an artifact at redshifts where HðzÞ is not directly
constrained due to lack of data at those points; moreover, the
preferred dip in our example may be due to overfitting, in
which case both the dip and its compensatory bumpwould be
fake. In particular, we can choose zs to be the redshift of last
scattering z� as DMðz�Þ is strictly constrained by cosmic
microwave background (CMB) observations almost model
independently for a given prerecombination expansion
history. This allows for oscillations up to z� with no
constraints on their characteristics as long as they compen-
sate each other so that the DMðz�Þ integral is satisfied (they
can be very frequent or just a single oscillation spread
throughout the whole interval with an arbitrary shape
etc.); however, it is conceivable that as the presently available
cosmological observations other than CMB mostly probe
redshifts z≲ 3, the shape and the place of the oscillationswill
be constrained by these local data—nevertheless, these
oscillations might have arisen as artifacts and/or been
manipulated as noted above, in particular, due to overfitting.
In addition to the oscillations that arise from fixing the

prerecombination universe and hence DMðz�Þ to that of

ΛCDM, if one also respects the success of ΛCDM in the
late Universe (z ∼ 0), we show that the deviations from
the Hubble radius, H−1ðzÞ, of ΛCDM are described by
localized oscillatory functions, namely, wavelets, and these
wavelets should satisfy the admissibility condition.
Admissible wavelets are oscillatory functions with a
vanishing integral over their whole range, and either have
compact support or vanish approximately outside of a
compact set of their parameters [69] (see the bottom panel
of Fig. 1 for some wavelet examples). They can generically
be obtained from derivatives of probability distributions but
are by no means limited to this method. In cosmology, the
wavelets have been used in various contexts. The wavelet
transforms have been used in analyzing the CMB signals
[70–72], and analyzing the large-scale structure of the
Universe (to capture its non-Gaussian information content)
[73–81]; also, see Ref. [82] and references therein for some
applications of wavelets in cosmology and astrophysics.
Wavelets have also been considered for investigating
possible oscillatory deviations in the DE EoS parameter
from minus unity describing the cosmological constant
[51]; however, note that their approach of characterizing the
oscillations of the EoS parameter with wavelets is funda-
mentally different from the central idea in this paper that
deviations fromH−1

ΛCDMðzÞmust be described by admissible
wavelets. Such deviations in the Hubble radius may also be
described by wavelet oscillations in the EoS parameter, but
they may also correspond to much more violent behaviors
with singularities, or even correspond to a cosmological
constant if thewiggles in the Hubble radius are not attributed
to the DE. Here, we show that models whose deviations from
ΛCDM are described by admissible wavelets on top of
H−1

ΛCDMðzÞ constitute a family of cosmological models that
are in excellent agreement with the CMBmeasurements; and
discuss how even the simplest wavelets can lead to nontrivial
behaviors in the Hubble parameter that better describe the
availableBAOdatawithout introducing an excessive number
of free parameters. These deviations from H−1

ΛCDMðzÞ can
originate from different extensions in fundamental physics:
modified theories of gravity, dynamical or nonminimally
interacting DE, etc. We discuss two such origins, i.e.,
dynamical DE and varying gravitational coupling strength;
and we expose through some simplest examples of wavelets
how the behavior of some functions relevant to the source
phenomena can be even more nontrivial. For example, if the
deviations from H−1

ΛCDMðzÞ are attributed to DE, the oscil-
lations of the wavelet may cause the DE density to oscillate
with a large enough amplitude so that the density attains
negative values, resulting in divergences in its EoS parameter
[46]. Note that, while the same background dynamics may
originate from different extensions, it may be possible to
differentiate between these scenarios as we show by compar-
ing the implications of attributing the deviations to the
gravitational “constant,” with attributing them to the DE.
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This paper consists of three main parts. First, in Sec. II,
we put forward how admissible wavelets on top of H−1

ΛCDM
are mathematically implied under some observationally
motivated conditions, and discuss their consequences on
cosmological parameters, viz. bringing in wiggles on top of
Hubble, deceleration and jerk parameters of the standard
ΛCDM model. Then, in the second part (Secs. III and IV),
we discuss the results of attributing these wavelets to
different physical origins, such as the DE or gravitational
coupling strength; and in the third part (Sec. V), we
demonstrate the potential implications that the wavelet
modifications could have, by discussing the consequences
of some simplest wavelet examples on various kinematical
parameters and on the physical origin the wavelets are
attributed to. Finally, we conclude in the last section.

II. WAVELETS ON TOP OF THE STANDARD
COSMOLOGICAL MODEL’S HUBBLE RADIUS

We begin with the fact that the angular scale of the sound
horizon at last scattering,

θ� ¼
r�

DMðz�Þ
; ð1Þ

is measured almost model independently, e.g., 100θ� ¼
1.04110� 0.00031 (ΛCDM Planck18 [3]), with a preci-
sion of 0.03%, where r� is the comoving sound horizon at
last scattering, and DMðz�Þ is the comoving angular
diameter distance out to the last scattering surface. Then,
fixing the prerecombination physics to that of the standard
cosmological model, i.e., ΛCDM,

r� ¼
Z

∞

z�

csðzÞ
HΛCDMðzÞ

dz ð2Þ

is also determined, viz., r� ¼ 144.43� 0.26 Mpc (ΛCDM
Planck18 [3]). Here csðzÞ is the sound speed in the plasma
and z� ≈ 1090 is the redshift of last scattering (redshift for
which the optical depth to Thomson scattering reaches
unity) and HΛCDMðzÞ is the Hubble parameter of the
standard cosmological model:

3H2
ΛCDMðzÞ ¼ ρm0ð1þ zÞ3 þ ρr0ð1þ zÞ4 þ ρΛ; ð3Þ

where ρm0, ρr0, and ρΛ are the present-day energy densities
corresponding to those of the pressureless matter (m),
the radiation (r), and the cosmological constant (Λ)—or,
equivalently, the usual vacuum energy of the quantum field
theory. We work, for convenience, in units for which the
Newton’s constantGN ¼ 1=8π and the speed of light c ¼ 1
unless they are shown explicitly. Here, and in what follows,
the subscript 0 denotes the present-day (z ¼ 0) value of any
quantity. While the values of these energy densities are
subject to observational constraints, for the rest of this
paper, we will assume them to be fixed (but unknown)
values for which

DMðz�Þ ¼ c
Z

z�

0

dz
HΛCDMðzÞ

ð4Þ

is consistent with Eqs. (1) and (2), and ρm0 is compatible
with the positions and relative heights of the peaks in the
CMB power spectrum and ρr0 is compatible with the
observed CMB monopole temperature and standard model
of particle physics. This ensures the basic consistency of
ΛCDM with the CMB data at the background level.
Assuming HΛCDMðzÞ accurately describes the prerecom-

bination universe (hence r� is known), for a universe
described by the spatially flat RW metric, the comoving
angular diameter distance to z�,

DMðz�Þ ¼ c
Z

z�

0

dz
HðzÞ ; ð5Þ

of any model described by the Hubble parameter HðzÞ, is
strictly constrained almost model independently through
the measurement of θ�. Thus, for anyHðzÞ > 0 (expanding
universe) deviating from HΛCDMðzÞ, strict observational
constraints from CMB still requireZ

z�

0

dz
HΛCDMðzÞ

≈
Z

z�

0

dz
HðzÞ ; ð6Þ

cf., DMðz�Þ ¼ 13872.83� 25.31 Mpc from ΛCDM
Planck18 [3]. For simplicity, we will assume the approxi-
mation in Eq. (6) to be exact, and comment on the
approximate case when necessary. Now, we define the
deviation of a cosmological model from ΛCDM in terms of
its Hubble radius, HðzÞ−1, as follows:

ψðzÞ≡ 1

HðzÞ −
1

HΛCDMðzÞ
: ð7Þ

Then, we have

DMðz�Þ ¼ c
Z

z�

0

dz

�
1

HΛCDMðzÞ
þ ψðzÞ

�
; ð8Þ

and consequently, the exact version of Eq. (6) implies

Ψðz�Þ≡
Z

z�

0

ψðzÞdz ¼ 0: ð9Þ

Our assumption that the prerecombination universe is
accurately described by HΛCDMðzÞ, viz., Hðz ≥ z�Þ ¼
HΛCDMðz ≥ z�Þ, implies another condition on ψðzÞ, that is,

ψðz ≥ z�Þ ¼ 0: ð10Þ

This mathematical framework allows one to naturally
classify a family of HðzÞ functions which can deviate,
even significantly, from HΛCDMðzÞ, but still have the same
DMðz�Þ the ΛCDM model has, ensuring basic consistency
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with the CMB measurements at the background level (one
might want to also consider the constraints on ρm0 and ρr0
from CMB). This family is described by

HðzÞ ¼ HΛCDMðzÞ
1þ ψðzÞHΛCDMðzÞ

; ð11Þ

where ψðzÞ satisfies the conditions introduced in Eqs. (9)
and (10). We notice from this equation that introduction of
the condition −H−1

ΛCDMðzÞ < ψðzÞ < ∞ ensures that, in the
past (z > 0), HðzÞ never diverges (except at the big bang)
and the Universe has always been expanding. Also, on top
of all these conditions, let us demand

ψðz ¼ 0Þ ¼ 0 ð12Þ

since we know the Universe at z ∼ 0 is well described by
the standard ΛCDM model [3–5,62].
We notice that Eqs. (9), (10) and (12) describe character-

istic properties of functions that are known as wavelets
where Eq. (9) is true for wavelets that satisfy the admis-
sibility condition [69]. Wavelets are oscillatory (not nec-
essarily periodic) functions that are well localized, i.e., they
have compact support or they vanish approximately outside
of a compact set of its parameters (see the bottom panel of
Fig. 1 for some wavelet examples). With such boundary
conditions that the function should absolutely or approx-
imately vanish outside of certain bounds, Eq. (9) requires
that the function oscillates at least once if it does not vanish
everywhere; because, say ψðzÞ < 0 for a certain value of z,
this integral can vanish only if ψðzÞ > 0 at another value of
z, hence the oscillation. Note that, for a continuous ψðzÞ,
this argument also implies that there exists at least one
value of z in the interval ð0; z�Þ for which ψ ¼ 0; this
corresponds to the Rolle’s theorem, which, in our particular
case, states that the conditions Ψð0Þ ¼ 0 and Ψðz�Þ ¼ 0
imply the existence of a zp ∈ ð0; z�Þ for which ψðzpÞ ¼ 0.
Thus, the deviations from the standard ΛCDM model’s
Hubble radius, ψðzÞ, must be described by admissible
wavelets, i.e., they must have a wiggly (wavelike)
behavior characterized by the conditions given in
Eqs. (9), (10) and (12).
We proceed with showing explicitly that the character-

istics of ψðzÞ described above correspond to a wiggly
behavior forHðzÞ with respect toHΛCDMðzÞ in a particular
way; to see this, we define a unitless parameter δðzÞ,
namely, the fractional deviation from HΛCDMðzÞ, as fol-
lows:

δðzÞ≡HðzÞ −HΛCDMðzÞ
HΛCDMðzÞ

¼ −
ψðzÞHΛCDMðzÞ

1þ ψðzÞHΛCDMðzÞ
: ð13Þ

We see that if we demand an ever-expanding universe
HðzÞ > 0, we should set δðzÞ > −1. And, in what follows,
unless otherwise stated, we continue our discussions with

the assumption that δðzÞ > −1. For small deviations from
ΛCDM, i.e., jδðzÞj ≪ 1, we can also write

δðzÞ ≈ −ψðzÞHΛCDMðzÞ: ð14Þ

The small deviation region is quite important to study,
because, despite its shortcomings,ΛCDM is still the simplest
model to explain the cosmological observationswith remark-
able accuracy. Particularly, in the late Universe, the small
deviation approximation is robustly imposed by many
cosmological probes that require jδðzÞj ≪ 1 for z≲ 2.5;
even the largest discrepancies between the HΛCDMðzÞ of the
Planck 2018 ΛCDM [3] and observed HðzÞ values, viz.,
H0 ¼ 73.04� 1.04 km s−1 Mpc−1 (the SH0ES H0 meas-
urement [83]) and Hð2.33Þ ¼ 224� 8 km s−1Mpc−1 (the
Ly-α-quasar data [84]) correspond to δ0 ∼ 0.08 and
δðz ¼ 2.33Þ ∼ −0.05, respectively. The form of Eq. (14)
makes it even easier to see that HðzÞ will have wiggles;
since HΛCDMðzÞ is a monotonically varying function of z
and strictly positive, when ψðzÞ changes sign (as it must at
least once), this sign change [around which the small
deviation condition is clearly satisfied for continuous
ψðzÞ] is directly reflected on δðzÞ, producing a wiggle.
Furthermore, respecting the successes of the ΛCDM
model, one may even wish to impose jδðzÞj ≪ 1 at all
times. In this case, since HΛCDMðzÞ monotonically grows
with increasing redshift, one should have ψðzÞ → 0 fast
enough with z → z�, such that the small deviation con-
dition jψðzÞHΛCDMðzÞj ≪ 1 is not broken.
Having said that, note the interesting extra behaviors

apparent from the full form of δðzÞ in Eq. (13): first, as
mentioned before, ψðzÞ ¼ −H−1

ΛCDMðzÞ results in a singular
HðzÞ function and is not allowed for finite z values; second,
while the previous condition might seem to require either
one of the confinements ψðzÞ > −H−1

ΛCDMðzÞ or ψðzÞ <
−H−1

ΛCDMðzÞ at all times, in principle, ψðzÞ can be discon-
tinuous and is not necessarily confined to one of these
regions; third, Eq. (14) indicates that ψðzÞ < 0 corresponds
to δðzÞ > 0, yet, for a region in which ψðzÞ < −H−1

ΛCDMðzÞ,
we have δðzÞ < 0 despite having ψðzÞ < 0, but, looking at
Eq. (7), such a region also corresponds to an extreme case
withHðzÞ < 0 and the Universe would have gone through a
contracting phase.
Finally, it is worth noting that due to the wiggly behavior

of the wavelets, similar to HðzÞ, the other important
kinematical parameters in cosmology, the deceleration
parameter q ¼ −1þ d

dt ½H−1ðzÞ� (where t is the cosmic

time) and the jerk parameter j ¼ d3a=dt3

aH3ðzÞ (which is simply

jΛCDM ¼ 1 for ΛCDM) will also exhibit wiggly behaviors;
the deceleration parameter will oscillate around its usual
evolution in ΛCDM, qΛCDMðzÞ, as can be immediately
seen from
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qðzÞ ¼ qΛCDMðzÞ þ
dψðzÞ
dt

; ð15Þ

obtained by using Eq. (7) in the definition of qðzÞ. And, the
jerk parameter will oscillate around its constant ΛCDM
value of unity. These behaviors are reminiscent of the
nonparametric reconstructions in Refs. [85,86].

III. WIGGLES IN DARK ENERGY DENSITY
DESCENDED FROM THE WAVELETS

In the late Universe where dust and DE are the
only relevant components, we can treat HðzÞ as an
extension of HΛCDMðzÞ with the same matter density
parameter ρmðzÞ but with a minimally interacting
dynamical DE that explains the deviation of δðzÞ from
zero; hereby, we can write the DE density as
ρDEðzÞ≡ 3H2ðzÞ − ρmðzÞ, viz.,

ρDEðzÞ ¼ 3H2
ΛCDMðzÞ½1þ δðzÞ�2 − ρm0ð1þ zÞ3

¼ ρDE0 þ 3H2
ΛCDMðzÞδðzÞ½2þ δðzÞ�; ð16Þ

from which we can write the deviation of the DE density
from Λ, i.e., ΔρDEðzÞ≡ ρDEðzÞ − ρΛ (where we have
ρΛ ¼ ρDE0), as follows:

ΔρDEðzÞ ¼ 3H2
ΛCDMðzÞδðzÞ½2þ δðzÞ�: ð17Þ

For small deviations from ΛCDM, these read

ρDEðzÞ ≈ ρDE0 þ 6δðzÞH2
ΛCDMðzÞ; ð18Þ

ΔρDEðzÞ ≈ 6δðzÞH2
ΛCDMðzÞ; ð19Þ

correspondingly. Thus, because δðzÞ is oscillatory around
zero, ΔρDEðzÞ will also be oscillatory around zero and
this oscillatory ΔρDEðzÞ corresponds to the oscillatory
δðzÞ scaled by 6H2

ΛCDMðzÞ. That is, observational fitting/
nonparametric reconstruction procedures predicting wiggles
in HðzÞ will predict corresponding wiggles in ρDEðzÞ
reconstructions.
Even if our assumption that the prerecombination universe

is not modified with respect to the standard cosmology
[implying Eq. (10)], is taken to be approximate, for z > z�,
the fluctuations in the DE density should be much smaller
than the matter energy density, jΔρDEðzÞ=ρmðzÞj ≪ 1, in the
matter dominated epoch, andmuch smaller than the radiation
energy density, jΔρDEðzÞ=ρrðzÞj ≪ 1, in the radiation domi-
nated epoch. Since for both of these epochs the relevant
energy densities can be well approximated by the critical
energy density of ΛCDM, ρcðzÞ≡ 3H2

ΛCDMðzÞ, in this
approximate case for z > z�, instead of ΔρDEðzÞ ¼ 0, we
can write the more relaxed condition

����ΔρDEðzÞρcðzÞ
���� ¼ jδðzÞ½2þ δðzÞ�j ≪ 1: ð20Þ

This is satisfied for both δðzÞ ∼ 0 (small deviation from
ΛCDM), and δðzÞ ∼ −2 (corresponds to a contracting uni-
verse), but only the former is of interest to us. Since Eq. (20)
requires small jδðzÞj to be satisfied, it can be rewritten as

����ΔρDEðzÞρcðzÞ
���� ≈ 2jδðzÞj ≈ 2j−ψðzÞHΛCDMðzÞj ≪ 1; ð21Þ

from which we immediately see that ψðzÞ should vanish
rapidly enough with increasing z at large redshifts so that
our assumption of almost unmodified prerecombination
physics holds.
We calculate from Eq. (16) that the DE density passes

below zero, ρDEðzÞ < 0, for

δðzÞ < −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρDE0
3H2

ΛCDMðzÞ
r

; ð22Þ

which can also be written as follows:

δðzÞ < −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ΩDE0

ΩDE0 þ ð1 −ΩDE0Þð1þ zÞ3
s

: ð23Þ

Accordingly, using Planck 2018 best fit ΛCDM values
Ωm0 ¼ 0.3158 and H0 ¼ 67.32 km s−1Mpc−1 [3], it turns
out that δð2.33Þ < −0.028, i.e., ΔHð2.33Þ≡Hð2.33Þ−
HΛCDMð2.33Þ < −6.65 km s−1Mpc−1 (corresponding to
Hð2.33Þ≲ 230.536 km s−1Mpc−1), requires the DE den-
sity to yield negative values. Note that Hð2.33Þ ¼ 228�
7 km s−1 Mpc−1 from the Ly-α-Ly-α andHð2.33Þ ¼ 224�
8 km s−1 Mpc−1 from the Ly-α-quasar data [84]. Thus, if all
deviations from Planck 2018 best fit ΛCDM are attributed
to the DE, these data are consistent with vanishing/negative
DE density at z ∼ 2.3 when their 1σ error bars are
considered and prefer a negative DE density at z ∼ 2.3
when their mean values are considered. In this sense, the
function δðzÞ can also be used as a diagnostic to test for a
negative DE density if all modifications to Planck ΛCDM
are attributed to the DE.
Lastly, the continuity equation for the DE, viz.,

_ρDEðzÞ þ 3HðzÞ½ρDEðzÞ þ pDEðzÞ� ¼ 0, implies ϱDEðzÞ ¼
1þz
3
ρ0DEðzÞ for the inertial mass density, ϱDEðzÞ≡ ρDEðzÞ þ

pDEðzÞ, and wDEðzÞ ¼ −1þ 1þz
3
ρ0DEðzÞ=ρDEðzÞ for the cor-

responding EoS parameterwDEðzÞ≡ pDEðzÞ=ρDEðzÞ, where
ρDEðzÞ is the DE density as defined in (16), pDEðzÞ is its
pressure, and 0 ≡ d

dz. Accordingly, we have
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ϱDEðzÞ ¼ 2ð1þ zÞH2
ΛCDM

�
H0

ΛCDM
HΛCDM

δðδþ 2Þ þ δ0ðδþ 1Þ
�

≈ 2ð1þ zÞH2
ΛCDM

�
2
H0

ΛCDM
HΛCDM

δþ δ0
�
; ð24Þ

for the DE inertial mass density, and

wDEðzÞ ¼ −1þ
2ð1þ zÞ

h
H0

ΛCDM
HΛCDM

δðδþ 2Þ þ δ0ðδþ 1Þ
i

3
h
ρDE0
ρc

þ δð2þ δÞ
i

≈ −1þ
2ð1þ zÞ

h
2
H0

ΛCDM
HΛCDM

δþ δ0
i

3
h
ρDE0
ρc

þ 2δ
i ; ð25Þ

for the corresponding DE EoS parameter; in these two
equations, the second lines are for small deviations from
ΛCDM. Notice that, in the exact form of Eq. (25), wDEðzÞ
blows up if ρDE0=ρcðzÞ ¼ −δðzÞ½2þ δðzÞ� is satisfied for a
redshift, say, at z ¼ zv. Comparing with Eq. (16), we see that
this condition is equivalent to ρDEðzvÞ ¼ 0; indeed, if the DE
submits to the continuity equation as it does in this case, a
vanishing energy density necessitates such a singularity [46].
Such infinities in theEoSparameter are not problematic from
the fundamental physics point of view, instead, hints that the
DE density is perhaps an effective one originating from a
modified gravity model.

IV. WIGGLES IN NEWTON’S “CONSTANT”
DESCENDED FROM THE WAVELETS

Alternatively, we can attribute the deviation ofHðzÞ from
HΛCDMðzÞ to the deviations in the gravitational coupling
strength, GeffðzÞ, from the Newton’s gravitational constant
GN measured locally. We have, as usual,

3H2
ΛCDMðzÞ ¼ 8πGN½ρm0ð1þ zÞ3 þ ρr0ð1þ zÞ4 þ ρΛ�;

ð26Þ

where the constant value ρΛ is either the usual vacuum
energy density or ρΛ ¼ Λ

8πGN
. We can write the Hubble

parameter of the new model as

3H2ðzÞ ¼ 8πGeffðzÞ½ρm0ð1þ zÞ3 þ ρr0ð1þ zÞ4 þ ρΛ�;
ð27Þ

from which, using the definition in Eq. (13),

GeffðzÞ ¼ ½1þ δðzÞ�2GN ð28Þ

directly follows. Note that GeffðzÞ is also a wiggly function
led by the wiggles of δðzÞ, but GeffðzÞ equals GN when
ψðzÞ ¼ 0, and thereby, Geffðz ¼ 0Þ ¼ Geffðz > z�Þ ¼ GN

from Eqs. (10) and (12). And, for small deviations from
ΛCDM, Eq. (28) reads

GeffðzÞ ≈ ½1þ 2δðzÞ�GN: ð29Þ

Note that, if we are to treat ρΛ as the effective energy
density of the cosmological “constant”, i.e., Λ̃ðzÞ ¼
8πGeffðzÞρΛ, this new cosmological term Λ̃ðzÞ is not a
constant anymore.
It is crucial to note that, while attributing thewiggles to the

DE density or GeffðzÞ is indistinguishable in their back-
ground dynamics, this is not so for all physical observables.
Particularly, a direct effect of the dynamical gravitational
coupling strength would be observable, for instance, as this
would promote the absolute magnitudeMB ¼ const of type
Ia supernovae (SNIa) to a quantity varying with the redshift
MB ¼ MBðzÞ. Such an effect in the very late Universe
(z≲ 0.1) was recently suggested and investigated in a series
of papers to address the so-calledMB (andH0) tension [87–
92]. Also, the idea that the supernovae absolute magnitudes
are constant with redshift has been questioned by observa-
tions and the question of whether or not this idea is valid has
recently gained interest [93–100]. A possible variation of the
MBðzÞ and equivalently of the SNIa luminosity LðzÞ ∝
10−

2
5
MBðzÞ could be due to a variation of the Newton’s

“constant”. Since the SNIa luminosity is proportional to
the Chandrasekhar mass, which, in this case, is no longer a
constant equal to 1.4M⊙, but a quantity that varies
with GeffðzÞ, we have LðzÞ ∝ MChandraðzÞ, so that
LðzÞ ∝ G−3=2

eff ðzÞ, which in turn leads, in this approach, to

MBðzÞ−MB;GN
¼ 15

4
log

GeffðzÞ
GN

¼ 15

2
log½1þ δðzÞ�; ð30Þ

where MB;GN
denotes the SNIa absolute magnitude

when GeffðzÞ ¼ GN, which satisfies MB;GN
¼ MB;0 due to

Eq. (12). Thus, attributing wiggles to GeffðzÞ will have
consequences not only on the expansion of the Universe, but
also on the absolutemagnitudes of SNIa at different redshifts;
and, as Eq. (30) shows, the wiggles of GeffðzÞ are directly
manifested in the SNIa absolute magnitudes as a wiggly
MBðzÞ reminiscent of the findings of Ref. [100].
Investigating how this dual modification to the standard
cosmology affects the cosmological parameter estimates
from SNIa data and furthermore the so-called MB
tension [101,102], is beyond the scope of this paper and
deserves a separate study.

V. EMPLOYING SOME SIMPLEST WAVELETS

Wavelets constitute a wide family of functions that may
or may not be smooth. They exhibit an oscillatory (not
necessarily periodic) behavior over a compact set of their
parameters, and either vanish or quickly decay outside of
this set. Even the superposition of arbitrarily many wavelets
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would describe another one. Here, we will consider some of
the simplest examples: one discontinuous, namely, the Haar
mother wavelet (Sec. VA), and other smooth wavelets,
namely, the Hermitian wavelets (Sec. V B) that are acquired
from the derivative/s of a Gaussian distribution function.
These examples have no inherent superiority to other
possible wavelets; we provide them only because of their
simplicity and to give a taste of how wavelets behave and
their cosmological consequences.
These example wavelets, and their corresponding cos-

mologically relevant functions are plotted in Figs. 1–4 for
various values of their free parameters; matching colors in
different figures indicate the same wavelet with the same
choice of parameters. The dashed line corresponds to a
vanishing wavelet, i.e., to the reference ΛCDM model
described with HΛCDMðzÞ; for the figures, we neglected
radiation for z < z�, and used the mean values of the Planck
2018 TT;TE;EEþ lowEþ lensing results [3] for ρm0=H2

0,
r�, θ�, and z�. Figure 1 shows the wavelets themselves on
the bottom panel and the corresponding Hubble radii on the
top panel. Figure 2 shows some cosmological kinematics

related to the same wavelets. The top left panel shows the
Hubble parameter, HðzÞ, and the top right panel shows the
comoving Hubble parameter, viz., the expansion speed
_a ¼ HðzÞ=ð1þ zÞ, where a is the scale factor of the
spatially flat RW metric, and dot denotes d=dt. The lower
right panel shows D−1

M ðzÞ scaled by c lnð1þ zÞ. The data
points in these right panels are the local H0 ¼ 69.8�
0.8 km s−1Mpc−1 measurement utilizing the tip of the red
giant branch (TRGB) [103], and the BAO measurements
(see Ref. [84] and references therein): BOSS DR12 con-
sensus Galaxy (from zeff ¼ 0.38, 0.51), eBOSS DR16 LRG
(from zeff ¼ 0.70), eBOSS DR16 Quasar (from
zeff ¼ 1.48), eBOSS DR16 Ly-α-Ly-α (from zeff ¼ 2.33),
and eBOSS DR16 Ly-α-quasar (from zeff ¼ 2.33 but
shifted to z ¼ 2.35 in the figures for visual clarity). The
lower left panel shows the derivative of the Hubble function
with respect to the cosmic time normalized by 3H2; a
crossing of the zerowould indicate a nonmonotonic behavior
in the Hubble function as suggested in [20,31,45]. Figure 3
shows various plots related to the DE dynamics when the
wiggles are attributed to the DE. The top left panel shows the
DE densities normalized by the present-day critical energy
density ρc0, the top right panel shows the DE density
parameters, ΩDEðzÞ≡ ρDEðzÞ=3H2ðzÞ, the lower left panel
shows the corresponding DE EoS parameters, and the
lower right panel shows the DE inertial mass densities,
ϱDEðzÞ≡ ρDEðzÞ þ pDEðzÞ, normalized by ρc0. Finally,
Fig. 4 shows the corresponding results when wiggles in
HðzÞ are attributed to GeffðzÞ. The top panel shows GeffðzÞ
normalized by GN, say Geffðz ¼ 0Þ, and the lower panel
shows the variation of the absolute magnitudeMBðzÞ for the
mean value of the measurement MB;GN

¼ MBðz ¼ 0Þ ¼
−19.244� 0.037 mag inferred in Ref. [101] (using the
Pantheon SnIa dataset [104] along with Cepheid stars at
z < 0.01 for their calibration).

A. Haar wavelet

To begin with, we consider the simplest wavelet, the
Haar mother wavelet [69]; namely, ψhðzÞ ¼ 1 for
0 ≤ z < 1=2, ψhðzÞ ¼ −1 for 1=2 ≤ z < 1, and zero every-
where else; so that Ψhðz�Þ ¼ 0. Shifting and scaling ψh
with three parameters, i.e., defining

ψHðzÞ≡ ᾱψh

�
β̄ðz − z̄†Þ þ

1

2

�
; ð31Þ

we can produce discontinuous wiggles on HðzÞ. For
a good description of the Ly-α data, we choose
ᾱ ¼ 0.00015 km s−1 Mpc−1, z̄† ¼ 2, and β̄ ¼ 1

2
for our

example; see the green lines in the figures. It is clear that,
for these values of its parameters, ψHðzÞ satisfies all the
conditions we imposed on ψðzÞ, the major ones being
Eqs. (9), (10) and (12). In the figures, δðzÞ < 0 for the
interval z ∈ ½2; 3Þ leads to a dip inHðzÞ for this interval that is
in excellent agreement with the Ly-α data. This is

FIG. 1. The top panel shows the Hubble radii for some wavelet
examples of ψðzÞ given in the bottom panel where ᾱ and α are in
units of km s−1 Mpc−1, β̄ and β are unitless, and z̄† and z† are
redshifts anchoring the wavelets. The dashed line, ψðzÞ ¼ 0,
corresponds to no deviation, i.e., ΛCDM itself. The blue bars
correspond to the TRGB H0 measurement and various BAO
measurements. See Section V for details.
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compensated by δðzÞ > 0 for the interval z ∈ ½1; 2Þ so that
Eq. (9) is satisfied; this region constitutes a bump on HðzÞ.
This bump presents itself in other functions such as ρDEðzÞ
and ϱDEðzÞ [orGeffðzÞ], and it is reminiscent of those that are
found in nonparametric DE density reconstructions [59,65]
from observational data. For our particular example, we see
in the figures that the bump results in slight disagreement
with the eBOSS DR16 Quasar data at zeff ¼ 1.48 for both
HðzÞ andDMðzÞ. This can be mitigated by a different choice
of parameters or more interestingly by adding more wiggles,
for example, by superposing multiple Haar wavelets; how-
ever, this superposition would increase the number of free
parameters. In the next subsection, we will increase the
number of wiggles without increasing the number of free
parameters. Note that the _HðzÞ=3H2ðzÞ plot of the Haar
example appears to never cross the zero line, implying
monotonic behavior for HðzÞ; however, this is not true.
The discontinuities of theHðzÞ function at z ¼ 1, 2, 3 result
in spikes (Dirac delta distributions) that are not shown in
Fig. 2 for the _HðzÞ function at these redshifts, resulting in two
crossings of the zero line at z ¼ 1, 2 and a nonmonotonic
HðzÞ that increases instantaneously in time at z ¼ 2. Similar
spikes also exist for the wDEðzÞ and ϱDEðzÞ functions if the
wiggles are attributed to the DE, but again are not shown in
Fig. 3. Additionally, if the deformations of the Hubble

function described by δðzÞ are attributed to the DE density,
the wDEðzÞ has a discontinuity at z ∼ 2.2 (as suggested in
[31,45,48]) in addition to theobvious ones at z ¼ 1, 2, 3. This
discontinuity (present as a singularity) happens exactly at the
redshift in which ρDEðzÞ crosses from negative to positive
values, and is characteristic of energy densities that have
vanishing values in time and not problematic from the point
of view of fundamental physics as discussed below Eq. (25).
Of course, the discontinuities at z ¼ 1, 2, 3 are not very
compelling physically, but the Haar wavelet is the simplest
example and shows what we should expect from the form of
HðzÞ for a minimal wavelet type deviation of H−1ðzÞ from
HΛCDMðzÞ−1. A good alternative to the Haar wavelet can be
theBetawavelet [105] derived from the derivative of theBeta
distribution Pβðzjγ; λÞ≡ 1=Bðγ; λÞzγ−1ð1 − zÞλ−1 where
Bðγ; λÞ≡ R

1
0 k

γ−1ð1 − kÞλ−1dk is the Euler beta function,
0 ≤ z ≤ 1, and 1 ≤ γ; λ ≤ ∞. Beta wavelets are in
some sense softened Haar wavelets as both have compact
support and are unicycle (i.e., they have just one bump
and one dip), however, unlike the Haar wavelet, the
Beta wavelet is continuous [105]. Thus, to describe more
wiggles, onewould need to superposemultipleBetawavelets
just like in the case of the Haar wavelet, increasing the
number of free parameters. While the Beta wavelets can
satisfy Eqs. (9), (10) and (12) exactly without compromising

FIG. 2. The deviations from the ΛCDM model in terms of some kinematical parameters for the wavelet examples in Fig. 1; the plots
are matched by color to those in Fig. 1.
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continuity, they do not have a closed-form expression and are
mathematically less tractable; thus, for simplicity, we will
proceed with Hermitian wavelets that are also continuous1

and simpler, and satisfy Eqs. (9), (10) and (12) to high
precision.

B. Hermitian wavelets

The discontinuous features of the Haar wavelet can be
considered as an approximate description of a rapidly
varying smooth function which would be physically more
relevant. A simple family of smooth wavelets can be
acquired from the derivatives of a Gaussian distribution
(cf., the Hermitian wavelets [106]). To do so, we consider
the Gaussian distribution defined as follows:

ψG0ðzÞ ¼ −
α

2β
e−βðz−z†Þ2 ; ð32Þ

where α, β > 0, and z† > 0 are the three free parameters that
will set, respectively, the amplitude, support, and center of
thewiggles. The real part of the nthHermitianwavelet can be
obtained from the nth derivative of a Gaussian distribution

ψGnðzÞ≡ dnψG0ðzÞ
dzn ; accordingly, utilizing Eq. (32) we obtain

ψG1ðzÞ ¼ −2βðz − z†ÞψG0ðzÞ;

ψG2ðzÞ ¼ 4β

�
βðz − z†Þ2 −

1

2

�
ψG0ðzÞ;

ψG3ðzÞ ¼ −8β2
�
βðz − z†Þ3 −

3

2
ðz − z†Þ

�
ψG0ðzÞ;

ψG4ðzÞ ¼ 16β2
�
3

4
þ ðz − z†Þ4β2 − 3βðz − z†Þ2

�
ψG0ðzÞ;

ð33Þ

etc., where only up to fourth derivative are written explicitly.
ψG1ðzÞ and ψG2ðzÞ are well-known wavelets and the latter is
also known as the Ricker (Mexican hat) wavelet. ψGnðzÞ are
quasiperiodic functions, i.e., the redshift difference between
consecutive peaks (whose amplitudesmay differ) of thewave

FIG. 3. The deviations from the cosmological constant, if the wavelet examples of ψðzÞ are attributed to a dynamical DE, i.e., the
wiggles in HðzÞ are produced solely by a dynamical DE. The plots are matched by color to those in Fig. 1.

1One may also wish the wavelet satisfying Eqs. (9), (10)
and (12) exactly to have the stronger property of being smooth.
However, since these conditions require that every derivative of
the wavelet vanish outside of the interval ½0; z��, but not inside,
such a wavelet cannot be analytic. Nonanalytic smooth functions
can be constructed piecewise similarly to splines but the pieces
are not necessarily polynomial. These kinds of functions are not
compelling for the demonstrative purposes of this paper but may
turn out to be useful in observational analyses.
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varies. We note that ψG0ðzÞ itself is responsible for the fast
damping of the wavelet function ψGnðzÞ as z moves away
from z† and that the nth derivative of ψG0ðzÞ brings an nth
degree polynomial as a factor to itself, which in turn implies
that n stands also for the number of nodes of the ψGnðzÞ
function, i.e., the number of times the function crosses zero.
These n nodes correspond to nþ 1 wiggles [total of nþ 1
dips and bumps of ψðzÞ]; the bumps of ψðzÞ manifest
themselves as dips, and dips of ψðzÞ manifest themselves
as bumps in δðzÞ and equivalently HðzÞ, cf. Eq. (14). These
manifestations directly translate to wiggles on either ρDEðzÞ
orGeffðzÞ depending onwhich function we attribute them to.
Thewiggly structure in these functions resemble the wiggles
in their respective functions that are acquired from obser-
vational analyses utilizing parametric or nonparametric
reconstructions [59,65]. Wiggles acquired in observational
reconstructions are no surprise even if the dataset does not
contain CMB, because wiggles are necessary for HðzÞ to fit
the measurements of the Hubble parameter from the BAO
data better than HΛCDM without spoiling the success of
ΛCDM in fitting the DMðzÞ values measured from the same
BAO data (see Fig. 2), and the logic we used to show the
necessity of bumps still apply when z� is swapped for the
effective redshift of a BAO measurement.

Coincidentally, the first derivative of the Gaussian
distribution (32), i.e., ψG1ðzÞ, can be used to roughly
approximate the Haar wavelet smoothly. For ψG1ðzÞ, we
pick α ¼ 0.0005 km s−1Mpc−1, z† ¼ 2, and β ¼ 2, so that
the wavelet approximates our previous Haar example. For
the rest of the examples, ψG2ðzÞ, ψG3ðzÞ, and ψG4ðzÞ, the
values of the parameters are shown on the top panel of
Fig. 1 and the increased number of wiggles for higher
derivatives are clearly seen. Also in Fig. 2, the top left, top
right, and bottom right panels show how increasing the
number of wiggles can provide a better description of the
BAO data. Unlike the Haar and ψG1ðzÞ examples, ψG2ðzÞ
and ψG4ðzÞ examples better describe also the eBOSS DR16
Quasar data at zeff ¼ 1.48 while retaining better agreement
with the Ly-α BAO data at zeff ¼ 2.33; the ψG4ðzÞ example
even complies with the trend of the Galaxy BAO data (at
zeff ¼ 0.38, 0.51, 0.70) HðzÞ=ð1þ zÞ measurements that
increase with redshift; this trend is not present in Planck
ΛCDM (i.e., ΛCDM as constrained by Planck CMB data)
even though it is not in strong tension with any of these data
points. Still, we emphasize that these wavelets are just
illustrative examples and better wavelets can be looked for.
Again, attributing the wiggles to the DE, the DE density
also wiggles smoothly; however, for the ψG1ðzÞ and ψG2ðzÞ
examples, two safe/expected singularities are again present
in wDEðzÞ at the redshifts that the DE density vanishes.
Note that Eqs. (9), (10) and (12) are satisfied exactly only

for admissible wavelets with compact support in the red-
shift interval ½0; z��; thus, unlike the Haar wavelet, ψGnðzÞ
does not satisfy Eqs. (9), (10) and (12) exactly, but rather
approximately2 (yet, beyond a level that cannot be resolved
by observation). These three conditions were imposed on
ψðzÞ through arguments relying on the robustness of
certain observations; however, no matter how robust and
model independent they are, the uncertainties of the
measurements themselves require only that Eqs. (9), (10)
and (12) hold approximately. Reassuringly, for large red-
shifts, ψGnðzÞHΛCDMðzÞ ∝ znþ3

2e−βz
2

for matter dominated

FIG. 4. The deviation from GN if wiggles are produced solely
by a varying Newton’s “constant”; we also show the variation in
the absolute magnitude MB of supernovae assuming the unmodi-
fied value to be the mean value of the measurement in Ref. [101].
The variation of Geff is less than ∼10% at all times, and there is
practically no variation for z ∼ 0 and z ≫ 0. The plots are
matched by color to those in Fig. 1.

2We emphasize that the Haar and Hermitian wavelets are just
convenient examples we used to demonstrate various aspects of
the wavelet framework. The previously mentioned Beta wavelets
can satisfy these conditions exactly without compromising
continuity (at the cost of simplicity due to their lack of
closed-form expression). Additionally, working with wavelets
generated by higher order derivatives of the Beta distribution, it
should be possible to increase the number of wiggles without
increasing the number of free parameters, but to our knowledge,
there is no established literature on wavelets derived from their
higher order derivatives. Another possibility is constructing
wiggles out of splines that are piecewise polynomials which
can have compact support, but these are likely to suffer from an
excessive number of free parameters. Also, a middle ground
exists where some of the conditions are satisfied exactly and
some approximately. For example, the nth Poisson wavelet, viz.,
ψPnðzÞ≡ z−n

n! z
n−1e−z for z ≥ 0 and vanishing everywhere else,

satisfies Eq. (12) exactly but the other two equations approx-
imately for n > 1.
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and ∝ znþ2e−βz
2

for radiation dominated universes; both of
these functions rapidly decay by virtue of the exponential
term which eventually decays faster than any polynomial
growth, ensuring δðzÞ → 0 at large redshifts; see Eq. (13). A
similar argument can be made for ΔρDEðzÞ → 0 through
Eq. (17) at large redshifts. Finally, to demonstrate how
successfully the ψGnðzÞ examples approximate the condi-
tions given in Eqs. (9), (10) and (12), we examine ourψG3ðzÞ
example as it is the one that violates these conditions most
strongly. The values we pick in our ψG3ðzÞ example
correspond to the following quantities related to Eqs. (9),
(10), (12): ψG3ð0Þ ¼ ð41.75 × 10−6Þ km s−1 Mpc−1 [related
to Eq. (12)] which can be compared with H−1

ΛCDMð0Þ ¼
ð14.78 × 10−3Þ km s−1Mpc−1 fromPlanck 2018 resulting in
δð0Þ ∼ 3 × 10−3, ψG3ðz�Þ ∼ 10−10

6

km s−1 Mpc−1 [related
to Eq. (10)] which can be compared with H−1

ΛCDMðz�Þ ¼
7.3 × 10−7 km s−1 Mpc−1 from Planck 2018 resulting in
δðz�Þ ∼ 10−10

6

, and c ×ΨG3ðz�Þ ¼ −5.46 Mpc [related to
Eq. (9)] which is extremely well within the 1σ uncertainty of
DMðz�Þ¼ 13872.83�25.31Mpcmeasured in Planck 2018.

VI. CONCLUSION

It is well known that the comoving angular diameter
distance to the last scattering surface, DMðz�Þ, is strictly
constrained by observations almost model independently.
Therefore, in a viable cosmological model, this distance
should be the same with the one measured by assuming
ΛCDM, so that consistency with CMB data is ensured at the
background level. We have shown mathematically in Sec. II
that, assuming the prerecombination and present-day uni-
verses arewell describedbyΛCDM, the samedistance can be
achieved only if the deviation of any model from ΛCDM
described by the function ψðzÞ ¼ H−1ðzÞ −H−1

ΛCDMðzÞ,
which is the deviation from the standard ΛCDM model’s
Hubble radius, is an admissible wavelet or is well approxi-
mated by an admissible wavelet. In other words, in a viable
alternative cosmological model that leaves the prerecombi-
nation and present-day universes as they are in the standard
cosmological model, the modifications cannot be arbitrary
but should satisfy (exactly or approximately at a precision
level that can be absorbed within the precision of the
available observational data) aHubble radius functionwhose
deviation from the one in the standard cosmological model is
a member of the set of admissible wavelets.
The admissible wavelets describing ψðzÞ can be con-

verted to modifications in various cosmological kinematic
functions such as the Hubble and comoving Hubble
parameters, HðzÞ and HðzÞ=ð1þ zÞ as shown in Fig. 2,
as well as the deceleration and jerk parameters, qðzÞ and
jðzÞ. The wiggly nature of wavelets describing ψðzÞ leads
to wiggles in these functions, but none of them are
necessarily wavelets, moreover, even the ones that arise
from the simplest wavelets have nontrivial behavior that is
highly unlikely to be constructed/introduced by hand in the

first place. Accordingly, requiring ψðzÞ to be an admissible
wavelet not only ensures consistency with the CMB at the
background level, but also the corresponding wiggles
coming on top of the kinematic functions of ΛCDM can
provide us with an improved description of the multitude of
BAO data compared to ΛCDM; as can be seen in Figs. 1
and 2. Also, as the wavelets we used as examples show, the
number of wiggles in ψðzÞ, hence also in cosmological
kinematics, can be varied and then featured kinematics well
fitting the observational data can be achieved without
further increasing the number of free parameters; e.g.,
one may introduce any number of wiggles by taking a
sufficient number of derivatives of the Gaussian distribu-
tion and still have only three extra free parameters. These
nontrivial modifications we have found in the cosmological
kinematics can then be attributed to different physical
origins. As the first examples that come to mind, we have
attributed them either to a dynamical DE, viz., ρDEðzÞ, in
Sec. III or to a dynamical gravitational coupling strength,
viz., GeffðzÞ, in Sec. IV and briefly discussed how these
different approaches are, in principle, observationally
distinguishable, even though they give rise to the same
background kinematics—see Figs. 3 and 4 showing what
kind of behaviors the example wavelets correspond to in
both cases. We demonstrated also that the dynamics of the
DE, or the gravitational “constant”, led by the simplest
wavelets, are even more nontrivial compared to the kin-
ematics; for instance, the DE density can change sign in the
past, accompanied by singularities in its EoS parameter.
Some phenomenological studies find wiggly structures

in various cosmologically relevant functions, and the
wavelet framework suggests also being cautious when
attributing a physical reality to these wiggles, see, e.g.,
[25,57,59,62–65]. A wiggly structure may be described as
consecutive bumps and dips on a function. By using the
simplest admissible wavelets employed as examples in
Sec. V, we encountered a common pattern that these toy
examples, which well describe the BAO data, present a
bump in the Hubble parameter (which can be attributed to a
bump in the DE density) at 1.5≲ z≲ 2 just as was found in
various observational reconstructions [25,59,65]. The exist-
ence of bumps is a natural outcome of our findings, because
the dips in HðzÞ required for a better description of the
present data, e.g., at z ∼ 2.3 relevant to the Ly-α data,
should be compensated by bumps elsewhere so that the
comoving angular diameter distance to the last scattering
surface remains unaltered. This should raise serious con-
cerns that the bumpy features in the nonparametric HðzÞ
and/or ρDEðzÞ reconstructions may be fake in two ways.
First, the compensatory bumps could appear at redshifts at
which there are no data points to oppose the bumps; it
would not be possible to pin down the time location of a
bump (or multiple bumps) without new observations.
However, most observational analyses reconstruct the
cosmological functions up to z ∼ 3 where the most suitable
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redshift range for a fake bump appears to be at 1.5≲ z≲ 2,
whereas the redshift range devoid of data where these
bumps may be present is actually arbitrary and can extend
to very high redshifts (e.g., a plateau with a small amplitude
over a large redshift range compensating a tight dip at
z≲ 3). Second, it may be the case that even the precedent
dip that the bump compensates is artificial, e.g., the dip may
be caused by overfitting to the data, or the data calling for
the dip (e.g., Ly-α BAO) itself may be suffering from
systematic errors; in these cases, both the dip and the bump
could be fake. It is worth noting here that the wiggles in the
DE density are not expected to be representative of an
effective field theory, more concretely any minimally
coupled scalar model [62], and thus it is conceivable that
the introduction of theoretical priors should smooth out the
wiggles in the DE density [63,64]. This may be implying
that, if they are real, the origin of the wiggles in HðzÞ must
be sought in modified gravity theories. However, it may
also be too hasty to completely ignore the possibility of
finding highly wiggly (may be discrete) DE densities; see,
for instance, the so-called everpresent Λ model, which
suggests the observed Λ fluctuates between positive and
negative values with a magnitude comparable to the
cosmological critical energy density about a vanishing
mean, hΛi ¼ 0, in any epoch of the Universe, in accordance
with a long-standing heuristic prediction of the causal set
approach to quantum gravity [107–109].
Up until now we have avoided discussing the H0 tension

and assumed that any alternative cosmological model would
not deviate from ΛCDM at z ∼ 0 based on the observational
argument thatΛCDMdescribes local observational datawell
and is also supported by nonparametric reconstructions.
However, this no deviation condition [cf. Eq. (12)] is stricter
than necessary, because it is essentially the functional formof
3H2

ΛCDMðzÞ ¼ ρm;0ð1þ zÞ3 þ ρΛ that is favored by local
data. This suggests that the reference model from which the
deviations are defined can be taken to be any model that is
compatible with CMB data while agreeing with the func-
tional form of ΛCDM exactly or approximately in the
vicinity of the present time of the Universe, instead of the
exact ΛCDM model itself. Such models can be compatible
with bothCMBand localH0 measurements at the same time,
see e.g., Refs. [31,45,48]. Even the requirement of this
functional form can be relaxed and the well-known CPL
parametrization and wCDM model can be used for the
reference model, in which case ψðzÞ being an admissible
wavelet is not a necessary condition but an analytically
compelling case. Even though the functional form of such
alternative reference models allows them to simultaneously
fit the CMB and H0 measurements, it is possible that strict
observational constraints from BAO data prevent these
models from occupying the part of their parameter space
required for this simultaneous agreement. If thesemodels are
taken to be the reference model, the H0 tension may also be
resolved within our wavelet framework; more importantly, if

the observational success of these models were held back by
the BAO data, the use of wavelets may resurrect them by
letting them fit the BAO data without compromising their
successful description of the CMB and H0 observations.
In our discussions we allowed wavelets to have quite a

bit of freedom, apart from requiring them to be admissible
and vanish outside of the interval z ¼ ½0; z��; see Eqs. (9),
(10) and (12). However, it can also be very useful to focus
on various subsets of these wavelets. Namely, using argu-
ments based on the history of the expansion of the universe
and/or fundamental physics (also, these two can be related
in a certain way through a putative theory of gravity), we
can impose more conditions on them, and thereby narrow
down the extent of the family of cosmological models
satisfying our conditions. For example, as we have already
discussed to some extent, with regard to the kinematics of
the Universe, one may demand an ever expanding universe
[HðzÞ > 0] and/or a monotonically decreasing Hubble
parameter [ _HðzÞ < 0] from beginning to the present, or,
with regards to dynamics of the DE (supposing that GR is
valid and the deviations are attributed to a dynamical DE
fluid), one may demand a non-negative DE density
[ρDEðzÞ ≥ 0] at all times, or a non-negative DE inertial
mass density corresponding to the null energy condition
[ϱDEðzÞ ≥ 0] at all times, or at least be cautious so that no
instability problems are encountered. Indeed, DE fluids that
lead to our example admissible wavelets seem to easily
violate the conventional energy conditions; namely, the
EoS parameter crosses below minus unity and/or plus unity
and even exhibits poles in some cases, moreover, these
behaviours correspond to a DE inertial mass density that
crosses below zero, and even a DE density that crosses
below zero for the cases whose EoS parameter exhibits
poles. Such violations are generally known to indicate
possible instability issues in the DE fluid. One way out in
this case, as we mentioned earlier, would be the possibility
of deriving such dark energies from modified gravity
theories as effective sources without causing some other
instability problems. Employing the parametrized post-
Friedmann [110,111] approach may also provide us with
another way out, namely, the parametrized post-Friedmann
approach discussed in [110,111] may be used to placate the
violent behaviors of the DE source, particularly to solve the
instability issues related to the DE EoS parameter or make
them less severe by pulling it towards the safer interval
½−1; 1�. This approach that replaces the condition of DE
pressure perturbation with a smooth transition scale will
help us understand the momentum density of the DE and
other components on the large scale structure. We leave the
advantages of considering such reconstruction methods
relevant to the family of the DE models introduced in this
paper for future consideration.
To conclude, the wavelet framework presented in this

paper seems to have the potential to be a good guide to find
new cosmological models, alternative to the base ΛCDM
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model, that are consistent with the observational data and to
analyze existing ones, but further observational and theo-
retical studies are required to uncover the full scope of the
implications and applications of this framework.
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[81] V. Ajani, J. Harnois-Déraps, V. Pettorino, and J. L. Starck,
Starlet higher order statistics for galaxy clustering and
weak lensing, Astron. Astrophys. 672, L10 (2023).

[82] G. Valogiannis and C. Dvorkin, Going beyond the galaxy
power spectrum: An analysis of BOSS data with wavelet
scattering transforms, Phys. Rev. D 106, 103509 (2022).

[83] A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout,
S. Casertano, D. O. Jones, Y. Murakami, L. Breuval, T. G.
Brink et al., A comprehensive measurement of the local
value of the Hubble constant with 1 km s−1 Mpc−1 un-
certainty from the Hubble space telescope and the SH0ES
Team, Astrophys. J. Lett. 934, L7 (2022).

[84] S. Alam et al. (eBOSS Collaboration), Completed SDSS-
IV extended Baryon Oscillation Spectroscopic Survey:
Cosmological implications from two decades of spectro-
scopic surveys at the Apache Point Observatory, Phys.
Rev. D 103, 083533 (2021).

[85] P. Mukherjee and N. Banerjee, Revisiting a nonparametric
reconstruction of the deceleration parameter from com-
bined background and the growth rate data, Phys. Dark
Universe 36, 100998 (2022).

[86] P. Mukherjee and N. Banerjee, Non-parametric reconstruc-
tion of the cosmological jerk parameter, Eur. Phys. J. C
81, 36 (2021).

[87] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos,
w −M phantom transition at zt < 0.1 as a resolution of
the Hubble tension, Phys. Rev. D 103, 083517 (2021).

[88] V. Marra and L. Perivolaropoulos, Rapid transition of Geff
at zt ≃ 0.01 as a possible solution of the Hubble and
growth tensions, Phys. Rev. D 104, L021303 (2021).

[89] L. Perivolaropoulos and F. Skara, Hubble tension or a
transition of the Cepheid SnIa calibrator parameters?,
Phys. Rev. D 104, 123511 (2021).

[90] G. Alestas, L. Perivolaropoulos, and K. Tanidis, Con-
straining a late time transition of Geff using low-z galaxy
survey data, Phys. Rev. D 106, 023526 (2022).

[91] L. Perivolaropoulos, Is the Hubble crisis connected with
the extinction of dinosaurs?, Universe 8, 263 (2022).

INEVITABLE MANIFESTATION OF WIGGLES IN THE … PHYS. REV. D 107, 123526 (2023)

123526-15

https://doi.org/10.1016/j.dark.2023.101199
https://doi.org/10.1016/j.dark.2023.101199
https://doi.org/10.1140/epjc/s10052-023-11404-2
https://doi.org/10.1140/epjc/s10052-023-11404-2
https://doi.org/10.1103/PhysRevD.106.043503
https://doi.org/10.1103/PhysRevD.106.043503
https://doi.org/10.1093/mnras/staa3866
https://doi.org/10.1093/mnras/staa3866
https://doi.org/10.1103/PhysRevD.104.023510
https://doi.org/10.1088/1475-7516/2023/02/061
https://doi.org/10.1038/s41550-022-01808-7
https://doi.org/10.1016/j.dark.2022.101017
https://doi.org/10.1016/j.dark.2022.101017
https://doi.org/10.1088/1361-6633/aa997e
https://doi.org/10.1088/1361-6633/aa997e
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.1007/s41114-022-00040-z
https://doi.org/10.1103/PhysRevD.106.103506
https://doi.org/10.1046/j.1365-8711.1999.02897.x
https://doi.org/10.1046/j.1365-8711.1999.02897.x
https://doi.org/10.1046/j.1365-8711.1999.02992.x
https://doi.org/10.1046/j.1365-8711.1999.02992.x
https://doi.org/10.1007/s00041-006-6918-8
https://doi.org/10.1007/s00041-006-6918-8
https://doi.org/10.1051/0004-6361/201016070
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.1103/PhysRevD.102.103506
https://doi.org/10.3847/1538-4357/ac752c
https://doi.org/10.1103/PhysRevD.105.103534
https://arXiv.org/abs/2204.07646
https://doi.org/10.1103/PhysRevD.102.103531
https://doi.org/10.1103/PhysRevD.102.103531
https://doi.org/10.1051/0004-6361/202039988
https://doi.org/10.1051/0004-6361/202039988
https://arXiv.org/abs/2206.01450
https://doi.org/10.1051/0004-6361/202245510
https://doi.org/10.1103/PhysRevD.106.103509
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1016/j.dark.2022.100998
https://doi.org/10.1016/j.dark.2022.100998
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1140/epjc/s10052-021-08830-5
https://doi.org/10.1103/PhysRevD.103.083517
https://doi.org/10.1103/PhysRevD.104.L021303
https://doi.org/10.1103/PhysRevD.104.123511
https://doi.org/10.1103/PhysRevD.106.023526
https://doi.org/10.3390/universe8050263


[92] L. Perivolaropoulos and F. Skara, Gravitational transitions
via the explicitly broken symmetron screening mechanism,
Phys. Rev. D 106, 043528 (2022).

[93] L. D. Ferramacho, A. Blanchard, and Y. Zolnierowski,
Constraints on C.D.M. cosmology from galaxy power
spectrum, CMB and SNIa evolution, Astron. Astrophys.
499, 21 (2009).

[94] S. Linden, J. M. Virey, and A. Tilquin, Cosmological
Parameter Extraction and Biases from Type Ia Supernova
Magnitude Evolution, Astron. Astrophys. 50, 1095
(2009).

[95] I. Tutusaus, B. Lamine, A. Dupays, and A. Blanchard, Is
cosmic acceleration proven by local cosmological probes?,
Astron. Astrophys. 602, A73 (2017).

[96] Y. L. Kim, Y. Kang, and Y.W. Lee, Environmental
dependence of type Ia supernova luminosities from the
YONSEI supernova catalog, J. Korean Astron. Soc. 52,
181 (2019).

[97] Y. Kang, Y. W. Lee, Y. L. Kim, C. Chung, and C. H. Ree,
Early-type host galaxies of type Ia supernovae. II. Evi-
dence for luminosity evolution in supernova cosmology,
Astrophys. J. 889, 8 (2020).

[98] B. M. Rose, D. Rubin, A. Cikota, S. E. Deustua, S. Dixon,
A. Fruchter, D. O. Jones, A. G. Riess, and D. M. Scolnic,
Evidence for cosmic acceleration is robust to observed
correlations between type Ia supernova luminosity and
stellar age, Astrophys. J. Lett. 896, L4 (2020).

[99] E. Di Valentino, S. Gariazzo, O. Mena, and S. Vagnozzi,
Soundness of dark energy properties, J. Cosmol. Astropart.
Phys. 07 (2020) 045.

[100] D. Benisty, J. Mifsud, J. Levi Said, and D. Staicova, On the
robustness of the constancy of the Supernova absolute
magnitude: Non-parametric reconstruction & Bayesian
approaches, Phys. Dark Universe 39, 101160 (2023).

[101] D. Camarena and V. Marra, On the use of the local prior on
the absolute magnitude of Type Ia supernovae in cosmo-
logical inference, Mon. Not. R. Astron. Soc. 504, 5164
(2021).

[102] G. Efstathiou, To H0 or not to H0?, Mon. Not. R. Astron.
Soc. 505, 3866 (2021).

[103] W. L. Freedman et al., The Carnegie-Chicago Hubble
program. VIII. An independent determination of the
Hubble constant based on the tip of the red giant branch,
Astrophys. J. 882, 34 (2019).

[104] D. M. Scolnic et al. (Pan-STARRS1 Collaboration), The
complete light-curve sample of spectroscopically con-
firmed SNe Ia from Pan-STARRS1 and cosmological
constraints from the combined pantheon sample, Astro-
phys. J. 859, 101 (2018).

[105] H. M. de Oliveira and G. A. A. de Araújo, Compactly
supported one-cyclic wavelets derived from beta distribu-
tions, J. Commun. Inf. Syst. 20, 105 (2015).

[106] H. H. Szu, C. C. Hsu, L. D. Sa, and W. Li, Compactly
Hermitian hat wavelet design for singularity detection in
the Paraguay river-level data analyses, Proc. SPIE 3078,
Wavelet Applications IV (1997), 10.1117/12.271774.

[107] M. Ahmed, S. Dodelson, P. B. Greene, and R. Sorkin,
Everpresent Λ, Phys. Rev. D 69, 103523 (2004).

[108] N. Zwane, N. Afshordi, and R. D. Sorkin, Cosmological
tests of everpresent Λ, Classical Quantum Gravity 35,
194002 (2018).

[109] S. Surya, The causal set approach to quantum gravity,
Living Rev. Relativity 22, 5 (2019).

[110] W. Hu, Parametrized Post-Friedmann Signatures of Accel-
eration in the CMB, Phys. Rev. D 77, 103524 (2008).

[111] W. Fang, W. Hu, and A. Lewis, Crossing the phantom
divide with parametrized post-Friedmann dark energy,
Phys. Rev. D 78, 087303 (2008).

AKARSU, COLGÁIN, ÖZÜLKER, THAKUR, and YIN PHYS. REV. D 107, 123526 (2023)

123526-16

https://doi.org/10.1103/PhysRevD.106.043528
https://doi.org/10.1051/0004-6361/200810693
https://doi.org/10.1051/0004-6361/200810693
https://doi.org/10.1051/0004-6361/200912811
https://doi.org/10.1051/0004-6361/200912811
https://doi.org/10.1051/0004-6361/201630289
https://doi.org/10.5303/JKAS.2019.52.5.181
https://doi.org/10.5303/JKAS.2019.52.5.181
https://doi.org/10.3847/1538-4357/ab5afc
https://doi.org/10.3847/2041-8213/ab94ad
https://doi.org/10.1088/1475-7516/2020/07/045
https://doi.org/10.1088/1475-7516/2020/07/045
https://doi.org/10.1016/j.dark.2022.101160
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1093/mnras/stab1200
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.3847/1538-4357/ab2f73
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.14209/jcis.2005.17
https://doi.org/10.1117/12.271774
https://doi.org/10.1103/PhysRevD.69.103523
https://doi.org/10.1088/1361-6382/aadc36
https://doi.org/10.1088/1361-6382/aadc36
https://doi.org/10.1007/s41114-019-0023-1
https://doi.org/10.1103/PhysRevD.77.103524
https://doi.org/10.1103/PhysRevD.78.087303

