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This paper presents and investigates non-Gaussian perturbations for the warm k-inflation model that is
driven by pure kinetic energy. The two complementary components of the overall non-Gaussianity are the
three-point and four-point correlations. The intrinsic non-Gaussian component, denoted as the nonlinear
parameter fintNL, is rooted in the three-point correlation for the inflaton field. Meanwhile, the δN part
non-Gaussianity, denoted as fδNNL, is the contribution attributed to the four-point correlation function of the
inflaton field. In this paper, the above two components in warm k-inflation are individually computed and
analyzed under the condition that the dissipative coefficient in warm inflation is temperature independent.
Then, comparisons and discussions between them are conducted, and the non-Gaussian theoretical results
are compared with experimental observations to determine the range of model parameters within the
allowable range of observation.
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I. INTRODUCTION

The inflationary model is the most appealing for explain-
ing issues of the standard cosmology model such as
horizon, flatness, and monopole puzzles. The dominant
inflationary models have been categorized into two para-
digms via the previous study. In the first paradigm, which
is called cold inflation, the inflationary field diminishes
potential and swiftly drives the universe toward the
supercooling phase. To solve the “graceful exit” problem,
there must be a reheating period to bring the universe back
to a radiation-dominated phase at the end of inflation [1–3].
Warm inflation is the other paradigm, and in this paradigm,
there is no reheating phase during warm inflation because
radiation is continuously produced by interactions of the
inflaton field with several other subdominant boson or
fermion fields. The universal expansion exits gracefully,
and the radiation energy density becomes dominant
smoothly when the inflation ends [4–8].
The most general inflationary scenarios are based on

the potential energy for the scalar field, in which the
potential energy outweighs the dynamic energy and causes
the universe to grow quasi-exponentially. However,

Mukhanov first proposed the “k-inflation” model that is
driven by kinetic energy terms for a scalar field ϕ [9].
In string theory, nonstandard kinetic components are
studied based on the existence of higher-order corrections
to the effective action of the scalar field. So, the k-inflation
picture introduces novel mechanics to the inflation model.
The k-inflation model has been generalized to warm
inflation in our previous work [10,11]. The standard
potential-driven warm inflation theory has been extended
to a warm k-inflationary case including cosmological
perturbations [11]. In addition, there are some kinds of
new and more effective warm inflationary theories pro-
posed recently [12,13]. A warm inflationary scenario
can have interesting features to construct a unifying
picture of very early inflation with dark matter or dark
energy [14–16]. From many different warm inflationary
cases, it can be concluded that there are large differences
among different theories of warm inflation perturbations,
which incorporate strong and weak regimes [17–19].
Calculating the two-point correlation function is a

method to distinguish different inflation models, where
two-point correlation statistical information is reflected by
the power spectrum. However, the statistical information
is limited in the power spectrum, so it cannot distinguish
these models more effectively. Therefore, bispectral and
non-Gaussian measurements that distinguish various infla-
tion models become necessary and receive much attention
[20,21]. When analyzing inflation models, non-Gaussianity
is usually an important consideration. The Gaussian term is
dominated in inflationary perturbations; i.e., the dominant
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term for slow roll inflation fluctuations deviates marginally
from the pure Gaussian term. Gaussianity dominates the
primordial curvature perturbations [22,23]. The three-point
function and its Fourier transform, i.e., the bispectral
representation, has the leading statistics ability to differ-
entiate between non-Gaussian and Gaussian perturbations.
The topic of non-Gaussianity in warm inflation has been
studied in several scenarios, such as a general type of
canonical and noncanonical warm inflation, and strong
or weak dissipative regimes [24–28]. In recent years,
numerous studies have investigated the primordial non-
Gaussianity generated by warm inflationary models, but the
research on non-Gaussianity in the warm k-inflationary
case is still blank, which is the aim of this paper.
This paper provides the theory of non-Gaussianity in

warm k-inflation under the condition that the dissipative
coefficient Γ is phenomenologically independent of temper-
ature. First, the dynamical equations of warm k-inflation for
the flat Friedmann-Robertson-Walker (FRW) background
are introduced. Typically, the observation limit of the non-
linear parameter fNL is established to estimate the non-
Gaussian level. Second, two complementary parts of the
non-Gaussianity are discussed. The first one is the three-
point correlation, which is presented from the field self-
interaction and can be calculated by solving slow roll
perturbation equations. The other one is the four-point
correlation function, which can be derived using the δN
formalism. Particularly, in the case of multiple inflation,
the non-Gaussianity can be calculated conveniently using
the δN form [29,30]. In this paper, the δN formalism is
first introduced for calculating non-Gaussianity in warm
k-inflation, and then the δN part non-Gaussianity is
computed.
The rest of this paper is organized as follows: In Sec. II,

the warm k-inflation model and its fundamental equations
are introduced. In Sec. III, the δN formalism is applied to
compute the non-Gaussianity produced by the four-point
correlation, and the non-Gaussianity in the three-point
correlation function is computed. Finally, in Sec. IV, the
total results and discussions are obtained.

II. THE FRAMEWORK OF WARM k-INFLATION

Since the universe was built from multiple components
during warm inflation, the total matter action can be
represented as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½LðX;ϕÞ þ Lγ þ Lint�; ð1Þ

where g denotes the metric determinant, X ¼ 1
2
gμν∂μϕ∂νϕ,

LðX;ϕÞ denotes the Lagrangian density in the inflaton
field, Lγ denotes the Lagrangian density in the radiation
field, and Lint describes the inflaton field interacting with
other fields.

The warm k-inflation model that was employed
originally is [9]

L ¼ KðϕÞX þ LðϕÞX2 þ � � � : ð2Þ

By redefining

ϕnew ¼
Z

dϕoldL
1
4ðϕoldÞ; ð3Þ

where the ϕold and LðϕoldÞ mean the inflaton field and the
Lagrangian density in Eq. (2). We can rewrite the Lagrangian
density Eq. (2) in a simpler and more concise form as

L ¼ KnewðϕnewÞXnew þ X2
new: ð4Þ

In the following, the new field is used without the subscript
“new” for convenience. The KðϕÞ in the equation above is
called the “kinetic function,”, which is the function of the
inflaton field ϕ.
Because of the redefined ϕ in our pure kinetic warm

inflationary model, ϕ does not have the usual dimension
of mass, and the major parameters in the model lack the
traditional dimension of the canonical warm inflation.
The inflaton field is dimensionless, and the dimensions
of the corresponding major parameters are given as follows:

½ _ϕ� ¼ ½m�; ½X� ¼ ½m�2; ½KðϕÞ� ¼ ½m�2;
½Γ� ¼ ½m�3; ½r� ¼ ½m�2: ð5Þ

The quantity Γ in the equation above is the dissipative
coefficient in warm inflation which can describe the
thermal dissipation of the inflaton field to radiation,
and r is the dissipative strength parameter describing the
strength of the thermal dissipative effect, defined as r ¼ Γ

3H.
Then, the Lagrangian density in the pure kinetic inflaton
field can be simply expressed as in [9,10]

LðX;ϕÞ ¼ KðϕÞX þ X2: ð6Þ

A fluid with the energy-momentum tensor can appro-
priately characterize the inflaton field in an FRW universe
with a flat spatial structure:

Tϕ
μν ¼ ðρϕ þ pϕÞuμuν − pϕgμν; ð7Þ

where ρϕ, pϕ and uμ, and uν denote the energy density,
pressure, and four-velocity for the inflaton field, respec-
tively. The energy momentum of the inflaton field is
determined by varying the action for the inflaton field
relative to the metric,

Tϕ
μν ¼ 2ffiffiffiffiffiffi−gp δSϕ

δgμν
¼ LX∂μϕ∂νϕ − gμνLðX;ϕÞ; ð8Þ
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where LX represents a Lagrangian partial derivative of
LðX;ϕÞ with respect to X. Then we have

ρϕ ¼ 2XLX − L ¼ KðϕÞX þ 3X2; ð9Þ

pϕ ¼ L ¼ KðϕÞX þ X2; ð10Þ

and

uμ ¼ σ
∇μϕffiffiffiffiffiffi
2X

p ; ð11Þ

where σ denotes the sign of _ϕ (i.e., when _ϕ > 0, σ ¼ 1;
otherwise, σ ¼ −1).
In the warm k-inflation, the major dynamical equations

are given by [10]

H2 ¼ 1

3M2
P
ðρϕ þ ργÞ ¼

1

3M2
P
ρ; ð12Þ

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ −Γ _ϕ2; ð13Þ

_ργ þ 4Hργ ¼ Γ _ϕ2; ð14Þ

where M2
p ≡ ð8πGÞ−1, ρ is the total energy density of the

universe, and ργ denotes the energy density for radiation.
The dissipative coefficient Γ phenomenologically describes
the decay of the inflaton field ϕ via the interaction
Lagrangian Lint during the inflationary phase. The
dimension of Γ is different from that in canonical warm
inflation as we stated in Eq. (5). The dissipative coef-
ficient Γ in our manuscript thus has a different functional
form from that in the canonical warm inflation. The
specific functional form of Γ depends on the concrete
microphysical interactions between inflaton and other
subdominated fields in the warm k-inflationary scenario,
which we will concentrate on our later research. In
principle, Γ _ϕ2 is a proper approximation for the energy
dissipated by the inflaton field ϕ into a thermalized
radiation bath. And we have checked the assumption is
self-consistent in our previous work [10].
Since the inflaton field and radiation are the dominant

components of the universe during inflation, the total
energy density ρ and pressure p are represented as

ρ ¼ KðϕÞX þ 3X2 þ ργ ð15Þ

and

p ¼ KðϕÞX þ X2 þ 1

3
ργ: ð16Þ

This paper considers a homogeneous background scalar
field, so we have X ¼ 1

2
_ϕ2. The motion equation for the

inflaton field can be determined by varying the action

function and considering the thermal damped effect in the
warm inflationary scenario:

ð3 _ϕ2 þ KÞϕ̈þ 3Hð _ϕ2 þ K þ rÞ _ϕþ 1

2
Kϕ

_ϕ2 ¼ 0; ð17Þ

where Kϕ is a derivative of ϕ.
Because of the difficulty of solving the exact model

through Eqs. (12), (14), and (17), a slow roll approximation
is frequently used. A stability analysis was conducted to
confirm the slow roll situation for the dynamical systems
staying near the quasi-exponential inflationary attractor for
a significant number of Hubble times [10]. The conditions
of a slow roll are

ϵ ≪ 1; jηj ≪ LX

ðLX þ rÞc2s
; jbj ≪ 1;

jcj < 4;
rc2s
LX

≪ 1 − 2c2s ; ð18Þ

where the parameters in the above equations are defined as

ϵ ¼ Kϕ
_ϕ

HK
; η ¼ Kϕϕ

_ϕ

HKϕ
; b ¼ Γϕ

_ϕ

HΓ
;

c ¼ TΓT

Γ
; c2s ≃

_p
_ρ
¼

_ϕ2 þ K

3 _ϕ2 þ K
< 1: ð19Þ

In the parameter definitions, the subscripts represent the
partial derivative of the quantities for the inflaton field or
temperature, while the dot represents the time derivative
of quantities. Besides, quasi-exponential warm k-inflation
proves that the term _ϕ2 þ K þ r represents a small positive
quantity, and _ϕ2 and jKðϕÞj have the same order [10].
Then, the energy density of the inflaton field is on the order
of 1

4
jKj _ϕ2, i.e., ρϕ ∼ 1

4
jKj _ϕ2, and the inflationary period

now enters the slow roll phase and has surpassed the
radiation period, i.e., ργ < ρϕ. Thus, the Friedmann equa-
tion (12) can be reduced to

H2 ≃
1

3M2
P

�
1

4
jKj _ϕ2

�
: ð20Þ

Then, based on the slow roll approximations and guaran-
teed by the slow roll conditions during the inflation [10,31],
Eq. (17) can be rewritten as

6Hð _ϕ2 þ K þ rÞ ≃ −Kϕ
_ϕ; ð21Þ

where the dissipative strength of the model is determined
by the dissipative strength parameter r. In the weak
dissipation regime (r ≪ LX), the background dynamical
evolution in the inflaton field is not affected by dissipation
because it is too weak. However, the field fluctuations will
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be modified by the thermal variations in the radiation
energy density, which will also affect the primordial
spectrum of perturbations. In the strong dissipation regime
(r ≫ LX), the background dynamics and fluctuations will
be dominated by thermal dissipation, making it simpler to
satisfy slow roll conditions.
Generally, this paper considers radiation production to

be quasistable, i.e., _ργ ≪ 4Hργ . The density of radiation
represented thus is

ργ ¼ κT4 ≃
3

4
r _ϕ2; ð22Þ

where κ is the Stefan-Boltzmann constant and T is the
temperature of the thermal bath. Based on Eqs. (19), (20),
and (21), the relationship between ργ and ρϕ is obtained:

ργ ¼
r

2ðLX þ rÞ ϵρϕ; ð23Þ

where LX ¼ _ϕ2 þ K. The following condition explains the
epoch during which warm k-inflation takes place:

ρϕ ≫
2ðLX þ rÞ

r
ργ: ð24Þ

In contrast, inflation ceases when the universe reaches a
phase dominated by radiation, and this occurs when ϵ ≃ 1,
indicating ρϕ ≃

2ðLXþrÞ
r ργ at the end of inflation. The

number of e-folds of inflation is given by

N ¼
Z

te

ti

Hdt ¼
Z

ϕe

ϕi

H
_ϕ
dϕ ≃

σ

2
ffiffiffi
3

p
Mp

Z
ϕe

ϕi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−KðϕÞ

p
dϕ;

ð25Þ

where ϕi is the initial value of the inflaton field and ϕe is
the final value.

III. THE NON-GAUSSIANITY IN WARM
k-INFLATION

Non-Gaussianity in warm k-inflation is comprised of
two complementary elements: the δN component and
the intrinsic component. These two components are now
determined separately.

A. The δN part non-Gaussianity

The δN formalism is often used to compute the non-
Gaussian property of multifield inflation, which can be
found in numerous works [32–34]. According to cosmo-
logical observations, the primordial curvature perturbation,
denoted as ζ, is a Gaussian dominated term with a nearly
scale-invariant spectrum.
The expansion Nðt;xÞ≡ ln½ ãðtÞaðtinÞ� from any beginning

flat slice at time tin to a final slice can be described with

uniform energy density, where ãðt;xÞ is the locally defined
scale factor. As δN formalism suggests [32,33,35], and
considering that the curvature perturbation ζ is almost
Gaussian, we have

ζðt;xÞ ≃ δN ¼ Nðt; ti; xÞ − Nðt; tiÞ: ð26Þ

For good accuracy, δN can perform series expansion of the
initial scalar field,

δN ¼ N;Iδϕ
I þ 1

2
N;IJδϕ

IδϕJ þ � � � ; ð27Þ

where N;I ≡ ∂N
∂ϕI and N;IJ ≡ ∂

2N
∂ϕI

∂ϕJ. In the equation above,

the items above the second order are omitted. Finally, the
two-point correlation function and three-point correlation
function could be stated in the form of δN:

Pζ ¼ δIJN;IN;JPϕ� ð28Þ

and

hζðk1Þζðk2Þζðk3Þi
¼ N;IN;JN;KhδϕIðk1ÞδϕJðk2ÞδϕKðk3Þi

þ 1

2
N;IN;JN;KLhδϕIðk1ÞδϕJðk2ÞðδϕK⋆ δϕLÞðk3Þi

þ perms; ð29Þ

where ⋆ represents convolution and the expanded high-
order term is not written down. Now, this paper introduces
the nonlinear parameter fNL describing the non-Gaussian
level, and they stand for observational limits. The power
spectrum and bispectrum for curvature perturbation are
defined as

hζðk1Þζðk2Þi≡ ð2πÞ3δ3ðk1 þ k2Þ
2π2

k31
Pζðk1Þ ð30Þ

and

hζðk1Þζðk2Þζðk1Þi≡ ð2πÞ3δ3ðk1 þ k2 þ k3ÞBζðk1; k2; k3Þ;
ð31Þ

where PζðkÞ≡ k3

2π2
PζðkÞ.

The bispectrum can be expressed as

Bζðk1; k2; k3Þ ¼ −
6

5
fNL½Pζðk1ÞPζðk2Þ þ cyclic�: ð32Þ

During our warm k-inflationary model, only one inflaton
field is relevant, so the relation Eq. (27) is reduced to

ζðt; xÞ ¼ Nϕδϕþ 1

2
NϕϕðδϕÞ2: ð33Þ
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Thus, the general δN part nonlinear parameter for our
model can be described as

−
3

5
fδNNL ¼ 1

2

Nϕϕ

N2
ϕ

: ð34Þ

The term fδNNL is scale independent and can be obtained
by Eq. (34). Inflation observations are computed at the time
of the horizon crossing. Since the horizon crossing occurs
within the region of slow roll inflation, it is appropriate to
compute the δN part nonlinear parameter fδNNL using slow
roll approximations.
Considering the conditions of the slow roll, we have

Nϕ ¼ σ

2
ffiffiffi
3

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−KðϕÞ

p
; ð35Þ

and from Eq. (35), we have

Nϕϕ ¼ −
σ

4
ffiffiffi
3

p
Mp

½−KðϕÞ�−1
2Kϕ: ð36Þ

In terms of − 3
5
fδNNL ¼ 1

2

Nϕϕ

N2
ϕ
, one can obtain

fδNNL ¼ 5

6

σ
ffiffiffi
3

p
MpKϕ

ð−KÞ32 ¼ −
5

12
σϵ; ð37Þ

where ϵ ¼ Kϕ
_ϕ

HK is a slow roll parameter. Thus, we have
fδNNL ≪ 1.
As suggested by the slow roll conditions in warm

k-inflation, the amplitude of δN-form non-Gaussianity is
not distinct in the slow roll regime. Then it can increase
slightly accompanying the inflation for the universe. Given
that the δN form non-Gaussianity is insufficiently large,
using this part to show the whole non-Gaussianity caused
by inflation is not enough and is not safe and complete, as
some studies have shown [10,36]. In this case, calculating
the intrinsic non-Gaussianity produced by the three-point
correlation functions of the inflation field is essential.

B. The intrinsic part non-Gaussianity

Compared with cold inflation, warm inflation fluctua-
tions are generated mainly by thermal fluctuations. In warm
k-inflation, only one scalar field plays the role of inflaton.
When small perturbations are considered, the full inflaton
field can be extended as Φðx; tÞ ¼ ϕðtÞ þ δϕðx; tÞ, where
δϕ is the usual perturbation field surrounding the homo-
geneous background field ϕðtÞ.
To get analytic results, we concentrate on the temper-

ature independent case; i.e., Γ is a constant or Γ ¼ ΓðϕÞ.
We treat the perturbations in spatially flat gauge ζ ¼ H

_ϕ
δϕ

and consider that the dissipative coefficient Γ is indepen-
dent on temperature. Under these conditions, the inflaton

fluctuations and radiation fluctuations are decoupled
[19,37]. And considering that when the thermal dissipation
effect is not strong (even a very weak dissipation effect
can result in a warm inflation T > H), the radiation source
term can be neglected and the comoving curvature pertur-
bation Rk is adiabatic [11], so the analytic calculations of
bispectrum can be performed in the following.
Horizon crossing occurs deeply inside the slow roll

regime, and the observations of inflation are calculated
at this time. In the warm k-inflation, due to the enhance-
ment of the Hubble and thermal damped terms, the inflation
evolution is overdamped inside the slow roll regime. The
motion of the entire field perturbation can be explained by
introducing random thermal noise ξ [11]:

LXc−2s δϕ̈kðtÞ þ 3HðLXc−2s þ rÞδ _ϕkðtÞ þLX
k2c
a2

δϕkðtÞ ¼ ξk;

ð38Þ
where ξ in the equation above is a white noise term
in a thermal system with zero mean hξi ¼ 0 and two-
point correlation relation hξðk; tÞξðk0; t0Þi ¼ 2ΓTð2πÞ3×
δ3ðk − k0Þδðt − t0Þ with respect to the fluctuation-
dissipation theorem [38]. The equation above is known
as the Langevin equation, and it is used to describe
the interaction between a scalar field and radiation. In
the equation above, kc is the comoving wave number.
Guaranteed by the conditions of slow roll, the inertia term
δϕ̈k is usually omitted to simplify the perturbation calcu-
lations [38,39].
To calculate δϕ, we expand δϕ to second-order δϕ ¼

δϕ1 þ δϕ2, where δϕ1 ¼ OðδϕÞ and δϕ2 ¼ Oðδϕ2Þ.
Consequently, the evolution equation of the first- and
second-order perturbation field in the Fourier space can
be obtained:

dδϕ1ðk; tÞ
dt

¼ 1

3Hð6X þ K þ rÞ ½−LXk2δϕ1ðk; tÞ þ ξðk; tÞ�

ð39Þ
and

dδϕ2ðk; tÞ
dt

¼ 1

3Hð6X þ K þ rÞ
�
−LXk2δϕ2ðk; tÞ

− k2LXϕ

Z
dp3

ð2πÞ3 δϕ1ðp; tÞδϕ1ðk − p; tÞ

− k2LXX

Z
dp3

ð2πÞ3 δϕ1ðp; tÞδX1ðk − p; tÞ
�
:

ð40Þ
The quantity X1 in the above equation can be obtained by

δX1 ¼ _ϕδ _ϕ1 ¼
ffiffiffiffiffiffi
2X

p d
dt

δϕ1; ð41Þ

PRIMORDIAL NON-GAUSSIANITY IN THE WARM … PHYS. REV. D 107, 123521 (2023)

123521-5



where k is the physical wave number, k≡ kP ¼ kc
a (kc represents the comoving momentum, kp represents the physical

momentum, and k ¼ jkj).
Considering the slow variation of X, K, and r in the slow roll regime, we will ignore the time variation of them during the

time interval t0 ∼ t as in paper [38]. Then we can get the approximate analytic solutions by solving the evolution equations

δϕ1ðk; tÞ ¼
1

3Hð6X þ K þ rÞ exp
�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
� Z

t

t0

dt0 exp
�

LXk2

3Hð6X þ K þ rÞ ðt
0 − t0Þ

�
ξðk; t0Þ

þ δϕ1ðk; t0Þ exp
�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
�

ð42Þ

and

δϕ2ðk; tÞ ¼ exp

�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
� Z

t

t0

dt0 exp
�

LXk2

3Hð6X þ K þ rÞ ðt
0 − t0Þ

�

×

�
Aðk; t0Þ

Z
dp3

ð2πÞ3 δϕ1ðp; t0Þδϕ1ðk − p; t0Þ þ Bðk; t0Þ
Z

dp3

ð2πÞ3 δϕ1ðp; t0Þξðk − p; t0Þ
�

þ δϕ2ðk; t0Þ exp
�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
�
: ð43Þ

The parameters Aðk; tÞ and Bðk; tÞ appear in the equation above as

Aðk; tÞ ¼ −
1

3Hð6X þ K þ rÞ
�
k2LXϕ þ k2LXX

ffiffiffiffiffiffi
2X

p
k2LX

3Hð6X þ K þ rÞ
�

ð44Þ

and

Bðk; tÞ ¼ −
LXXk2

ffiffiffiffiffiffi
2X

p

½3Hð6X þ K þ rÞ�2 : ð45Þ

Based on Eq. (42), a characteristic parameter τðϕÞ ¼
3HðLXc−2s þrÞ

LXk2
can be defined to describe the efficiency of the

thermalizing process. It is found that a larger k2 indicates a
faster relaxation rate. If the k2 of one of the fields Φðx; tÞ is
large enough to relax within a Hubble time, the mode can
be thermal. When the physical wave number kp of the
corresponding Φðx; tÞ mode is smaller than the freeze-out
physical wave number kF, it is no longer affected by

thermal noise ξk during a Hubble time. Based on the

condition τðϕÞ ¼ 3HðLXc−2s þrÞ
LXk2

¼ 1
H, the freeze-out momen-

tum kF could be given by

kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3H2

c2s

�
1þ rc2s

LX

�s
: ð46Þ

As previously stated, the first-order inflaton perturbation
δϕ1 is a pure Gaussian field, and their bispectrum vanishes
due to their statistical stochastic features. To calculate non-
Gaussianity, the bispectrum resulting from two first-order
and one second-order fluctuations should have the highest
order. Then we have

hδϕðk1; tÞδϕðk2; tÞδϕðk3; tÞi

¼ exp

�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
� Z

t

t0

dt0 exp
�

LXk2

3Hð6X þ K þ rÞ ðt
0 − t0Þ

�
½Aðk; t0Þ

Z
dp3

ð2πÞ3

× hδϕ1ðk1; tÞδϕ1ðk2; tÞδϕ1ðp; t0Þδϕ1ðk3 − p; t0Þi þ Bðk; t0Þ
Z

dp3

ð2πÞ3 hδϕ1ðk1; tÞδϕ1ðk2; tÞδϕ1ðp; t0Þξðk3 − p; t0Þi�

þ exp

�
−

LXk2

3Hð6X þ K þ rÞ ðt − t0Þ
�
hδϕ1ðk1; tÞδϕ1ðk2; tÞδϕ2ðk3; t0Þi þ ðk1 ↔ k3Þ þ ðk2 ↔ k3Þ: ð47Þ
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The bispectrum amplitude is determined when the cosmic
scale departs the horizon. There are about 60 e-folds until the
end of the inflation, and k1, k2, and k3 are crossing the
horizon all within a few e-folds. kF > H is deduced from
the expression of kF in the warm k-inflationary model.
This indicates the correlations in our model, known as the
thermalized correlations, which should be calculated at the
crossing of the Hubble horizon k ¼ H, are determined at an

earlier freeze-out period k ¼ kF [38,40,41]. Thus, the
duration between corrections can be calculated by

ΔtF ¼ tH − tF ≃
1

H
ln
�
kF
H

�
: ð48Þ

The bispectrum can then be reduced to

hδϕðk1; tÞδϕðk2; tÞδϕðk3; tÞi

≃ 2AðkF; tFÞΔtF
�
dp3

ð2πÞ3 hδϕ1ðk1; tÞδϕ1ðk1; pÞihδϕ1ðk2; tÞδϕ1ðk3 − p; tÞi þ ðk1 ↔ k3Þ þ ðk2 ↔ k3Þ
�
: ð49Þ

According to Eqs. (31), (32), (49), and the relation ζ ¼ H
_ϕ
δϕ, the intrinsic non-Gaussian nonlinear parameter can be

obtained,

fintNL ¼ −
5

6

_ϕ

H
2AðkF; tFÞΔtF

¼ 5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

c2s

�
1þ rc2s

LX

�s � ffiffiffiffiffiffi
2X

p
k2FLXϕ

3H3ð6X þ K þ rÞ þ
2k4FLXXLXX

9H4ð6X þ K þ rÞ2
�

¼ 5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
K

K þ 2X

�
1þ rc2s

LX

�
ϵ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term 1

þ 5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
4Xð2X þ KÞ
ð6X þ K þ rÞ2

�
1

c2s
þ r
LX

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
term 2

: ð50Þ

The intrinsic non-Gaussianity we obtained has a nearly
equilateral shape. By exploiting conditions of slow roll in
warm k-inflation, we have

term 1¼5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
K

Kþ2X

�
1þrc2s

LX

�
ϵ≪1: ð51Þ

From this, it can be concluded that the second term
dominates the intrinsic non-Gaussian nonlinear parameter,
which can be obtained as follows:

fintNL≃
5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
4Xð2XþKÞ
ð6XþKþrÞ2

�
1

c2s
þ r
LX

�
2

: ð52Þ

From this equation, a small inflaton sound speed can
significantly increase the amount of intrinsic non-
Gaussianity, and strong thermal dissipation can also
increase the proportion of intrinsic non-Gaussianity in
warm k-inflation.

C. Discussions of result and parameters’ restriction
of the model

According to the above-mentioned field evolution equa-
tion, there are two dissipation terms, namely, Hubble
dissipation 3Hð _ϕ2 þ KÞ _ϕ and thermal dissipation Γ _ϕ.

Thus, we have LX ¼ K þ 2X ¼ K þ _ϕ2, and r > LX
indicates thermal effects dominate. This paper compares
two portions of the non-Gaussianity based on the con-
clusions reached. fδNNL is represented by the polymerization
of the redefined slow roll parameters. So, fδNNL should be far
smaller than 1 in the slow roll inflationary regime, while the
intrinsic part fintNL is much more than 1 if the sound speed of
the inflaton field is small enough. Since the noncanonical
effect is strong, it can be concluded that the intrinsic
component of non-Gaussianity is the main component.
The entire nonlinear parameter could be estimated using

the nonlinear parameter that we have calculated in two
parts. That is,

fNL ¼ −
5

12
σϵþ 5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
K

K þ 2X

�
1þ rc2s

LX

�
ϵ

þ 5

3
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

c2s
þ 3r
LX

�s
4Xð2X þ KÞ
ð6X þ K þ rÞ2

�
1

c2s
þ r
LX

�
2

≃
�
1

c2s
þ r
LX

�
2

: ð53Þ

The result obtained above indicates that in the thermal
effect dominated regime r≫LX,fNL ∼ ð r

LX
Þ2. Consequently,

when thermal effects are strong in the universe, the
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non-Gaussianity is distinct. In the weak dissipative regime
r ≪ LX, fNL ∼ c−4s , as determined mainly by the sound
speed. The result is different from the cold noncanonical
inflationary cases, whose nonlinear parameter has a general
relation fNL ∼ c−2s [42,43]. That very small amounts of
dissipation can result in warm inflation (T > H) was found
in our previous work [11]. Hence, in the limit r → 0, some
warm inflationary quantities cannot reproduce the cold
inflation results. In addition, the systemic calculations of
cosmological perturbations for warm inflation and cold
inflation are quite different; our non-Gaussian result onwarm
k-inflation thus cannot reduce to a cold inflation result
when r ≪ 1. Consequently, the non-Gaussianity in warm
k-inflation depend on sound speed to a greater extent. If the
universe is dominated by noncanonical effects, the non-
Gaussianity ismore obvious.We can see that both the thermal
and noncanonical effects can enhance the magnitude of non-
Gaussianity. However, noncanonical effects contribute more
to the non-Gaussian magnitude than the thermal effect in
warm k-inflation. Because of observational limitations fNL ∼
Oð102Þ [44,45], the speed of sound cs must not be too small
(cs ≳ 0.31), and the dissipative strength parameter r is
required to be not extremely large; i.e., r should generally
have the same order of LX. If the warm k-inflationary model
can fit the observations well, neither the noncanonical effect
nor the thermal effect should be too strong.

IV. CONCLUSIONS AND DISCUSSIONS

This paper investigates the entire primordial non-
Gaussianity produced by warm k-inflation under the
assumption of a temperature independent dissipative coef-
ficient, which allows for an approximate analytical analysis
of the problem. The essential equations of warm k-inflation
are presented, such as the motion equation, e-folds, slow
roll equations, as well as slow roll conditions. This paper
emphasizes the key problem: non-Gaussianity resulted
from warm k-inflation. The nonlinear parameter is usually
used to quantify the degree of non-Gaussianity, and it
consists of two components: the intrinsic part fintNL and the
δN part fδNNL. The first component covers the impact of the
three-point correlation, i.e., the intrinsic non-Gaussianity of
the inflaton field. The second component is determined by

a four-point correlation with inflaton perturbations. The
original non-Gaussianity in warm k-inflation can be fully
captured by these two components.
The formalism of δN is introduced and used to calculate

the δN part non-Gaussianity. It is concluded from the
obtained results that fδNNL is defined as the linear combi-
nation of the redefined slow roll parameters. So, in slow roll
inflation, fδNNL is a first-order small quantity, and it indicates
that the δN part non-Gaussianity for warm k-inflation is not
significant. However, the situation is not the same for
calculating intrinsic non-Gaussianity. To get the analytic
result of intrinsic part non-Gaussianity, we restricted to
the temperature independent case in our calculations. The
intrinsic non-Gaussianity is principally driven by the sound
speed and dissipation strength parameters, and it is pro-
duced by three-point correlations in the inflation.
Throughout the entire non-Gaussianity in warm k-inflation,
it is observed that fintNL dominates the fδNNL part, sound speed
plays the most important role in the non-Gaussianity of our
model, and thermal dissipation effects also contribute to
non-Gaussianity. A low sound speed and a large dissipative
strength can much enhance the magnitude of non-
Gaussianity, and both the parameters are constrained by
the observations. Our result for the non-Gaussianity in the
warm k-inflationary scenario departs from cold inflation,
and it cannot reproduce cold inflationary results in the
regime where r → 0. The further research and comparison
between non-Gaussianities in warm inflation and cold
inflation deserve more attention, and this will be the focus
of our future work.
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