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We consider the evolution of current-carrying cosmic string networks described by the charge-velocity-
dependent one-scale (CVOS) model beyond the linear equation-of-state regime, specifically focusing on
the Witten superconducting model. We find that, generically, for almost chiral currents, the network
evolution reduces dynamically to that of the linear case, which has been discussed in our previous work.
However, the Witten model introduces a maximum critical current, which constrains the network scaling
behavior during the radiation era when currents can grow and approach this limit. Unlike the linear model,
only if the energy density in the critical current is comparable to the bare string tension will there be
substantial backreaction on the network evolution, thus changing the observational predictions of super-
conducting strings from those expected from a Nambu-Goto network. During the matter era, if there are no
external sources, then dynamical effects dilute these network currents, and they disappear at late times.
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I. INTRODUCTION

In Ref. [1], Tom Kibble proposed that one-dimensional
topological defects, dubbed cosmic strings, should form in
many extensions of the standard model of particle physics.
This has been confirmed explicitly in many phenomeno-
logical studies (see, for example, Refs. [2–4]). A detailed
examination of most of these scenarios indicates that the
strings should also be endowed with superconducting
currents, as proposed originally by Witten [5], which
have many interesting consequences (e.g., Refs. [6–13]).
Beyond the original bosonic superconducting model, a
variety of different mechanisms have also been proposed to
generate string currents [5,14–16], making superconduc-
tivity even more ubiquitous.
The presence of a superconducting current flowing along

the strings necessarily influences the corresponding cosmic
string network evolution. Recently, we developed a charge-
velocity-dependent one-scale (CVOS) model [17], which
extends previous work [18–22] and offers an analytical
approach to describing the most relevant statistical features
of the network evolution. This approach includes phenom-
enological parameters that could, in the non-current-carrying
case, be directly measured or statistically inferred from

numerical simulations, thereby calibrating the models. In
principle, such calibrated models can be used to evaluate the
stochastic background of gravitational waves produced by a
current-carrying network, much in the same way as is done
for bare string networks [23,24], as well as other observa-
tional signatures. However, before one can make reliable
predictions, there is a further bottleneck: network simula-
tions for superconducting strings are not yet available with
which to reliably estimate the CVOS model parameters, so
in this case we need to survey a wider parameter range of
possible physical consequences.
The CVOS analytic model requires a specific equation

of state appropriate for each particular field theory model
for current-carrying cosmic strings. Having reviewed
first the general equation of state [17] for cosmic string
network evolution, and then specialized to the simplest
linear case [25], we now focus, in the present paper, on the
original Witten model [5]—or, more precisely, the neutral
Witten model, containing no long-range electromagnetic-
like interactions [7,26].
This paper is organized as follows: In Sec. II, the CVOS

model equations are reviewed,with a particular emphasis put
on the various charge and current loss mechanisms, either in
the process of loop formation or due to local curvature;
we close the system by assuming that the framework is that
of a radiation- or matter-dominated Friedman-Lemaître-
Robertson-Walker (FLRW) background. The Witten model
equation of state is implemented in Sec. III. It entails the
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existence of a critical current, leading to a leakage parameter
dependence in the total charge.
The core of the article is Sec. IV, inwhichwe study specific

network dynamics during cosmological evolution. We
demonstrate that for small currents, the evolution can be
describedby theprevious linearmodel.However, for regimes
with growing currents in the radiation era, we note the
important role of the critical current in determining scaling
solutions.We endwith some conclusions and a discussion of
the outcomes, their susceptibility to our underlying assump-
tions, and potential observational implications.

II. GENERALIZED CVOS MODEL

In what follows, we make use of the recently developed
CVOS model to describe the most relevant statistical
properties of a network of superconducting cosmic strings,
within the thin-string approximation; we refer the reader to
Ref. [17], in which the relevant calculations are detailed.

A. Relevant thermodynamical variables

Upon averaging over all the long strings, the current-
carrying string network ends up being characterized by four
macroscopic variables: namely, the root-mean-square (rms)
velocity v of the strings, the energy density ρ, the charge Y
and the 4-current amplitude K (sometimes also called
chirality, as it measures the spacelike or timelike character
of the integrated current). These variables are originally
defined in terms of the root mean squares of the timelike
and spacelike currents—respectively, Q2 ¼ hq2i and
J2 ¼ hj2i—namely,

Y ¼ 1

2
ðQ2 þ J2Þ and K ¼ Q2 − J2; ð1Þ

so that Q2 ¼ Y þ K=2 and J2 ¼ Y − K=2. Note that Y
being positive definite, Eq. (1) implies that the constraint

jKj ≤ 2Y ð2Þ

should be satisfied at all times.
The Lorentz-invariant microscopic chirality κ ¼ q2 − j2

is what enters the surface Lagrangian fðκÞ from which the
equations of motion are derived. Averaging this quantity
suggests its replacement with a macroscopic version,
FðKÞ ¼ hfðκÞi, which, for simplicity, we assume to take
the same form, as we discuss below.
The energy density ρ can be split into two contributions:

namely, that coming from the bare (without current) strings
ρ0, and that coming from the current itself. The Brownian
assumption allows us to rewrite this energy density through
two conformal characteristic lengths LC and ξC, leading to

ρ ¼ μ0
L2
Ca

2
and ρ0 ¼

μ0
ξ2Ca

2
; ð3Þ

where μ0 is the bare string tension, LC and ξC correspond to
the total (current-carrying) and bare string networks,
respectively, and a is the scale factor of the FLRW
cosmological solution

ds2 ¼ a2ðτÞðdτ − dx2Þ; ð4Þ

with τ being the conformal time. The relation between the
characteristic lengths is found to be

ξC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F − 2Q2F0

p
LC ¼ WLC; ð5Þ

thereby definingW (with F0 ≡ dF=dK). For later reference,
we note that

_W
W

¼ −
1

W2

�
_YF0 þ

�
Y þ K

2

�
_KF00

�
; ð6Þ

with the overdot henceforth denoting conformal time
derivatives.

B. Charge and current leakage

There are two mechanisms by which the superconduct-
ing string network can lose energy: loop production and
charge leakage.
One can phenomenologically describe charge and cur-

rent losses through leakage by demanding that the larger
the charge or current, the larger the loss (we generalize here
the description proposed in Ref. [25]). This translates into

dQ2

dτ

����
leak

¼−A
Q2

ξC
and

dJ2

dτ

����
leak

¼−B
J2

ξC
; ð7Þ

where A and B are called the charge and current leakage
efficiencies, respectively, and the subscript “leak” indicates
that we restrict attention to the part specifically due to
leakage. Setting A� ¼ A� B, Eq. (7) implies the time
evolution contribution for the variables Y and K:

dY
dτ

����
leak

¼ −
1

2ξC

�
AþY þ A−

K
2

�
;

dK
dτ

����
leak

¼ −
1

ξC

�
A−Y þ Aþ

K
2

�
: ð8Þ

The behaviors of the phenomenological parameters A� are
not known precisely, so we cannot a priori set them to
constants, though we have made this linear assumption
previously [25]. We shall see below for the Witten model
that, because the physically relevant equation of state
entails a critical current, leakage should increase as the
current approaches criticality. In any case, the specific form
of the charge leakage efficiencies has to be inferred from
field-theoretic studies of microscopic string behavior and
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future high-resolution numerical simulations of evolving
random networks.
Since the non-current-carrying contribution of the net-

work energy ρ0 is, of course, insensitive to these losses, i.e.,

dρ0
dτ

����
leak

¼ 0; ð9Þ

it follows that Eq. (9), together with definition (3), implies
that _ξc;leak ¼ 0, which, upon using Eq. (5), yields

_LC

LC

����
leak

¼ −
_W
W

����
leak

: ð10Þ

Since F depends only on the chirality, one has _F ¼ _KF0,
and one gets the restriction of Eq. (6) due to leakage by
substituting Eq. (8) into Eq. (6), which provides the
correction to the equation of motion of the characteristic
length LC.

C. Loop chopping

The energy loss due to the production of loops from long
strings takes the form [27]

dρ0
dτ

����
loops

¼−
cvρ0
ξC

;
dρ
dτ

����
loops

¼−gðQ;JÞcvρ
ξC

; ð11Þ

where the subscript “loops” means we restrict attention, in
the calculation of the time derivative, to the contribution
due to loop production on the long string densities.
In Eq. (11), c is the loop chopping efficiency, which will

be set to its Nambu-Goto value cNG ∼ 0.23 in the forth-
coming numerical calculation, and gðQ; JÞ represents the
modification of this bare chopping efficiency to account for
the effects of the charge. Lacking numerical simulations
for current-carrying strings, one can first assume the loop
production not to be significantly modified by the inclusion
of current effects; this assumption will have to be tested
when current-carrying string network simulations become
available.
Using the Brownian network properties [Eq. (3)] with

the loop production equations (11) implies

_ξC
ξC

����
loops

¼ cv
2ξC

and
_LC

LC

����
loops

¼ g
cv
2ξC

: ð12Þ

Since Eq. (5) yields

_ξC
ξC

¼
_LC

LC
þ

_W
W

;

we obtain the relation

_W
W

����
loops

¼ −
cv
2ξC

ðg − 1Þ; ð13Þ

which means that if g ≠ 1, the loop production affects
the Q2 and J2 parameters. Here, we again assume that the
loop production function g has a linear dependence on Q2

and J2, which implies that

dQ2

dτ

����
loops

¼ −gQ
cv
ξC

Q2;

dJ2

dτ

����
loops

¼ −gJ
cv
ξC

J2; ð14Þ

where gQ and gJ are some constants that tell us how much
of the timelike and spacelike components of currents are
lost due to loop production. One can demonstrate that these
constants are related to the function g in Eq. (12) by the
following expressions:

g¼ 1− gQ
F0 þ 2Q2F00

F− 2Q2F0 Q
2− gJ

F0− 2Q2F00

F− 2Q2F0 J
2: ð15Þ

We note that this improved parametrization of the function
g offers some further clarity over that used in previous
approaches [17,20,22,25]. Due to limited knowledge about
the form of g in the equation for LC, we assume that it
should be linearly proportional to the timelike and space-
like components in the corresponding current loss
functions.
Collecting timelike and spacelike components, one

obtains expressions for the charge Y and 4-current ampli-
tude K in the following forms:

_Yjloops ¼ −
cv
2ξC

�
gþY þ g−

K
2

�
;

_Kjloops ¼ −
cv
ξC

�
g−Y þ gþ

K
2

�
; ð16Þ

where g� ¼ gQ � gJ.

D. Equations of motion

The relevant equations of motion for the quantities of
cosmological interest—namely, the characteristic length of
the network ξC, the root mean square velocity v, together
with the charge Y and chiralityK—can now be written after
collecting all the modifications which must be added to
Eq. (43) of Ref. [17] and discussed above. First, we set the
characteristic length LC to behave as LC ¼ ζðτÞτ, so that a
scaling solution will correspond to a constant value of the
fraction ζ. Taking into account the mechanisms described
above, one finds
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_ζτ ¼ nζ
W2

½v2ðF − F0KÞ − 2YF0�

þ cvg
2W

−
F0

2W3

�
AþY þ A−

K
2

�

−
F00

W3

�
Y þ K

2

��
A−Y þ Aþ

K
2

�
− ζ; ð17Þ

where g is given by Eq. (15). It turns out, however, that,
using the relation (5) to express this current-carrying
network correlation length in terms of the bare one ξC,
and substituting into Eq. (17) all the results obtained in the
previous section, including the time development of the
charge Y and chirality K, one finds that the bare correlation
length provides a tremendous simplification to the equa-
tions describing the system evolution. Indeed, setting
ξC ¼ ϵτ, this system becomes

_ϵτ ¼ 1

W2
½nϵv2ðF − F0KÞ − 2vkYF0� þ 1

2
cv − ϵ; ð18aÞ

_vτ ¼ 1− v2

W2

�
k
ϵ

�
Fþ 2

�
Y −

K
2

�
F0
�
− 2vnðF−F0KÞ

	
;

ð18bÞ

_Yτ ¼
�
vk
ϵ
− n

�
2YF0 þ ð4Y2 − K2ÞF00

F0 þ ð2Y þ KÞF00

−
cv
2ϵ

�
gþY þ g−

K
2

�
−
2AþY þ A−K

4ϵ
; ð18cÞ

_Kτ ¼ 2

�
vk
ϵ
− n

�
F0K

F0 þ ð2Y þ KÞF00

−
cv
ϵ

�
g−Y þ gþ

K
2

�
−
2A−Y þ AþK

2ϵ
: ð18dÞ

Equation (18a) is indeed much simpler than Eq. (17), as
announced. We have checked that one could solve either
the entire system of Eq. (18), substituting Eq. (5) into the
solution, or only the last three—i.e., Eqs. (18b), (18c),
and (18d)—in terms of LC together with Eq. (17). Both
solutions are numerically identical, as they should be.
A scaling solution is then achieved whenever the

functions of time ζðτÞ, vðτÞ, YðτÞ, and KðτÞ simultaneously
evolve towards constant solutions ζSC, vSC, YSC, and KSC:
the characteristic length is then a constant fraction of the
Hubble scale.
In Eq. (18), the so-called momentum parameter k is

assumed to be a function of the rms velocity v only, and is
defined through [19]

k≡ kðvÞ ¼ 2
ffiffiffi
2

p

π

1 − 8v6

1þ 8v6
ð1 − v2Þ



1þ 2

ffiffiffi
2

p
v3
�
; ð19Þ

which is the same as was found to describe well the
Nambu-Goto network simulations. In other words, we

assume that the explicit form of this function, which comes
mostly from curvature effects along the string worldsheets,
is not affected by the presence of a nonzero charge or
chirality. Note that there is, however, an implicit depend-
ence, because their presence does impact the rms velocity.

III. WITTEN EQUATION OF STATE

To specify a particular type of superconducting cosmic
string, we need to define its equation of state. The Witten
model, originally proposed in Ref. [5], or rather its neutral
version [26] (to ensure long-range electromagnetic-like
effects to be negligible [7]), was found to be accurately
characterized by the following averaged equation of
state [28]:

FmagðKÞ ¼ 1 − 1

2

K
1 − αK

for K ≤ 0; ð20aÞ

FelecðKÞ ¼ 1þ lnð1 − 2αKÞ
4α

for K ≥ 0; ð20bÞ

where the model-dependent dimensionless parameter α is
given by α ¼ ðmH=mσÞ2, with mσ being the vacuum mass
of the current-generating condensate and mH that of the
string-forming Higgs field. Generically, α is expected to
be much larger than unity, and some degree of fine-tuning
would be required to obtain Oð1Þ. In any case, it must lie
in the range 1 < α < ∞, to which we will restrict our
attention below. Note that the coefficient in Eq. (20b)
differs in an irrelevant way from that in Ref. [17]: this is to
ensure the small-K behavior to be identical for both
functions up to second order.
Shown in Fig. 1 is a representation of the equation of

state proposed in Eq. (20), which also implies the following
restriction on the 4-current amplitude value [26]:

−
1

3α
< K <

1 − e−4α

2α
: ð21Þ

Here, the first constraint stems from the requirement that
the longitudinal velocity of perturbations propagating along
the worldsheet be positive in the magnetic case with
K ≤ 0—i.e., using Fmag [Eq. (20a)]. The second constraint
merely expresses Felec ≥ 0 [Eq. (20b)]. These limits lead to
K → 0 as α → ∞, meaning that if the current-carrier
mass is vanishingly small compared to that of the Higgs
field, the contribution of the current becomes negligible
and one recovers a Nambu-Goto string. Note also that
for small chiralities, Eq. (20) can be expanded as
F ∼ 1 − 1

2
K − 1

2
αK2 in both cases.

It is important to emphasize that the equation of state
(20) is applicable only provided the current remains in
the range given by Eq. (21). If, for some reason (due to
initial conditions or dynamical evolution), the chirality
came to exceed this range, one should include possible
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electromagnetic corrections [29] that might change the
equation of state or, most probably, lead to additional
charge-loss mechanisms. (We briefly discuss one such
example in Sec. IV B.) However, in this work we restrict
our attention to macroscopic variables, and we can antici-
pate that, on average, the equation of state (20) holds. In
that case, and for the relevant α ≫ 1, the string network on
average should tend towards chiral conditions—i.e,
Ksc ¼ 0. The largest deviation from the chiral case happens
when α ≃ 1, implying −0.33≲ Ksc ≲ 0.86. This α ∼ 1
regime is actually the most interesting case, because it is
where the backreaction on the underlying string is most
significant, to the extent that it may even lead to stable
vorton solutions.
The equation of state (20), which implies the existence of

a maximum chirality Kcr ∼Oð1=αÞ from Eq. (21), will also
have a dramatic effect on the evolution of the string
currents. In principle, a critical current in K may not seem
to impose a limit on the total current Y because of the
Lorentz invariance along a straight string, which allows Y
to be boosted up to arbitrarily large values. However, in the
realistic context of an expanding background, we work in a
special cosmological frame in which the overall Brownian
string network is at rest (like the CMB). The actual rms
current Y consists of random contributions of correlation

length, which, for the present Witten model, consists of
both positive- and negative-chirality currents limited in
magnitude by the critical current jKj ≲ Kcr. For this reason,
we can expect the averaged total current to obey approx-
imately the same limit Y ≲ Kcr, and in fact, the cumulative
stochastic current will be considerably smaller and depend
on the ratio of the correlation length of the current to that of
the string and other factors. This limit would probably have
to be determined quantitatively using numerical simula-
tions, but we can be confident that the average current will
not much exceed the critical current Kcr.
In order to implement this limit phenomenologically, we

can consider what would happen when Y > Ycr, which we
assume is of order Ycr ≈ 2Kcr because of the constraint in
Eq. (2), representing an average current in which some
random microscopic regions must have chiral currents K
that exceed the critical value. In that case, we anticipate an
additional enhancement of the charge leakage, along the
lines of the discussion in Ref. [29], and in agreement with
the results of instabilities observed in numerical simula-
tions in both the electric (charge loss) and magnetic (current
unwinding) regimes (see, e.g., Refs. [30,31]). One may use
the electric regime bound in Eq. (21), in our numerical
calculations below, to assume Ycr ¼ 2=ð3αÞ for the sake of
definiteness.
Whenever Y ≳ Ycr, one expects a rapid escape of

particles and energy from a localized string region due
to the current unwinding or charge emission. We can model
this enhancement of current or charge loss by a modifica-
tion of the charge leakage parameter A� in Eq. (8) to
become Y dependent as follows:

A�ðYÞ ¼
Aconst

1 − e−ðY−YcrÞ2 : ð22Þ

The nonlinear leakage coefficient Aconst ≥ 0will ensure that
the average current Y is constrained by the critical current
cutoff [Eq. (21)] at all times. As we will see, this eliminates
some of the large-current scaling regimes found previously
for the linear model, unless the critical current itself is
sufficiently large, α ∼ 1.
To estimate the charge leakage dependence on the charge

amplitude AðYÞ, one can utilize the formalism introduced
in Ref. [32] and applied to certain chiral cosmic string loop
variations in Refs. [33,34]. Nevertheless, a thorough
investigation into the charge leakage function of infinite
strings of the CVOS model requires additional research in
this area, which we leave for future study.

IV. NETWORK EVOLUTION

Having defined the thermodynamical equations of
motion and the relevant equation of state, we now are in
a position to analyze the various cases for the macroscopic
variables LC, v, Y, andK. We first consider in what follows,
Sec. IVA, the situation for which the charge leakage is

FIG. 1. Equation of state for the Witten model using Eq. (20)
with α ¼ 2. The constraints on the state parameter K are clearly
seen: on the magnetic side with K ≤ 0, below the critical value
−1=ð3αÞ, the energy per unit length U and the tension T are both
decreasing, implying the longitudinal perturbation velocity
c2L ¼ −dT=dU < 0, while on the electric regime with K ≥ 0,
the ever-decreasing tension eventually reaches a point for
which T < 0, and hence a transverse perturbation velocity
c2T ¼ T=U < 0: both cases lead to instabilities and are thus
dynamically excluded.
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negligible, before taking it into account in a phenomeno-
logical way in Sec. IV B.

A. Neglecting charge leakage

We begin by investigating the case when the phenom-
enological parameter describing charge leakage mechanisms
is absent—i.e., we set A� ¼ 0. A realistic current-carrying
string network should lose some energy into radiation, but
the actual amount is unknown given the lack of relevant
simulation information, so we have to consider the pos-
sibility of negligible losses.
When the equation of state is of the linear kind—in

practice, when F → 1 − 1
2
K, which is the small-current

(chiral) limit—it has been shown in Ref. [25] that this leads
to a “frozen” network with Y → 1, while the rms velocity v
and the correlation length ratio ζ decrease as a power law
with time during the radiation era. As we will see below,
this behavior does not persist in the full Witten model
unless there is a large critical current. In the matter-
dominated era, the network behaves in a Nambu-Goto
way. Figure 2 shows a typical numerical solution of the set
of Eqs. (18) with A� ¼ 0, and using the Witten equation
of state [Eq. (20)] showing the aforementioned time
developments.
When the initial conditions for the network, set deep into

the radiation era, are close to chirality—i.e., setting

Kini ≪ 1, as is expected from the phase transition and the
Kibble current-forming mechanism—we find that there is
no visible difference between this model and the linear case,
and this is true for any value of α > 1. If the initial value of
the chirality Kini is not negligible and positive (or, respec-
tively, negative), the saturating value of the charge is
Ymax < 1 (respectively,Ymax > 1); it is exemplified in Fig. 2.
In Ref. [25], it was found that the charge saturation

regime was leading to Ymax → 1, a condition entirely
depending on the linearity of the equation of state.
Deviations of the charge saturation value Y from unity
for the nonlinear equation of state discussed in the present
work are due to the explicit appearance of K in the relation
[Eq. (5)] between bare string energy and energy of the
current [Eq. (3)]. This effect increases with α, so in the limit
of large mass difference, the current K → 0, and the
saturation current Ymax ∼ 1. After the radiation-to-matter
transition, all solutions tend toward the currentless Nambu-
Goto case.
For negligible charge losses, we conclude that the network

behavior is not substantially modified by using the Witten
equation of state instead of the linear one. Nevertheless, there
is one caveat to be pointed out. For large α, even if the
saturation current is small, withY ≪ 1, one could still be in a
regime with αY > 1, which would seem to exceed expect-
ations on the existence of a critical current for the string.
Clearly, having α ≫ 1 and Y ∼ 1 seems unphysical (i.e.,
inconsistent with the realistic equation of state we are
studying). We revisit this point in Sec. IV B.

B. Charge leakage with critical current

Having discussed the modification due to the Witten
equation of state on the frozen network, we introduce the
leakage and its charge dependence [Eq. (22)]. We first
consider the chopping efficiency to be independent of
the charge and current, so that g → 1, i.e., assuming
negligible biases gQ ≪ 1 and gJ ≪ 1, and then including
their contribution.

1. The unbiased case

Let us turn our attention to the impact of the critical
current [Eq. (21)] by considering the nonlinear charge
leakage term [Eq. (22)]. We start by noting that even for
large critical currents—i.e., for α ∼ 1—the chiral case
K ≈ 0 qualitatively yields the same large-current scaling
behavior which was observed previously for the linear
model—i.e., where backreaction from the current has a
significant influence on network evolution [25]. This is
illustrated in Fig. 3.
For critical currents Kcr well below the string energy

density (with α ≫ 1), we can expect that there exist initial
conditions during the radiation era for which it should be
possible for the strings to acquire currents approaching the
critical value. Their behavior would, however, closely
mimic that of relativistic Nambu-Goto strings, since the

FIG. 2. Time evolution for the no-leakage case A ¼ 0 of the
velocity v, charge Y, chirality K, and characteristic length ratio ζ
as functions of conformal time, beginning deep in the radiation
and ending in the matter era. We chose the loop-chopping
parameter value to coincide with the Nambu-Goto case—i.e.,
c ¼ 0.23—and we maximize the effect of the equation of state by
setting α ¼ 1. Shown here are the cases for initial conditions set
with initial values Kini ¼ 0 (full lines), Kini ¼ 0.5 (dashed lines),
Kini ¼ 0.1 (dash-dotted lines), andKini ¼ −0.1 (dotted lines). For
Kini ¼ 0, and more generally for initial conditions close to the
chiral case, one recovers the linear regime frozen solution with
the saturation point (constant value of Y) depending on the
scaling value of K in a manner independent of the value of α > 1.
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relevant differences should be of order α−1. In all the cases,
as in the linear equation-of-state case, these currents will
quickly be diluted in the matter-dominated era and become
negligible. This is again shown in Fig. 3.
Figure 3 makes clear that the Witten model [Eq. (20)]

essentially coincides with the much simpler linear model
for small chiralities whenever g� ¼ 0 and A− ¼ 0. This is
by no means a trivial result, as it well known that such an
approximation is not adequate when it comes to describing
microscopic stability issues [26,28]: despite the apparent
differences between the linear regime and the Witten model
at small chiralities, they both produce the same thermo-
dynamical behavior. For this reason, the key new ingredient
from the Witten model—which is the critical current—can
be equally introduced in the linear model to the same effect.
This still leaves open the question about the detailed
nonlinear implementation of charge leakage near the
critical current Y ∼ Kcr, which we have only approximately
treated in Eq. (22). However, we point out that our results
are not qualitatively changed if a different charge leakage
function is chosen—for example,

A� ¼ Aconst

jY − Ycrj
; ð23Þ

where we assume the same critical value Ycr ¼ 2=ð3αÞ as
before. The network current behavior for this inverse form
is indistinguishable from that shown in Fig. 3: the exact
functional form of AðYÞ appears to be mostly irrelevant,
provided there exists a critical current above which the
leakage becomes overwhelming (A → ∞). The detailed
behavior of this charge leakage function should be inferred
from numerical simulations, but phenomenologically the
correction factor has a negligible influence at small currents
(where we can use the simple linear model), though there
are more detailed differences as we approach the critical
current. The form of the charge leakage term, representing a
complex nonlinear process, will depend, in principle, on the
parameters of a specific superconducting cosmic string
model—see, e.g., Refs. [35,36].

2. The biased case

Another nontrivial parameter that keeps the system of
Eq. (18) chiral, Ksc ¼ 0, is gþ. A nonvanishing gþ ≠ 0 can
arise from various underlying mechanisms through which
loops naturally form with more or less charge than the long
strings. One possible such mechanism stems from the fact
that the current momentum along the strings may smooth
the loops [37], which would correspond to gþ < 0. On the
other hand, colliding strings create a bubble of electro-
magnetic radiation that can carry away some amount of
charge [30], and this would lead to gþ > 0. Again,
numerical simulations of specific models will be required
to decide which mechanism prevails. Naturally, it is even
possible that they cancel one another, leading to the jgj ≪ 1
case discussed above.

FIG. 3. Time evolution of the velocity v, charge Y, chirality K,
and ζ through the radiation and matter epochs, using parameter
values c ¼ 0.23, g� ¼ 0, A− ¼ 0, and Aþ given by Eqs. (22)
or (23) with Aconst ¼ 10−6. Evolving using either the Witten
[Eq. (20)] (dashed lines) or the linear equation of state (solid line)
for α ¼ 1 (upper panel) and α ¼ 3 (lower panel) leads to
indistinguishable evolutions in this case.

FIG. 4. Time evolution of the velocity v, charge Y, chirality K,
and characteristic length ratio ζ for the Witten model with α ¼ 1,
c ¼ 0.23, A− ¼ 0, gþ ¼ 0, and Aþ is given by Eq. (22), when
Aconst ¼ 10−6. The parameter g− ¼ 0 corresponds to solid lines,
g− ¼ −0.2 for dash-dotted lines, and g− ¼ 0.2 for dashed lines.
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The result of the string network evolution with gþ ≠ 0 is
similar to cases shown in Fig. 3. It happens because for
a particular scaling regime (in our case, the radiation-
dominated epoch), there is a degeneracy between gþ and
Aþ parameters: we can always tune parameters gþ and Aþ
so that the scaling values of a string network evolution are
unchanged. Hence, the nontrivial value of the parameter gþ
does not introduce anything new, since the current is
nontrivial only in a radiation-dominated epoch.
Up to this point, we did not find any difference between

the full equation of state and its linear approximation. This
is due to the fact that for the range of parameters we
considered, no nontrivial integrated chirality ensues. We
now consider such a more general situation for which the
bias parameters g− and A− are non-negligible.
We just saw that the parameters Aþ and gþ lead to some

amount of degeneracy in the scaling solution. A similar
situation occurs between A− and g−: one can always
change A− and g− to keep scaling variables the same for
a particular expansion rate. In Fig. 4, we demonstrate the
evolution of string networks for different g− values. We can

see that the deviation of Q leads to a nontrivial chirality in
the radiation-dominated epoch.
Varying the parameter A−, we obtain similar behavior—

i.e., the string acquires nontrivial chirality—which we
demonstrate in Fig. 5. Also, we show that an increase of
α leads to a decrease of the chirality variable, bringing
dynamical variables of the model with the complete
equation of state closer to the linear approximation.

V. CONCLUSIONS

We performed an exhaustive numerical exploration of the
solutions of the CVOS model [17] describing macroscopic
quantities (rms velocity, correlation length, current ampli-
tude, and charge) as functions of time for a current-carrying
cosmic string network, adopting as the underlying micro-
scopic description the equation of state derived [7,26,28] in
the framework of the so-called Witten superconducting
cosmic string field theory [5]. It has been previously shown
that, at the microscopic level, approximating the equation of
state by its linear expansion, even for vanishingly small
currents, is not a valid procedure, as perturbation velocities
do not satisfy the correct relation [26], which in turn may
yield significant differences for vorton [6] stability [38] and
their cosmological consequences [39]. Having studied in
detail the linear equation of state in a previous work [25], it
was therefore of interest to understand if the microscopic
situation extended to the macroscopic one, also including,
for the first time, a simple phenomenological modeling of a
critical current.
The general model includes several phenomenological

parameters that, in principle, should be calibrated from
high-resolution field theory network simulations yet to be
undertaken, though efforts towards this goal are ongoing in
our team. Two such parameters happen to be crucial for the
CVOS model: namely, the charge leakage Aþ, representing
all possible mechanisms through which the long string
network under consideration can lose charge, and the skew
gþ between the charge contained on long strings and on
loops. One can argue that because there exist different
mechanisms potentially increasing or decreasing gþ, its
value may be rather small (resulting from the cancellation
of competing effects). Similarly, at small currents, we do
not know in detail how charge may be dissipated from the
network, so the parameter Aþ in this regime is also largely
unknown. For this reason, nothing is preventing either gþ
or Aþ from having a negligible effect on network evolution,
while currents and charges remain well below critical.
We also studied the bias parameter A−, which can be

nontrivial if the leakage mechanism is not symmetric for
timelike and spacelike current components. Similarly, the
current carried away due to loop production g− might have
a preferred channel that distorts the symmetry between
timelike and spacelike parts. In both cases, the string
network deviates from chirality and the evolution becomes
distinct from the linear approximation, with the deviation,

FIG. 5. Time evolution of the velocity v, charge Y, chirality K,
and ζ through the radiation and matter epochs, using parameter
values c ¼ 0.23, g� ¼ 0, and A− ¼ 0.1Aþ for the upper panel
(A− ¼ −0.1Aþ for the lower panel), while Aþ is given by the
function in Eq. (22) with Aconst ¼ 10−6. The evolution is driven
by the Witten equation of state (20) with α ¼ 1 (dashed lines) and
α ¼ 3 (solid lines).
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estimated to be of order α−1, becoming vanishing small for
a large-enough α value.
We have studied all possible cases for relevant param-

eters and found that, for negligible charge leakage
(A� ≪ 1) and close to chiral initial conditions (Kini ≈ 0),
one always recovers the linear solution, whatever the value
of the bias. The same result holds for non-negligible charge
losses and skew parameter gþ, but vanishingly small biases
(A−; g− ≈ 0). Finally, when all parameters have non-
negligible values, we found that the general trends are
the same as those found in the linear model—i.e., the
network approaches one of two possible scaling solutions,
charged or Nambu-Goto with different scaling values, with
the choice dependent on the network’s initial conditions.
When the mass of the current-carrier becomes much
smaller than the string-forming Higgs field (α ≫ 1), how-
ever, one again recovers the linear situation (provided the
current remains subcritical), so it appears to be a valid
approximation for these cosmological considerations.
Scenarios with a large current (frozen) network in the

radiation era may have observational implications that are
very different from those of simpler Nambu-Goto net-
works. However, how easy it is to realize such scenarios
remains somewhat unclear, since the evolution of charges
and currents on the network depends on their equation of
state and initial conditions (and also, in the case of CVOS
modeling, on the corresponding model parameters). In the
specific case studied in the present work, for large α ≫ 1,
the small relative critical current will set a low upper limit
on Y, thus preventing much backreaction from the current

on the network evolution. Unless the microscopic param-
eters are tuned such that the critical current has a compa-
rable energy to the underlying string, then the general
expectation is that the network behavior will be close to that
of Nambu-Goto. In this context, the most interesting case is
when α ∼ 1, since then Y can grow much larger and there
can be significant backreaction; this is also the regime
suitable for vorton formation [40,41]. A more detailed
exploration of this limit is left for subsequent work.
In a broader context, our analysis shows that the

evolution of superconducting string networks with equa-
tions of state beyond the linear case (specifically, in the
present analysis, the Witten model) can, at least for most
physically realistic cases reduce, on a macroscopic scale,
to the model with a linear equation of state. The con-
clusion is that the CVOS model offers a useful quantitative
tool with which to start a realistic exploration of the
observational constraints on superconducting cosmic
string networks. We leave this task for a forthcoming
analysis.
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