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We derive optimal estimators for the two-, three-, and four-point correlators of statistically isotropic
scalar fields defined on the sphere, such as the cosmic microwave background temperature fluctuations,
allowing for arbitrary (linear) masking and inpainting schemes. In each case, we give the optimal
unwindowed estimator (obtained via a maximum-likelihood prescription, with an associated Fisher
deconvolution matrix), and an idealized form, and pay close attention to their efficient computation. For the
trispectrum, we include both parity-even and parity-odd contributions, as allowed by symmetry. The
estimators can include arbitrary weighting of the data (and remain unbiased), but are shown to be optimal in
the limit of inverse-covariance weighting and Gaussian statistics. The normalization of the estimators is
computed via Monte Carlo methods, with the rate-limiting steps (involving spherical harmonic transforms)
scaling linearly with the number of bins. An accompanying code package, POLYBIN, implements these
estimators in PYTHON, and we demonstrate the estimators’ efficacy via a suite of validation tests.
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I. INTRODUCTION

From statistical chemistry to cosmology, the physical
sciences abound with examples of random fields. In many
instances, the particular realization of the field (i.e., its
microstate) is not of physical relevance but the distribution
from which it is drawn (i.e., its macrostate) contains valuable
information. For example, the precise positions of atoms
in a solid are rarely of use, but their distribution encodes
the physical properties of the material; likewise, whilst we
care not about individual galaxy positions, their ensemble
statistics can teach us about the primordial Universe. To
understand such systems, we therefore require robust ways
of characterizing the statistical properties of random fields.
Perhaps the most well-known statistics are the correla-

tion functions. These encode the correlations between the
(continuous or discrete) field at different points in space,
and, if the system is sufficiently large, can be estimated via
spatial averaging. Mathematically, an N-point correlator of
some field a takes the form (see, for example, [1])

ζðNÞðx1;…;xNÞ ¼ haðx1Þ � � � aðxNÞi; ð1Þ

where fxig are some positions of relevance, and h·i
represents an ensemble average over realizations of a.
The simplest statistic is the two-point function (or, in
Fourier-space, the power spectrum); this has been used to

characterize phenomena as diverse as cell biology, quantum
chemistry, and astrophysics. Though this is sufficient for
some applications, the rich phenomenology of nature often
leads us to consider also the higher-order correlators (see,
for example, [2–8]).
In this work, we will focus on random fields defined on

the two-sphere. We will further specialize to statistically
isotropic phenomena, i.e., those whose correlators are
invariant under global rotations. Such fields can be con-
veniently described by working in a spherical harmonic
basis; efficient measurement of the harmonic-space corre-
lators, or polyspectra, will be the subject of the next thirty
pages. Geophysics and cosmology provide a number of
examples of statistically isotropic fields: for example, the
set of galaxies at some fixed distance from Earth naturally
lies on a spherical shell, and, by the Copernican principle,
there are no special directions on large scales (see, for
example, [9,10]). In the cosmological case, polyspectra
with N > 2 are of particular relevance, since they are
predicted to vanish in the simplest models of inflation
(barring a number of secondary effects arising at late
times) [11,12], thus we will focus primarily on the extra-
terrestrial case in this work. By measuring the cosmic
bispectrum, trispectrum, and beyond, we can thus probe
primordial physics, which operates at energy scales vastly
in excess of those encountered on Earth.
Measuring correlators beyond the power spectrum is, in

general, a difficult task, with naïve estimation of anN-point
correlator scaling exponentially with N. For this reason,*ohep2@cantab.ac.uk
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most cosmological analyses have opted not to measure the
full statistic, but to constrain a small number of parameters,
corresponding to the amplitudes of specific physical
templates (see e.g., [13–21]). Whilst this is useful for some
studies, it does not facilitate general exploration of the
statistic, nor probing physical effects whose forms are not
a priori known, see e.g., [22]. To this end, it is useful to also
measure the full spectra, projected onto some set of l-space
bins [23,24], or via some modal decomposition (which
parametrize the space using smooth mode functions rather
than discrete bins) [25–30].
A second complication arises from observational effects.

Usually, one cannot measure the field at all points on the
sphere, thus the observed field is modulated by some mask
(also known as a window function), W, depending on the
galactic plane, experimental limitations, bright stars, noise-
dominated regions, etc. Conventional polyspectrum estima-
tors measure the correlators (known as pseudospectra) of
the masked field Wa rather than the true correlators of a,
which complicates their interpretation, particularly given
that W is rarely isotropic. To robustly compare measure-
ment and model, one must either deconvolve the meas-
urement (also taking into account spatially-varying noise),
or convolve the theory [31,32]. Both of these are complex
for statistics beyond the power spectrum [30], leading to a
number of analyses ignoring the window effects, with
potentially dangerous consequences.
The above discussion motivates the development of robust

and efficient estimators for binned polyspectra on the two-
sphere. To this end, we will build on a variety of tools
developed throughout the last thirty years. First, efficient
estimation of (windowed) polyspectra has been considered
in a number of works, including [31–35] for the power
spectrum, [13,14,16,19,22–25,30,36–39] for the bispectrum
and [26–29,40–47] for the trispectrum, primarily for the
amplitudes of specific separable shapes. Other works have
considered modal approaches to measuring the bispectrum
(often for the purpose of estimating specific nonseparable
templates) and higher-order statistics, and some works have
considered binned polyspectra directly [22,37]. Here, we opt
to use bins rather than modal decompositions for general
interpretability (given that we are not concerned with
individual models); the latter may provide a more efficient
compressed basis in practice however, though we caution
that the various modes are not independent, even in ideal
scenarios, and, furthermore, it may be nontrivial to project
the theory models onto the relevant basis.
Self-consistent treatment of the mask in higher-order

polyspectra is a novel feature of this work; to achieve this,
we will use maximum-likelihood prescriptions, whereupon
one first writes down the likelihood for the observed field
(which depends both on W and the statistical properties of
a), then maximizes analytically to find an optimal estimator
for the statistic of interest. Such estimators are unbiased
(i.e., their mean is not affected by the window) and avoid

the need to include the mask in the theory model. This
approach has been previously considered for the power
spectrum [32,48–53], as well as the two- and three-point
statistics of three-dimensional fields [33,54–58], but, to our
knowledge, ours is the first such treatment for higher-order
spectra on the sphere. In this work, we will pay particular
attention to trispectra, which have been rarely measured
directly. Unlike the lower-order correlators, these can be
decomposed into two pieces, which are even and odd under
parity transformations: the latter has not been previously
measured in two-dimensional cosmology, and, in our
accompanying work [59], we will use it to test the recent
claims of parity-violation in large scale structure [60–63].
Finally, we release public code alongside this manuscript
which implements all the above estimators (both in full
generality, and a simplified form); we envisage that this will
facilitate robust analysis of general higher-order correlators
in cosmology and beyond.
The remainder of this work is as follows. In Sec. II we set

out our definitions for the binned polyspectra, before giving
a general discussion of ideal estimators in Sec. III. In
Secs. IV, Vand VI, we derive estimators for the binned
power spectrum, bispectrum, and trispectrum, giving both
the idealized form and the optimal unwindowed estimator
in each case. Finally, we verify the estimators numerically
in Sec. VII before concluding in Sec. VIII. To guide the
reader through this (necessarily dense) paper, we indicate
key equations with boxes, and summarize the relevant
estimators at the end of each section. Each estimator is
implemented in the public code POLYBIN: an extensive
tutorial can be found on GitHub.1

II. IDEAL BINNED POLYSPECTRA

We begin by defining our conventions for the fields and
polyspectra used in this work, and present a number of
results used in the remainder of this work. In general, we
will work with scalar fields defined on the two-sphere, such
as the atmospheric pressure on Earth or the CMB temper-
ature fluctuations. A general zero-mean signal, labeled
aðn̂Þ can be expanded in spherical harmonics thus

aðn̂Þ≡X∞
l¼0

Xl
m¼−l

almYlmðn̂Þ⇔ alm ¼
Z
S2

dn̂aðn̂ÞY�
lmðn̂Þ;

ð2Þ

where we will keep the summation limits and integration
domains implicit henceforth. In many cases, we perform
noisy observations of this signal, yielding the observed
field, ã, defined as

ãðn̂Þ≡Wðn̂Þaðn̂Þ þ nðn̂Þ; ð3Þ

1GitHub.com/oliverphilcox/PolyBin.
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where Wðn̂Þ is some deterministic window (or mask),
defining how various regions of the sphere are observed
and nðn̂Þ is a stochastic noise field. In general, we will
denote masked fields with a tilde. Note that we assume W
and a to be uncorrelated, such that hWai ¼ hWihai ¼ 0;
violation of this assumption will significantly complicate
the estimators [e.g., [64]].

A. Ideal correlators

The power spectrum, C, of the signal field can be written

hal1m1
al2m2

i≡ Cl1l2
m1m2

→ ð−1Þm1δKl1l2δ
K
m1ð−m2ÞCl; ð4Þ

where the angle brackets indicate an average over statistical
realizations of the signal, and we have statistical isotropy
and homogeneity to obtain the second expression. Whilst
this assumption is usually valid for the underlying signal, a,
realistic noise and masks are often anisotropic, thus the
diagonal approximation cannot be used.
Similarly, the bispectrum, B, takes the form

hal1m1
al2m2

al3m3
i≡ Bl1l2l3

m1m2m3
→ Gl1l2l3

m1m2m3
bl1l2l3 ; ð5Þ

where the RHS holds under isotropic and homogeneous
assumptions, as before, and we have defined the reduced
bispectrum bl1l2l3 . This is symmetric under any permuta-
tion of indices, and requires jl1 − l2j ≤ l3 ≤ l1 þ l2. (5)
involves the Gaunt function, defined as the average over
three spherical harmonics

Gl1l2l3
m1m2m3

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

m1 m2 m3

��
l1 l2 l3

0 0 0

�

≡
Z

dn̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂Þ; ð6Þ

where the 3 × 2 matrices are Wigner 3j symbols. For an
isotropic real scalar field, a, the bispectrum is parity-even,
and thus vanishes unless l1 þ l2 þ l3 is even (which is
enforced by the Gaunt integral).2

Finally, we can define a trispectrum, T, of a via

hal1m1
al2m2

al3m3
al4m4

ic ≡ Tl1l2l3l4
m1m2m3m4

: ð7Þ

where we take only the connected part of the correlator. In
this case, the rotationally invariant decomposition is less
straightforward, since the reduced trispectrum cannot be
fully described by four l-modes, rather we must introduce

also a diagonal element, L. As discussed in [27], we can
introduce the nonredundant function Tl1l2

l3l4
ðLÞ, via

Tl1l2l3l4
m1m2m3m4

→
X∞
L¼0

XL
M¼−L

ð−1ÞM
�
l1 l2 L

m1 m2 −M

�

×

�
l3 l4 L

m3 m4 M

�
Tl1l2
l3l4

ðLÞ; ð8Þ

summing over the diagonal, L, and its azimuthal compo-
nent, and noting thatM ¼ m1 þm2 ¼ −m3 −m4. This has
a number of nontrivial symmetries, in particular

Tl2l1
l3l4

ðLÞ ¼ ð−1Þl1þl2þLTl1l2
l3l4

ðLÞ; Tl3l4
l1l2

ðLÞ ¼ Tl1l2
l3l4

ðLÞ:
ð9Þ

For our purpose, it will be useful to introduce a new
trispectrum, tl1l2

l3l4
, via the symmetric definition (similar to

[37] for the bispectrum)

hal1m1
al2m2

al3m3
al4m4

ic

≡Tl1l2l3l4
m1m2m3m4

→
X∞
L¼0

XL
M¼−L

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

tl1l2l3l4
ðLÞ

þ 23 perms; ð10Þ

summing over twenty-four permutations of fl1;l2;l3;l4g.
This involves a new weighting function, akin to the Gaunt
function

wLM
l1l2m1m2

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

4π

r

×

�
l1 l2 L

m1 m2 M

��
l1 l2 L

−1 −1 2

�

≡
Z

dn̂þ1Yl1m1
ðn̂Þþ1Yl2m2

ðn̂Þ−2YLMðn̂Þ; ð11Þ

which we have written as an integral over three spin-
weighted spherical harmonics, sYlmðn̂Þ, in the final line.
Note that this is symmetric under interchange of ðl1; m1Þ and
ðl2; m2Þ. The reason for the spin-weighting adopted inwwill
be explained in Sec. VI A 1.
The reduced trispectrum obeys the symmetries

tl2l1l3l4
ðLÞ ¼ tl1l2l3l4

ðLÞ; tl3l4l1l2
ðLÞ ¼ tl1l2l3l4

ðLÞ; ð12Þ

to fully specify the trispectrum, we thus require only values
with l1 ≤ l2, l3 ≤ l4, l3 ≤ l1 and, if l1 ¼ l3, l2 ≤ l4.
The diagonal, L, satisfies the triangle conditions jl1 −
l2j ≤ L ≤ l1 þ l2 and jl3 − l4j ≤ L ≤ l3 þ l4, due to
the 3j symbols. Finally, under conjugation and parity-
inversion, the trispectrum satisfies

2For anisotropic signals, such as galactic dust, nonzero parity-
odd bispectra can exist. To compute these, one can use a modified
definition of the reduced bispectrum, as discussed in [22,37].
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½tl1l2l3l4
ðLÞ�� ¼ ð−1Þl1þl2þl3þl4tl1l2l3l4

ðLÞ; P½½tl1l2l3l4
ðLÞ�

¼ ð−1Þl1þl2þl3þl4tl1l2l3l4
ðLÞ; ð13Þ

respectively; as such, trispectra with even (odd) l1 þ l2 þ
l3 þ l4 are parity-even (parity-odd) and purely real
(imaginary).

B. Binning

In this work, we will focus on computing polyspectra in
some set of l-bins, whose formulation we now turn to. An
alternative approach would be to project the spectra onto
some type of modal decomposition [26–28,30,37]. Our
approach has the benefit that the output spectra can be
directly compared to theory, in the limit of narrow bins
(see [31] for techniques going beyond this limit). To
include binning, we introduce the (arbitrary) binning
function ΘlðbÞ, which is usually defined to be unity if l
is in bin b and zero else. For the (isotropic and homo-
geneous) power spectrum, this leads to the definition

hal1m1
al2m2

i ≈ ð−1Þm1δKl1l2δ
K
m1ð−m2Þ

X
b

Θl1ðbÞCðbÞ; ð14Þ

where CðbÞ are the binned quantities we shall construct
estimators for.3

The binned bispectrum, bðbÞ, is similarly defined

hal1m1
al2m2

al3m3
i≈Gl1l2l3

m1m2m3

X
b1b2b3

bðbÞ
Δ3ðbÞ

× ½Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þþ 5 perms�;
ð15Þ

where b≡ fb1; b2; b3g and the permutations are in
fl1;l2;l3g. To avoid double counting, we restrict the
summation to b1 ≤ b2 ≤ b3 (giving rise to the permuta-
tions), and introduce a permutation factor

Δ3ðbÞ≡

8>><
>>:

6 b1 ¼ b2 ¼ b3
2 b1 ¼ b2 ≠ b3 or b1 ≠ b2 ¼ b3
1 else:

ð16Þ

This ensures that, in the limit of thin bins, bðbÞ is equal to
the bispectrum evaluated at the bin centers. Note that we
can incorporate squeezed triangles into this formalism by
allowing a larger lmax for l2 and l3 (equivalently b2 and
b3) than l1.

Finally, we can define the binned trispectrum, tðb; BÞ, by
analogy with (10) as

hal1m1
al2m2

al3m3
al4m4

ic
≈
X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

X
b;B

tðb; BÞ
Δ4ðbÞ

ΘLðBÞ

× ½Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3ÞΘl4
ðb4Þ þ 7 perms�

þ ð2 ↔ 3Þ þ ð2 ↔ 4Þ; ð17Þ

summing over the following permutations of f1; 2; 3; 4g≡
fb1; b2; b3; b4g:

f1; 2; 3; 4g; f1; 2; 4; 3g; f2; 1; 3; 4g; f2; 1; 4; 3g;
f3; 4; 1; 2g; f3; 4; 2; 1g; f4; 3; 1; 2g; f4; 3; 2; 1g; ð18Þ

due to the symmetry properties given in (12). Here, the
trispectrum is defined for all b≡ fb1; b2; b3; b4g encom-
passing the external fl1;l2;l3;l4g legs and B describing
the diagonal L. We sum over all b1 ≤ b2, b3 ≤ b4, b1 ≤ b3
and, if b3 ¼ b1, b2 ≥ b4, i.e., over all independent bins,
noting additionally that fb1; b2; Bg and fb3; b4; Bg must
satisfy triangle conditions.4 If we wish to include squeezed
and doubly-squeezed tetrahedra, we simply extend the l
ranges to use a larger lmax for l2, l4 and L (due to the
triangle conditions), or, if our focus is collapsed tetrahedra,
we can use a smaller lmax for L. To avoid double counting,
we introduce the degeneracy factor

Δ4ðbÞ ¼

8>>>>>><
>>>>>>:

8 b1 ¼ b2 ¼ b3 ¼ b4
4 b1 ¼ b2 and b3 ¼ b4
2 b1 ¼ b2 or b3 ¼ b4
2 b1 ¼ b3 and b2 ¼ b4
1 else;

ð19Þ

which is simply the number of distinct appearances of each
term in the above sum over permutations. Finally, we note
that we can impose that the trispectrum is parity-even
(parity-odd) by adding a factor ½1� ð−1Þl1234 �=2 to (17).

III. MASKED DATA AND MINIMUM-VARIANCE
ESTIMATORS

We now turn to the problem of estimating the binned
polyspectrum coefficients discussed in Sec. II from the
observed masked data. For this purpose, we will first
consider the nonideal correlators, for which it is useful
to work in map-space, rather than harmonic space. These
results may then be used to derive optimal estimators, by
maximizing an weakly non-Gaussian likelihood.

3Strictly CðbÞ is related to a sum over the l-bins rather than
being the value at the bin-center. The approximation of (14) is
valid for slowly varying Cl and suitably narrow bins. Since our
focus here is principally on higher-point functions, this is
appropriate here.

4For the parity-odd trispectrum, we can additionally drop bins
satisfying b1 ¼ b3 and b2 ¼ b4, which evaluate to zero.
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A. Nonideal correlators

When working with observational data, we may no
longer assume rotational symmetry, since the weights, W
(encoding the response of the map to the underlying field a)
and the noise, n, can be inhomogeneous. In this case, the
results of Sec. II do not apply. Working in map space, the
two-point correlator of the observed field can be instead
written as

C̃ij ≡ hãðn̂iÞãðn̂jÞi; ð20Þ
where i, j index points on the sky (such as HEALPix pixels).5

From the definition of the masked field (3), this can be
written in terms of the unmasked two-point function, Cij ≡
haðn̂iÞaðn̂jÞi and the noise Nij ≡ hnðn̂iÞnðn̂jÞi
C̃ij ¼ Wðn̂iÞCijWðn̂jÞ þ Nij

¼
X
lm

B2
lCl½Wðn̂iÞYlmðn̂iÞ�½Wðn̂jÞY�

lmðn̂jÞ� þ Nij;

ð21Þ
where we have expanded the true correlator, which is
rotationally invariant, in terms of (4) and additionally
included an (isotropic) beam Bl. When working with
discrete data (such as maps in HEALPix format), we can
additionally include a pixel window function in Bl (via
Bl → wlBl for window wl), to remove the leading
dependence on Nside.
The utility of (21) is that the windowed correlator is

expressed in terms of the quantity we wish to estimate, Cl
(neglecting binning for now). This is further simplified if
one assumes the same window for data and noise: in this
case, the masks simply pre and postmultiply the correlator.
In general, the map-level correlator is an Npix × Npix matrix
which is difficult if not impossible to compute explicitly;
however, its action on a map can be straightforwardly
defined. We will discuss this in Sec. IV C.
The nonideal three- and four-point correlators take

similar forms,

B̃ijk ≡ hãðn̂iÞãðn̂jÞãðn̂kÞi;
T̃ijkl ≡ hãðn̂iÞãðn̂jÞãðn̂kÞãðn̂lÞi: ð22Þ

As before, these can be straightforwardly written in terms
of the map-space ideal correlators (Bijk and Tijkl), and, via
the results of Sec. II A, the binned quantities we wish to
measure. Furthermore, whilst they are high-dimensional
objects (rank 3- and 4-tensors), their action on maps will
prove straightforward, due to the internal symmetries in the
unwindowed correlators.

B. Optimal estimators

Optimal estimators for the binned polyspectra can be
derived by maximizing the likelihood of the observed map
ãðn̂Þ. Assuming weak non-Gaussianity, this is given by an
Edgeworth expansion in terms of the map-space correlators
[e.g., [65]],

L½ã� ∝ exp

�
−
1

2
hiC̃

ijhj

�

×

�
1þ 1

3!
B̃ijkHijk þ

1

4!
T̃ijklHijkl þ � � �

�
; ð23Þ

where we sum over all repeated indices, such that
αiβ

i ≡ R
dn̂αðn̂Þβðn̂Þ. Here, we have defined the Wiener-

filtered map, hðn̂Þ≡ ½C̃−1ã�ðn̂Þ (recalling that C̃ contains
both signal and noise, and (for now) assuming it to be
invertible), as well as the (map-space) Hermite polynomials

Hijk ≡ hihjhk − ðhiC̃−1
jk þ 2 permsÞ

Hijkl ≡ hihjhkhl − ðhihjC̃−1
kl þ 5 permsÞ

þ ðC̃−1
ij C̃

−1
kl þ 2 permsÞ: ð24Þ

In (23), all cosmology dependence appears through the
map-space correlators, C̃, B̃, T̃, which can be related to
their binned coefficients, CðbÞ, bðbÞ, tðb; LÞ using the
results of Sec. II. To see this, let us consider some binned
quantity xðbÞ arising only in the N > 2-point correlator,
X̃i1���iN . An estimator for xðbÞ can be obtained by maxi-
mizing logL½ã�ðxÞ, yielding

x̂ðbÞ ∝ 1

N!

∂X̃i1���iN

∂xðbÞ Hi1���iN ; ð25Þ

working in the limit of small x. The normalization factor
(which is, in general, a matrix), can be derived by requiring
that the estimator is unbiased, i.e., E½x̂ðbÞ� ¼ xðbÞ for
expectation operator E. We will refer to its inverse as the
Fisher matrix, defined as

FNðb;b0Þ ¼ 1

N!

∂X̃i1���iN

∂xðbÞ C̃−1
i1j1 � � � C̃−1

iNjN

∂X̃j1���jN

∂xðb0Þ ; ð26Þ

where we note that all disconnected terms cancel in the
expectation of the Hermite tensor Hi1���iN.
The estimator has the following properties:
(i) Unbiased: This follows from the definition of the

Fisher matrix, which ensures E½x̂ðbÞ� ¼ xðbÞ.
One caveat should be noted. This assumes that
the polyspectrum is completely characterized by
the set of measured bins fxðbÞg (which generically
include noise contributions), i.e., that X̃i1���iN ¼P

b xðbÞð∂X̃i1���iN =∂xðbÞÞ. Violations of this can
occur if there is contribution from modes outside

5Throughout this work, we will used serif fonts to denote map-
space correlators, e.g., B, sans serif to denote harmonic corre-
lators, e.g., B, and lower case for reduced spectra, e.g., b. Latin
indices i; j; k;… will always denote summation over spatial
points. Tildes are added to indicate masked fields.
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the binning range or unaccounted-for leakage be-
tween polyspectra of different parity. For ideal
polyspectrum estimators with N ≤ 3, the Fisher
matrix is diagonal, so such effects may be neglected;
in the general case, one can ameliorate this by
constructing the estimator using a slightly larger
range of bins than desired in the output data-product,
and, if necessary, accounting for leakage between
states of different parity (cf. Sec VI B).

(ii) Window-Free: Sincewe consistently include window
functions in the X̃ definitions and take derivativeswith
respect to the true binned correlators, xðbÞ, the
measurements are not biased by thewindow function,
i.e., the estimators take into account the response of
the map to the underlying signal. This lies in contrast
to the pseudospectrameasuredbydirect polyspectrum
estimators, and occurs due to the appearance of the
mask in the estimator, and the form of the normali-
zation matrix.

(iii) Optimal: Since (25) has been derived using maxi-
mum-likelihood techniques, it is optimal in the small-
correlator limit. As such, the covariance is given
by F−1

N .6

(iv) Efficiency As shown below, the estimator numer-
ators scale at most linearly with the total number of
bins in the statistic, Nbin. When computed using
Monte Carlo methods, the rate-determining step in
computation of the Fisher matrix is also linear in the
number of bins.

Whilst the above estimators have significant formal
utility, in practice, it will prove useful to consider estima-
tors with a more general choice of weighting, due to the
difficulties obtaining accurate noise covariances, Nij, and
inverting the covariance C̃ij. In the below, we will consider
a more general choice of weighting to enable efficient
computation, defining hðn̂Þ ¼ S−1ã instead of C̃−1ã,
where S−1, is some weighting matrix that is not required
to be symmetric or invertible. For example, one may
wish to project out contaminated areas of a map, which,
a priori, has a uniform weight; in this case, S−1 would
excise regions of the map, and thus be noninvertible, whilst
W could be set to the identity operator. Arbitrary linear
operations (such as linear inpainting, cf. [35]) can also be
included in S−1, as appropriate to the task in question.
Replacing C̃−1 with S−1 in (25) and (26) we obtain an

estimator which is always unbiased, and minimum variance
in the limit of S−1 → C̃−1. In the Gaussian regime, the
covariance for general (not necessarily invertible) S−1 is
given by

covNðb;b0Þ ¼ F−1
N ½S−1�FN ½S−1C̃S−T�F−T

N ½S−1�; ð27Þ

whereFN ½M� as the Fisher matrix with weightingM (which
may be asymmetric); if S−1 is invertible, the degree of
suboptimality is second order in ðS − C̃Þ [36], and, if not,
an optimal estimator is obtained if S−1 ¼ S−1C̃S−T. In the
remainder of this work, we consider how such estimators
can be efficiently computed.

IV. OPTIMAL POWER SPECTRUM
ESTIMATION

With the above formalism in place, we may now proceed
to derive the optimal estimator for the binned full-sky
power spectra, CðbÞ, analogous to [32,33,66]. This is
derived in a slightly different manner to the bispectrum
and trispectrum estimators discussed below (though ends
up taking the same functional form), since the two-point
function appears both in the Gaussian likelihood of (23),
and in the Wiener filtering. Our estimators can be shown to
be equivalent to those of the MASTER formalism in certain
limits [31] (in particular a uniform mask W, and a
weighting scheme of the form ½S−1v�ðn̂Þ ¼ sðn̂Þvðn̂Þ,
for some filter s, possibly with incomplete support).
Taking derivatives with respect to CðbÞ (dropping all

non-Gaussian correlators) gives

∂ logL½ã�
∂CðbÞ ¼ 1

2

∂C̃ij

∂CðbÞ hihj −
1

2
Tr

�
C̃−1 ∂C̃

∂CðbÞ
�

∂
2 logL½ã�

∂CðbÞ∂Cðb0Þ ¼ −
�

∂C̃
∂CðbÞ C̃

−1 ∂C̃
∂CðbÞ

�ij
hihj

þ 1

2
Tr

�
C̃−1 ∂C̃

∂CðbÞ C̃
−1 ∂C̃

∂Cðb0Þ
�
; ð28Þ

noting that C̃−1
;α ¼ −C̃−1C̃;αC̃

−1. To derive the optimal
estimator, we expand the likelihood to second order around
some fiducial spectrum C̄ðbÞ, and maximize with respect to
the true spectrum CðbÞ, yielding

ĈðbÞ ¼ C̄ðbÞ þ 1

2

X
b0
F−1

2;optðb; b0Þ
∂C̃ij

∂Cðb0Þ ½hihj − C̃−1
ij �;

ð29Þ

defining

F 2;optðb; b0Þ ¼
1

2
Tr

�
C̃−1 ∂C̃

∂CðbÞ C̃
−1 ∂C̃

∂Cðb0Þ
�
; ð30Þ

and evaluating all quantities at the fiducial spectrum C̄.
Our final estimator is formed by replacing C̃−1 by some
generic weighting S−1 (which, as above, need not be
symmetric or invertible), and noting that the first and last

6This is strictly true only for real-valued xðbÞ. Later, we will
find that the trispectrum contains an imaginary piece, for which
the covariance is −F−1

4 . As long as we always take the imaginary
part of any such quantities, the above logic holds.
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terms in (29) differ only by the noise correlation function,
Nij. This gives

fĈðbÞ ¼ 1

2

X
b0
F−1

2 ðb; b0Þ
�
∂C̃ij

∂Cðb0Þ hihj

− Tr

�
∂C̃

∂Cðb0ÞS
−1NS−T

��
;

F 2ðb; b0Þ ¼
1

2
Tr

�
S−T ∂C̃

∂CðbÞS
−1 ∂C̃

∂Cðb0Þ
�
; ð31Þ

where h≡ S−1ã and S−T is the transpose of S−1. The
second term in ĈðbÞ subtracts off the estimator bias
induced by noise in the data; for the remainder of this
work, we will absorb this into ĈðbÞ, and drop this term.
Notably, F 2ðb; b0Þ is only symmetric if S−1 ¼ S−T (which
does not hold if the filtering projects out modes). This is the
minimum variance estimator in the limit of a Gaussian
likelihood, C̄ðbÞ → CtrueðbÞ, and S−1 → C̃−1 (or S−1 →
S−1C̃S−1 in general).

A. Idealized form

Let us consider (31) in the idealized limit, i.e., without a
mask or beam and assuming isotropic noise (absorbed into
the binned spectrum). Here, the relevant correlator deriva-
tive becomes

∂Cij

∂CðbÞ ¼
X
lm

ΘlðbÞYlmðn̂iÞY�
lmðn̂jÞ; ð32Þ

moving to harmonic-space and using the binned power
spectrum definition (14). The Wiener-filtered field can be
simply written as hlm ¼ S−1l alm (assuming S to be diago-
nal in harmonic space), thus, following a little algebra, we
obtain the estimator

ĈidealðbÞ ¼
1

2
F−1

2;idealðbÞ
X
lm

ΘlðbÞ
jalmj2
S2l

;

F 2;idealðbÞ ¼
1

2

X
l

ΘlðbÞ
2lþ 1

S2l
: ð33Þ

This is just the conventional binned power spectrum
estimator (summing over all l; m allowed by the binning
function), albeit including a Wiener-filter weighting. In this
case, the normalization is diagonal in the bins, i.e., each
measurement is independent. Computation of (33) requires
one harmonic transform (to define alm), then a simple sum
over fl; mg; the latter process scales as OðNbinÞ for Nbin
bins in fbg.

B. General form

In the presence of a mask, we instead simplify (31) by
inserting the following two-point function derivative,

∂C̃ij

∂CðbÞ ¼
X
lm

B2
lΘlðbÞ½Wðn̂iÞYlmðn̂iÞ�½Wðn̂jÞY�

lmðn̂jÞ�;

ð34Þ
cf. (21). The estimator numerator can be written

ĈðbÞ ∝ 1

2

X
lm

B2
lΘlðbÞ½Wh�lm½Wh��lm; ð35Þ

where ½Wh�lm is the harmonic-space representation of
Wðn̂Þhðn̂Þ≡Wðn̂Þ½S−1ã�ðn̂Þ. This is straightforward to
compute by a direct harmonic-space sum, and scales as
OðNbinÞ, as before (with only one invocation of S−1

required).
The Fisher matrix of (31) is more difficult to compute

due to the trace, and formally requires OðN2
pixÞ operation.

One option to compute it is to note that, if the estimator is
optimal, it is equal to the covariance of the C̃ðbÞ numerator.
As such, one could compute this quantity for a number of
Monte Carlo simulations and form the covariance empiri-
cally. However, this is slow to converge (since we require
the inverse Fisher matrix), and only exact if S−1 is the true
inverse covariance.
To form a practically implementable estimator, we can

instead rewrite the Fisher matrix as an expectation over
some Gaussian random field (GRF) u, as in [36,54,55].
This corresponds to writing

F 2ðb; b0Þ ¼
1

2

	�
∂C̃

∂CðbÞS
−1u

�T

S−1
�

∂C̃
∂Cðb0ÞU

−1u

�

u

ð36Þ
or, more simply,

F 2ðb; b0Þ ¼
1

2
hQT

2 ½S−1u�ðbÞ ×WS−1W ×Q2½U−1u�ðb0Þiu;
ð37Þ

where U is the (arbitrary, but invertible) covariance of u,
and given that hU−1uuTiu is just the identity matrix, is
equivalent to the Fisher matrix given in (31). In the second
line, we have defined a filtered map, Q2,

Q2½x�ðn̂i; bÞ≡ B ·
∂Cij

∂CðbÞ ½Wx�ðn̂jÞ ⇔ Q2;lm½x�ðbÞ

¼ B2
lΘlðbÞ½Wx�lm; ð38Þ

where the second (harmonic-space) definition holds due to
(34), and the first derivative includes the (optionally pixel-
windowed) beam (unlike in Sec. IVA). Similar definitions
will be used for the higher-order polyspectra. Thus, to form
the Fisher matrix, one must compute the Q2 filters on a set
of NGRF GRFs, u, transform them to map space, and
combine them with a WS−1W weighting. Each realization
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is symmetric only if S−1 ¼ U−1 and S−1 ¼ S−T; the
average over realizations requires only the latter condition.
This can be straightforwardly achieved using repeated
spherical harmonic transforms. Notably, it does not require
any OðN2

pixÞ operations to implement. In practice, we will
find that Oð100Þ GRFs is sufficient for the above calcu-
lation, and adds an extra variance to the power spectrum at
the Oð1þ N−1

GRFÞ level. This is much more efficient than
the Monte Carlo covariance estimation method discussed
above. Computationally it involves two processes: compu-
tation of Nbin WQ2 and S−1WQ2 maps, and a summation
over all such pairs. The first operation scales as OðNbinÞ
(involving Nbin S−1 operations), whilst the second is
quadratic in Nbin. Usually, the first dominates (since each
term requires several harmonic transforms, depending on
the form of S−1), resulting in a linear computational scaling
(in the limit of large memory).

C. Choice of S− 1 and U

To implement the general estimator described above, we
must specify: (a) the mask, W, (b) the weighting matrix
S−1, which downweights low signal-to-noise or trouble-
some regions, and (c) the Fisher GRF covariance U. The
first is usually the simplest; this is the linear response of the
data d to the underlying field a, which, for a full-sky map
(or an inpainted version thereof), is often unity. For cut-sky
data, this indicates which regions are observed and is often
a binary mask, albeit with some additional smoothing. A
variety of additional phenomena can be included here, such
as pixel weights and discreteness effects.
The optimal choice for the weighting operator S−1 is the

inverse data covariance C̃−1. In realistic scenarios, this is
neither diagonal in map nor harmonic space, and is thus
difficult to invert (though may be possible via approaches
such as [67], which supplement the map with additional
uncorrelated noise). A simpler choice may be use a
diagonal-in-l approximation of the covariance to define
S−1 (equal to 1=Sl in harmonic-space). Often, one may
wish to downweight or remove specific regions of the map
in the analysis before applying such a weight; this can be
achieved by first removing areas of the map with some
projection matrix Π, e.g.,

½S−1v�ðn̂Þ ¼
X
lm

Ylmðn̂Þ
½Πv�lm
Sl

; ð39Þ

for arbitrary map v, where ½x�lm is the harmonic transform
of x. If Π is not of full-rank, S−1 is not invertible.7 One may

additionally wish to ‘inpaint’ the map, by filling in small
holes with the mean of the surrounding pixels [35]. Since
this is a linear operation it can be included within S−1, and
fully accounted for in the normalization (noting that the
below estimators require only the action of S−1 on maps v,
rather than the explicit form of S).
If we wish to use optimal weights, however, some

progress can be made using conjugate gradient descent
methods. In this framework, we compute the action of the
inverse matrix, C̃−1, on some map αðn̂Þ, using only
applications of the uninverted matrix on maps βðn̂Þ.
These can be computed thus (for arbitrary β),

½C̃β�ðn̂iÞ ¼ Wðn̂iÞCij½Wβ�ðn̂jÞ þ ½Nβ�ðn̂iÞ
¼ Wðn̂iÞ½B2

lCl½Wβ�lm�ðn̂iÞ þ ½Nβ�ðn̂iÞ; ð40Þ

where we have written C̃ in harmonic space to obtain the
second quantity via (21), and (as above) denoted forward-
and backward harmonic transforms by ½� � ��lm and ½� � ��ðn̂Þ
respectively. To apply C̃ to a map, our approach is thus:
(1) multiply the map by W in map-space; (2) transform to
harmonic-space and multiply by B2

lCl, (3) transform to
map-space and multiply by Wðn̂Þ; (4) add on the noise
term (which is straightforward if it is diagonal in map
space). Given the above mapping, and an appropriate
preconditioner (such as the diagonal harmonic-space
covariance), we may form C̃−1α iteratively for any given
map α. We caution that conjugate-gradient-descent inver-
sion is computationally expensive procedure (involving
two harmonic transforms per iteration), and we require at
least ðNbins þ 2Þ applications of the inverse map for the
full estimator (one for h, one for S−1u, and one for each
bin in the Fisher matrix). In practice, therefore, we will
primarily use a diagonal approximation in this work.
Notably, this does not bias any results, but will lead to
a slight loss of optimality.
Finally, some care is warranted regarding our choice of

the Monte Carlo maps u, and their covariance U. Ideally,
we require maps that are easy to simulate, i.e., GRFs. This
also simplifies the interpretation, since no higher-point
correlators need to be removed (which will be relevant for
the bispectrum and beyond). We further require the maps
to have a precisely known and simply invertible covari-
ance. The convergence of the Monte Carlo estimates is
fastest if U−1 is close to the weighting matrix S−1; in this
work, we will fix U−1 ¼ S−1, assuming a diagonal form
for both.

V. OPTIMAL BISPECTRUM ESTIMATION

We now turn to the window-free bispectrum. As shown
in Sec. III, the general estimator for the binned bispectrum
takes the form

7Notably, there is a degeneracy between the mask W and
the weighting S−1: multiplying the data by some invertible
function fðn̂Þ sends W → fW, resulting in the same estimator
if S−1 → f−1S−1f−1. Note that this also affects the noise
correlator also.
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b̂ðbÞ ¼ 1

3!

X
b0

F−1
3 ðb;b0Þ ∂B̃

ijk

∂bðbÞ
× ½hihjhk − ðhihhjhki þ 2 permsÞ�;

F 3ðb;b0Þ ¼ 1

3!

∂B̃ijk

∂bðbÞS
−1
il S

−1
jmS

−1
kn

∂B̃lmn

∂bðb0Þ ð41Þ

for h≡ S−1ã, which is optimal in the limit of weak non-
Gaussianity, and S−1 → C̃−1. In the above, we sum over all
bins with b1 ≤ b2 ≤ b3, and note that the numerator
contains both a three- and one-field term. The latter does
not affect the mean, but ensures optimality on large scales,
and takes a slightly different form from the Hermite tensor
definitions (24) since we have introduced a generic weight-
ing S−1. This bears similarities to the estimators of [e.g.,
[13,14,19,23,24,26,36]], but now includes full treatment of
masks and weights, and incorporates arbitrary l-space
binning. We discuss its practical implementation below.

A. Idealized form

Assuming rotational invariance, a unit beam, and a trivial
mask, (41) can be simplified by first rewriting the numer-
ator in harmonic space

b̂idealðbÞ ∝
1

3!

X
limi

∂Bl1l2l3
ð−m1Þð−m2Þð−m3Þ

∂bðbÞ
× ½hl1m1

hl2m2
hl3m3

− ðhl1m1
hhl2m2

hl3m3
i

þ 2 permsÞ�; ð42Þ

summing over all li andmi with i ∈ f1; 2; 3g. Inserting the
relation between the ideal harmonic-space bispectrum and
the binned form bðbÞ given in (15) yields

b̂idealðbÞ ∝
1

6Δ3ðbÞ
X
limi

Gl1l2l3
m1m2m3

× ½Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ þ 5 perms�
× ½hl1m1

hl2m2
hl3m3

− ðhl1m1
hhl2m2

hl3m3
i

þ 2 permsÞ�; ð43Þ

where G is the Gaunt factor. Assuming a diagonal choice
for S−1, the one-field terms require l2 ¼ l3, and thus, by
the triangle conditions l1 ¼ 0 (or permutations thereof); in
the ideal limit, they may thus be dropped.
To implement (43) one could perform the l; m summa-

tion directly, though this has Oðl6
maxÞ complexity. A more

efficient scheme (first considered in [13]), is to rewrite the
Gaunt factor as a spherical harmonic integral using (6); this
separates the three ðli; miÞ terms, yielding

b̂idealðbÞ ∝
1

Δ3ðbÞ
X
limi

Z
dn̂Yl1m1

ðn̂ÞYl2m2
ðn̂ÞYl3m3

ðn̂Þ

Θl1ðb1ÞΘl2
ðb2ÞΘl3ðb3Þhl1m1

hl2m2
hl3m3

ð44Þ

additionally absorbing the permutation symmetries and
dropping a factor of ð−1Þl1þl2þl3 , noting that statistically
isotropic temperature correlators must be are parity-even.
Defining fields

Hideal
b ½x�ðn̂Þ ¼

X
lm

ΘlðbÞ
xlm
Sl

Ylmðn̂Þ ⇔ Hideal
b;lm½x�

¼ ΘlðbÞ
xlm
Sl

; ð45Þ

this can be written

b̂idealðbÞ∝
1

Δ3ðbÞ
Z

dn̂Hideal
b1

½a�ðn̂ÞHideal
b2

½a�ðn̂ÞHideal
b3

½a�ðn̂Þ:

ð46Þ

This is efficient to compute, requiring just one harmonic
transform per choice of b, and a summation for each choice
of b; as such, the leading scaling is OðNlÞ, recalling that
Nl is the number of one-dimensional l-bins.
For the Fisher matrix, working in harmonic-space for

diagonal S−1, we can write

F 3;idealðb;b0Þ ¼ 1

6

X
limi

∂Bl1l2l3
ð−m1Þð−m2Þð−m3Þ

∂bðbÞ S−1l1
S−1l2 S

−1
l3

×
∂Bl1l2l3

m1m2m3

∂bðb0Þ : ð47Þ

Inserting the binned definition, wewill have a sum over two
Gaunt factors, which evaluates to

X
m1m2m3

½Gl1l2l3
m1m2m3

�2 ¼ ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

×

�
l1 l2 l3

0 0 0

�
2

; ð48Þ

and a sum over permutations of binning functions, which
evaluates to

Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ½Θl1ðb01ÞΘl2ðb02ÞΘl3ðb03Þ
þ 5 perms� ¼ Δ3ðbÞδKbb0 ; ð49Þ

recalling that bins are ordered and nonoverlapping, such
that ΘlðbÞΘlðb0Þ ¼ δKbb0 . Just as for the power spectrum,
the Fisher matrix is diagonal in b, and can be evaluate as a
triple sum over li, which has Oðl3

maxÞ complexity.
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Collecting results the ideal bispectrum estimator becomes

b̂idealðbÞ ¼
1

Δ3ðbÞ
F−1

3;idealðbÞ
Z

dn̂Hideal
b1

ðn̂ÞHideal
b2

ðn̂ÞHideal
b3

ðn̂Þ

F 3;idealðbÞ ¼
1

Δ3ðbÞ
X
l1l2l3

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
4π

Θl1ðb1Þ
Sl1

Θl2ðb2Þ
Sl2

Θl3ðb3Þ
Sl3

�
l1 l2 l3

0 0 0

�
2

; ð50Þ

whereHideal is defined in (45) and the Fisher matrix is equal
to the estimator variance if Sl ¼ Cl.

B. General form

1. Numerator

The general estimator can be derived in a similar manner
to the ideal case. Working in harmonic space, the numerator
is akin to (42), but includes window functions (due to the B̃
correlator), ‘

b̂ðbÞ ∝ 1

3!

X
limi

∂Bl1l2l3
ð−m1Þð−m2Þð−m3Þ

∂bðbÞ ½½Wh�l1m1
½Wh�l2m2

½Wh�l3m3

− ð½Wh�l1m1
h½Wh�l2m2

½Wh�l3m3
i þ 2 permsÞ�;

ð51Þ

where the derivative includes the beam, Bl1Bl2Bl3 .
Inserting the bispectrum derivative and rewriting the
Gaunt factor as an integral, the three-field term takes a
similar form to before,

b̂ð3ÞðbÞ ∝ 1

Δ3ðbÞ
Z

dn̂Hb1 ½a�ðn̂ÞHb2 ½a�ðn̂ÞHb3 ½a�ðn̂Þ;

ð52Þ

where H is now defined as

Hb½x�ðn̂Þ ¼
X
lm

½WS−1x�lmBlΘlðbÞYlmðn̂Þ

⇔ Hb;lm½x� ¼ ½WS−1x�lmBlΘlðbÞ: ð53Þ

In the presence of a mask, the one-field term is nontrivial,
but can be computed via a Monte Carlo average. Defining a
set of fields fαg with covariance C̃α, we can write

b̂ð1ÞðbÞ ¼ −
1

Δ3ðbÞ
Z

dn̂Hb1 ½a�ðn̂ÞhHb2 ½α�ðn̂ÞHb3 ½α�ðn̂Þiα
þ 2 perms; ð54Þ

where the average is taken over the random fields. For the
estimator to be optimal, C̃α should be equal to the data
covariance C̃; however, given that hai ¼ 0, the estimator
does not become biased if this condition is not satisfied.
This is in contrast with the trispectrum estimators of
Sec. VI, which require accurate random simulations to
remove the disconnected contributions. This has the same
computational scalings as the ideal numerator (linear in
Nl), but with runtime additionally proportional to the
number of MC simulations, NMC.

2. Fisher matrix

In the nonideal case, the Fisher matrix is difficult to com-
pute analytically. As for the power spectrum (Sec. IV B),
we can use a Monte Carlo procedure, first writing the
covariance in real-space,

F 3ðb;b0Þ ¼ 1

6

∂B̃ijk

∂bðbÞS
−1
il S

−1
jmS

−1
kn

∂B̃lmn

∂bðb0Þ

¼ 1

12

∂B̃ijk

∂bðbÞS
−1
il S

−1
jj0S

−1
kk0 ½Uj0m0

Uk0n0

þ Uj0n0Uk0m0 �U−1
m0mU

−1
n0n

∂B̃lmn

∂bðb0Þ ; ð55Þ

inserting two copies of the identity matrix in the second
line, for arbitrary invertible matrix U. As for the power
spectrum, this is symmetric only if S−1 ¼ S−T. The
Fisher matrix can be evaluated by introducing a set of
GRFs fug with covariance U, noting that the quantity
inside the square brackets is equal to huj0uk0um0

un
0 i−

huj0uk0 ihum0
un

0 i. In this case, the Fisher matrix becomes

F 3ðb;b0Þ ¼ 1

12

Z
dn̂ dn̂0hQ3½S−1u;S−1u�ðn̂;bÞ½WS−1W�ðn̂; n̂0ÞQ3½U−1u;U−1u�ðn̂0;b0Þiu

−
1

12

Z
dn̂ dn̂0hQ3½S−1u;S−1u�ðn̂;bÞiu½WS−1W�ðn̂; n̂0ÞhQ3½U−1u;U−1u�ðn̂0;b0Þiu; ð56Þ

where we have introduced the map [analogous to (38) for the power spectrum],

Q3½x; y�ðn̂i;bÞ≡ ∂Bijk

∂bðbÞ ½Wx�j½Wx�k: ð57Þ
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Inserting the bispectrum derivative and converting to harmonic space, we find

Q3;lm½x; y�ðbÞ ¼
1

Δ3ðbÞ
X

l2l3m2m3

Gll2l3
mm2m3

½Wx��l2m2
½Wy��l3m3

BlBl2Bl3 ½Θlðb1ÞΘl2ðb2ÞΘl3
ðb3Þ þ 5 perms.�

¼ 2

Δ3ðbÞ
BlΘlðb1Þ

Z
dn̂Y�

lmðn̂ÞH½x�ðn̂; b2ÞH½y�ðn̂; b3Þ þ 2 perms.; ð58Þ

where we inserted the integral form of the Gaunt factor (6) in the second line, and used the H maps defined in (53). This is
straightforwardly evaluated as a harmonic transform.
Whilst possible to implement (56) is somewhat unwieldy, since it requires the average of a map, Q3ðn̂Þ, over a set of

random fields, which is expensive to store (though [54] took this approach). Instead, one may proceed by introducing two
(uncorrelated) sets of random fields fu1g and fu2g with covariance U, as in [40]. These can be combined to form the
following symmetric combination:

αðhuj01 uk
0
1 u

m0
1 un

0
1 i þ huj02 uk

0
2 u

m0
2 un

0
2 iÞ þ βðhuj01 uk

0
1 u

m0
2 un

0
2 i þ huj02 uk

0
2 u

m0
1 un

0
1 iÞ; ð59Þ

this is equal to the combination of U covariances appearing in (55) if α ¼ −β ¼ 1=2.8 Defining

Fab;cd
3 ðb;b0Þ ¼ 1

12

Z
dn̂ dn̂0hQ3½S−1ua;S−1ub�ðn̂;bÞ½WS−1W�ðn̂; n̂0ÞQ3½U−1uc;U−1ud�ðn̂0;b0Þiua;ub;uc;ud ; ð60Þ

we can write

F 3ðb;b0Þ ¼ 1

2
ðF11;11

3 ðb;b0Þ þ F22;22
3 ðb;b0ÞÞ − 1

2
ðF11;22

3 ðb;b0Þ þ F22;11
3 ðb;b0ÞÞ; ð61Þ

which makes efficient use of the Monte Carlo simulations. Computation requires Nl H maps to be computed, which are
combined into Nbin Qlm maps, involving OðNMCN2

lÞ harmonic transforms. These are then combined via map-space
summation, yielding an estimator for the Fisher matrix that is again linear in Nbin (in the large-memory limit), and
proportional to the number of Fisher simulations, Nfish (which are analyzed independently). Note that there is no scaling
with lmax, except for that incurred by the choice of HEALPix Nside.
In summary, the optimal window-free bispectrum estimator is given by

b̂ðbÞ ¼
X
b0

F−1
3 ðb;b0Þ
Δ3ðb0Þ

Z
dn̂½Hb0

1
½a�ðn̂ÞHb0

2
½a�ðn̂ÞHb0

3
½a�ðn̂Þ − ðhHb0

1
½α�ðn̂ÞHb0

2
½α�ðn̂Þi

α
Hb0

3
½a�ðn̂Þ þ 2 permsÞ�; ð62Þ

with the Fisher matrix defined in (61) subject to the Q
definitions of (58). This is straightforward to implement
and optimal in the limit of S−1 → C̃−1 and weak non-
Gaussianity.

VI. OPTIMAL TRISPECTRUM ESTIMATION

Finally, let us consider optimal estimation of the full-sky
trispectrum. Unlike for lower-order statistics, this has rarely

been considered previously (though see [27,40,41] for
notable examples) and the impact of masks has not been
carefully assessed. Furthermore, as noted in Sec. II, the
trispectrum contains both a parity-even and a parity-odd
part; the estimators below are the first to measure the
latter part.
As discussed in Sec. III, the general trispectrum esti-

mator takes the form

t̂ðb; BÞ ¼ 1

4!

X
b0

F−1
4 ðb; B;b0; B0Þ ∂T̃ijkl

∂tðb; B0Þ ½hihjhkhl − ðhihjhhkhli þ 5 permsÞ þ ðhhihjihhkhli þ 2 permsÞ�

F 4ðb; B;b0; B0Þ ¼ 1

4!

∂T̃ijkl

∂tðb; BÞS
−1
imS

−1
jnS

−1
koS

−1
lp

∂T̃mnop

∂tðb0; B0Þ ; ð63Þ

8For full generality, we could include a third set of terms of the form huj01 uk
0
2 u

m0
1 un

0
2 i and permutations thereof. The inclusion of these

may lead to a slight reduction in the number of Monte Carlo simulations required, but we neglect them for simplicity here.
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for h≡ S−1ã. As noted in Sec. II B, the bins satisfy
b1 ≤ b2, b3 ≤ b4, b1 ≤ b3, and, if b1 ¼ b3, b2 ≤ b4, as
well as a diagonal L, binned in some bin B (satisfying
triangle conditions on fb1; b2; Bg and fb3; b4; Bg). Sim-
ilarly to before, this is optimal in the limit of vanishing non-
Gaussianity and S−1 → C̃−1.
Estimator (63) contains a four-, two-, and a zero-field

term; unlike for the bispectrum, all terms are nontrivial, as
they subtract off the mean of the signal. One exception
to this is the ideal parity-odd trispectrum: since parity-
violation only appears at fourth-order for scalars, the
disconnected terms vanish in the ideal limit, making this
contribution somewhat easier to estimate. In the below, we

will consider estimators for both the parity-even and parity-
odd trispectra below, which will be denoted t�ðb; LÞ. We
caution that the parity-odd components are purely imagi-
nary, thus their Fisher matrix is negative definite (and equal
to the negative of the covariance, if odd- and even-modes
are uncorrelated).

A. Idealized form

1. Four-field term

In the ideal limit, the trispectrum numerator can be
written in harmonic space as

t̂�;idealðb; BÞ ∝
1

4!

X
limi

∂Tl1l2l3l4
ð−m1Þð−m2Þð−m3Þð−m4Þ

∂t�ðb; BÞ
½hl1m1

hl2m2
hl3m3

hl4m4
− ðhl1m1

hl2m2
hhl3m3

hl4m4
i þ 5 perms:Þ

þ ðhhl1m1
hl2m2

ihhl3m3
hl4m4

i þ 2 perms.Þ�: ð64Þ

Inserting the explicit definition of the binned trispectra (17), the four-field term can be written

t̂ð4Þ�;idealðb; BÞ ∝
1

Δ4ðbÞ
X
limi

ð−1Þl1234
X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ΘLðBÞ
�
1� ð−1Þl1234

2

�
Θl1ðb1Þ � � �Θl4ðb4Þhl1m1

� � � hl4m4
;

ð65Þ

where we have noted that all 24 permutations are equivalent (due to the symmetry of the four h fields), and explicitly
restricted to even or odd l1234 ≡ l1 þ l2 þ l3 þ l4. By expanding the square bracket, this can be split into two coupled
pieces:

t̂ð4Þ�;idealðb; BÞ ∝ � 1

2Δ4ðbÞ
X
LM

ð−1ÞMΘLðBÞ½Aideal
b1b2

ðL;−MÞAideal
b3b4

ðL;MÞ � Āideal
b1b2

ðL;−MÞĀideal
b3b4

ðL;MÞ�; ð66Þ

subject to the definitions

Aideal
b1b2

ðL;MÞ ¼
X

l1l2m1m2

wLM
l1l2m1m2

Θl1ðb1ÞΘl2ðb2Þhl1m1
hl2m2

Āideal
b1b2

ðL;MÞ ¼
X

l1l2m1m2

ð−1Þl1þl2þLwLM
l1l2m1m2

Θl1ðb1ÞΘl2ðb2Þhl1m1
hl2m2

; ð67Þ

which are symmetric under b1 ↔ b2. The separable form given in (66) is significantly more efficient than a naive estimation
using (65), with computation scaling as l6

max instead of l10
max for some global maximum scale lmax [given that each of

ðL;MÞ coefficient involves Oðl4
maxÞ terms, and there are OðN2

lÞ ¼ Oðl2
maxÞ such pieces].

Rather than performing the sum over li; mi explicitly, it is preferred to compute A and Ā by first rewriting the weighting
function in terms of spin-weighted spherical harmonics, as in (11). Inserting this relation, we find

Aideal
b1b2

ðL;MÞ ¼
Z

dn̂−2YLMðn̂Þ
�X
l1m1

hl1m1
Θl1ðb1Þþ1Yl1m1

ðn̂Þ
��X

l2m2

hl2m2
Θl2ðb2Þþ1Yl2m2

ðn̂Þ
�

≡
Z

dn̂−2YLMðn̂ÞHþ
b1;ideal

ðn̂ÞHþ
b2;ideal

ðn̂Þ; ð68Þ

and similarly
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Āideal
b1b2

ðL;MÞ ¼ ð−1ÞL
Z

dn̂−2YLMðn̂ÞH̄þ
b1;ideal

ðn̂ÞH̄þ
b2;ideal

ðn̂Þ; ð69Þ

defining the spin-weighted fields

H�
b;idealðn̂Þ ¼

X
lm

hlmΘlðbÞ�1Ylmðn̂Þ; H̄�
b;ideal ¼

X
lm

ð−1ÞlhlmΘlðbÞ�1Ylmðn̂Þ: ð70Þ

The H fields satisfy the following identity

½Hþ
b;idealðn̂Þ�� ¼ −

X
lm

hlmΘlðbÞ−1Ylmðn̂Þ≡ −H−
b;idealðn̂Þ; ð71Þ

(using properties of the spin-weighted spherical harmonics and assuming aðn̂Þ to be real), implying that
Aideal;�
b1b2

ðL;MÞ ¼ ð−1ÞMĀideal
b1b2

ðL;−MÞ. This has the useful implication that

t̂ð4Þ�;idealðb; BÞ ∝ � 1

Δ4ðbÞ
X
LM

ΘLðBÞ
�Re½Āideal;�

b1b2
ðL;MÞAideal

b3b4
ðL;MÞ�

iIm½Āideal;�
b1b2

ðL;MÞAideal
b3b4

ðL;MÞ�
; ð72Þ

which makes clear that parity-even (odd) trispectra are purely real (imaginary). Additionally, it can be used to write the
estimator entirely in terms of M ≥ 0 modes (noting that codes such as HEALPix generally store only these, by symmetry),

t̂ð4Þ�;idealðb; BÞ ∝ � 1

2Δ4ðbÞ
X
L;M≥0

ð1þ δKM>0ÞΘLðBÞ
8<
:

Re½Āideal;�
b1b2

ðL;MÞAideal
b3b4

ðL;MÞ þ Aideal;�
b1b2

ðL;MÞĀideal
b3b4

ðL;MÞ�
iIm½Āideal;�

b1b2
ðL;MÞAideal

b3b4
ðL;MÞ − Aideal;�

b1b2
ðL;MÞĀideal

b3b4
ðL;MÞ�;

; ð73Þ

where the factor involving a Kronecker delta gives 2 if
M > 0 and 1 else.
Utilizing these relations, we can compute the four-point

term by first assembling all possible H�
b;idealðn̂Þ fields (a

total of Nl), then combining to form each of the OðN2
lÞ

combinations of Aideal
b1b2

ðL;MÞ and performing a pairwise
sum over harmonics, restricting to the relevant bin in L.
In practice, H�

ideal can be obtained via spin-weighted
harmonic transform, since �H�

idealðn̂Þ is the map-space
spin-�1 conjugate to the harmonic-space spin-�1

fields �hlmΘlðbÞ. Similarly, Ā�
LM and A�

LM are the

harmonic-space spin-�2 conjugates of the spin-�2 maps
Hþðn̂ÞHþðn̂Þ and H−ðn̂ÞH−ðn̂Þ respectively. Thus, the
computational cost to form the A fields is OðN2

lÞ, whilst
that of the summation is OðNbinÞ ¼ OðN4

lÞ, but does not
involve harmonic transforms, thus is not likely to be rate
limiting.

2. Aside: Spin definitions

It is interesting to consider why the above decomposition
is possible. In the definition of [27], the trispectrum
coefficients, Tl1l2

l3l4
ðLÞ are defined via

Tl1l2l3l4
m1m2m3m4

¼
X
LM

ð−1ÞM
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

�
Tl1l2
l3l4

ðLÞ ð74Þ

as in (8). With this definition, the trispectrum estimator will involve terms of the form

X
m1m2

�
l1 l2 L

m1 m2 M

�
hl1m1

hl2m2
¼

�
l1 l2 L

−s1 −s2 s12

�−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π

ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ

s

×
Z

dn̂−s12YLMðn̂Þ
�X

m1

hl1m1 s1
Yl1m1

ðn̂Þ
��X

m2

hl2m2
s2Yl2m2

ðn̂Þ
�
: ð75Þ

On the rhs, we have inserted the spin-weighted Gaunt factor definition (11) for a general set of spins fs1; s2; s12g. This
allows themi summations to be rewritten as an integral (or equivalently, a set of spin-weighted harmonic transforms); given
an appropriate definition for the reduced trispectrum coefficients, it also allows us to separate the li summations.
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To perform the above trick, we must carefully choose
the spins. In particular, we require the 3j symbol to
be nonzero for all l of interest. Assuming li ≥ 2,
jl1 − l2j ≤ L ≤ l1 þ l2, and jsij ≤ li, one might con-
sider fs1; s2; s12g ¼ f0; 0; 0g; f�1;∓1; 0g; f�2;∓2; 0g;
f�1;�1;∓2g. Whilst the former choice matches that used
in the bispectrum, it requires even l1 þ l2 þ L ¼ 0, and
thus cannot be used for the parity-odd trispectrum.
Similarly, the second and third vanish upon symmetriza-
tion, thus we here utilize the third, fixing s1 ¼ s2 ¼ −1 and

s12 ¼ 2.9 To this end, we absorb the first line on the rhs of
(75) into the trispectrum definition, yielding the reduced
trispectrum of (10), and allowing separation of the li
summations.

3. Two-field term

The two-field term can be obtained by first noting that
hhlmhl0m0 i ¼ ð−1ÞmδKll0δKmð−m0ÞCl=S2l, assuming uniform

weights Sl. As such, the estimator takes the form

t̂ð2Þ�;idealðb; BÞ ∝ −
1

Δ4ðbÞ
X
limi

ð−1Þl1234

X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ΘLðBÞ

×

�
1� ð−1Þl1234

2

�
Θl1ðb1Þ � � �Θl4

ðb4Þ
�
hl1m1

hl2m2
ð−1Þm3δKl3l4δ

K
m3ð−m4Þ

Cl3

S2l3
þ 5 perms

�
: ð76Þ

Due to the Kronecker deltas, the first two permutations contain the term

X
m3M

ð−1Þm3þM

�
l1 l2 L

m1 m2 −M

��
l3 l3 L

m3 −m3 M

�
∝
�
l1 l2 0

m1 m2 0

�
δKL0δ

K
M0: ð77Þ

using properties of Wigner 3j symbols [68] and separating out part of the wLM weighting matrices. Since we restrict to
L ≥ 2, this term vanishes always. The other four permutations contain contributions of the form

X
m1M

ð−1Þm2

�
l1 l2 L

m1 m2 −M

��
l3 l1 L

m3 −m1 M

�
∝ δKl2l3δ

K
m2ð−m3Þ: ð78Þ

In both cases, two pairs of momenta are restricted to be equal, thus l1234 is even, and any parity-odd contribution to the
trispectrum must vanish. For the parity-even part, we find

t̂ð2Þþ;idealðb; BÞ ∝ −
1

Δ4ðbÞ
ðδKb1b4δKb2b3 þ δKb1b3δ

K
b2b4

Þ
X
l1l2L

ð2l1 þ 1Þð2Lþ 1Þ
4π

�
l1 l2 L

−1 −1 2

�
2

× ð−1Þl1þl2þLΘLðBÞðΘl1ðb1ÞΘl2ðb2Þ þ Θl2ðb1ÞΘl1ðb2ÞÞ
Cl1

S2l1

X
m2

jhl2m2
j2; ð79Þ

involving the empirical power spectrum estimate
P

m2
jhl2m2

j2=ð2l2 þ 1Þ. This scales as Oðl3
maxÞ.

4. Zero-field term

The zero-field term may be evaluated using a similar prescription. First, we note that this requires two pairs of li to be
equal: due to the 1� ð−1Þl1234 term, the odd-piece must vanish. For the even piece, there are only two nontrivial
permutations (due to the above arguments removing the l1 ¼ l2, l3 ¼ l4 term),

t̂ð0Þþ;idealðb; BÞ ∝
1

Δ4ðbÞ
X
limi

ð−1Þl1234
X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

ΘLðBÞ

× Θl1ðb1Þ � � �Θl4ðb4Þ
�
ð−1Þm1þm2

Cl1Cl2

S2l1S
2
l2

ðδKl1l3δKl2l4δKm1ð−m3Þδ
K
m2ð−m4Þ þ δKl1l4δ

K
l2l3

δKm1ð−m4Þδ
K
m2ð−m3ÞÞ

�
: ð80Þ

9Other choices are possible; these will lead to reduced trispectra differing by powers of
ffiffiffi
l

p
.
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To simplify this, we note that

X
m1m2M

ð−1Þm1þm2þM

�
l1 l2 L

m1 m2 −M

��
l1 l2 L

−m1 −m2 M

�
¼ ð−1Þl1þl2þL; ð81Þ

thus

t̂ð0Þþ;idealðb; LÞ ∝
1

Δ4ðbÞ
ðδKb1b4δKb2b3 þ δKb1b3δ

K
b2b4

Þ
X
l1l2L

ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ
4π

�
l1 l2 L

−1 −1 2

�
2

ΘLðBÞ

× ð−1Þl1þl2þLΘl1ðb1ÞΘl2ðb2Þ
Cl1

S2l1

Cl2

S2l2
; ð82Þ

which can be straightforwardly computed in Oðl3
maxÞ

operations.

5. Normalization

We now turn to the trispectrum Fisher matrix. As we
shall find below, this is somewhat more complex than for
the power spectrum or bispectrum, since there are off-
diagonal correlations even in the ideal case, i.e., bins with
different b can correlate. This arises due to the degeneracy

in the quadrilateral definition: there are two choices of
diagonal momentum L for any given tetrahedron. As such,
the off-diagonal terms will contribute only when
fb01; b02; b03; b04g is some permutation of fb1; b2; b3; b4g.
To compute the normalization, we start from (63) and

insert the harmonic-space definitions of the binned trispec-
trum (17), noting that we can absorb a symmetry factor of
24 since Tijkl is fully symmetric under index exchange.
This gives

F ideal
4� ðb; B;b0; B0Þ ¼ 1

Δ4ðbÞΔ4ðb0Þ
X
limi

ð−1Þl1234
X

LL0MM0
ð−1ÞMþM0

�
1 − ð−1Þl1234

2

�
2

S−1l1 � � � S−1l4

× ΘLðBÞΘL0 ðB0ÞΘl1
ðb1Þ � � �Θl4ðb4ÞwLð−MÞ

l1l2m1m2
wLM
l3l4m3m4

× f½wL0ð−M0Þ
l1l2m1m2

wL0M0
l3l4m3m4

Θl1ðb01Þ � � �Θl4ðb04Þ þ 7 perms� þ ð2 ↔ 3Þ þ ð2 ↔ 4Þg; ð83Þ

where the ð−1Þl1234 term comes from switching mi to ð−miÞ in one of the trispectrum derivatives. As before, the binning
functions satisfy ΘlðbÞΘlðb0Þ ¼ δKbb0ΘlðbÞ, for contiguous bins; this restricts which bins contribute to the coupling matrix.
To proceed it is useful to consider the three permutations in the bottom line separately. The first involves

X
m1m2

wLð−MÞ
l1l2m1m2

wL0ð−M0Þ
l1l2m1m2

∝
X
m1m2

�
l1 l2 L

m1 m2 −M

��
l1 l2 L0

m1 m2 −M0

�
¼ 1

2Lþ 1
δKLL0δKð−MÞM0 ; ð84Þ

which implies the matrix is diagonal in L. Similarly, the binning functions yield a factor δKbb0Δ4ðb0Þ (noting the selection
rules on b), leading to the final contribution,

F ideal;ðaÞ
4� ðb; B;b0; B0Þ ¼ � δKbb0δKBB0

Δ4ðbÞ
X
liL

�
1� ð−1Þl1234

2

�
Θl1

ðb1Þ � � �Θl4ðb4ÞΘLðBÞ
�
l1 l2 L

−1 −1 2

�
2
�
l3 l4 L

−1 −1 2

�
2

×
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þð2Lþ 1Þ

ð4πÞ2 S−1l1 � � � S−1l4 : ð85Þ

Notably, this factorizes into a piece involving ðl1;l2; LÞ and another involving ðl3;l4; LÞ: as such, computation cost is
OðN3

lÞ.
The other permutations do not require L ¼ L0, and thus source a (small) mixing between modes. The second involves the

following combination of 3j symbols (from the modified Wigner symbols):
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X
m1m2m3m4MM0

ð−1ÞMþM0
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

��
l1 l3 L0

m1 m3 −M0

��
l2 l4 L0

m2 m4 M0

�

¼ ð−1Þl2þl3

�
L l1 l2

L0 l4 l3

�
; ð86Þ

simplifying in terms of a 6j symbol in the second line. Similarly, the third has

X
m1m2m3m4MM0

ð−1ÞMþM0
�
l1 l2 L

m1 m2 −M

��
l3 l4 L

m3 m4 M

��
l1 l4 L0

m1 m4 −M0

��
l3 l2 L0

m3 m2 M0

�

¼ ð−1ÞLþL0
�
L l1 l2

L0 l3 l4

�
: ð87Þ

This leads to the following matrix contributions:

F ideal;ðbÞ
4� ðb; B;b0; B0Þ

¼ � 1

Δ4ðbÞΔ4ðb0Þ ½δ
K
b1b01

δKb2b03
δKb3b02

δKb4b04
þ 7 perms�

X
liLL0

�
1� ð−1Þl1234

2

�
Θl1ðb1Þ � � �Θl4ðb4Þ

× ΘLðBÞΘL0 ðB0Þ ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þð2Lþ 1Þð2L0 þ 1Þ
ð4πÞ2 ð−1Þl2þl3

�
L l1 l2

L0 l4 l3

�

× S−1l1 � � � S−1l4
�
l1 l2 L

−1 −1 2

��
l3 l4 L

−1 −1 2

��
l1 l3 L0

−1 −1 2

��
l2 l4 L0

−1 −1 2

�
; ð88Þ

and

F ideal;ðcÞ
4� ðb; B;b0; B0Þ

¼ � 1

Δ4ðbÞΔ4ðb0Þ ½δ
K
b1b01

δKb2b04
δKb3b03

δKb4b02
þ 7 perms�

X
liLL0

�
1� ð−1Þl1234

2

�
Θl1ðb1Þ � � �Θl4ðb4Þ

× ΘLðBÞΘL0 ðB0Þ ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þð2Lþ 1Þð2L0 þ 1Þ
ð4πÞ2 ð−1ÞLþL0

�
L l1 l2

L0 l3 l4

�

× S−1l1 � � � S−1l4
�
l1 l2 L

−1 −1 2

��
l3 l4 L

−1 −1 2

��
l1 l4 L0

−1 −1 2

��
l3 l2 L0

−1 −1 2

�
: ð89Þ

Computation of this scales as Oðl6
maxÞ, due to the presence of the Wigner 6j symbol.

Combining results, our ideal trispectrum estimators are given by

t̂þ;idealðb; BÞ ¼
X
b0B0

F ideal;−1
4þ ðb; B;b0; B0Þ½t̂ð4Þþ;idealðb0; B0Þ þ t̂ð2Þþ;idealðb0; B0Þ þ t̂ð0Þþ;idealðb0; B0Þ�

t̂−;idealðb; LÞ ¼
X
b0B0

F ideal;−1
4− ðb; B;b0; B0Þt̂ð4Þ−;idealðb0; B0Þ; ð90Þ

for the parity-even and parity-odd contributions respec-
tively, where the numerators are given in (72), (79) and (82)
and the Fisher matrix is a sum of (85), (88) and (89).
Note also that there is no correlation between even- and
odd-trispectra, since they require even l1234 and odd
l1234 respectively. As before, the Fisher matrix is
equal to the estimator variance if Sl ¼ Cl in the Gaussian

limit (or its negative, for the imaginary parity-odd
trispectrum).

B. General form

At the final level of complexity we have the binned
trispectrum of a masked field. The numerator of this takes a

OLIVER H. E. PHILCOX PHYS. REV. D 107, 123516 (2023)

123516-16



similar form to the ideal case discussed above, and the
Fisher matrix can be computed similarly to that of the
bispectrum Sec. V B. However, we note that, in the general
case, the two- and zero-field terms in the parity-odd
estimator do not vanish, and, at least in principle, there
can be nontrivial mixing between odd- and even-parity
trispectra induced by the window function. We show how

to account for such effects below, considering each piece of
the estimator in turn.

1. Four-field term

Analogously to Sec. VI A 1, the four-field component of
the full trispectrum numerator is given by

t̂ð4Þ� ðb; BÞ ∝ 1

24

X
limi

∂Tl1���l4

ð−m1Þ���ð−m4Þ
∂tðb; BÞ ½Wh�l1m1

� � � ½Wh�l4m4

¼ � 1

Δ4ðbÞ
X
limi

�
1� ð−1Þl1234

2

�X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

Bl1Bl2Bl3Bl4ΘLðBÞΘl1ðb1Þ � � �Θl4ðb4Þ

× ½Wh�l1m1
� � � ½Wh�l4m4

; ð91Þ
inserting the binned trispectrum definition in the second line. This differs only from the ideal case by the replacement
h → Wh≡WS−1ã, and is similar to the even-parity estimator of [40]. Following similar logic to before, the estimator
separates into a more straightforwardly computable form:

t̂ð4Þ� ðb; BÞ ∝ � 1

2Δ4ðbÞ
X
LM

ð−1ÞMΘLðBÞ½Ab1b2ðL;−MÞAb3b4ðL;MÞ � Āb1b2ðL;−MÞĀb3b4ðL;MÞ�; ð92Þ

which could be expressed as a real or imaginary part as in (72). This uses the (mask-dependent) definitions

Ab1b2 ½x; y�ðL;MÞ ¼
Z

dn̂−2YLMðn̂ÞHþ
b1
½x�ðn̂ÞHþ

b2
½y�ðn̂Þ

Āb1b2 ½x; y�ðL;MÞ ¼ ð−1ÞL
Z

dn̂−2YLMðn̂ÞH̄þ
b1
½x�ðn̂ÞH̄þ

b2
½y�ðn̂Þ

H�
b ½x�ðn̂Þ ¼

X
lm

½Wx�lmBlΘlðbÞ�1Ylmðn̂Þ

H̄�
b ½x�ðn̂Þ ¼

X
lm

ð−1Þl½Wx�lmBlΘlðbÞ�1Ylmðn̂Þ: ð93Þ

These may be computed via weighted spherical harmonic
transforms, as discussed in Sec. VI B 1, and differ only by
the mask W and the beam Bl. As such, the four-field term
can be computed as a set of forward and reverse harmonic
transforms, and finally a harmonic space sum in some bin
B. As for the ideal case, the computational scaling isOðN2

lÞ
for the A fields, and OðNbinÞ for the overall summation.

2. Two-field term

As mentioned above, the two-field term is not guaran-
teed to vanish in the general parity-odd estimator, nor does
it take a simple form in the general parity-even estimator.
This is due to multipole mixing induced by the mask: even
l1234 in the true map does not necessarily correspond to
even l1234 in the windowed map.10 For the parity-odd case,

however, the two-field term is likely to be small, assuming
a relatively well-behaved window function.
In general, the two-field term is equal to the four-field

term but with two of the Monte Carlo fields contracted, i.e.,
with the replacement hihj → hhihji. As for the bispectrum
(Sec. V B), we will compute this by averaging over a set of
simulations, fαg, with covariance C̃α.

11 In this case,
however, the estimator will be biased if C̃α is not equal
to the data covariance C̃, though, the bias is expected to be
small in the parity-odd case, given that the term vanishes in
the ideal limit. Furthermore, in the weakly non-Gaussian
regime, the disconnected terms are large compared to the
connected ones, thus we may require a substantial number
of simulations to compute this contribution, to avoid
additional sources of variance. We can write the two-field
term in the following manner:

10See [22] for further discussion of this in the context of the
parity-odd bispectrum.

11Note that there is no requirement for the simulations to have
accurate statistics beyond C̃; this is discussed in Sec. VI B 1.
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t̂ð2Þ� ðb; BÞ ∝ ∓ 1

2Δ4ðbÞ
X
LM

ð−1ÞMΘLðBÞfAb1b2 ½h; h�ðL;−MÞhAb3b4 ½S−1α;S−1α�ðL;MÞiα
�Āb1b2 ½h; h�ðL;−MÞhĀb3b4 ½S−1α;S−1α�ðL;MÞiαg þ 5 perms; ð94Þ

where the permutations are over positions of the α mocks, arising due to the permutations contained within
the binned trispectrum definition. To implement (94), we must compute both hAbb0 ½S−1α;S−1α�ðL;MÞi and
hAbb0 ½h;S−1α�ðL;−MÞAb00b000 ½h;S−1α�ðL;MÞi; in practice, computation is dominated by the latter, since we must combine
the data with each of NMC simulations, with each requiring a harmonic transform per bin pair.

3. Zero-field term

The general zero-field term may be computed analogously, and takes the form

t̂ð0Þ� ðb; BÞ ∝ � 1

4Δ4ðbÞ
X
LM

ð−1ÞMΘLðBÞfhAb1b2 ½S−1α1;S−1α2�ðL;−MÞAb3b4 ½S−1α1;S−1α2�ðL;MÞiα1;α2
− hĀb1b2 ½S−1α1;S−1α2�ðL;−MÞĀb3b4 ½S−1α1;S−1α2�ðL;MÞiα1;α2 þ 5 permsg; ð95Þ

where fα1g and fα2g are two independent sets of simu-
lations with the same covariance, and we sum over their
possible locations. If the simulations were Gaussian,
one could use only a single set and compute the four-
point average via hα4i ∼ C̃αC̃α; here, we allow for non-
Gaussianities (for example from lensing), thus use only
two-point averages.12

4. Normalization

Mask-induced multipole mixing can lead to nontrivial
leakage between even- and odd-parity trispectra. As such,
the general Fisher matrix contains even-even correlations
(denoted F 4þþ), odd-odd correlations (F 4−−) and even-
odd correlations (F 4þ− and F 4−þ). Thanks to the optimal
estimator formalism, the full trispectrum estimates obtained
should be free from this mixing, i.e., the measured parity-
odd modes should not contain a parity-even contribution.
This is important if one is searching for a signal in the

former, and wants to avoid, for example, lensing-based
contributions to the latter.
To compute the Fisher matrix, we start from the general

relation given in (63), and denote the two parity states by
λ; λ0 ∈ f�1g,

F 4λλ0 ðb; B;b0; B0Þ ¼ 1

24

∂T̃ijkl

∂tλðb; BÞ
S−1
imS

−1
jnS

−1
koS

−1
lp

×
∂T̃mnop

∂tλ0 ðb0; B0Þ : ð96Þ

As with the bispectrum, this must be significantly sim-
plified to avoid a heinously expensive sum. Whilst one
could compute F 4 as the covariance of the unnormalized t̂
estimator applied to a set of GRFs, this requires a large
number of Monte Carlo simulations to converge and is
accurate only in the limit of S−1 → C̃−1. Instead (following
the bispectrum logic, and [36,40,54]), we can use the
following identity:

S−1
im ½S−1

jnS
−1
koS

−1
lp þ 5 perms.� ¼ 1

6
S−1
imS

−1
jj0S

−1
kk0S

−1
ll0 ½Uj0n0Uk0o0Ul0p0 þ 5 perms�U−1

n0nU
−1
o0oU

−1
p0p

¼ 1

6
S−1
imS

−1
jj0S

−1
kk0S

−1
ll0 U

−1
n0nU

−1
o0oU

−1
p0phuj0uk0ul0un0uo0up0 ifc; ð97Þ

where we have inserted three copies of the unit matrix, for symmetric invertible matrix U and GRFs u, which satisfy
huuTi ¼ U. The correlator has the subscript ‘fc’ corresponding to ‘fully-connected’, i.e., we consider only two-point
contractions when each of fj0; k0; l0g contracted with one of fn0; o0; p0g.
With the decomposition (97), the Fisher matrix can be split into two pieces, connected only by a known matrix, S−1.

Explicitly, each takes the form

12One may also utilize non-Gaussian simulations to remove unwanted trispectra (arising from lensing or noise, for example); this is
detailed in [40].
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∂T̃ijkl

∂tλðb; BÞ
xjykzl ¼ Wðn̂iÞ

X
l1���l4m1���m4

Y�
l1m1

ðn̂iÞ
∂Tl1���l4

ð−m1Þ���ð−m4Þ
∂tðb; BÞ ½Wx�l2m2

½Wy�l3m3
½Wz�l4m4

≡Wðn̂iÞQ4λ½x; y; z�ðn̂i;b; BÞ ð98Þ
for some fx; y; zg, converting the trispectrum to harmonic space, and introducingQ4� functions, akin to (57). This function
is just a real-space map for each choice of b and L. Using the above definition, the coupling matrix can be written

F 4λλ0 ðb; B;b0; B0Þ ¼ 1

144

Z
dn̂ dn̂0hQ4λ½S−1u;S−1u;S−1u�ðn̂;b; BÞ½WS−1W�ðn̂; n̂0Þ

×Q4λ0 ½U−1u;U−1u;U−1u�ðn̂0;b0; B0Þifc; ð99Þ
which is a Monte Carlo average over realizations of u, akin to (56) for the bispectrum.
To compute the fully-connected correlator, we must subtract off the unwanted correlations. This can be done by

introducing multiple sets of GRFs, denoted, fung, and computing expressions of the form

Fabc;def
4λλ0 ≡ 1

144

Z
dn̂ dn̂0hQ4λ½S−1ua;S−1ub;S−1uc�ðn̂;b; BÞ½WS−1W�ðn̂; n̂0Þ

×Q4λ0 ½U−1ud;U−1ue;U−1uf�ðn̂0;b0; B0Þiua;ub;uc;ud;ue;uf ; ð100Þ

analogous to those in Sec. V B. Most simply, we could use three such sets, giving F 4λλ0 ðb; B;b0; B0Þ ¼ 6F123;123
4λλ0 , such that

only fully connected terms can contribute. As shown in [40], a more efficient way is to instead use two sets of GRFs, and
compute the Fisher matrix as

F 4λλ0 ðb; B;b0; B0Þ ¼ 1

8
½ðF111;111

4λλ0 þ F222;222
4λλ0 Þ þ 9ðF112;112

4λλ0 þ F122;122
4λλ0 Þ − 6ðF111;122

4λλ0 þ F222;112
4λλ0 Þ�; ð101Þ

with coefficients chosen to minimize the variance of the F 4 estimate, i.e. reduce the number of Monte Carlo simulations
required.
We now turn to the computation of Q4� maps. First, we insert the explicit trispectrum of (17) into (98), finding

Q4�½x; y; z�ðn̂i;b;BÞ ¼ � 1

Δ4ðbÞ
X
limi

Y�
l1m1

ðn̂iÞ
X
LM

ð−1ÞMwLð−MÞ
l1l2m1m2

wLM
l3l4m3m4

Bl1Bl2
Bl3Bl4 ½Wx�l2m2

½Wy�l3m3
½Wz�l4m4

ΘLðBÞ

×

�
1� ð−1Þl1234

2

�
½Θl1ðb1Þ � � �Θl4ðb4Þ þ 7 perms.� þ ð2↔ 3Þ þ ð2↔ 4Þ: ð102Þ

Naïve computation of this expression is highly expensive, due to the large number of coupled l summations. To simplify,
we insert the definitions of A and Ā given in (93) and expand the first weighting matrix in terms of spin-weighted spherical
harmonics. For the first permutation, this gives

QðaÞ
4�½x; y; z�ðn̂i;b; BÞ ¼ � 1

2Δ4ðbÞ
X

l1l2m1m2

Y�
l1m1

ðn̂iÞ
X
LM

Bl1Bl2ΘLðBÞΘl1ðb1ÞΘl2ðb2Þ½Wx�l2m2
ð−1ÞM

×
Z

dn̂−2YLMðn̂Þþ1Yl1m1
ðn̂Þþ1Yl2m2

ðn̂Þ½Ab3b4 ½y; z�ðL;−MÞ � ð−1Þl1þl2þLĀb3b4 ½y; z�ðL;−MÞ�:

ð103Þ
Next, the l1 and L summations can be written as spin-weighted spherical harmonic transforms. Denoting

s½X�bðn̂Þ ¼
X
lm

sYlmðn̂ÞΘlðbÞXlm; ð104Þ

and using the relation ð−1ÞlsYlmðn̂Þ ¼ −sYlmð−n̂Þ, we can write the harmonic-space Q4� as

QðaÞ
4�;l1m1

½x; y; z�ðb; BÞ ¼ ∓Bl1Θl1ðb1Þ
2Δ4ðbÞ

�Z
dn̂−1Y�

l1m1
ðn̂ÞHþ

b2
½x�ðn̂Þ−2½Ā�

b3b4
½y; z��Bðn̂Þ

�
Z

dn̂þ1Y�
l1m1

ðn̂ÞH−
b2
½x�ðn̂Þþ2½A�

b3b4
½y; z��Bðn̂Þ

�
; ð105Þ
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recalling that sY�
lm ¼ ð−1Þsþm

−sYlð−mÞ. Here, the n̂ integral can be evaluated as a further spin-1 spherical harmonic
transform. Summing over permutations, we find the final form,

Q4�;lm½x; y; z�ðb; BÞ ¼ ½QðaÞ
4�;lm½x; y; z�ðfb1; b2; b3; b4g; BÞ þ 7 perms� þ ðx ↔ yÞ þ ðx ↔ zÞ; ð106Þ

where the permutations preserve the fb1; b2g and fb3; b4g
pairs. This involves OðN4

lÞ harmonic transforms (since
only ΘlðbÞ can be separated from the above expres-
sion), giving a slightly more favorable scaling than
OðNbinÞ ¼ OðN5

lÞ.
Given Q4�;lm we can compute Q4�ðn̂Þ, and thus

compute the coupling via (99), multiplying by the filter
WS−1W, which requires straightforward transformations
between real and harmonic space, with a computational
cost of OðNbinÞ. Computing the above factors is likely the

most labor-intensive section of optimal trispectrum esti-
mator, but, thanks to the above simplifications, still scales
favorably with the number of Monte Carlo simulations
(linearly, and much faster than simply using them to
numerically estimate the covariance of the unnormalized
estimator [36]), and the number of bins (technically
quadratically, but with the rate-limiting pieces (computa-
tion of WS−1Q4�) scaling linearly).
To summarize, our estimator of the full-sky binned

trispectrum is given by

t̂λðb; BÞ ¼
X
b0B0λ0

F−1
4λλ0 ðb; B;b0; B0Þfτλ0 ½h; h; h; h�ðb0; B0Þ − 6hτλ0 ½h; h;S−1α;S−1α�ðb0; B0Þiα

þ 3hτλ0 ½S−1α1;S−1α1;S−1α2;S−1α2�ðb0; B0Þiα1;α2g; ð107Þ
where the unnormalized estimator can be written explicitly as

τ�½α; β; γ; δ�ðb; BÞ ¼ � 1

48Δ4ðb0Þ
X
LM

ð−1ÞMΘLðBÞfAb1b2 ½α; β�ðL;−MÞAb3b4 ½γ; δ�ðL;MÞ

� Āb1b2 ½α; β�ðL;−MÞĀb3b4 ½γ; δ�ðL;MÞg þ 23 perms. ð108Þ

where the permutations are over the positions of fα; β; γ; δg,
and α are random fields satisfying hααTi ¼ C̃. The A and Ā
fields are defined in (93) and the general Fisher matrix is
given in (99). If one wishes to ignore the even-odd coupling
in the estimator, one just evaluates the above expression
fixing λ0 ¼ λ.

VII. VALIDATION

In the above sections, we have derived optimal and ideal
estimators for the full-sky power spectrum, bispectrum, and
(parity-even and odd) trispectrum. To demonstrate their
efficacy, we will now consider a variety of tests on synthetic
data, both for Gaussian and non-Gaussian maps, optionally
including a nontrivial mask. This section makes extensive
use of the public POLYBIN code,13 which implements the
above estimators in PYTHON, with harmonic manipulations
performed using HEALPix [69]. Spectra can be computed
using arbitrary binning schemes, with the option of differ-
ent binning for squeezed and collapsed configurations. For
this purpose, we will specialize to CMB applications,
though we note that the tools developed above apply much
more generally.

A. Practicalities

To test our estimators, we will primarily use synthetic
Gaussian random fields (GRFs) created using HEALPix.
These are constructed using the following (statistically
isotropic) correlator:

halmal0m0 i ¼ ð−1ÞmδKll0δKmð−m0Þ½B2
lC

TT
l þ Nl�; ð109Þ

where CTT
l is the CMB temperature power spectrum

predicted by CLASS with the Planck best-fit parameters
[70], and we set the beam, Bl, to unity. Since we generate
and analyze simulations with the same HEALPix Nside we do
not include a pixel beam. The noise model is given by

Nl ¼ Δ2
T exp

�
lðlþ 1Þθ2FWHM

8 log 2

�
; ð110Þ

where we fix ΔT ¼ 1μK-arcmin and θFWHM ¼ 5 arcmin.
Though we will usually work with Gaussian fields, we
also consider simulations with a synthetic bispectrum
injected. These can be obtained following [36], via the
transformation on a GRF alm

alm → alm þ 1

6
Gll2l3
mm2m3

btheoryll2l3
h�l2m2

h�l3m3
; ð111Þ13GitHub.com/oliverphilcox/PolyBin.
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where btheoryl1l2l3
is the desired bispectrum (see also Eq. (1.3)

in [37]) and hlm ≡ ½C−1a�lm. Here, we will use the
factorized form bl1l2l3 ¼

Q
3
i¼1 βli

, where, for definitive-
ness, we set βl ¼ 2 exp ½ðl − 2Þ=40� (in μK3 units). Due to
the factorization, this can be written

alm → alm þ 1

6
βl

Z
dn̂Y�

lmðn̂Þ½βh��ðn̂Þ½βh��ðn̂Þ; ð112Þ

using (6) and writing ½βh�ðn̂Þ ¼ P
lm βlhlmYlmðn̂Þ, which

can be evaluated as a harmonic transform.14 Finally, we will
often consider windowed fields: for this, we utilize a
Planck 40% Galactic sky mask, with 2° Gaussian apodiza-
tion, denoted W15; this is akin to a (highly anisotropic)
window that would be used in a realistic Planck analysis,
though we pick a somewhat severe example for the sake of
demonstration. The full field is given by dðn̂Þ ¼Wðn̂Þaðn̂Þ,
an example of which is shown in Fig. 1.
To form the window-free estimators we require the

random fields u and their covariance, U. As noted in
Sec. IV C, the estimator is unbiased for any U, however, the
Monte Carlo variance can be reduced if U−1 is close to the
weighting matrix S−1. Here, we will assume a diagonal
weighting, such that

hulmul0m0 i ¼ ð−1ÞmδKll0δKmð−m0Þ½B2
lC

TT
l þ Nl�

≡ ð−1ÞmδKll0δKmð−m0ÞUl; ð113Þ

as in (109); if the synthetic data is unwindowed, this
matches the true covariance C. With the definition, the
action of the U−1 weighting on a map β is given by

U−1
ij β

j ¼
X
lm

βlm
Ul

Ylmðn̂iÞ; ð114Þ

which is straightforwardly computed as a harmonic trans-
form. In practice, one does not deal with continuous maps
on the two-sphere, but discrete HEALPix pixels: this affects
things only by introducing a factor Apix ¼ 4π=Npix when-
ever a summation over pixels is involved.16 Finally, we
must choose a form for the S−1 optimality weighting. Here,
we use a diagonal approximation (neglecting the window
function, except for some rescaling, which cancels), fixing
S−1 ¼ U−1, which we expect to be close to optimal on the
scales considered herein. An example of the S−1-filtered
data is shown in Fig. 1. As noted in Sec. IV C, an alternative
approach would be to omit the window from ã (and its
correlators), and instead include it as a projection in S−1

(i.e. treating the true map as the input, and zero-weighting
bad regions).17 This may be more appropriate for real
analyses with complex window functions and inpainted
maps, and will be the approach used in [59].

B. Power spectrum

We begin by validating the power spectrum estimators
of Sec. IV. For this, we apply both the ideal (Sec. IVA)
and optimal (Sec. IV B) estimators to a suite of GRF
simulations created as described above, optionally including
aPlanckmask. For this test, we focus on comparatively large
scales (where the impact of the mask is largest), considering
the binned power spectrum in nl ¼ 100 linearly spaced bins
of width Δl ¼ 4 from lmin ¼ 2 to lmax ¼ 402, though we
drop the last bin in all cases to mitigate correlations of the
extremal bins with their neighbors. Data are constructed
using a HEALPix grid of Nside¼256, giving lHEALPIX

max ¼ 767,
far above the scales of interest here. To construct the Fisher

FIG. 1. Examples of Gaussian full-sky maps used to test the polyspectrum estimators. The left panel shows a dataset constructed with
the Planck power spectrum and noise parameters and an apodized sky mask. In the right panel, we show the map after application of the
quasi-optimal S−1 weighting.

14We also subtract off the mean of the signal, to ensure
that halmi ¼ 0.

15Available at pla.esac.esa.int/pla.

16Here, we neglect discrete pixel weights, which could be
included to ensure that U is the exact covariance of u. Assuming
that the l range in question is sufficiently small com-
pared to lmax, this approximation is justified.

17See [67] for an alternative approach that allows for invertible
covariances.
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matrices required in the optimal estimator, we use Nfish ¼
100 simulations. Computation required ≈30 CPU-seconds
per Fisher realization, and ≈0.4 CPU-seconds for each
estimator numerator (both for the ideal and optimal
approaches); the optimal estimator thus required ≈1 CPU-
hour of additional time to compute, though we note that this
is independent of the number of simulations analyzed.
To compare theory and data, we require some procedure

for estimating the binned models from the unbinned spectra
Cth
l . An appropriate choice is the following:

CthðbÞ ¼
�X

l

ΘlðbÞð2lþ 1ÞC
th
l

S2l

��
�X

l

ΘlðbÞð2lþ 1Þ 1

S2l

�
; ð115Þ

derived from considering the expectation of the ideal
estimator. This matches the approach of [24] for the
bispectrum, but includes our custom weighting Sl (or
the diagonal part thereof).
Figure 2 shows the measured binned power spectrum

from the unmasked and masked simulations alongside
the true injected power spectrum, averaging over 1000
simulations. In both cases, we find excellent agreement

between data and theory, as expected. When the synthetic
data does not include a window, the two estimators agree
precisely; when amask is included, themeans are consistent,
but the variance properties differ. In the latter case, the
variance is significantly increased (by a factor of approx-
imately hW4i=hW2i2, due to the reduced area observed), and
the ideal estimator seems to considerably outperform the
optimal one. This appears paradoxical; however, it occurs
since thevarious bins are correlated in the ideal estimator, but
anticorrelated in the optimal approach (with both estimators
yielding similar signal-to-noise).
In Fig. 3, we plot the correlation matrices for the two

estimators applied to the windowed data-set (noting that the
unwindowed case is trivially diagonal). If the optimal
estimator is, as the name would suggest, optimal, its
covariance should be equal to the inverse of the Fisher
matrix, F 2. From Fig. 3 and the lower part of Fig. 2, this is
exactly what is observed on all scales, implying that
our choice of weighting, S−1, is appropriate.18 As noted

FIG. 2. Comparison of binned power spectrum estimators for unwindowed (left) and windowed (right) data. In each case, we plot the
binned power spectrum obtained from the ideal (Sec. IVA, blue) and maximum-likelihood (Sec. IV B, green) estimators, alongside the
true theory model obtained from CLASS. The top panels show the raw measurements, in bins of width Δl ¼ 4 [normalized by
lðlþ 1Þ=ð2πÞ], whilst the bottom panels show the errors. Data is obtained from 1000 Gaussian random field simulations, with the
Fisher matrix of the optimal estimators constructed using 100 Monte Carlo realizations, using quasi-optimal weights (cf. Sec. VII A). In
all cases the estimators appear unbiased, and the unwindowed variances are almost identical to the inverse Fisher matrix (red lines). For
the windowed data, the ideal estimator appears to have lower variance than the optimal estimator: this is due to significant correlations
between neighboring bins, as seen in Fig. 3.

18In practice, we find little dependence of the power spectrum
measurements on the choice of weighting scheme, which occurs
since the data is mostly uncorrelated and the l-bins are narrow
[cf. [55]].
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above, we observe different correlation properties for the
optimal and ideal estimators, with a positive correlation
between neighboring bins seen in the latter case. One
feature of the optimal prescription is that we can naturally
form a quantity of unit variance, with no cross-correlations,P

b0 F
1=2
2 ðb; b0ÞĈðb0Þ, e.g., [51]; we have verified that the

optimal estimator correlation matrix of this object shows no
obvious departures from the identity matrix beyond that
expected from noise fluctuations. Finally, we consider the
dependence on the number of Monte Carlo simulations
used to define the Fisher matrix (the limiting step in the
estimator). Reducing to just ten realizations (Nfish ¼ 10)
changes the power spectrum predictions by at most 0.25σ,
thus we conclude that the above choice of Nfish ¼ 100 is
both sufficient and conservative.

C. Bispectrum

Next, we turn to the three-point function. Here, we will
consider two scenarios: (1) pure GRFs without a window
function (to test optimality), and (2) simulations with an
injected bispectrum and a mask (to test bias). Due to the
higher dimensionality of the three point function, we
consider broader (linear) bins, using lmin ¼ 2, Δl ¼ 10,
and nl ¼ 15.19 To avoid edge effects, we will drop any bin
containing the largest l values; this reduces the total
number of elements in the data vector from 372 to 308.
Given the lower lmax used in this test, we fix Nside ¼ 128,
which significantly reduces runtime. Here, we require 240
CPU-seconds to compute the Fisher matrix using a single
pair of GRF realizations, and 50 CPU-seconds to compute
the estimator numerators. The runtime is dominated by the

100 Monte Carlo simulations (used to compute the one-
field term, cf. Sec. V B), but greatly reduced if one analyzes
multiple datasets in series (since maps relating to the
Monte Carlo simulations do not need to be recomputed).
The ideal estimator (which does not include a one-field
term) requires only 0.2 CPU-seconds, though with another
35 CPU-seconds to compute the (diagonal) normalization.
In this case, one should bin the theory model in the
following manner (cf. [24]):

bthðbÞ ∝
X
l123

Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3Þ

×
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

×

�
l1 l2 l3

0 0 0

�
2 bthl1l2l3
Sl1Sl2Sl3

; ð116Þ

where the normalization factor takes the same form but
without bthl1l2l3 .
Figure 4 shows our measurements of the reduced

bispectrum. In the absence of a signal, we recover null
detections (as expected), and find a similar (though not
identical) variance between the optimal and ideal estima-
tors, with the optimal estimator performing somewhat
better on large scales. When a signal is included, we find
unbiased results from both estimators, and, as before, note
that the variance of the optimal estimator lies very close to
the inverse Fisher matrix (and somewhat higher than the
ideal estimator variance, due to bin anticorrelations). This
again indicates that the optimal estimator is close to
minimum variance.20

FIG. 3. Correlation matrices for the ideal and unwindowed power spectrum measurements plotted in Fig. 2 (right panel). In all cases,
the underlying data contains a Planck sky mask, which, for the conventional (ideal) estimator, gives a clear correlation between
neighboring bins. In the optimal estimator, we see an anticorrelation, which is closely matched by the inverse Fisher matrix, as expected.
The correlation matrix is defined by Cij=

ffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
for covariance Cij, and we subtract off the leading diagonal for clarity.

19In practice, it may be preferable to use nonlinearly spaced
bins, such that the signal-to-noise is more evenly distributed
across bins.

20Note that this is not guaranteed in this case even if
S−1 ¼ C̃−1, since the field is non-Gaussian, thus the covariance
strictly contains a piece proportional to B2.
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The correlation matrices shown in Fig. 5 confirm the
above results. Here, the mask induces nontrivial correla-
tions between the various bins (the size of which depend on
the ratio of the bin width and the characteristic scale of the
mask), particularly those with b0 ¼ b� f1; 0; 0g, or some
permutation thereof, extending up to high l (large scales).
This structure is well captured by the Fisher matrix, and
differs significantly from the (generally positive) correla-
tions of the ideal estimator. In particular, the low-l region

shows strong correlations between a variety of bins, up to
∼20%. These may be difficult to model, and are not found
in the optimal estimator, due to its particular choice of
weighting scheme. As before, we find that the Fisher matrix
is well-converged; reducing to Nfish ¼ 10 biases the bis-
pectrum measurements by at most 0.2σ.
Finally, it is interesting to consider the impact of the

linear term in the bispectrum estimator, i.e., that propor-
tional to hααia. As noted above, this term does not

FIG. 4. Comparison of binned bispectrum estimators for unwindowed zero-signal (left) and windowed nonzero signal (right) data. The
measurements are akin to those in Fig. 2, but use broader bins with Δl ¼ 10 and l ∈ ½2; 142�, and we weight the data by l1l2l3,
averaging over 1000 simulations. Here, we plot all bispectrum bins fb1; b2; b3g, which satisfying the triangle conditions (at the bin
centers) and b1 ≤ b2 ≤ b3. These are collapsed into one dimension for visualization, starting from the lowest l bins on the lhs, and
sequentially updating b3, b2, then b1. We see that the estimator is unbiased in both cases, and that the variance of the optimal estimator
matches its theoretical prediction (red lines), implying that it is close to minimum variance. The corresponding correlation matrix is
shown in Fig. 5.

FIG. 5. As Fig. 3, but showing the correlation of the reduced bispectrum measurements displayed in Fig. 4. As before, the covariance
of the optimal estimator matches the inverse Fisher matrix to high accuracy; in this case, the correlation structure is more complex due to
window-function induced mode coupling. The ideal estimator shows strong correlations between bins, particularly at the top left,
corresponding to the lowest bins. These would need to be modeled in any analysis.
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contribute to the mean of the signal, but can have nontrivial
impacts on its covariance. In Fig. 6 we compare the
estimator variance both with and without the one-field
term. For the first fifteen or so bins, we find a notable
reduction in the error bar from including the linear term for
windowed data, up to ≈25%, but essentially no change for
the other bispectrum components, nor for unwindowed
data. Noting that the affected bins are the only ones to
contain the lowest l modes (here with l1 ∈ ½2; 12� and free
l2, l3), we conclude that the linear term significantly
reduces the measurement uncertainty on large scales if a
window is present. This matches previous results, see e.g.,
[30,36] (noting that many nonideal estimators include such
a term) and is important if one wishes to constrain large-
scale signals, such as those of primordial non-Gaussianity.

D. Trispectrum

Finally, we validate the trispectrum estimator. As dis-
cussed in Sec. VI the trispectrum contains two contribu-
tions (of even- and odd-parity); here we will measure both
simultaneously, and, for the sake of plotting, work with the
imaginary part of t−. Generating realizations with injected
non-Gaussianity is nontrivial, especially for the parity-odd
terms (though see [40]), though for the parity-even terms,
one may consider using lensed simulations, which include
a known four-point function. However, to verify the
estimators it is sufficient to check that (a) before subtraction
of the disconnected terms, the parity-even estimator recov-
ers the Gaussian expectation (i.e., that of the form C2

l),
(b) after subtraction, the estimator is consistent with zero
when applied to Gaussian realizations, (c) the estimator
variance matches the Fisher prediction. For the parity-odd
case, it is usually sufficient to restrict to comparatively large

scales, since (if the underlying theory is statistically
isotropic), any parity-violating trispectrum must vanish
in the small-scale regime.21

As for the bispectrum, the trispectrum is a high-
dimensional object, containing Oðn5lÞ elements (for nll-
bins). To keep the computation tractable, we will consider
the following binning parameters (using linear bins for
simplicity, noting that other choices may be more efficient):
lmin ¼ 2, Δl ¼ 20, nl ¼ 6, and drop the largest l-bin
to avoid edge effects. We again work at Nside ¼ 128, which
is appropriate for these large-scale modes. In total, we
estimate 455 even-parity and 386 odd-parity configura-
tions, which reduces to 249 and 222 when removing the
final l bin.22 Here, we apply our estimator to the 1000 GRF
simulations described above, with the Fisher matrix com-
puted using Nfish ¼ 100 realizations. We also utilize 100
GRFs to compute the disconnected two- and zero-field
terms in the optimal estimator. Each Fisher realization
requires 40 CPU-minutes to analyze, with the data piece
taking ≈10 CPU-minutes per simulation, again dominated
by the Monte Carlo computations. The ideal numerator is
significantly faster, since it does not involve Monte Carlo
simulations, and requires only ≈1 CPU-second per iter-
ation. We caution however, that the ideal normalization is
nontrivial for trispectra, due to its off-diagonal correlators
and 6j symbols. For the binning parameters discussed
above, the ideal Fisher matrix required 24 CPU-hours to
compute (after removing the largest l bin); this scales as
Oðl6

maxÞ, which is prohibitive for large lmax (unlike the
optimal schemes).
To compare theory and observations for the trispec-

trum, we should bin the underlying reduced trispectrum
tl1l2;th
l3l4

ðLÞ in the following manner:

tthðb; BÞ
∝

X
l1234L

Θl1ðb1ÞΘl2ðb2ÞΘl3ðb3ÞΘl4ðb4Þ

×
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þð2l4 þ 1Þð2Lþ 1Þ

ð4πÞ2

×

�
l1 l2 L

−1 −1 2

�
2
�
l3 l4 L

−1 −1 2

�
2 tl1l2;th

l3l4
ðLÞ

Sl1
Sl2

Sl3
Sl4

;

ð117Þ

FIG. 6. Impact of the linear term in the bispectrum estimators.
We plot the ratio of the errorbars between bispectra estimated
including and excluding the one-field term [cf. Eq. (62)], for
realizations with (blue) and without (orange) a mask. Significant
differences are observed for the first few bins of the windowed
data; these correspond to configurations including modes in the
lowest l bin.

21This occurs since, at high-l, the trispectrum is approximately
plane-parallel. On R2, a parity flip is equivalent to a rotation in
R3, and thus trivial if the theory is invariant under rotations. This
strictly requires all the l modes to be small: in practice, one may
wish to include parity-odd modes in the squeezed configuration
(depending on the physical models of interest). These can be
included by allowing for larger l2, l4 and (by the triangle
conditions) L.

22We recall that the parity-odd estimator vanishes if b1 ¼ b3
and b2 ¼ b4, unlike the parity-even case.
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with an appropriate normalization factor. This is again
derived from the expectation of the idealized estimator, but
we drop a 6j term (which mixes different L and L0 modes),
which is subdominant, and prevents efficient factorization
in fl1;l2; Lg and fl3;l4; Lg.
In Fig. 7 we show the trispectrum measurements

extracted from the GRF realizations. Though detailed
interpretation of this plot is hampered by the statistic’s
high dimensionality, it is clear that both estimators return
amplitudes consistent with zero (though there may be some
outliers in the ideal windowed scenario, due mask-induced
effects). This indicates that the subtraction of the discon-
nected terms is working as expected. Furthermore, the
variances of the optimal estimator are consistent with those
predicted by the inverse Fisher matrix, for both the
parity-even and parity-odd components (with a ratio of
1.021� 0.003). This is shown further in Fig. 8, where
we observe that the complex correlation structure of the
Fisher matrix matches the covariance of the simulated
realizations, implying that the estimator is close to optimal,
and that we have used sufficient number of simulations
to compute the disconnected terms. When the mask is
included, the variance of the estimator increases sig-
nificantly (roughly by a factor of hW8i=hW2i4), and the
correlation structure changes, seen particularly in the low-l
modes. Unlike the power spectrum and bispectrum

estimators, the covariance of the unmasked fields is non-
diagonal; this is in accordance with the discussion of
Sec. VI, and is due to the labeling degeneracy, where
the diagonal of the quadrilateral ABCD can be placed
between sides A and C or B and D. Finally, we note that
Nfish ¼ 100 is sufficient for Fisher matrix convergent, as
before; reducing to Nfish gives a (stochastic) bias of at
most 0.04σ.
To check the parity-even estimator in more detail it is

useful to examine the disconnected terms. In the ideal
Gaussian limit, E½t4� ¼ −ð1=2ÞE½t2� ¼ E½t0�, and the
unnormalized estimators satisfy

E½t0ðb; LÞ� ∝
1

Δ4ðbÞ
X
l1l2

ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ
4π

×

�
l1 l2 L

−1 −1 2

�
2 ð−1Þl1þl2þL

Cl1Cl2

× ðδKb1b3δKb2b4 þ δKb1b4δ
K
b2b3

Þ: ð118Þ

In Fig. 9, we plot the various terms entering the trispectrum
numerators, for both the unwindowed and windowed
estimators. In the former case, we observe excellent agree-
ment between the disconnected pieces and (118), whilst for
the latter (for which theoretical predictions are nontrivial),

FIG. 7. Comparison of binned trispectrum estimators applied to 1000 unwindowed (left) and windowed (right) Gaussian simulations.
The measurements are similar to those of Fig. 4, except with the binning Δl ¼ 20, l ∈ ½2; 102� and weighting the data by l1l2l3l4.
Both parity-even and parity-odd measurements are plotted, demarcated by the vertical dotted lines, condensing all allowed trispectra in
bins fb1; b2; b3; b4; Bg into a single dimension for visualization. As before, the characteristic l values in the bin gradually increase in
size from the left to the right. The mean of both the ideal and optimal estimators appears consistent with zero, and, for the optimal
case, the variance matches the inverse Fisher matrix (red lines), as expected. Correlation matrices for the windowed field are shown
in Fig. 8.
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FIG. 8. As Fig. 5, but showing the correlation of the reduced trispectrum measurements displayed in Fig. 7. We utilize the same
binning strategy as before, with the parity-even modes shown in the top left and the parity-odd in the bottom right of each matrix. We
show results both for unwindowed (top) and windowed (bottom) data, noting that the correlation structure is nontrivial in both cases, due
to degeneracies within the trispectrum definition. Regardless of the mask, the inverse Fisher matrix closely matches the optimal
estimator covariance, indicating that the estimator is approaching the maximum likelihood solution. The mask is seen to induce non-
negligible correlations on small scales, though we do not find significant mixing between the parity-even and parity-odd trispectra.

FIG. 9. Comparison of the optimal trispectrum estimators, specializing to the bins with a nontrivial contribution to the disconnected
(two- and zero-field) terms. The left and right panels show results for unwindowed and windowed data respectively, with colors
discriminating the various terms. In each case, we plot the relevant term in the trispectrum numerator, normalized by the unwindowed
Fisher matrix for visualization. For the left panel, we plot also the theoretical prediction, as given in (118). The disconnected terms
closely match their expectations and, as expected, cancel when combined to yield a zero detection of the connected trispectrum. In most
cases, the error bars are too small to discern.
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we see similar behavior as a function of scale. Crucially,
whilst the disconnected terms themselves are large, their
sum is negligible; this indicates that the estimators are
performing as expected, and do not yield a false detection.
Our final consistency check is shown in Fig. 10. Here,

we consider the quantity t̂uncorr ≡ F−T=2
4 t̂, which, as noted

in [51], follows a unit Gaussian distribution if the estimator
is optimal. In this limit, its covariance would be simply
be equal to the identity matrix. From the figure, we find
that, using the Fisher matrix obtained from the optimal
estimator, the covariance of t̂uncorr (on the masked dataset)
is indistinguishable from a unit normal, and thus the
estimator is close to optimal. If one instead uses the ‘ideal’
Fisher matrix F 4 (which can be obtained without
Monte Carlo methods, albeit with large computational
costs), we find clear structure to the correlation matrix,
due to the impact of the window functions on the Fisher
matrix. This decomposition also provides a useful projec-
tion scheme; for realistic scenarios (including non-
Gaussian effects such as CMB lensing), the various bins
of t̂uncorr are expected to remain almost uncorrelated.

VIII. CONCLUSIONS

Through the measurement and interpretation of random
processes, we can understand the physics of a wide variety
of phenomena. Correlation functions, or polyspectra, are a
key tool with which to do this, allowing for the rich
statistics of a stochastic field to be expressed in terms of

low-dimensional functions. In this work, we consider the
measurement of such quantities for fields on the two-sphere,
relevant to a range of disciplines including cosmology and
geophysics. In particular, we derive estimators for the two-,
three- and four-point correlators (power spectra, bispectra,
and trispectra, respectively), and discuss how they may be
efficiently applied to isotropic data. We consider two classes
of estimators: ‘ideal’ and ‘optimal’. The first match standard
definitions in the literature, and are derived under ideal
assumptions, i.e. assuming isotropic noise without masks. In
contrast, our optimal estimators defined by maximizing the
theoretical likelihood for themasked data (including beams),
which yields a number of useful properties. These include:

(i) Optimality: Assuming that field is close to Gaussian,
the variance of the optimal estimators takes its
minimum value. Strictly, this is true only if the data
is optimally weighted: we have additionally consid-
ered close-to-optimal weighting schemes that come
close to saturating this bound in realistic scenarios.

(ii) Bias: The optimal estimators are unbiased, such that
their expectation is equal to the true underlying
statistic, regardless of the survey mask and (isotropic)
beam. This allows the measurements to be directly
compared to data, unlike for the ideal estimators, for
which the window should be included in the theory
model, requiring a complex convolution.

(iii) Separability: Since we specialize to binned poly-
spectra, the estimators can be efficiently computed
through a set of spherical harmonic transforms.

FIG. 10. Correlation matrix of the windowed trispectrum dataset, weighted by the Cholesky factorization of F 4. The left and right
panels show the results using F 4 matrices obtained from optimal and ideal estimators, subtracting the leading diagonal in each case. If
the estimator is ideal, this matrix should be consistent with unity. Here, we find good results for the optimal estimators (with a variance
of 0.98� 0.04) but clear structure in the ideal case (with a variance of 5.8� 1.4). This again indicates that the optimal estimators are
close to minimum variance, and sources a useful projection of the data.
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The accompanying Fisher matrices may be esti-
mated via Monte Carlo methods, which are shown to
converge quickly.

(iv) Computational Efficiency: Computation of the esti-
mator numerators involves sets of harmonic trans-
forms scaling as Nl (for the power spectrum and
bispectrum) andN2

l (for the trispectrum), as well as a
summation scaling as Nbin, for Nll-bins and Nbin
total bins. Similarly, the rate limiting step of the
optimal Fisher matrix estimator has the scaling
OðNbinNfishÞ, unlike naïve OðN2

binÞ expectations,
utilizing Nfish ∼ 10–100 simulations.

To facilitate general use, we have implemented the above
estimators in a publicly available PYTHON package, which
has been extensively tested in Sec. VII. These could be used
for a number of applications, including general (model-
independent) non-Gaussian analyses of the cosmic micro-
wave background (CMB) or cosmic shear. A particularly
exciting prospect concerns the parity-odd trispectrum.
Utilizing these estimators, we robustly measure the sta-
tistic, taking into account subtleties such as the leakage of

disconnected terms and parity-even modes, and thus place
the first CMB-derived constraints on scalar parity-violation
in the Universe. This will be discussed in [59]. Naturally,
many other applications are possible.
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