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We illustrate the effect of boundary conditions on the evolution of structure in fuzzy dark matter.
Scenarios explored include the evolution of single, ground-state equilibrium solutions of the Schrödinger-
Poisson system, relaxation of a Gaussian density fluctuation, mergers of two equilibrium configurations,
and the random merger of many solitons. For comparison, each scenario is evolved twice, with isolation vs
periodic boundary conditions, the two commonly used to simulate isolated systems and structure
formation, respectively. Replacing isolation boundary conditions (implemented by an absorbing sponge
at large radius) by periodic boundary conditions changes the domain topology and dynamics of each
scenario by affecting the outcome of gravitational cooling. With periodic boundary conditions, the initial
ground-state equilibrium solution and Gaussian fluctuation each evolve toward the single equilibrium
solitonic core of the isolated case, but surrounded by an envelope, or tail, in which additional mass is
distributed nearly uniformly, unlike the isolated versions. The case of head-on, binary merger introduces
additional effects caused by the pull on the system due to the infinite network of periodic images along each
axis of the domain. Adding angular momentum to this binary merger results in a tail with polynomial
profile when using a periodic domain. Finally, the 3D merger of many, randomly placed solitonic cores of
different mass makes a solitonic core surrounded by a tail with power-law-like profile, for periodic
boundary conditions, while producing a core with a much sharper falloff in the isolated case. This suggests
the conclusion of earlier work, that the ground-state equilibrium solution is an attractor for the asymptotic
state, is true even in 3D and for more general circumstances than previously considered, but only if
gravitational cooling is able to carry mass and energy off to infinity, which isolation boundary conditions
allow, but periodic ones do not.
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I. INTRODUCTION

The fuzzy dark matter (FDM) model [1] is based on the
idea that the dark matter particle is an ultralight spinless
boson (e.g., [2–4]), which has been shown to have potential
at solving some of the traditional problems of the standard
cold dark matter (CDM) model, namely, the too-big-to-fail
and the cusp-core problems [4–9]. The properties of the
model are ordinarily tested with simulations of structure
formation as well as other local astrophysical scenarios,
which are based on the numerical solution of the
Schrödinger-Poisson (SP) system of equations, which rules
the dynamics of this type of matter. In view of its
importance as a potentially observable discriminant of
FDM over CDM, we shall focus here on the numerically
derived internal structure of virialized objects—halos—that

form. As described below, our goal is to shed light on the
important role that the treatment of outer boundary con-
ditions plays in shaping their final mass distribution.
In phenomenological or theoretical analyses, the solution

of the SP system of equations is essential within this dark
mattermodel. It happens that no exact solutions are known of
this system, from the simplest stationary scenarios [10,11],
interaction between a few structures (e.g., [12–15]) until
structure formation simulations with very elaborate dynam-
ics (e.g., [6,16–20]), the solutions constructed are numerical,
and therefore the results are subject to numerical methods
and conditions imposed by the restrictions of each problem.
The SP system is solved on a finite size numerical

domain and boundary conditions are used to implement the
desired effects on the system under study. Two types of
boundary conditions are used that distinguish two physical
scenarios. The first one corresponds to isolated systems,
oriented to the study of the phenomenology of isolated
structures, mostly cores under different circumstances, like
perturbations and mergers. The second scenario is that of
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structure formation, where the assumptions of homogeneity
and isotropy at large scales is not consistent with isolation
conditions, and periodic boundary conditions are used.
Isolated systems are expected to radiate the excess of

kinetic energy toward infinity, and relax through the
gravitational cooling process [21,22]. Instead of attempting
the implementation of well posed absorbing boundary
conditions for the Schrödinger equation, a sponge is used
to absorb the modes approaching the boundary of the
numerical domain, which acts as a sink of particles
independently of the wave front orientation. The resulting
configurations in a number of configurations are isolated
blobs with a solitonic density profile at the center and an
exponential decay outside (e.g., [11,13,21]).
Structure formation simulations, on the other hand,

change the topology of the domain from a piece of R3

to the three-torus T 3 through the implementation of
periodic boundary conditions to the SP system of equa-
tions. A consequence is that the matter does not leave the
domain and it redistributes across the domain instead. The
relaxation process of some density fluctuations consists in
the formation of cored clumps with the profile of isolated
equilibrium configurations surrounded by restless outskirts
with a polynomial density profile in average, as shown in
fits from structure formation simulations [13,16,17], which
eventually can match the Navarro-Frenk-White (NFW)
density profile [23].
Here we solve the SP system with isolation and periodic

boundary conditions in order to study the effect of the
topology on the dynamical properties of the interaction
among structures.
The paper is organized as follows. In Sec. II, we trace the

background and motivation underlying our effort here to
reconcile the apparent contrast between earlier developments
on the equilibrium structure of isolated objects with recent
work on halos from structure formation in the FDM
cosmology. In Sec. III we describe the numerical methods
implemented for the study of the effects of the two types of
boundary conditions. In Sec. IV we compare the results for
different scenarios, and in Sec. Vwe draw some conclusions.

II. BACKGROUND AND MOTIVATION

The last several years have witnessed an explosion of
interest in the possibility that cosmic dark matter is a scalar
field of ultralight (e.g. m≳ 10−23 eV) bosons for which
quantum coherent effects cause structure that forms from
primordial density fluctuations to be smoothed out on
small scales, perhaps even on scales as large as galaxies
(e.g., [5–7,24] and references therein). For the free-field
limit (i.e., no self-interaction), sometimes referred to as
FDM, the filtering scale is related to the de Broglie
wavelength, which acts like a quantum Jeans length.
There is just one parameter that determines the outcome
of structure formation in FDM from a given spectrum of
primordial density perturbations in a given background

universe, namely, particle massm. The smaller the mass m,
the larger the associated Jeans length. In the linear regime,
the transfer of primordial perturbations after horizon entry
introduces a short-wavelength cutoff in the power spectrum
on this scale, which filters out structure formation below
this cutoff, during construction of the cosmic web. In the
nonlinear regime, the internal structure of gravitationally
bound objects (i.e., dark matter halos) is smoothed out on
scales smaller than the local de Broglie wavelength
determined by the particle mass and the local virial velocity
inside the halo, i.e., λdeB ¼ h=mv, for which halos of
mass M and size R have virial or circular velocity
v ≃ ðGM=RÞ1=2. This means halos for which R≲ λdeB,
or, equivalently, particle mass m≲ ðℏ=R2ÞðπGρ̄Þ−1=2 ≈
10−22ðR=1 kpcÞ−1=2ðM=108M⊙Þ−1=2 eV, where ρ̄ is the
mean mass density of the halo, are not expected to form,
while those for which R≳ λdeB will be smoothed on scales
smaller than λdeB.
This nonlinear smoothing property was a strong moti-

vation for considering FDM as an alternative to standard
Weakly Interacting Massive Particle (WIMP) CDM, since
the latter produces density profiles for virialized dark
matter halos which N-body simulations show are well fit
by an empirical formula, known as the NFW profile, which
diverges in a cusp toward the center, while galaxy obser-
vations suggest that a flattened core may be preferred in a
range of systems. For FDM, by tuning the particle mass to
be sufficiently small (m≲ 10−22 eV=c2), the size of the de
Broglie smoothing scale can approach that of the Kpc-sized
cores observed in some galaxies. On the other hand, the
linear-regime smoothing that leads to a cutoff in the transfer
function is also of interest, since it can reduce the
abundance of halos at the small-mass end during the galaxy
formation era, as well as the amplitude of density fluctua-
tions in the intergalactic medium in the quasilinear regime.
The former effect was initially thought to be beneficial as a
way to reconcile the paucity of observed satellite dwarf
galaxies in the local group with the overabundance pre-
dicted by N-body simulations of standard CDM. However,
further study suggests that these reductions of small-mass
halo abundance and intergalactic density fluctuations may
go too far if m is small enough to yield dwarf-galaxy cores
as large as ∼1 Kpc during the nonlinear phase of structure
formation, as compared with observations of local group
satellites and fluctuations in the Ly-α forest of quasar
absorption-line spectra. This is sometimes referred to as the
“catch-22 problem” for FDM.
Our interest here is in the nonlinear regime, in general,

and the internal structure of gravitationally bound objects
comprised of FDM, in particular. Study of the latter has a
long history that predates much of the modern treatment of
FDM as an alternative to standard CDM, including the
early description of compact objects supported against
gravitational collapse by quantum pressure as “boson stars”
(for the latter, see, e.g., [25] and references therein).
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For FDM structure formation on scales that are well within
the Hubble volume and for objects that are not dense
enough to be subject to relativistic gravitational instability,
the fully relativistic description of the scalar field by
coupled Klein-Gordon and Einstein equations reduces to
that of the coupled nonlinear Schrödinger and Poisson
equations in the Newtonian approximation. That is our
regime of interest here.
Early literature on boson stars, including a paper by

Membrado, Pacheco, and Sanudo [26], found that the
equilibrium solution of the coupled Schroedinger-
Poisson equations in 1D spherical symmetry yielded a
centrally flattened density profile which, at large radius, as
r → ∞, drops off as r−4, enclosing a finite mass but
extending to infinity. That purely numerical solution yields
a radius which encloses 99% of the finite mass to infinity
given by R99 ¼ 9.9ðℏ2=ðGMm2Þ, whereM is the total mass
and m is the boson mass. This is comparable to the de
Broglie wavelength for particles of mass m and velocity
given by the virial velocity for a body of total mass M
inside a radius R99. The time-dependent problem of the
formation of such equilibrium objects was not addressed by
this solution, however.
Subsequently, [21] showed numerically that a self-

gravitating scalar field of bosons would be able to form
solitonic boson stars as equilibrium objects, which virial-
ized upon their collapse, by gravitational cooling, a term
invented to describe the emission of mass and energy to
infinity. In further literature on boson stars, e.g., [11,22],
the time-dependent SP equations in spherical symmetry
were solved numerically, finding that the same equations
yielded a static equilibrium solution for isolated spherical
cores which is the ground-state eigenfunction if one
assumes the wave function has a harmonic time depend-
ence. Furthermore, they showed, a multistate initial con-
dition which includes excited states, as well, decays quickly
to this ground state, by radiating mass and energy to infinity
(i.e., gravitational cooling). So, one could expect that the
ground-state solution was, in a sense, the attractor. This
work established this numerical solution of the ground-state
eigenfunction, therefore, as the expectation for gravitation-
ally bound objects that might form out of ultralight bosons,
with its flattened central profile characterized by a size
comparable to the de Broglie wavelength computed fromm
and the virial velocity, surrounded by a very sharply
decreasing density profile. Subsequent work, in fact, has
sometimes approximated this ground-state numerical pro-
file by a Gaussian, for analytical convenience.
More recently, numerical solutions of the SP equations in

3D [13,17,27] were reported that modeled the formation of
gravitationally bound objects by gravitationally merging
preexisting, 1D, spherical, solitonic cores, eachofwhichwas
initially in the self-gravitating, static equilibrium appropriate
for isolated cores. The outcome was a final object with a
single core surrounded by an envelope, in virial equilibrium.

The core had a radius comparable to the de Broglie wave-
length of the final object, and a centrally flattened density
profile like that of the isolated solitons described above.
Beyond that radius, however, the extended envelope, while
also in virial equilibrium, had a density profile that dropped
off much more gently. The envelope profile, in fact,
resembled the power-low dropoff at large radius of the
empirical NFW fit to the halo profiles in CDM N-body
simulations [23], i.e. r−n, withn ¼ 3. Themass of the central
solitonic core of this final object, however, was not the same
as that of the original cores that were merged to make it.
A similar core-envelope structure was also found for the

virialized halos that formed in 3D cosmological simula-
tions of FDM starting from cosmological, Gaussian-ran-
dom, linear-perturbation density fluctuations [13,17,27].
Like the cores formed from the idealized mergers of
isolated cores described above, the solitonic cores formed
from 3D perturbation growth from the linear to the non-
linear stage in cosmological simulations of FDM were also
of size comparable to λdeB evaluated with a velocity equal
to the virial velocity of the core-envelope halo.
That a core-envelope structure would result for the halos

in virial equilibrium formed in the nonlinear stage of
cosmological perturbation growth, with mass and radius
larger than that of their solitonic cores, was not entirely
unanticipated. While this core-envelope structure of the
final objects appeared to be a surprise when first reported,
in view of the wide-spread assumption that the natural
equilibrium structure to expect for an isolated object was
that of the solitonic cores described above, some literature
had already noted that those simple density profiles should
be interpreted as halo cores, rather than entire halos ([28]).
Otherwise, they could not easily explain the mass-radius
relation of halos in our observed universe. According to the
Membrado et al. solution described above, for instance,
MR99 ¼ constant, which is not what we observe nor what
the standard CDM model predicts. As [28] pointed out,
however, halo formation in cosmology proceeds by merg-
ers and infall during hierarchical clustering, which causes
the quantum fluid to make waves, and waves can interfere,
so random internal wave motions can provide an effective
kinetic pressure support equivalent to the random particle
orbits that balance gravity when halos of CDM virialize.
They concluded that, for scalar field dark matter to
resemble CDM-like structure formation on larger scales
than λdeB, with halos that obey a CDM-like mass-radius
relation, this wavelike behavior must ensure that, when
mass infalls and merges to make an object of mass and size
larger than the core, it virializes on scales well beyond the
core. In that case, a virialized object can form with the same
total mass and size as it does in CDM, even if its central
region has a non-CDM-like solitonic core of much smaller
size. The 3D simulations of merging cores and cosmo-
logical structure formation in FDM described above were,
therefore, a verification of this hypothesis.
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As recently discussed by [29,30], the CDM-like structure
of FDM halos outside their solitonic cores (i.e. on scales
larger than λdeB) can be understood as an inevitable
consequence of solving the coupled NLSE and Poisson
equations in the presence of cosmological infall boundary
conditions. The dynamics of CDM as a nonrelativistic gas
of non-interacting, massive particles, coupled only by
gravity, in the collisionless limit (i.e. in which the 2-body
gravitational relaxation time is infinitely long) is described,
instead, by the collisionless Boltzmann equation (BE
coupled to the Poisson equation. There is a correspondence,
however, between the NLSE and the CBE (on scales larger
than λdeB) that was first discussed in the context of CDM
by [31]. They pointed out that CDM structure formation
can be modeled by solving the NLSE in the free-field limit,
as a computational alternative to simulating gravitational
N-body dynamics of CDM particles—a kind of quantum
analog for modelling CDM, in which the analog particle
mass is tuned to make its λdeB much smaller than any scale
of interest (i.e. equivalent to taking the limit of ℏ → 0).
More recently, [32] followed this idea in the opposite
direction, of solving the coupled CBE and Poisson equa-
tions (e.g. by well-known N-body methods used to model
CDM) as an approximation to describe large-scale structure
formation in FDM on scales larger than λdeB.
The general correspondence between the NLSE and the

CBE, with additional terms in the latter that encode the
effects ofwavemechanics, goes backmuch further, however,
and makes clearer how thewave-mechanical behavior of the
scalar field creates an effective pressure support against
gravity in the virialized halo even outside the solitonic core
(see, e.g., [29] for a review and additional references). It is
often noted in recent FDM literature that, by writing the field
in polar form, in terms of a real amplitude and phase,

ψ ¼ jψ jeiS; ð1Þ

(referred to as “the Madelung transformation”, after [33])
and substituting this into the NLSE, it is possible to derive
continuity and momentum equations similar to those of
classical hydrodynamics, as an exact alternative to the
NLSE, sometimes referred to as the equations of “quantum
hydrodynamics” (QHD). The momentum equation that
results resembles the Euler equation of classical fluid
mechanics, except that the usual term involving the
gradient of gas pressure is replaced by the gradient of
the “quantum potential”, Q [sometimes also referred to as
the “Bohm potential”, after [34,35] ], given in terms of the
mass density ρ ¼ jψ j2, by

Q ¼ −
ℏ2

2m2

∇2 ffiffiffi
ρ

p
ffiffiffi
ρ

p : ð2Þ

It is the gradient of Q that must balance the gravitational
acceleration in this Euler-like equation, if FDM halos are in

a static equilibrium (i.e. for which the “bulk velocity v in
the Euler equation is essentially zero), even at radii well-
beyond that of their solitonic cores. Unfortunately, neither
the NLSE nor these equivalent QHD equations give much
insight into how to construct Q to achieve this balance nor
into how this Q relates to the effective kinetic pressure we
described above. [Some conditions for the numerical
integration of the equations, limitations, and equivalence
of the equations in the NLSE and QHD frames are
discussed in [36] ].
To provide that insight, [29] appealed to a second

approach to obtaining these QHD equations, the phase-
space formulation, pioneered by Takabayasi [37]. This
approach starts from a phase-space distribution function
constructed from ψ , known as the Wigner function [38],
and derives its equation of motion, known as the Wigner-
Moyal equation, by taking the partial time derivative of the
Wigner function and substituting-in the NLSE. This
Wigner-Moyal equation resembles the CBE but with
additional terms that encode the effects of wave mechanics.
Momentum moments of this equation are then taken to
derive the continuity and momentum equations of QHD. In
this version of the QHD momentum equation, the usual
term in the classical Euler equation involving the gradient
of gas pressure is replaced by a new, pressurelike term,
called the “quantum pressure” tensor, Π, which is sourced
by the velocity dispersion tensor:

Πij ¼ ρσ2ij ð3Þ

The divergence of this quantum pressure tensor in the
Euler equation of QHD accounts for the transport of
momentum associated with the kinetic energy term in
the NLSE; it is a momentum flux density tensor. It is
possible to re-express this Π, however, in terms of the
density ρ and its spatial derivatives, alone, to reassure us
that the final QHD equations that result from this phase-
space formulation have the same content as those from the
Madelung-Bohm formulation above. But we gain addi-
tional insight by comparing the two formulations to show
that the quantum potential and quantum pressure tensor are
related according to:

∂Q
∂xi

¼ 1

ρ

∂Πij

∂xj
: ð4Þ

This shows that the acceleration associated with the
quantum potential term in theMadelung-Bohm formulation
corresponds to the effective kinetic pressure in the momen-
tum flux density tensor, associated with the internal spread
of momentum in the phase space derivation. Both terms
arise from the kinetic term in the NLSE and are what is
responsible for providing support against gravity inside
FDM halos. Inside solitonic cores, this support is provided
on the scale of λdeB, but, as shown by [29], when FDM
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halos form by gravitational instability and collapse, the
coupling of gravitational and quantum dynamics leads to a
large-enough velocity dispersion that support against grav-
ity is also possible on much larger scales, as well.
To demonstrate this explicitly, [29,30] reduced the

complexity of the system required to create such condi-
tions, to 1D, spherical symmetry (as considered previously
to solve the NLSE for isolated solitonic cores), to show
that, even in this case, halo formation from gravitational
instability and collapse are sufficient to produce a CDM-
like halo structure outside the core. First, they fol-
lowed [39,31,32], who adopted a smoothed phase space
representation of ψ , known as the Husimi representa-
tion [40], deriving its equation of motion by steps similar
to that which led to the Wigner-Moyal equation, then
setting the smoothing scale to be much larger than λdeB, to
find that the equation of motion reduces to the CBE, with
no additional terms. Second, they adopted the fluid
approximation for solving the CBE derived by Ahn and
Shapiro [41] to describe CDM dynamics, by taking
moments of the CBE and closing the moment hierarchy
in spherical symmetry by assuming the velocity distribution
is symmetric about its mean (i.e. skewless) and isotropic in
the frame of bulk motion. For CDM, the latter is a good
approximation inside virialized regions that form during
structure formation (with no loss of accuracy outside those
regions, since infall is supersonic during halo formation
and motion is ballistic). This reduced the CBE to the
familiar fluid equations of conservation of mass, momen-
tum and energy for an ideal, compressible gas with
adiabatic index γ ¼ 5=3. As [29] recognized, these same
steps apply to the CBE for FDM, as well, when smoothed
on scales larger than λdeB. This meant that one could now
understand the role of quantum pressure in the dynamical
formation of FDM halos, smoothed on the de Broglie scale,
by its correspondence to the gas pressure associated with
random, thermal motions of a γ ¼ 5=3 ideal gas, in the
same way [41] had previously used this approach for CDM,
to understand the effective kinetic pressure support pro-
vided by random orbital motions of the collisionless
particles. The “temperature” associated with this ideal
gas pressure corresponds directly to the velocity dispersion
(σ2) obtained from moments of the phase space distribution
function.
Finally, [29,30] adopted initial conditions suitable for

forming a halo by gravitational instability of an initial, 1D,
spherically symmetric linear density density perturbation
(i.e. which is Jeans unstable on wavelengths larger than
the de Broglie wavelength of the final object), and solved
these fluid approximation equations numerically, by a
Lagrangian hydrodynamics method.
The result of the nonlinear outcome of this gravitational

collapse was the formation of a virialized central region,
bounded by a strong accretion shock, inside of which
was “postshock” gas, in hydrostatic equilibrium, at high

temperature and pressure, with a density profile for this
postshock interior region just like that for CDM halos
observed in 3D N-body simulations. This showed that the
origin of the quantum pressure support that allowed a halo
of FDM to be in virial equilibrium over a region much
larger and more massive than its solitonic core was the
“thermalization” of the kinetic energy of infall by passage
through this accretion shock. Furthermore, this work
showed the NFW-like shape of the FDM envelope, i.e.,
the profile shape beyond the scale of the inner de Broglie
wavelength—and the evolution over time of the halo virial
radius, mass, and concentration parameter during 3D
cosmological structure formation—is the inevitable conse-
quence of the shape of the initial linear perturbation
surrounding the density peak that made the halo, which
controls the rate of mass infall in the nonlinear regime.
Alvarez et al. [42], Shapiro et al. [43], and Shapiro et al. [44]
had previously demonstrated this for CDM. In particular,
they showed that, when the initial, spherically symmetric,
linear-perturbation profile is shaped to yield the average
mass assembly history (MAH) of a halo in the nonlinear
stage, as found by CDM N-body simulations, the shock-
bounded sphere in virial equilibrium that results reproduces
the NFW profile and all its evolutionary properties. Now,
by applying the same fluid approximation and initial
conditions to describe FDM halo formation—an approxi-
mation that is suitable to describe FDM dynamics averaged
over scales that are larger than de Broglie but without
losing the unresolved effects of quantum pressure—this
explains why FDM halos must generically have CDM-like
envelopes beyond their solitonic cores.1

According to this, the key difference between the
solution of the isolated solitonic cores calculated from
the 1D, time-dependent NLSE and Poisson equations—for
which gravitational cooling enabled them to relax to the
ground-state eigenfunction—and the core-envelope struc-
ture of virialized objects that formed dynamically from the
growth of density perturbations or the mergers of isolated
cores, must be the outer boundary conditions adopted in
each case. The purpose of this paper will be to demonstrate

1In [45], the dynamics of ultralight bosonic dark matter halos
was modeled, instead, by replacing the NLSE by a wave equation
with heuristic terms added to account for the effects of violent
relaxation, gravitational cooling, and dissipation. That approach
also identified an additional, effective thermal pressure, distinct
from the quantum pressure, associated with an effective temper-
ature. In 1D, spherical symmetry, static equilibrium solutions of
this heuristic equation, coupled to the Poisson equation, then
showed solitonic cores surrounded by isothermal atmospheres.
By contrast, in [29,30], there was no appeal to the addition of
heuristic terms to the original NLSE. Rather, their assumption of
skewless and isotropic velocity distribution (in the frame of bulk
motion), consistent with N-body simulations of halo formation
from Gaussian random density fluctuations, is all they required to
show that halos have CDM-like envelopes on scales larger than
their de Broglie-wavelength-sized solitonic cores, as a conse-
quence of forming by gravitational infall.
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this explicitly, by comparing the results of the time-
dependent formation of gravitationally bound objects in
FDM, as simulated by solving the NLSE in 3D for different
boundary conditions, without smoothing over the de
Broglie wavelength scale. In particular, we will show that,
by replacing the absorbing “sponge” boundary conditions
of the previous 1D calculations of isolated solitonic cores,
with the periodic boundary conditions common to 3D
cosmological simulation, we can alter the outer shape of the
density field, outside the core, to make it decline more
gently.

III. NUMERICAL METHODS

The SP system is a constrained evolution initial value
problem,where the Schrödinger equation rules the dynamics
of thewave functionΨ, whereas the Poisson equation for the
gravitational potentialV is a constraint that has to be satisfied
during the evolution. We define the problem on the domain
D× ½0; tf� ¼ ½xmin; xmax�× ½ymin; ymax�× ½zmin; zmax�× ½0; tf�
described with Cartesian coordinates x, y, z, t that provided
initial conditions for Ψ and V.
This initial value problem is solved numerically on the

discrete domain withDd¼fðxi;yj;zkÞgwith xi¼xminþiΔx,
yi ¼ ymin þ jΔy, zi ¼ zmin þ kΔz, where i ¼ 0;…; Nx,
j ¼ 0;…; Ny, k ¼ 0;…; Nz label cells along each direc-
tion, and Δx ¼ ðxmax − xminÞ=Nx, Δy ¼ ðymax − yminÞ=Ny,
Δz ¼ ðzmax − zminÞ=Nz, are the spatial resolutions. Time
is discretized with labels tn¼nΔt, where Δt ¼
CminðΔx;Δy;ΔzÞ2 is the time resolution and C is a
CFL factor. In the simulations of this paper we use
Δx ¼ Δy ¼ Δz in a cubic box centered at the origin where
xmin ¼ ymin ¼ zmin ¼ −xmax ¼ −ymax ¼ −zmax.
We denote the wave function and gravitational potential

at the arbitrary point ðxi; yj; zkÞ ∈ Dd and time tn by Ψn
i;j;k

and Vn
i;j;k, respectively.

A. Methods for the isolated domain

The Schrödinger-Poisson system of equations in the
continuum is written as

i
∂Ψ
∂t

¼ −
1

2
∇2Ψþ VΨ; ð5Þ

∇2V ¼jΨj2; ð6Þ

where the Planck constant and the boson mass have been
absorbed with an appropriate rescaling of coordinates and
variables.
With initial conditions for Ψ and a consistent gravita-

tional potential V, we integrate in time the semidiscrete
version of the Schrödinger equation for Ψ from time tn to
tnþ1, using the method of lines, and a finite differences
approximation of the right-hand side of Eq. (5) using fourth
order finite difference stencils

∂Ψ
∂t

¼ i
2
ðδ2x½Ψn

i;j;k� þ δ2y½Ψn
i;j;k� þ δ2z ½Ψn

i;j;k�Þ − iVn
i;j;kΨn

i;j;k

where δ2x; δ2y; δ2z are the second order derivative operators
with fourth order accuracy. The evolution is carried out
using a third order accurate Runge-Kutta integrator.
Near the boundary of Dd at all times, for Ψ we impose a

sponge, which is implemented by adding an imaginary
potential to the gravitational potential such that
V ¼ V þ iVim. The effect is that the continuity equation
for ρ ¼ jΨj2 becomes ∂ρ

∂t þ∇ · ½ i
2
ðΨ∇Ψ� − Ψ�∇ΨÞ� ¼

2VimjΨj2. This means that when Vim < 0 the density ρ
enters a sink of particles that we implement only in the
region near the boundary of Dd using the function
Vim ¼ − V0

2
½2þ tanhðr − rsÞ=δ − tanhðrs=δÞ�, a smooth

version of a step function along the radial direction with
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
[11]. Our simulations are carried out in

a cubic domain centered at the origin, which allows the
straightforward implementation of this recipe. We use
V0 ¼ 1, rs ¼ 0.8xmax and δ ¼ 4Δx.
Finally, the Poisson equation is solved using a monop-

olar boundary condition Vð∂DdÞ ¼ −M=ð4πr∂Dd
Þ, where

r∂Dd
is the distance from the origin to each point of the

boundary of Dd, and implementing a multigrid solver with
a two-level V cycle.

B. Methods for the periodic domain

In this case the SP system is written differently:

i
∂Ψ
∂t

¼ −
1

2
∇2Ψþ VΨ; ð7Þ

∇2V ¼jΨj2 − hjΨj2i; ð8Þ

where hjΨj2i is the average density over the domain,
introduced in order to satisfy that the integral on the
right-hand side of Poisson equation vanishes and also to
allow the periodicity of the potential.
We solve both Schrödinger and Poisson equations using

the Fourier transform (FT) because it is convenient to the
implementation of periodic boundary conditions on Ψ and
V. The Poisson equation in the Fourier space reads

−p2F ðVÞ ¼ F ðjΨj2 − hjΨj2iÞ; ð9Þ

where the FT is approximated by a fast Fourier transform.
Notice that for the mode p ≔ jp⃗j ¼ 0 the identity 0 ¼ 0
holds, which allows F ðVÞðp⃗ ¼ 0Þ to take any value, which
particularly useful when choosing a value at the boundary.
We choose the condition F ðVÞðp⃗ ¼ 0Þ ¼ 0. Finally, the
solution to the Poisson equation is given by the inverse FT:
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V ¼ F−1
�
−F ðjΨj2 − hjΨj2iÞ

p2

�
: ð10Þ

On the other hand, the Schrödinger equation is discre-
tized using the implicit Crank-Nicolson average, so that the
evolution from time tn to tnþ1 is formally written as

�
1þ 1

2
iΔtĤnþ1

�
Ψnþ1 ¼

�
1 −

1

2
iΔtĤn

�
Ψn: ð11Þ

The integration from time tn to tnþ1 uses a three step
splitting

�
1þ i

4
ΔtVn

�
Ψnþα ¼

�
1 −

i
4
ΔtVn

�
Ψn ð12Þ

�
1 −

i
4
Δt∇2

�
Ψnþβ ¼

�
1þ i

4
Δt∇2

�
Ψnþα ð13Þ

�
1þ i

4
ΔtVn

�
Ψnþ1 ¼

�
1 −

i
4
ΔtVn

�
Ψnþβ ð14Þ

where Vn is the gravitational potential at time tn. The first
step (12) can be solved easily

Ψnþα ¼ 1 − 1
4
iΔtVn

1þ 1
4
iΔtVn Ψ

n; ð15Þ

whereas the second step (13) is solved using the Fourier
transform as follows:

Ψnþβ ¼ F−1
�
1 − 1

4
iΔtp2

1þ 1
4
iΔtp2

F ðΨnþαÞ
�
; ð16Þ

and finally the third step, Eq. (14), is solved:

Ψnþ1 ¼ 1 − 1
4
iΔtVn

1þ 1
4
iΔtVn Ψ

nþβ: ð17Þ

Notice a very important subtlety. In Eqs. (12) and (14)
we use the gravitational potential evaluated at time tn,
whereas the Crank-Nicholson method requires the average
of the Hamiltonian in time, between times tn and tnþ1. Thus
we use the so far calculated Ψnþ1 in (17), integrate the
Poisson equation and obtain the potential Vnþ1 with (10).
We then define the average potential Vnþ1=2 ¼ 1

2
ðVn þ

Vnþ1Þ that we use to implement steps (12)–(14) again. The
result will be Ψnþ1 with the appropriate average potential.
We have tested the code in the case of isolation

conditions (e.g., [46,47]). However, for the implementation
of periodic boundary conditions we do not have previous
tests, that is why in the Appendix we add an essential test
bed related to the evolution of a boosted equilibrium
configuration.

C. Diagnostics

The evolution is monitored using expectation values
of the variables calculated within the spatial numerical
domain Dd. These quantities can be the mass M, kinetic
energy K, gravitational energy W, momentum P⃗, and
angular momentum L⃗:

MΩ ¼
Z
Ω
jΨj2d3x;

KΩ ¼ −
1

2

Z
Ω
Ψ�∇2Ψd3x;

WΩ ¼ 1

2

Z
Ω
VjΨj2d3x;

P⃗Ω ¼ −i
Z
Ω
Ψ�∇Ψd3x;

L⃗Ω ¼ −i
Z
Ω
Ψ�x⃗ ×∇Ψd3x: ð18Þ

In our analysis below, the domain Ω will be two regions.
The region Ω ¼ core is a sphere of radius rc, the core
of a fluctuation that admits a fitting with the solitonic
profile [16,17]:

ρcore ¼ ρ0;core

�
1þ 0.091

�
r
rc

�
2
�

−8
: ð19Þ

The second region Ω ¼ tail is what we call the tail,
which is the region within Dd but outside of the core.
Other additional useful quantities are the total energy
EΩ ¼ KΩ þWΩ, which helps measure the dissipation of
the methods during the evolution and 2KΩ þWΩ, which
helps monitor when the system is near a virialized state.
Of importance to our analysis of mergers is the calcu-

lation of P⃗ on semidomains; in that case, we estimate the
momentum along the x direction in the domainsΩ such that
x < 0 and x ≥ 0.

IV. COMPARISON IN VARIOUS SCENARIOS

We perform the comparison between the isolated and
periodic domain using a set of scenarios. These include the
evolution of a ground-state equilibrium configuration, the
collapse of a fluctuation with a Gaussian profile, and the
collision of two equilibrium configurations. In each case we
monitor especially the density of matter and dynamical
variables in order to measure the effects of boundary
conditions. The simulations are carried out in a convergence
regime with spatial resolution Δx ¼ Δy ¼ Δz ¼ 0.62, time
resolution Δt ¼ 0.05, and various specified domains sizes.

A. Evolution of a ground-state configuration

Ground-state configurations were originally constructed
assuming isolation boundary conditions [10,11]. When this
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configuration is evolved assuming isolation boundary
conditions, specifically, if a sponge is implemented for
the wave function Ψ to be absorbed near the boundary, and
the gravitational potential is constructed with isolation
boundary conditions, this configuration remains stationary
in the continuum limit as shown with convergence
tests in [22].
We evolve this configuration first using isolation boun-

dary conditions in two different numerical domain sizes, a
small one ½−20; 20�3 and a big one ½−40; 40�3, that illustrate
the effects of the boundary. The results are in Figs. 1 and 2,
which we discuss together. In the first plot we show various
snapshots of the density jΨj2 where a nearly stationary
central core and an outer region where the density oscillates
can be seen. A time average of density is also shown that
illustrates the falloff of the density profile with distance.
The comparison of the time average of density shows the
effects of the sponge, which absorbs the density outside a
sphere of radius rc ¼ 18 in the small domain and rc ¼ 36
in the big domain. The results in these figures illustrate that
isolation conditions do not necessarily imply transparent
boundary conditions. In the second row of the results in
these two figures, we show the central density that shows
the oscillations of the core and total mass as functions of
time. In the big domain the effects of the sponge, and
therefore of the domain size, are smaller and the mass is
better preserved.
We now evolve the same configuration using periodic

boundary conditions. In this case the gravitational potential
does not correspond to an isolated system and the boundary
conditions at the faces of the cubic domain allow the

potential to interact with itself, since the domain is a three-
torus. The wave function is allowed to leak out from the
gravitational potential well and redistribute across the
domain, unlike the isolated case, where the sponge absorbs
the density near the faces of the box. The evolution of the
configuration is shown in Fig. 3 for the small domain

1×10-18
1×10-16
1×10-14
1×10-12
1×10-10
1×10-08
1×10-06
0.0001

0.01
1

100

-20 -15 -10 -5 0 5 10 15 20
x

every t=10

0.0001
0.01

1

-20 -15 -10 -5 0 5 10 15 20

lo
g(

|�
|2 )

lo
g(

|�
|2 )

x

time averaged profile
initial profile

0.9

0.95

1

1.05

1.1

1.15

0 100 200 300 400 500

|�
c|2  / 

|�
c(

t=
0)

|2

t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500

M
�

 / 
M

(t=
0)

t

core at r<3.0
core at r<4.5
core at r<6.0
core at r<7.5

tail at r>3.0
tail at r>4.5
tail at r>6.0
tail at r>7.5

1×10-18
1×10-16
1×10-14
1×10-12

1×10-10

1×10-08
1×10-06

FIG. 1. Evolution of a ground-state equilibrium configuration
on the domain ½−20; 20�3 using isolated boundary conditions.
Top: Snapshots of the density jΨj2 at various times that illustrate
the core and the restless behavior of the density outside of the
core. Also shown is the time average of the density profile from
t ¼ 250 to t ¼ 500, together with the initial profile. Bottom:
Central density as function of time that shows the oscillations of
the core and the mass calculated using different core radius
rc ¼ 3, 4.5, 6.0 and 7.0.
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FIG. 2. Evolution of a ground-state equilibrium configuration
on the domain ½−40; 40�3 using isolated boundary conditions.
Top: Snapshots of the density jΨj2 at various times that illustrate
the core and the restless behavior of the density outside of the
core. Also shown is the time average of the density profile from
t ¼ 250 to t ¼ 500, together with the initial profile. Bottom:
Central density as function of time that shows the oscillations of
the core and the mass calculated using different core radius
rc ¼ 3, 4.5, 6.0 and 7.0.
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FIG. 3. Evolution of a ground-state equilibrium configuration
on the domain ½−20; 20�3 using periodic boundary conditions.
Top: Snapshots of the density jΨj2 at various times that illustrate
the core and the restless behavior of the density outside of the
core. Also shown is the time average of the density profile from
t ¼ 250 to t ¼ 500, together with the initial profile. Bottom: On
the left the central density as a function of time, which shows the
oscillations of the core and on the right the mass of core and tail,
with respect to their initial value using different core radius
rc ¼ 3, 4.5, 6.0, and 7.0.
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½−20; 20�3 and in Fig. 4 for the big domain ½−40; 40�3 that
we describe together.
The first row of plots shows a set of snapshots of the

density jΨj2 starting from the initial configuration.
Likewise, in the isolated case above, a nearly stationary
central core with the initial profile prevails, whereas the
density outside the core has a very dynamical behavior and
redistributes differently from the isolated case. The time
average is also shown and indicates how the tail acquires a
slow falloff with distance that becomes nearly constant in
the case of a big domain. The results of this distribution is
only due to the periodicity of the domain. Notice that the
nearly constant density of the tail is different for the small
and big domains. If we consider the core radius rc ¼ 7.5,
we find that the mass of the tail redistributes with a factor of
∼8.5, which is the factor between the approximately
constant tail densities in Figs. 3 and 4.
The second row of results contains the central density as

a function of time that illustrates the oscillations of the core
density, with a frequency that can be associated to the
fundamental quasinormal modes, in this case for a soliton
on top of a background density, unlike in vacuum [48]. The
simulation in the big domain develops a superposed mode
that is not seen in the results in the small domain. Also
shown is the conservation of mass of the core and tail using
different values of the core radius. Notice that unlike the
isolated domain, these quantities are better preserved
during the evolution since there is no sponge where part
of the density would sink.

A summary of results is that the time-average core
density profile is independent of the domain size, although
it oscillates with modes that are excited differently for
different domain sizes. The tail has a different profile,
because the mass distributes in a bigger volume for the
domain ½−40; 40�3 than in the case ½−20; 20�3.
In order to investigate whether periodic boundary con-

ditions trigger the extra oscillationmode seen in the solution
with the big domain, we calculate the Fourier transform of
the central density as a function of time from Figs. 3 and 4
and two other simulations using spatial domains ½−30; 30�3
and ½−50; 50�3 to see the effects of the domain size better.
The results appear in Fig. 5. The FT of the evolution using
isolation conditions shows two main peaks at frequencies at
1 and at ∼1.768, which coincide with the two first modes of
oscillation when a ground-state configuration is perturbed
with a spherical perturbation [48].
When using periodic boundary conditions, the use of a

bigger domain adds power to the second mode, which is
reflected in the height of the second peak in the figure.
Based on this observation, the mode superposed on the time
series of the central density of Fig. 4 can be associated to
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FIG. 4. Evolution of a ground-state equilibrium configuration
on the domain ½−40; 40�3 using periodic boundary conditions.
Top: Snapshots of the density jΨj2 at various times that illustrate
the core and the restless behavior of the density outside of the
core. Also shown is the time average of the density profile from
t ¼ 250 to t ¼ 500, together with the time average solution on the
domain ½−20; 20�3 and the initial density. Bottom: On the left the
central density as a function of time that shows the oscillations of
the core and on the right the mass of core and tail with respect to
their initial time using various values of the core radius rc ¼ 3,
4.5, 6.0 and 7.0.
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FIG. 5. Fourier transform of the central density as a function of
time, resulting from the evolution of a ground-state equilibrium
configuration. At the top, the case of an isolated domain, where
the two first modes resulting from a spherical perturbation with
peaks at 1 and at ∼1.768, as found in [48]. At the bottom we show
the result when using periodic boundary conditions with two
peaks at frequencies 1 and ∼1.78. There is a second peak with
high power attributed to the distortion seen in Fig. 4. This second
peak gains power with the domain size, but it appears at the same
location as the second mode of the ground-state equilibrium
solutions as discussed in [48].
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the second mode of ground-state equilibrium configura-
tions, and is not a new oscillation mode, however excited it
is by the reentrance of matter into the domain.

B. Relaxation of a near-equilibrium Gaussian

A second problem is the dynamical relaxation of a
spherically symmetric object in near equilibrium, with a
Gaussian density profile, as sometimes used to approxi-
mate the numerical ground-state equilibrium solution
analytically. In this case, we adopt the initial conditions

Ψðx; 0Þ ¼ Ae−r
2=ð2σ2Þ, A ¼ ffiffiffi

8
p ð K3

27π3MÞ1=4 and σ ¼
ffiffiffiffiffi
3M
4K

q
with approximately the same mass M and kinetic energy
K as that of the equilibrium configuration above. The
evolution is carried out again in domains ½−20; 20�3 and
½−40; 40�3, covered with the same resolution as in the
equilibrium configuration case.2

The evolution of the fluctuation using isolation boundary
conditions is illustrated with the results in Figs. 6 and 7 that
respectively correspond to the use of domains ½−20; 20�3
and ½−40; 40�3. In the two cases a core is formed that can be
fit with the empirical formula (19), and coincides with the
equilibrium density profile. The tail density falls rapidly
towards the boundary where the sponge absorbs the
density. The central density tends to stabilize, whereas
the mass in the time window used decreases linearly but
slowly, slower in the big domain, which illustrates the
effects of the sponge, that is, the dynamical behavior of the
tail region permanently pumps matter, even if in small
quantities, toward the boundary, where it is absorbed.
The results are different when periodic boundary con-

ditions are used. The results obtained for the relaxation of
the Gaussian pulse are shown in Figs. 8 and 9, correspond-
ing to the use of domains ½−20; 20�3 and ½−40; 40�3. This
time the initial conditions are not the soliton itself, but the
soliton gets formed during the evolution with the profile
(19). The density in the tail region is restless with an
endless motion that, in average, distributes in a nearly
constant profile, unlike the NFW decay found in structure

formation halos [16,17]. We observe that the Gaussian
pulse does not fragment, whereas the solitonic cores
obtained from structure formation simulations result from
the interference of multiple density fluctuations and are the
superposition of many smaller fluctuations as shown later
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FIG. 6. Evolution of a Gaussian in the domain ½−20; 20�3 using
isolated boundary conditions. Top: Snapshots of the density jΨj2
at various times that illustrate the core formation and the restless
behavior of the density outside of the core. Also shown is the time
average of the density profile from t ¼ 250 to t ¼ 500, together
with the solitonic fitting profile. Bottom: On the left the central
density as a function of time that shows the oscillations of the
core and on the right the mass of core and tail with respect to their
initial value using various values of the core radius rc ¼ 3, 4.5,
6.0 and 7.0.
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FIG. 7. Evolution of a Gaussian in the domain ½−40; 40�3 using
isolated boundary conditions. Top: Snapshots of the density jΨj2
at various times that illustrate the core formation and the restless
behavior of the density outside of the core. Also shown is the time
average of the density profile from t ¼ 250 to t ¼ 500, together
with the solitonic fitting profile. Bottom: On the left the central
density as function of time that shows the oscillations of the core
and on the right the mass of core and tail with respect to their
initial value using various values of the core radius rc ¼ 3, 4.5,
6.0 and 7.0.

2This relaxation of a spherical object with a Gaussian density
profile should not be confused with the Jeans-unstable gravita-
tional collapse and infall calculated by [29,30], described in our
Introduction. In the latter case, the initial condition was so “cold”
that the “Jeans length” in the initial condition was much smaller
than the initial Gaussian width, so it was highly unstable
gravitationally. Mass shells in that latter case fall inward,
unopposed by pressure, destined to reach the origin in sequence,
according to their initial radius (i.e., with shells at initially smaller
radii reaching the center first). Before they reach the origin,
however, shells are halted by a strong accretion shock that forms
at finite radius. It is this postshock region that appears as the
envelope, outside the solitonic core, in the core-envelope struc-
tures identified with FDM halos that form from cosmological
initial conditions. In the case of the Gaussian presented here,
however, the initial condition is not Jeans unstable; it is intended,
instead, to be similar to the ground-state profile of the isolated
solution, so does not fit this description.

ÁLVAREZ-RIOS, GUZMÁN, and SHAPIRO PHYS. REV. D 107, 123524 (2023)

123524-10



on in this paper. From these two simulations one can infer
that the matter outside of the core distributes with a nearly
constant profile, with a value that depends on the volume
out of the core, which in turn depends on the domain size.
A clear difference in comparison with the isolated case is

that mass is not being lost during the evolution as expected
from the topology of the domain.

C. Free-fall head-on merger

Another scenario that may be affected by the change of
topology of the domain is the merger of two structures, as
the gravitational potential repeats itself in copies outside of
the domain along the three Cartesian directions. For this
study, we focused on the head-on collision of two ground-
state equilibrium configurations in free-fall.
To illustrate this scenario, we conducted simulations in

the domains ½−20; 20�3 and ½−40; 40�3 using the same
space and time resolution as in the previous examples.
We selected three cases with initial positions of the
configurations at (A) ð�5; 0; 0Þ, (B) ð�10; 0; 0Þ, and
(C) ð�15; 0; 0Þ. It is expected that the domain outside of
the box, which is plagued with a network of similar binary
configurations, will have an effect on the collision dynam-
ics. For comparison, we also simulated the merger using
isolated boundary conditions.
The simulations results for case A are presented in

Fig. 10. The left column displays the gravitational potential
along the x direction, while the right column shows the
head-on momentum hpxi integrated over the half-domains
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FIG. 10. Case A. Head-on momentum hpxi integrated in the
semidomains x < 0 and x > 0. At the top we show the results for
the free-fall head-on merger using isolation boundary conditions.
In second and third rows we show the momentum in the case of a
periodic domain ½−20; 20�3 and ½−40; 40�3, respectively. The
magnitude of the momentum is smaller when using a periodic
domain, whereas the time of the maximum momentum is affected
by the domain size.
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x < 0 and x > 0. In the first row, the results using isolation
boundary conditions are presented, and the merger time is
identified at t ∼ 14.9, which is defined as the moment when
the maximum head-on momentum is acquired. In the
second and third rows, the results using periodic boundary
conditions with domains ½−20; 20�3 and ½−40; 40�3 are
shown, respectively. It can be observed that the merger
time is affected by the periodic domain size; when using a
small domain, the pull of the neighboring gravitational
potentials retards the merger time. Furthermore, the mag-
nitude of the momentum is also affected by the periodic
domain.
Case B presents a different situation. It is a borderline

case because the periodic boundary conditions imply the
existence of a similar binary configuration on neighboring
domains located at exactly the same distance, of 20 units of
length along the x axis. Binary configurations along the y
and z axes will be separated by 40 length units from one
another. This means that the binary configuration with
periodic boundary conditions actually represents an infinite
array of cores along the x axis, equally spaced by 20 units
of length and by 40 units along y and z. The gravitational
field is expected to be compensated along the x direction in
some way.
The results for case B are shown in Fig. 11. On the left,

we present the gravitational potential along the x direction,
while on the right, we display hpxi for the simulations with
the isolated domain, periodic domain ½−20; 20�3, and
periodic domain ½−40; 40�3, respectively. The first row
corresponds to the head-on merger used as a control case
that is not affected by the periodic domain.
The second row is the most noteworthy, as it takes a

longer time for the cores to merge. This scenario requires
further explanation since one might expect that the cores
would never merge, given that they have infinite copies of
themselves along the x direction, and the gravitational
effects along this direction would compensate and prevent
the merger. However, the use of periodic boundary con-
ditions introduces a subtlety, as seen in the left plots, where
the gravitational potential is not zero at the center of the
domain as it is at the boundary face. This effect has not
been discussed in the literature on FDM simulations using
periodic conditions, and it could have a significant influ-
ence on the results. It would be interesting to discuss and
compare among codes and numerical implementations.
Despite this asymmetry, the cores ultimately collide at
the center of the domain after 115 time units.
The third row of results shows that with a bigger periodic

domain, the collision time is more similar to that of the
isolated case. This is because the potential wells of the
cores of neighboring domains along the x direction are
further away from the binary system.
Case C shows a more significant contribution of the

boundary conditions. Instead of being pulled towards each
other, the two solitons are pulled by their equivalent

counterparts from the neighboring domains along the x
direction. The results are presented in Fig. 12. It is worth
noting that in the isolated scenario, the solitons collide
frontally, whereas in the periodic domain, they collide from
“behind,” as evidenced by the linear momentum, which is
positive for x > 0 and negative for x < 0. This indicates
that initially they are moving apart from each other.

D. Merger in orbit

This is a case where the collision between two solitons
has orbital angular momentum. We present an illustrative
example for the initial conditions with the solitons centered
at ð−10; 10; 0Þ and ð10;−10; 0Þ and initial velocities vx0 ¼
0.1 and −0.1, respectively. We evolve the system in the
domain D ¼ ½−40; 40�3 using isolated boundary condi-
tions, and domains D ¼ ½−20; 20�3 and ½−40; 40�3 using
periodic boundary conditions.
As observed in previous studies such as [13,49], when

the system is isolated, a significant portion of matter and
angular momentum is radiated away. However, using a
periodic domain allows for the reentry of matter and
angular momentum, which can then combine with the
binary system. Figure 13 displays snapshots of isocontours
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FIG. 11. Case B. From top to bottom: results for the isolated
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at initial time along the x axis, in order to illustrate its local
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of the density jΨj2 at times t ¼ 0, 100, 200, 300, 400, and
500, from left to right, respectively.
At the top of the figure, we show the results using the

isolated domain, indicating how the final configuration
rotates and remains stable. In the middle row, we present
snapshots of the evolution with periodic boundary con-
ditions in the small domain. This can be ideally seen as an
infinite network of equilibrium configurations, where the
symmetry of the system and the domain size make the sum

of the external forces near zero, leaving only the equilib-
rium configurations in uniform rectilinear motion, which is
ideally eternal. This can be seen similarly to the boosted
configuration presented in the Appendix. In the bottom
row, we present snapshots of the density in the large
periodic domain, which illustrates how the periodicity of
the system enables the high kinetic energy matter expelled
during the merger to reenter and spread throughout the
entire domain, ultimately leading to the formation of tail
profiles. Notably, in both the isolated and periodic boun-
dary condition cases for the domain D ¼ ½−40; 40�3, a
single density distribution forms at the origin of coordi-
nates, with its averaged profile along the x axis shown in
Fig. 14. This profile is well fitted by the core profile (19).
Figure 15 shows the diagnostics for this system. The

mass as a function of time indicates that in the periodic
domain, the mass is conserved, while in the isolated case,
there is a mass loss of approximately 28% radiated out of
the domain. Additionally, in the isolated domain, the
angular momentum is carried out of the domain with the
matter, while in the periodic domain, the reentrance is
noticeable in the small domain. However, we do not
observe any trend of Lz in terms of the domain size.

FIG. 13. Snapshots of the density level curves jΨj2 at times
t ¼ 0, 100, 200, 300, 400, and 500 for isolated boundary
conditions in the domain D ¼ ½−40; 40�3 (top), periodic boun-
dary conditions in the domains D ¼ ½−20; 20�3 (middle), and
D ¼ ½−40; 40�3 (bottom).
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E. Merger of multiple cores

We investigate a final, more complex problem related
to core formation. Drawing inspiration from previous
studies [13,17,50,51], we simulate the merger of 30
equilibrium configurations with an ultralight bosonic mass
of mB ¼ 10−22 eV=c2. These equilibrium configurations
have random masses ranging from 2.6 × 108M⊙ to 26 ×
108M⊙ and are initially positioned randomly within a cube
of side length 30 kpc, enabling comparison between the
periodic and isolated boundary conditions. In the periodic
domain case, we evolve the system in both a small cubic
domain and a large cubic domain, with sides of 80 and
100 kpc, respectively. We use the same random initial
positions, configurations, and resolution in both cases,
allowing us to isolate the effects of domain size on the
dynamics of the system.
The results are summarized in Fig. 16. On the left/right

we show results obtained from simulations on the small/big
domain. At the top we show some snapshots of the density
projected on the x axis that show the dynamic behavior and
interference patterns that change with time. In the mid row
we show a snapshot of density in three dimensions, at a

time when the core is already formed. Finally, we calculate
an average of the density in time and along various
directions from the center of the core, in order to fit the
core-tail structure that we show in the third row. The core is
fitted using the function (19), using two methods. In the
first method we fit the core with rc and ρ0;core as free
parameters, the best fittings obtained with (rc ∼ 0.228 kpc,
ρ0;core∼2.42×109M⊙=kpc3) and (rc ∼ 0.223 kpc, ρ0;core ∼
2.51 × 109 M⊙=kpc3) in the small and big domains,
respectively, drawn with the blue line. The second method
enforces the scaling relationMrc ∼ constant to hold, which
implies a constraint on the two free parameters; in this
case the fitting parameters are (rc ∼ 0.311 kpc, ρ0;core ∼
2.13 × 109 M⊙=kpc3) and (rc ∼ 0.309 kpc, ρ0;core ∼
2.19 × 109 M⊙=kpc3) in the small and big domains,
respectively, whose profiles are represented with red lines.
Finally, the tail is fitted with the NFW profile [23]

ρtail ¼
ρ0;tail

r
Rs
ð1þ r

Rs
Þ2 ð20Þ

with fitting parameters ρ0;tail ∼ 4.6525 × 105 M⊙=kpc3,
Rs ∼ 7.473 kpc for the small domain and ρ0;tail ∼
3.3 × 105 M⊙=kpc3, Rs ∼ 8.67 kpc for the big domain.
The simulation lasts ∼12.7 Gyr, a time window within
which none of the configurations have yet virialized, which
explains why in the periodic domain case the Mrc ∼
constant constraint is not yet satisfied, e.g., as expected
according to [51].
For comparison, we simulate this scenario using iso-

lation conditions, where gravitational cooling is expected to
drive the configuration toward an equilibrium solitonic
profile in asymptotic time. We use the same numerical
parameters as the periodic boundary simulation, with a
domain of side 80 kpc and 30 solitons initially distributed
in a box of side 30 kpc around the center of the domain. The
results are summarized in Fig. 17, which includes a few
snapshots of the density along the x axis, illustrating the
concentration of density restricted by the presence of the
sponge. Additionally, a volume view of the snapshots
highlights the density concentration and the solitonic
density profile.
The fitting parameters for the averaged core density

profile in Eq. (19) using the first method with the
two fitting parameters free are (rc ¼ 2.64 kpc; ρ0;core ¼
4.74 × 105 M0=kpc3), whereas using the second method
gives (rc ¼ 2.54 kpc; ρ0;core ¼ 4.81 × 105 M0=kpc3) when
enforcing the condition Mrc ∼ constant. Notice that unlike
the periodic domain, in this case the fitting profiles are very
similar as illustrated with blue and red curves in the bottom
of Fig. 17. Finally, for completeness the parameters of a tail
with the NFW profile are ρ0;tail ∼ 1.74 × 105 M⊙=kpc3,
Rs ∼ 6.26 kpc.

10
100

1000
10000

100000
1×1006

1×1007

1×1008

1×1009

1×1010

1×1006

1×1007

1×1008

1×1009

1×1010

-40 -30 -20 -10 0 10 20 30 40

|�
|2 M

0/
kp

c3

x(kpc)

10
100

1000
10000

100000

-40 -30 -20 -10 0 10 20 30 40

|�
|2 M

0/
kp

c3

x(kpc)

1000

10000

100000

0.1 1 10

� |
�

|2  � t
 (M

0 
/k

pc
3 )

r(kpc)

spatial and temporal avg
core fit 1
core fit 2

tail fit

1000

10000

100000

1×1006

1×1007

1×1008

1×1009

1×1010

0.1 1 10

� |
�

|2  � t
 (M

0/
kp

c3 )

r(kpc)

spatial and temporal avg
core fit 1
core fit 2

tail fit

1×1006

1×1007

1×1008

1×1009

1×1010

FIG. 16. On the left/right we show results for the small/big
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This simulation illustrates the dynamics of gravitational
cooling in 3D from initial conditions that are far from
spherically symmetric. Previous work (see, e.g., [22])
demonstrated that when initial conditions are spherically
symmetric, gravitational cooling drives the configuration
asymptotically towards the equilibrium ground-state sol-
ution of the solitonic core, with a density profile that drops
steeply outside the core. Some nonsphericities were found
to be expelled, as well, in simple axisymmetric scenar-
ios [52]. As a result, it has been hypothesized that the
solitonic core corresponding to the ground state is the
attractor solution for a wider range of initial conditions, as
long as gravitational cooling is permitted to occur and the

system is allowed to evolve for a sufficient period to reach a
state of relaxation.
Our simulation here represents an attempt to demonstrate

this explicitly, in 3D, from initial conditions that depart
strongly from spherical symmetry, with control of gravi-
tational cooling implemented via the isolating effects of the
sponge boundary conditions. While the simulated time of
order 12.7 Gyr is not long enough to allow the system to
complete its relaxation to the asymptotic state of the
ground-state solution, it is clearly moving in that direction
over time. By contrast, when the same initial configuration
was simulated with periodic BCs, with no sponge to absorb
the mass and energy expelled by gravitational cooling, the
density profile is fit by a solitonic core surrounded by a
power-law envelope or tail. Even though it is not fully
relaxed by the final time slice, the isolated case (i.e. with
sponge) already shows a solitonic core surrounded by a
profile that drops sharply toward large radius, much more
steeply than in the case with periodic BCs.

V. CONCLUSIONS

This paper presents a comparison of the dynamics of
FDM cores under different scenarios, utilizing both iso-
lation and periodic boundary conditions.
Our analysis has yielded several observations for each

scenario. In the simplest scenario, which involves the
evolution of a ground-state equilibrium configuration of
the SP system, we observed some distinct differences.
Under periodic domain conditions, the density outside of
the core, which decays exponentially, is redistributed into a
nearly constant profile. Conversely, when using a sponge in
the isolated domain, the density is forced to vanish near the
boundary faces.
Our study demonstrates that the 3D dynamical relaxation

of a Gaussian density fluctuation near equilibrium results in
the formation of a solitonic core, similar to the previously
derived 1D spherical symmetry ground-state equilibrium
solution under isolated boundary conditions. However,
notable differences emerge beyond the core, particularly in
the tail zone.Under isolated domain conditions, the density in
the tail decays exponentially with radius, while a nearly
constant profile is observed when using a periodic domain.
Significant differences can be observed in the head-on

merger of two configurations, particularly when solving the
equations in a network of infinitely replicated configura-
tions. In the most extreme case, a collision may occur
through the back door of the domain.
During a merger of two orbiting configurations under

periodic boundary conditions, it is possible that the merger
may never occur. Additionally, the resulting configuration
from a merger with angular momentum exhibits a tail with
a density profile that is neither constant nor exponential, but
rather polynomial. Notably, this configuration is connected
and not fragmented, in contrast to those obtained from
multimergers of cores and structure formation scenarios.

1

10

100

1000

10000

100000

1×1006

-40 -30 -20 -10 0 10 20 30 40

|�
|2 M

0/
kp

c3

x(kpc)

100

1000

10000

100000

1×1006

0.1 1 10

� |
�

|2  � t
 (M

0 
/k

pc
3 )

r(kpc)

spatial and temporal avg
core fit 1
core fit 2

tail fit

FIG. 17. Top: Snapshots of the density along the x axis that
illustrate how localized the density is. Middle: Three dimensional
view of the density that shows the concentration of matter
inside the sponge region. Bottom: Density profile and its
comparison with fittings at core and tail regions; notice that
the core fittings agree.
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Lastly,we simulated the free-fall evolution of several cores
to reproduce the formation of a structure with a core-tail
density profile. Our simulations were conducted under both
periodic boundary and isolation conditions, and we exam-
ined the effects of domain size on the density distribution. In
the periodic domain,weobserved that cores exhibited similar
fitting parameters for two different box sizes, while the tail
distribution varied. In contrast, under isolated conditions, we
confirmed that there was virtually no tail.
The question of whether one BC choice is better or more

realistic than the other is problem specific. The isolating
BCs are perhaps most realistic when the object that forms
is, itself, physically isolated from other objects and from
infall of additional mass, so that its mass is no longer
increasing by merger or infall—leaving it free to expel
mass and energy to infinity, therefore, in the process of
gravitational cooling, with plenty of time for it to reach the
asymptotic equilibrium. The periodic BCs, on the other
hand, are most realistic when the opposite is occurring, that
of objects that form by continuous mergers and mass
assembly that is ongoing, so it prevents the free escape
of mass and energy to infinity.
Our findings illustrate the quantitative impact of domain

size on simulation results using periodic boundary con-
ditions. These effects are worth evaluating in future studies
of various astrophysical scenarios, as they can introduce
uncertainties to numerical results.
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APPENDIX: TESTS OF PERIODIC
BOUNDARY CONDITIONS

As a test of the correct implementation of periodic
boundary conditions we evolve a boosted equilibrium
configuration with initial speed vx0 ¼ 1, located initially
at the center of the domain. When using a periodic domain
the configuration should eternally travel crossing the
domain periodically. There is no point of comparison
between isolated and periodic domains for this scenario,
nevertheless it turns out to be a good test for the imple-
mentation of periodic conditions.
In Fig. 18 we show the density jΨj2 along the x axis at

various times. The pulse travels from left to right, exits
through the right end and reenters from the left as a result of
the periodic domain. We also show the change of the total
mass and energy with respect to its initial value, and see
that both quantities are conserved with good precision,
where the energy is the most dissipated one, in less than
0.05% during 50 crossing times.
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