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We consider the consequences of a matter power spectrum which rises on small scales until eventually
being cut off by microphysical processes associated with the particle nature of dark matter. Evolving the
perturbations of a weakly interacting massive particle from before decoupling until deep in the nonlinear
regime, we show that nonlinear structure can form abundantly at very high redshifts. In such a scenario,
dark matter annihilation is substantially increased after matter-radiation equality. Furthermore, since the
power spectrum can be increased over a broad range of scales, the first star forming halos may form earlier
than usual as well. The next challenge is determining how early Universe observations may constrain such
enhanced dark matter perturbations.
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I. INTRODUCTION

The standard ΛCDM cosmological model consists of a
cosmological constant dark energy (Λ), a cold and colli-
sionless particle dark matter (CDM), as well as Gaussian
initial perturbations that are both small and nearly scale
invariant. This model is precisely measured and well tested
on large scales, both at early times through the cosmic
microwave background (CMB) [1–4] and at late times
through galaxy surveys [5–7]. On scales smaller than
∼Mpc, however, it is much less constrained and its
assumptions may not remain true [8,9].
The default choice for CDM has been a weakly inter-

acting massive particle (WIMP). The WIMP particle
decouples while nonrelativistic and its thermal properties
only impact clustering on ∼pc scales, setting a minimum
halo mass comparable to that of the Earth [10,11].
However, it is now common, motivated by the nonobser-
vation of WIMPs in detector experiments [12] as well as
potential discrepancies between numerical simulations of
ΛCDM and observations of subhalos [13], to consider other
types of dark matter that can reduce clustering on larger
scales. Such particles could be dark matter with different
interactions than the WIMP, leading to larger thermal
velocities such as in warm dark matter [14] or interactions
with other particles or itself leading to various types of

damping [15]. Fuzzy dark matter is a different particle type
of dark matter where quantum pressure actively opposes
gravitational collapse [16,17]. While coming from different
physical effects, these types of dark matter all have the
qualitative effect of introducing a cutoff in the power
spectrum below a certain scale. The consequences of dark
matter microphysics for structure formation have been
parametrically studied in the ETHOS model [18,19] and
such efforts are crucial in connecting observations to
constraints [20,21].
On the other hand, it is also interesting to consider

scenarios that have more power on small scales. An
increase in small-scale power is a common prediction of
many inflation models (e.g. [22–24]) and has a number of
interesting consequences. If there is no cutoff to the
primordial power spectrum and order unity superhorizon
perturbations occur, then primordial black holes (PBHs)
can form when modes cross the horizon [25–27]. Because
order unity fluctuations are required, a complete non-
observation of PBHs leads only to fairly weak constraints
on the primordial power spectrum over a broad range of
scales [28]. Even if there is a mechanism to prevent PBH
formation, the evolution of the Universe is still substantially
altered by larger than expected perturbations. In the
radiation era, large perturbations in the cosmic plasma
quickly lead to the formation of shocks, generating entropy
and potentially gravitational waves [29]. Such shocks
persist until density fluctuations are damped away by
neutrino diffusion [30]. This diffusion damping affects
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big bang nucleosynthesis which leads to weak constraints
on the primordial power on scales k ∼ 104–105 h−1Mpc
[31]. On larger scales the power spectrum is constrained
more strongly by spectral distortions arising due to Silk
damping [32].
If the dark matter also has enhanced perturbations, as

expected for adiabatic initial conditions, then halos can
begin to form soon after matter-radiation equality, much
earlier than the first ΛCDM halos. Numerical studies of
these early halo formation scenarios have been carried out
[33,34] but focused on increased power on larger scales
with heavier first halos. It is also possible to have a rising
primordial power spectrum, called “blue tilted,” which
induces a dark matter power spectrum that also rises until
it is eventually cut off by damping processes associated
with WIMP decoupling. In this scenario, the first halos that
form are still Earth mass, but exist at very high redshifts.
In standardΛCDM, studying the first halos numerically is

incredibly difficult due to the scale invariance of the power
spectrum on small scales until the cutoff [35,36]. Since all
small halos form at essentially the same time, the dynamic
range required to reach low redshifts is impossible for a
single N-body simulation. Instead, some form of multi-
resolution approach is required.Wang et al. [37] used a set of
eight recursively nested zoom simulations to study the first
halos until z ¼ 0. Takahashi and Kohri [38] used five
simulations with box sizes from 10Mpc to 1 kpc to compute
the nonlinear power spectrum at z ≥ 10. With a blue-tilted
power spectrum halos of different masses form at distinct
redshifts and so we can study them at different times.
The goal of this paper is to study how such a blue-tilted

power spectrum may affect the cosmic dark ages, the times
after recombination but before the first stars form. In Sec. II
we specify an explicit form of the primordial power
spectrum consistent large-scale observations, compute
the linear WIMP perturbations including effects of decou-
pling from the primordial plasma, and describe the setup of
cosmological N-body simulations to analyze nonlinear
structures. In Sec. III we report on the halos that form
in these simulations, both the very light first halos as well as
later ones that may host stars. In Sec. IV we discuss
potential consequences and observational constraints that
may be impacted by the early formation of halos. We
conclude and discuss future directions in Sec. V.

II. METHODS

Studying WIMP dynamics on small scales requires
understanding their evolution from the very early
Universe when they were still coupled to the cosmic
radiation until the very late Universe where they have
clustered into highly overdense halos. In this section we
attempt to calculate WIMP evolution including as many
physical effects as possible. One quantity of particular
interest is the WIMP power spectrum, Δ2

χða; kÞ. If we
assume perturbations start Gaussian, then WIMP

perturbations are fully specified by Δ2
χ until nonlinear

evolutionoccurs. It is useful to separate the initial conditions,
described by a primordial power spectrum Δ2

Ri
ðkÞ, and the

subsequent evolution, encoded in a transfer function
Tχðk; aÞ, viaΔ2

χ ¼ T2
χΔ2

Ri
. Once nonlinear evolution begins,

a transfer function is no longer sufficient to specify the
perturbations and instead oneneeds fullN-body simulations.
We discuss our calculations of the primordial power spec-
trum, linear WIMP transfer functions and nonlinear N-body
simulations in the following three subsections.

A. Cosmological parameters

Because Δ2
Ri

is only weakly constrained on scales
k≳ 1 hMpc−1, there is substantial freedom in what setup
to consider. A common extension (e.g. [22,23,39]) of the
regular parametrization with scalar amplitude As and
spectral tilt ns is to include running (αs) and running-of-
running (βs) parameters:

Δ2
Ri

¼ As

�
k
k0

�
ns−1þαs

2
logð k

k0
Þþβs

6
log2ð k

k0
Þ
: ð1Þ

The Planck experiment has precisely measured the values
logð1010AsÞ ¼ 3.043� 0.014 and ns ¼ 0.9647� 0.0043
for k0 ¼ 0.05 Mpc−1, but the running parameters are con-
sistent with zero: αs ¼ dns=d log k ¼ 0.0011� 0.0099 and
βs ¼ d2ns=d2 log k ¼ 0.009� 0.012 [3]. While there is no
reason to apply Eq. (1) to arbitrarily small scales, it is
illustrative to do so. In Fig. 1 we show some examples of
various power spectra consistent with Planckmeasurements
on large scales but extrapolated to very small ones (noting
that the extrapolation above unity is consistent with Planck
but not as well motivated theoretically [22]). The difference
with running parameters is substantial: while base ΛCDM

FIG. 1. Initial curvature perturbation for various running and
running-of-running parameters consistent on large scales with
Planck measurements. Simulations in this paper correspond to
the “No Running” and “Enhanced Running” parameters.
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has a red tilted power spectrum, a strong blue tilt on small
scales is perfectly possible.
For the purposes of this work, we select cosmological

parameters that are broadly consistent with Planck [3]:
As ¼ 2.15 × 10−9, ns ¼ 0.966, h ¼ 0.675, Ωc ¼ 0.26,
Ωb ¼ 0.05, and zeq ¼ 3374. We assume a flat Universe
and so ΩΛ ¼ 1 −Ωm − Ωr with Ωm ¼ Ωc þΩb and
Ωr ¼ Ωm=ð1þ zeqÞ. We will contrast two choices of
running parameters: a “No Running” scenario with αs ¼
βs ¼ 0 and an “Enhanced Running” one with αs ¼ 0.002
and βs ¼ 0.01. To describe WIMPs we require three
parameters: their mass (mχ), decoupling temperature (Td)
and how their momentum transfer rate with standard model
particles depends on temperature γ ∝ T2þnγ . Equivalently
this can be thought of as when they decouple (at scale factor
ad or conformal time ηd), how fast the decoupling occurs
(nγ) and how warm the resulting dark matter is (∝ Td=mχ).
Note that from a microphysical viewpoint, these parameters
are not independent; nonetheless they provide a useful
phenomenological description of the equations of motion.
In this work, we will consider a WIMP with mass
mχ ¼ 100 GeV, decoupling at a temperature Td ¼
10 MeV and with γ ∝ T6 (nγ ¼ 4). This setup is very
similar to [40], whose explicit calculation found that Td ¼
23 MeV for a neutralino with mχ ¼ 100 GeV.

B. Transfer functions

WIMPs undergo a number of decoupling processes in
the early radiation era. The first is chemical decoupling, or
“freeze-out,” and occurs when the radiation temperature
drops below the WIMP mass, mχ ∼Oð100 GeVÞ [41].
After this time, WIMP particles are no longer produced and
their comoving number density is constant. However, they
can continue to scatter with the plasma until much lower
temperatures, Td ∼Oð10 MeVÞ, and so remain thermally
and kinetically coupled to the radiation fluid. As the
Universe continues to cool, all scattering with the standard
model stops and the WIMPs become dark matter.
Interestingly, at this time they also stop interacting gravi-
tationally with the standard model on subhorizon scales
[42]. This is because the photon fluid is quickly oscillating
rapidly relative to cold dark matter, and so gravitational
accelerations sourced by radiation perturbations average to
zero. This continues until recombination when the baryons
decouple as well.
On scales that cross the horizon after WIMP decoupling,

neutrino decoupling and electron-positron annihilation (all
of which occur around OðMeVÞ temperatures or
k≲ 104 hMpc−1), WIMPs behave like CDM and highly
accurate transfer functions can be obtained from numerical
Boltzmann codes like CLASS [43] or analytic subhorizon
approximations like the one provided by Hu and Sugiyama
[44]. However, we are particularly interested in smaller
scales as it is here that Δ2

χ peaks. A simple approach is to

simply take the pure CDM transfer function and introduce a
cutoff at a scale characteristic of WIMPs, k ∼ 106 hMpc−1.
However, this misses the acoustic oscillations imprinted
onto the WIMP transfer functions as they decouple. To
include such acoustic oscillations one can solve fluid
equations including a kinetic coupling term with the
photons [45]. However, to fully describe the WIMPs from
before decoupling until today it is necessary to solve the
Boltzmann equation coupled to the Einstein field equations
[40]. In this section we first find a general integral equation
for the Boltzmann equation. Because it is difficult to
evaluate in generality, we then find an approximate solution
by first solving the equations through decoupling when
exact solutions of the Einstein field equations can be used,
and then propagating the perturbations forwards using a
collisionless approximation [40,45]. Even though this
involves two stages, WIMP decoupling is fully calculated
in the first step rather than assuming an instantaneous
decoupling process. We normalize transfer functions such
that the superhorizon curvature perturbation Ri is unity
[46] and use standard cosmological initial conditions [47].

1. Boltzmann-Fokker-Planck equation

For a WIMP scattering with relativistic particles, the
Boltzmann equation is given by [40,48]

_f þ v⃗
a
· ∇!xf þ

�
v⃗ _ϕ−a∇!xψ

�
· ∇!vf

¼ aγð1þ ψÞ∇!v ·
�
ðv⃗ − aV⃗RÞf þ a2TR

mχ
∇!vf

�
; ð2Þ

where f is the WIMP phase space density, _f ¼ ∂f=∂η,

where η is the conformal time, ∇⃗x is the positional gradient
in comoving coordinates, v⃗ is the comoving particle

momentum q⃗ divided by its mass mχ , ∇⃗v is a gradient

with respect to velocity, V⃗R and TR are the plasma velocity
and temperature, γ is the momentum transfer rate with the
plasma, and ϕ and ψ are the scalar potentials in the notation
of Ma and Bertschinger [47]. The right-hand side of Eq. (2)
is the Fokker-Planck collision operator which is appropriate
when the momentum change per scattering event is small,
although it can also be accurately used in more general
contexts by matching the drift and diffusion terms to the
collision operator [49,50]. Prior to decoupling, the first
term in the right-hand side brackets ensures the WIMP
velocity is the same as the plasma velocity, while the
second term ensures they have the same temperature. We
linearize this equation by taking f ¼ f0 þ f1, TR ¼
T0ð1þ δTÞ, and γ ¼ γ0ð1þ δγÞ with V⃗R, ϕ and ψ always
first order. We obtain the zeroth order equation

_f0 − aγ0∇⃗v ·

�
v⃗f0 þ

a2T0

mχ
∇⃗vf0

�
¼ 0 ð3Þ
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and first order equation,

_f1 þ
v⃗
a
· ∇⃗xf1 − aγ0∇⃗v ·

�
v⃗f1 þ

a2T0

mχ
∇⃗vf1

�
¼ S; ð4Þ

where the source term is given by

Sðη; x⃗; v⃗Þ¼ aγ0∇⃗v ·

�
ðδγþψÞ

�
v⃗f0þ

a2T0

mχ
∇⃗vf0

�

−aV⃗Rf0þ
a2T0

mχ
δT∇⃗vf0

�
−
h
v⃗ _ϕ−a∇⃗xψ

i
· ∇⃗vf0

ð5Þ

and is not directly dependent on f1 but can depend on its
moments through ϕ and ψ . The mean density is normalized
to unity

R
d3v⃗f0 ¼ 1 and the WIMP density perturbation is

given by δχ ¼
R
d3v⃗f1.

The Boltzmann-Fokker-Planck equation is very challeng-
ing to solve. In noncosmological contexts, Chandrasekhar
[51] and Dougherty [52] obtain solutions along character-
istics; however, the cosmological WIMP equation has many
more time dependent quantities than the ones considered
there. While Bertschinger [40] numerically solved Eq. (4)
using an eigenfunction approach, computing the full phase
space is quite excessive if one is only interested in lower
moments like the density and velocity. These moments
satisfy a set of differential equations that can be evolved
numerically [18,53], however this introduces a different
problem: the moment equations suffer from the well-known
lack of closure as each equation contains a new moment and
so an infinite number of equations are required [54]. We
therefore take a different approach and first convert Eq. (4)
into an integral equation. When formulated as integral
equations, the equation for the density contrast decouples
from higher moments, similar to the case of collisionless
dynamics (e.g. [55–58]). Higher moments can then be
computed either through their own integral equations or
by solving a finite set of differential equations.
To obtain integral solutions to Eqs. (3) and (4), we first

perform a Fourier transform in both position and velocity
space:

fðη; k⃗; h⃗Þ ¼
Z

d3v⃗d3x⃗e−ik⃗·x⃗−ih⃗·v⃗fðη; x⃗; v⃗Þ: ð6Þ

fðη; k⃗; h⃗Þ is called the moment generating function as we
can obtain moments by taking gradients in h⃗ and then
setting h⃗ ¼ 0, in particular δχ ¼ fðη; k⃗; 0Þ [54]. In the
context of the Boltzmann-Fokker-Planck equation, the
velocity Fourier transform has been used to study
the (linear) dynamics of collisional plasmas [59–61].
After making this transformation, Eq. (3) becomes

_f0 þ aγ0h⃗ · ∇⃗hf0 þ aγ0
a2T0

mχ
h2f0 ¼ 0: ð7Þ

The characteristic equation is dh⃗=dη0 ¼ aγ0h⃗which has the
solution for 0 ≤ η0 ≤ η:

h⃗ηðη0Þ ¼ h⃗ðηÞ exp
�
−
Z

η

η0
aγ0dη00

�
; ð8Þ

where we use the notation that η indicates that a function is
parametrized via the final conformal time η instead of an
initial conformal time, η → 0.
We can solve the background equation along the

characteristics via an integrating factor:

f0ðηÞ ¼ f0ðη → 0Þ exp
�
−
Z

η

0

aγ0
a2T0

mχ
h2ηðη0Þdη0

�
: ð9Þ

Taking cold initial conditions consistent with tight cou-
pling, i.e. with f0ðη → 0Þ ¼ 1, the solution is at all times a
Maxwell-Boltzmann distribution:

f0ðη; vÞ ¼
1

ð2πσ2Þ3=2 exp
�
−
1

2

v2

σ2

�

∴f0ðη; hÞ ¼ exp

�
−
1

2
h2σ2

�
ð10Þ

with velocity dispersion:

σ2ðηÞ ¼ 2

Z
η

0

dη0aγ0
a2T0

mχ
exp

�
−2

Z
η

η0
aγ0dη00

�
: ð11Þ

Equation (4) can be solved in the sameway, although it is
of course more complicated due to the advective and source
terms. After Fourier transforming it becomes

_f1−
k⃗
a
· ∇⃗hf1þaγ0h⃗ · ∇⃗hf1þaγ0a2

T0

mχ
h2f1¼ Sðη;hðηÞÞ;

ð12Þ

where we omit k dependence for notational simplicity. The
characteristic equation is dh⃗=dη0 ¼ aγ0h⃗ − k⃗=a which has
the solution

h⃗ηðη0Þ ¼ h⃗ðηÞ exp
�
−
Z

η

η0
aγ0dη00

�
þ k⃗

ηd
ad

uηðη0Þ; ð13Þ

where h⃗ηðη0Þ ¼ ðk⃗ηd=adÞuηðη0Þ is the solution to character-
istics terminating at h⃗ðηÞ ¼ 0, and the dimensionless
uηðη0Þ is
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uηðη0Þ ¼
Z

η

η0

dη00

ηd

ad
a
exp

�
−
Z

η00

η0
aγ0dη000

�
: ð14Þ

The perturbations can be solved along the characteristics via an integrating factor yielding the moment generating function:

f1ðηÞ ¼ f1ðη → 0Þ exp
�
−
Z

η

0

aγ0
a2T0

mχ
h2ηðη0Þdη0

�
þ
Z

η

0

dη0Sðη0; h⃗ηðη0ÞÞ exp
�
−
Z

η

η0
aγ0

a2T0

mχ
h2ηðη00Þdη00

�
: ð15Þ

Initial conditions can be set by Fourier transforming the tight coupling solution [Eq. (31) of [40]]:

f1ðη ≪ ηd; h⃗Þ ¼
�
δχ þ ih⃗ · aV⃗χ −

1

2
h2σ2δTχ

�
f0ðη; hÞ; ð16Þ

where V⃗χ and δTχ
are the WIMP velocity and temperature perturbations. For our case with f0ðη → 0Þ ¼ 1 and no initial

superhorizon velocity, this is just f1ðη → 0Þ ¼ δχðη → 0Þ. Fortunately, we do not need to perform the inverse Fourier

transform of Eq. (15) as to obtain the density contrast we can simply set h⃗ðηÞ ¼ 0 in Eq. (13) [61]:

δχðηÞ ¼ δχðη → 0ÞGηðη → 0Þ þ
Z

η

0

dη0Sηðη0ÞGηðη0Þ; ð17Þ

where we have separated the diffusion damping factors and source perturbations:

Gηðη0Þ ¼ exp

�
−
1

2

Td

mχ
ðkηdÞ2

�
σ2

σ2d
u2ηðη0Þ þ 2

Z
η

η0
aγ0

a2

a2d

T0

Td
u2ηðη00Þdη00

��
ð18Þ

Sηðη0Þ ¼ 3 _ϕ − uηðη0Þ
�
aγ0

a
ad

ðηdθRÞ þ
a
ad

k2ηdψ

�
þ Td

mχ
ðkηdÞ2u2ηðη0Þ

�
aγ0

�
σ2

σ2d
−
a2

a2d

T0

Td

�
ðδγ þ ψÞ − aγ0

a2

a2d

T0

Td
δT −

σ2

σ2d
_ϕ

�
;

ð19Þ

where θR ¼ ik⃗ · V⃗R is the velocity divergence and σ2d ¼ a2dTd=mχ .

Examining the Gaussian damping in Eq. (18), we see
that there are two distinct cutoffs associated with diffusion,
corresponding to η0 ≪ ηd and η0 ≫ ηd. The first is an
integrated scale arising from the diffusive term in Eq. (15)
with a characteristic damping wave number kD:

�
Td

mχ
ðkDηdÞ2

�
−1

¼ 2

Z
η

η0
aγ0

a2

a2d

T0

Td
u2ηðη00Þdη00; ð20Þ

and for WIMPs we can take η0 ∼ 0 in the integral to obtain
the minimum kD. The second cutoff, which we denote kS, is
associated with dynamical streaming of particles and arises
due to f0 being a Gaussian in Eq. (5):

�
Td

mχ
ðkSηdÞ2

�
−1

¼
�
a2d

Td

mχ

�
−1
σ2ðη0Þu2ηðη0Þ: ð21Þ

Collisionless damping occurs after decoupling, η0 ≳ ηd and
so this gives the free-streaming scale. In addition to these
diffusion cutoff scales, there is also frictional damping
arising even for Td=mχ ¼ 0 [40]. While analytic estimates

of this form of damping can be obtained via the steepest
descent approximation [40,62], it is also fully included in
Eq. (17) and our subsequent numerical calculation.

2. Decoupling solution

We now consider times aroundWIMP decoupling, which
wewill assume occurs deep in the radiation era (with Hubble
rate H ¼ Hr=a2 and scale factor a ¼ Hrη) and during a
period of constant entropy density when no particles are
becoming nonrelativistic (such that T0 ∝ 1=a). The decou-
pling parameters mentioned in the previous section can
therefore be related by ad ¼ Hrηd, T0=Td ¼ ad=a, Hd ¼
Hr=a2d and adHd ¼ η−1d . We generally intend to consider a
momentum transfer rate γ ∝ T6; however, other power laws
are possible, e.g. those in [62,63], and so we solve the more
general T2þnγ with nγ > 0 required for decoupling (it is also
possible for the rate to bemuchmore complicated, such as for
charged massive particles [53]). For this more general
momentum transfer rate, the linearized scattering rate can
be parametrized as
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γ ¼ nγ
2
Hd

�
T0

Td

�
2þnγ ð1þ δγÞ ð22Þ

with δγ ¼ ð2þ nγÞδT ¼ ð2þ nγÞδR=4. Using the radiation
background expansion, we furthermore have

aηγ0 ¼
nγ
2

1

ynγ
; ð23Þ

where y ¼ a=ad ¼ η=ηd ¼ Td=T0. Equation (11) can be
integrated analytically yielding

σ2ðyÞ ¼ σ2d exp

�
1

ynγ

�
Γ
�
nγ − 1

nγ
;
1

ynγ

�
; ð24Þ

whereΓ is the incomplete gamma function. Fornγ ¼ 4 this is
the same result as found in [40]. We can furthermore
analytically integrate Eq. (14) for x ¼ η0=ηd and y ¼ η=ηd
to obtain

uyðxÞ ¼
Z

y

x
dw

1

w
exp

�
−
Z

w

x

nγ
2

1

znγþ1
dz

�

¼ 1

nγ
exp

�
−

1

2xnγ

��
Ei
�

1

2xnγ

�
− Ei

�
1

2ynγ

��
ð25Þ

with Ei being the exponential integral. Because only radi-
ation fluctuations source the gravitational potentials at this
time, Eq. (17) is simply the solution and can be written in
terms of dimensionless parameters as

δrχðyÞ ¼ δχðη → 0Þ exp
�
−
1

2
ϵω2nγ

Z
y

0

dz
u2yðzÞ
znγ

�
þ
Z

y

0

dxSr
yðxÞ exp

�
−
1

2
ϵω2

�
σ2

σ2d
u2yðxÞ þ nγ

Z
y

x
dz

u2yðzÞ
znγ

��
ð26Þ

Sr
yðxÞ ¼ 3

dϕr

dx
− uyðxÞ

�
nγ
2

1

xnγ
ðηdθrRÞ þ xω2ϕr

�
þ ϵω2u2yðxÞ

�
nγ
2

�
σ2

σ2d
− x

�
δrγ þ ϕr

xnγþ1
−
nγ
2

δrT
xnγ

−
σ2

σ2d

dϕr

dx

�
; ð27Þ

wherewe use r to distinguish the radiation era perturbations,
δχðη → 0Þ ¼ ð−9=10ÞRi is the superhorizon matter fluc-
tuation, ϵ ¼ Td=mχ ≪ 1, and ω ¼ kηd.
The last required ingredient is the source perturbations.

Since WIMP decoupling occurs before neutrinos begin to
free stream, anisotropic stress is negligible and so ϕ ¼ ψ .
We can then combine the Einstein equations [e.g.,
Eqs. (19), (20), (23), and (25) of [47]], assuming only
radiation perturbations contribute at this time, to obtain [45]

ϕ̈r þ 4

η
_ϕr þ k2

3
ϕr ¼ 0 → ϕr ¼ 3ϕðη → 0Þ j1ðθÞ

θ
; ð28Þ

where θ ¼ kη=
ffiffiffi
3

p
, ϕðη → 0Þ ¼ ð3=5ÞRi and we have

assumed only an adiabatic growing mode (for large iso-
curvature modes see [64], and for the presence of a
decaying mode see [65]). The photon perturbations can
then be directly obtained from the Einstein equations:

δrR ¼ −2
�
ðθ2 þ 1Þϕþ θ

dϕ
dθ

�
ð29Þ

ηdθ
r
R ¼ 3

2
θd

�
θϕþ θ2

dϕ
dθ

�
; ð30Þ

where θd ¼ kηd=
ffiffiffi
3

p
.

Bertschinger [40] found an extremely accurate approxi-
mation for δχ by solving the moment equations in the limit

ϵ → 0 and then multiplying the resulting density contrast
δχ0 by a Gaussian damping factor. This approximation is by
construction accurate until ω ∼ 1=

ffiffiffi
ϵ

p ¼ 100, so provided
such a scale ends up damped the approximation will always
be quite accurate. Making the same approximation in
Eq. (26), δχ0 in the radiation era is given by

δrχ0 ¼ δχðη → 0Þ

þ
Z

y

0

dx

�
3
dϕr

dx
− uyðxÞ

�
nγ
2

1

xnγ
ðηdθrRÞ þ xω2ϕr

��
:

ð31Þ

When numerically evaluating δrχ0 we assume that for x ≫ 1

the contribution of ηdθrR is negligible, uyðxÞ ≃ logðy=xÞ and
the integral can be performed analytically:

Z
θ

θa

�
3
dϕr

dθ0
−3θ0ϕr log

θ

θ0

�
dθ0

¼9ϕðη→0Þ
�
j0ðθ0Þlog

�
θ

θ0

�
þCiðθ0Þþj1ðθ0Þ

θ0
−j0ðθ0Þ

�
θ

θa

;

ð32Þ

where Ci is the Cosine integral. We switch to this analytic
result at η0 ¼ 10ηd. Note that taking θa → 0 and adding
δχðη → 0Þ yields the CDM perturbation:
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δrc ¼ 9ϕðη → 0Þ
�
1

2
− γE − log θ þ CiðθÞ þ j1ðθÞ

θ
− j0ðθÞ

�
;

ð33Þ

where γE is the Euler-Mascharoni constant [40,42].
Taking y derivatives of Eq. (31), it is straightforward to

convert the integral equation to a closed set of differential
equations:

d
dy

δrx0 ¼ −ðηdθrχ0Þ þ 3
d
dy

ϕr ð34Þ

d
dy

ðηdθrχ0Þ ¼ −
1

y
ðηdθrχ0Þ þ ω2ϕr þ nγ

2

ðηdθrR − ηdθ
r
χ0Þ

ynγþ1
;

ð35Þ

which is the same as the friction-only fluid equations in
[40] evaluated in the radiation era. A similar process can be
easily applied to the more general Eq. (17) as well. An
equivalent integral equation for nγ ¼ 2 [and which can be
converted to Eq. (31) via integration by parts] was obtained
starting from the moment equations in [63], with uηðη0Þ
taking the role of the Green’s function.
While these equations already include the frictional

damping, an additional damping factor is still required.
Bertschinger [40] found the numerical approximation:

k−2approx ¼
6

5

a2dTd

mχ

�Z
η

η⋆
dη0=a

�
2

ð36Þ

with η⋆ ¼ 1.05ηd. We show this approximation, alongside
Eqs. (20) and (21) in Fig. 2 (note that we extend the
calculation to the matter era, as discussed in the next
section). The minimum value of kS occurs around

x ≃ ½λ−1Wðλxnγ−1Þ� 1
nγ−1

λ ¼ 2
nγ − 1

nγ
Γ
�
nγ − 1

nγ

�
ð37Þ

withW being the Lambert W function, although in practice
we find the precise value numerically. We find that kapprox
matches kD, the integrated diffusion damping scale,
extremely well after decoupling and therefore consider
the following radiation era approximation:

δrχðηÞ ≃ δrχ0ðηÞGηðη → 0Þ: ð38Þ

We show the resulting transfer functions in Fig. 3. WIMP
perturbations start tightly coupled to the photons but
decouple and then behave like CDM on larger scales,
while having acoustic oscillations on smaller ones. An
example of Eq. (38) is also shown for y ¼ 102. For our
WIMP parameters, the approximation is very accurate. For
example, the third peak only differs from the complete
Eq. (26) by ∼1.5%, which is comparable to the maximum
error quoted in [40]. We therefore use it throughout the
remaining computations.

3. Gilbert’s equation

We next need to compute the WIMPs evolution after
decoupling. Once decoupled thermally and kinetically, cold
dark matter also becomes gravitationally decoupled on
subhorizon scales and it evolves only under self-gravity:

−k2ϕc ¼ 4πGa2ρ̄cδc ð39Þ

FIG. 2. Gaussian damping scales associated with WIMPs
decoupling from the cosmic plasma. The approximate solution
matches the integrated diffusion damping scale and rapidly
becomes better than 1% accurate.

FIG. 3. Transfer functions in the radiation era. Black, blue and
red curves show the gravitational potential, CDM density, and
photon density. Green curves show the WIMP density at various
times (note that it is separately a function of η=ηd and kηd, not
their product). The dotted orange curve is an approximation to the
WIMP transfer function given by Eq. (38). All transfer functions
have been normalized to unity on superhorizon scales.
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even when ρ̄RδR ≫ ρ̄cδc [42]. For CDM, this effect leads to
the Mészáros equation [66]; for WIMPs however, the
velocity dispersion in Eq. (24) asymptotes to a nonzero
constant σ2ðy ≫ 1Þ ≃ σ2∞ ¼ Γ½ðnγ − 1Þ=nγ�σ2d and so free
streaming should in principle be taken into account. Let us

define ηcðkÞ as the time when the WIMP perturbation can
be considered subhorizon, fully decoupled and with
δχðηcÞ ≃ δrχðηcÞ. Then in addition to the radiation solution
(contributing zero on average) there should be an additional
contribution from WIMP self-gravity:

δχðηÞ ≃ δrχðηÞ −
Z

η

ηc

dη0uηðη0Þ
a
ad

ηdðk2ϕcÞ exp
�
−
1

2
σ2∞

�
k
Hr

�
2

u2ηðη0Þ
�
; ð40Þ

where we have set ψ ¼ ϕ on subhorizon scales and used the fact that Gηðη0 ≫ ηdÞ only has a free-streaming cutoff. For
η≲ ηc, uηðη0Þ is given by Eq. (25) whereas for η≳ ηc,

uηðη0Þ ≃
1

nγ
exp

�
−

1

2xnγ

��
Ei
�

1

2xnγ

�
− Ei

�
1

2x
nγ
c

�
þ nγHrðτ − τcÞ

�
; x < xc

≃Hrðτ − τ0Þ; x > xc; ð41Þ

where xc ¼ ηc=ηd and we have introduced the superconformal time a2dτ ¼ adη ¼ dt. Assuming WIMPs make up all the
dark matter and substituting Eq. (39) into Eq. (40), we obtain Gilbert’s equation [55] (see also [14,56]):

δχðτÞ ¼ δrχðτÞ þ
3

2
fcH2

r

Z
τ

τc

dτ0ðτ − τ0Þsδχðτ0Þ exp
�
−
1

2
ðkσ∞ðτ − τ0ÞÞ2

�
; ð42Þ

where fc ¼ Ωc=Ωm and s ¼ a=aeq. To speed up the calculation we have opted to furthermore take the ϵ → 0 limit:

δχ0ðτÞ ¼ δrχ0ðτÞ þ
3

2
fcH2

r

Z
τ

τc

dτ0ðτ − τ0Þsδχ0ðτ0Þ ð43Þ

and then set δχðηÞ ≃ δχ0ðηÞGηðη → 0Þ.We note that this does
not appear to be as precise an approximation as in the pure
radiation limit. For instance, the error near the third peak is
around∼5% at z ¼ 999. For our purposes this is acceptable,
but in other applications it may not be. In our calculation we
have set ηc ¼ min ½η; 10ηd; 10ηdðkd=kÞ�, where kd is the
mode crossing the horizon at decoupling. We solve Eq. (43)
numerically via trapezoidal integration [56,67].
Of course, the validity of these transfer functions rests

upon the radiation solution being correct and thatWIMPs are
the only collapsing matter. Shortly after WIMP decoupling,
at T ∼ 1 MeV, neutrinos also decouple and begin to free
stream leading to δν ≠ δR and, due to neutrino anisotropic
stress, ϕ ≠ ψ . Neutrino diffusion also damps photon pertur-
bations on scales k≳ 5 × 104ðT=MeVÞ2.7 Mpc−1 [30], an
effect we did not include. Immediately following at T ∼
0.5 MeV is electron-positron annihilationwhich changes the
entropy density, so that the temperature is not inversely
proportional to the scale factor, aswell as softens the equation
of state. ForCDMperturbations crossing the horizon,Hu and
Sugiyama [44] are able to include the effects of neutrino
anisotropic stress using semianalytic expressions.The effects
of changing entropy affect the scale factor and so could
potentially be taken into account just through uηðη0 > ηcÞ.

Bertschinger [40] was able to approximate the effects of the
changing equation of state, finding them to be at the 10%
level. The last missing effect is othermatter: baryons begin to
gravitationally collapse after recombination, an effect we do
not include. Further differences can occur ifWIMPs are just a
single component of a more complex dark sector. If other
matter is also collapsing it would be necessary to retain the
free streaming term in Gilbert’s equation, as the other matter
could source perturbations below the integrated WIMP
cutoff.
For our calculation, we have simply neglected these

effects to have simpler integration. In particular, neglecting
entropy injection leads to analytic relations for background
quantities a ¼ Hrηþ ðHrηÞ2=ð4aeqÞ andHrτ¼ log ½η=ðηþ
4aeq=HrÞ� with Hr ¼ H0

ffiffiffiffiffiffi
Ωr

p
. Both neutrino decoupling

and electron-positron annihilation occur at k ∼ 104 h=Mpc
which is firmly in the range of scales where the WIMP
transfer function is the same as CDM. We therefore use the
Hu and Sugiyama [44] approximation with the standard
value of the neutrino contribution to the radiation density
fν ≃ 0.41 for scales k≲ 104 h=Mpc, and our calculation
for larger wave numbers. We show an example transfer
function past matter radiation equality at a ¼ 10−3 in
Fig. 4. On larger scales (where fν ¼ 0.41) the Hu and
Sugiyama [44] approximate transfer function agrees well
with those of CLASS, whereas our calculation based on
Gilbert’s equation agrees well with it on smaller ones
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(where we set fν ¼ 0, to take into account the fact that
neutrinos were not free streaming when the mode crossed
the horizon). We thus conclude our calculation yields
consistent, albeit imperfect, results for the WIMP density
contrast.

C. N-body simulations

After matter-radiation equality, gravitational growth
begins and halos can begin to form. To take such nonlinear
evolution into account requires N-body simulations. We
use the CUBEP3M code [68] which has been modified to
evolve “particle dark matter” starting in the radiation era
[69]. We use the same high precision parameters to improve
gravitational force accuracy: a pairwise force extended over
two fine cells, a softening length of 1=10 of a fine cell, a
logarithmic time step limiter of 0.005, and an offset of up to
16 fine grid cells. In our simulations, the total number of
fine grid cells is 15363 and we employ 2 × 7683 dark matter
particles which are initially placed on a body-centered
cubic lattice to reduce discreteness effects [70,71]. Initial
perturbations are calculated using the Zel’dovich approxi-
mation [72] using both a density and velocity transfer
function. We evaluate the velocity transfer function from
the subhorizon continuity equation (_δþ θ ¼ 0 and note
that we take the derivative of δχ , not δχ0). CUBEP3M comes
equipped with an on-the-fly spherical overdensity halo-
finder and we use the halos it identifies based on the virial
overdensity (18π2, although note that this is really only the
correct value for the matter era) and with at least 100
particles.

We consider three types of simulation which we refer to
as CDM, damped power spectrum (DPS) and dark acoustic
oscillation (DAO). For the pure CDM (δc) solution, the cold
dark matter transfer function is given by the approximation
in Hu and Sugiyama [44]. The damped power spectrum
[DPS, δDðηÞ ¼ δcðηÞGηðη → 0Þ] simulation uses the CDM
transfer function suppressed by the integrated diffusion
damping scale (which is the more important damping scale
since kD < kS, as seen in Fig. 2). Note that this only
includes the diffusion damping, not the friction damping,
and so is an overestimate, so we will use this simulation as a
comparison of how different choices of cutoff can impact
the results. Lastly the dark acoustic oscillation (DAO, δχ)
simulation uses the complete WIMP transfer function
including the damped oscillations associated with decou-
pling. On small scales there are two additional effects to
consider for WIMPs: the role of thermal velocities, and the
effects of artificial fragmentation. Furthermore, our simu-
lations do not include hydrodynamics and baryons are
assumed to be homogeneous throughout the evolution. We
discuss these more in the following subsections, and
provide a set of convergence tests in the Appendix.

1. Thermal velocities

In addition to perfectly cold bulk motions, WIMPs also
have thermal velocities leading to dispersive free-streaming
and scale-dependent evolution. Ideally the simulations
would be started well into the matter era when the damping
scale has reached an asymptotic constant value (see Fig. 2).
However, because we are considering enhanced primordial
power spectra, halos may already be forming at such times
and so we need to start our simulations in the radiation era
when perturbations are more linear. Unfortunately, at these
times the WIMP evolution is not perfectly captured by the
simulations, which assume cold dynamics, and this mis-
match potentially leads to inaccuracies. We start to notice
consequential missed scale dependence at around a ¼ 10−5

and so set this as our initial redshift. At this redshift the
mode crossing the horizon is ∼0.3 h=Mpc, and so we can
start our larger volume simulations at this redshift as well.
In addition to the integrated effect of thermal motions in

the transfer function, there is also an active suppression of
power by thermal motions at any given time due to free
streaming. In the linear evolution, this effect is suppressing
power that is already exponentially damped, and so is not as
important as the integrated effect. However, nonlinear
evolution transfers power from large scales to small scales
due to mode coupling [73], a process which thermal
velocities could inhibit. Ideally, one would solve the
collisionless Boltzmann equation directly, but such simu-
lations have only recently become possible on the largest
supercomputers due to the OðN6Þ scaling [74]. A common
approach to take thermal velocities into account using
standard N-body methods, used for both warm dark matter
simulations (e.g. [14,75–77]) and simulations including hot

FIG. 4. Dark matter transfer functions at a ¼ 10−3. The dotted
curve is a pure CDM transfer function, whereas the solid line
includes the effect of WIMP decoupling. The dashed curve shows
the CDM transfer function multiplied by a Gaussian damping
factor. We also show the CDM transfer function computed with
the CLASS Boltzmann code for comparison. A break in the power
spectrum is shown at ∼104 hMpc−1, a scale characteristic of
neutrino decoupling and electron-positron annihilation.
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dark matter in the form of neutrinos (e.g. [78–80]), is to add
a random velocity drawn from f0ðvÞ (or some compensated
distribution, e.g. [81,82]) to each particle. We find that
adding random velocities does not work well here as they
induce random correlations which immediately lead to
completely unacceptable fragmentation.
To avoid such Poisson noise, one can introduce regu-

larity in velocity space as was done for neutrinos in
Banerjee et al. [83]. We have tested a much simplified
version of this method, using just a single shell of velocity,
and find that random structures do not form. While a single
shell does not capture the full impacts of thermal motions
(as some particles will be much hotter, and some much
colder), it does allow us to qualitatively test whether our
results are affected by free streaming. More details, along-
side convergence tests with respect to initial redshift and
thermal velocities, are given in Appendix A 1.

2. Artificial fragmentation

The other numerical effect associated with a cutoff is
known as artificial fragmentation. Below the cutoff scale
there are no physical perturbations, but there are numerical
ones which begin to grow and fragment in filaments [84]. It
is observed in hot dark matter simulations [84], warm dark
matter simulations [14,85], cold dark matter simulations
without enhanced power [36], ultracompact minihalo
simulations [34], as well as simulations of DAOs in
ETHOS simulations [86]. Thus, we expect our simulations
to suffer from this fragmentation even if the specific shape
of the power spectrum may be different from those cases.
The principle effect is small halos forming along filaments

and halo mass functions that do not have the expected cutoff
below the mass scale associated with the cutoff. For hot dark
matter, the mass scale associated with this fragmentation is
Mlim ≃ 10.1ρ̄dk−2p with d ¼ L=N1=3

p being the interparticle
spacing, kp being the peak of the power spectrum and ρ̄ being
the mean density [84] and this formula gives a reasonable
approximation in ETHOS based DAO simulations as well
[86]. In our work there is some ambiguity as to where the
peak of the power spectrum is as it depends on redshift and
whether acoustic oscillations are included, but our tests
indicate Mlim is consistent here as well.
Given that such artificial halos affect the halo mass

function, the next question is how to avoid them. One
option is to filter them out, based on criteria such as
convergence in Lagrangian space [87] or virialization [88].
Alternatively, one can attempt to stop them from forming
by reducing the force resolution of the simulation to match
the mass resolution [89], as it has been shown that lower
resolution simulations like pure particle mesh reduce the
fragmentation [90]. A more advanced numerical method
which interprets particles as tracers of the continuous CDM
phase sheet could also be employed [91,92]. We explore the

effect of force and mass resolution in Appendix A 2.
However, reducing force resolution to deal with smaller
halos also reduces our ability to study heavier high mass
halos as well. We therefore defer a detailed study of the
lower end of the halo mass function to a future study, and
instead focus on halos that are well resolved by the
simulation.

3. Baryonic effects

Before recombination baryons are coupled to the CMB
and so their perturbations may be safely neglected on scales
relevant for our simulations. After recombination however,
they begin to gravitationally collapse into dark matter
halos. Unlike WIMPs, baryons remain collisional and have
some pressure support to prevent collapse on such small
scales [93]. It is therefore not unreasonable to treat them as
homogeneous on very small scales and at very early times.
However, at later times when bigger halos are forming it
becomes a much worse approximation as baryons do
collapse and begin to form stars and (proto)galaxies. An
accurate treatment of this would require hydrodynamical
simulations including high redshift chemistry [94].
In both the matter and radiation eras, a component being

homogeneous leads to a reduced growth factor [69,95].
Thus, when baryons catch up to CDM, which may be
different with enhanced structure, will affect structure
formation. We therefore have performed a simple test
where we assume that instead of being homogeneous,
baryon perturbations are exactly the same as the WIMP
ones starting at some time after recombination. Note
however that this does not take into account the fact that
on some scales baryons become more clustered than CDM
as they have the ability to cool [96]. The results of these
tests are given in Appendix A 3, and demonstrate that our
results are an underestimate of the true clustering.

III. RESULTS

With the tools developed in the previous section, we are
now able to examine the formation of WIMP halos with
enhanced small-scale power. We have run two classes of
simulations that focus on different scales and redshifts. The
first are in ð300 h−1 pcÞ3 volumes, evolve from a ¼ 10−5

until z ¼ 299 and are focused on the formation of very high
redshift halos near the cutoff in the power spectrum. The
second set of simulations is run in ð300 h−1 kpcÞ3 volumes
until z ¼ 29 in order to understand how the increase in
power may affect the formation of the halos that will host
the first stars and galaxies. We show power spectra from our
set of simulations in Fig. 5. On all scales, nonlinear
evolution begins substantially earlier than is typically
assumed. Note that the larger volume simulations use a
transfer function computed with fν ¼ 0.41 for all scales
(i.e. without a discontinuity).
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A. Halos at z ∼ 300

We now consider the very early halos that form in our
small volume simulation. The top row of Fig. 6 shows
density slices from the small volume simulations at
z ¼ 299. We see that a substantial amount of structure
has already formed in all three models. However, by eye we
can see that the CDM simulation has substantially more
structure than the other two. Furthermore, the DPS sim-
ulation is clearly more clustered than the DAO one. This
can also be seen very easily in Fig. 5: while the DPS
simulation is catching up to the CDM one, the DAO one has
yet to do so. The difference we see does have a simple
interpretation: there is substantially more power in the DPS
simulation even in linear theory. For instance, the variance,R
Δ2d log k is 1.76× larger in the DPS simulation than the

DAO one. This is not the case with no running parameters,
where it differs by 1.13× without running. The precise
shape of the power spectrum near the peak has a substantial
effect and approximate damping scales may not lead to
accurate conclusions. While we might expect that these
differences will further diminish at later redshifts, a sub-
stantial delay may be sufficient to reduce the constraining

FIG. 5. Power spectra for WIMP dark matter with enhanced
power on small scales. Dotted curves show linear transfer
functions at the initial conditions zi ¼ 99999 (CDM, DPS,
DAO) and after evolution at z ¼ 999, 299, 29 (just CDM).
The blue curves show the pure cold dark matter model, the purple
curves show a model with an initial Gaussian cutoff in the power
spectrum, whereas the red curves are the case including full
decoupling. Note that the small volume (large wave number)
simulation is run only to z ¼ 299.

FIG. 6. Slices of dark matter density at z ¼ 299 for CDM, WDM and DAO initial perturbations. The white box in the top panels is
enlarged with 8× resolution in the bottom panels and shows the largest halo in the simulation. Without the enhanced small-scale power,
the density field would still be linear at this redshift.
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power of the CMB. We furthermore find the oscillatory
features present in the initial power spectrum are removed
by nonlinear evolution, similar to the results found for
ETHOS models with DAO at larger wave numbers [97].
Lastly, we note that we ran a DAO simulation without
running and found that the power spectra remains linear
and the halofinder does not find any halos at this redshift.
We can further quantify the differences between the

three simulations by considering the halo mass function,
which we show in Fig. 7. Comparing the DPS and CDM
simulation, we see a characteristic suppression at
∼10−5 h−1M⊙. The DAO simulation also is suppressed,
but on all scales, which is consistent with the lower power
spectrum. While there is not a visible uptick in the damped
halo mass functions due to artificial halos, our conver-
gence tests (see Fig. 13) suggest that this is due to limited
resolution. The bottom panel of Fig. 7 shows the ratio of
the DPS and DAO mass functions to the CDM one (note
that this is done with the same mass bins, but plotted at the
mean CDM mass per bin). We note that ETHOS models
with DAO have oscillations in the halo mass function [97],
which could be possible here, although it is difficult to tell
with our resolution.
We lastly consider the interior of halos. In the bottom

row of Fig. 6 we show an enlarged region around the largest
halo in our simulation, with mass 10−3 h−1M⊙ resolved by
∼5 × 105 particles. Surprisingly, the halo is heaver in the
DAO simulation and lighter in the CDM one. We show the
density profile of particles within the virial radii in Fig. 8,
and find it is very similar in all three simulations. It
furthermore agrees well with a Navarro-Frenk-White
(NFW) profile with concentration c ∼ 7.5 [98]. Let us
now assess whether this halo is consistent with those found
in simulations of ultracompact minihalos. Delos et al. [34]
found that halos forming from extremely rare peaks in the

density field have interior slope ρ ∝ r−3=2 instead of NFW.
However, because it formed out of such a large peak their
halo collapsed ata ∼ 10−3 as thevery first halo.We inspected
earlier checkpoints of our simulation and find that our halo
forms by mergers of smaller halos at z ∼ 500. It therefore
makes sense that it has the relaxedNFWprofile instead. This
is also consistent with the boosted simulations of Gosenca
et al. [33], whereNFWprofiles are also found. They reported
substantially higher concentrations (c≳ 100) at lower red-
shifts, which could also be the fate of the halos in our
simulations given typical concentration evolution [99]. Thus,
our results appear compatible with previous numerical
simulations of peaked primordial power, even though we
consider much smaller scales. Furthermore, this picture is
also consistent with the first halos in standard ΛCDM
cosmology without running [35]. Because of resolution
we have focused only on a heavy halo; however, the first
halos may have steeper profiles than NFW [34,35,100]
making them an important future target.

FIG. 7. Halo mass function at z ¼ 299. A cutoff in the power
spectrum for both the DPS and DAO simulations leads to a cutoff
in the halo mass function. The bottom panel shows the ratio with
respect to CDM in each bin.

FIG. 8. Density profile of the largest halo at z ¼ 299. Regard-
less of initial conditions the profile remains the same on all
resolved scales and is matched well by an NFW density profile.
Vertical lines indicate the force softening length and the halo
virial radii.

TABLE I. Number counts of large halos at z ¼ 29 in volumes
of ð300 h−1 kpcÞ3. With enhanced running, halos large enough to
have stars form when they otherwise would not. Simulations with
the same number have the same initial seeds.

Halos with M ≥ Max mass

Simulation No. 104 h−1M⊙ 105 h−1M⊙ ð105 h−1M⊙Þ
Enhanced running 1 245 2 1.3

2 303 0 0.8
3 436 8 3.2
4 339 1 1.1
5 326 1 1.8

No running 1 0 0 0.06
3 8 0 0.4
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B. Halos at z ∼ 30

At later times, much larger halos can begin to form, and
we can study them with our larger volume simulations. In
order to prevent being biased by a single realization, we ran
five simulations with different random seeds and tabulate
the number of heavy halos at z ¼ 29 in Table I. The first
simulation listed has the same random seed as the simu-
lations used for the smaller volumes, and it does not seem
particularly unusual. We find in general that there are
hundreds of halos with M ≥ 104 hMpc−1 and a small
number with M ≥ 105 hMpc−1. The largest halo we found
has a mass of 3.2 × 105 hMpc−1, which we show in Fig. 9.
In order to understand the effect of the enhanced running,

we ran a couple simulations with the same random seeds as
before, but with no running in the primordial power spectra.
We find that there are essentially no heavy halos at this time
in any simulation. This can clearly be seen by comparing
the left and right panels of Fig. 9.

IV. DISCUSSION

Having established that halo formation can occur much
earlier than is typically assumed, we now discuss potential
consequences of the enhanced power spectrum. One chief
difference between WIMP dark matter and pure cold dark
matter is the former’s ability to annihilate. If the resulting
particles are gamma rays then strong constraints can be
placed on WIMPs based on observations of annihilation in
the late Universe [101]. Alternatively, energy injection into
the baryonic gas at much earlier times can be used to

constrain WIMPs using the CMB [102] or global 21 cm
measurements [103]. If, instead, one assumes the dark
matter is WIMPs, then constraints on the primordial power
spectrum can be placed [33,104].
Since annihilation is proportional to the squared density,

a simple way to quantify the effect is through the cosmo-
logical boost factor, which can be computed as an integral
over the power spectrum [38,105]:

BðzÞ ¼ 1þ
Z

Δ2
χðkÞd log k: ð44Þ

In principle the integral is eventually cut off by some
physical process such as the annihilation of the interior of
a halo [106]. Because we only have a finite dynamic range,
we instead consider only the scales covered by the two
volumes simulated. We show these two boost factors
integrated to the particle Nyquist frequency (πN1=3

p =L) in
Fig. 10. For the small volume simulation, We also show the
result with integration to k ¼ 5 × 106 h−1Mpc as a dashed
curve, which should partially remove the small-scale noise
seen in Fig. 5. For comparison, Takahashi andKohri [38] ran
simulations covering nonlinear evolution on scales 101 ≲
k=ðh=MpcÞ≲ 108 without running and their boost factor
was only B ∼ 10 at z ∼ 30. We therefore conclude that with
enhanced small-scale power there will be a substantial
enhancement in WIMP annihilation after recombination
and continuing to the formation of first galaxies.
Of course, because both the annihilation rate and the

primordial power spectra are proportional to ρ2, there is a

FIG. 9. Slices of dark matter density at z ¼ 29 for initial power spectra with no running and enhanced running parameters. Structures
are substantially more developed with running due to the increased small-scale power.
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degeneracy that prevents concrete constraints on either
WIMPs or Δ2

Ri
. It is interesting therefore to look for other

ways of constraining an enhanced power spectrum, which
generally leads to looking for the impact of increased power
on baryonic structures (e.g. [24,107]). While there is
potential to constrain small-scale baryonic perturbations
at high redshifts via the CMB [108], a more direct probe is
how the first stars and galaxies are formed. As we have
shown in Table I, the enhanced power spectrum leading to a
peak at k ∼ 106 h−1Mpc also increases the number of
larger mass halos at later times. While our simulations do
not have the necessary hydrodynamics to study this
explicitly, the largest halos in our large volume simulations
have masses comparable to the star forming halos in Hirano
et al. [94] (see their Table 1) which were run with a value of
σ8 increased by 1.5. We therefore conclude that it is very
plausible that the formation of first stars and galaxies will
be affected. Of course, similar to the very first halos, we
expect the very first stars to form in very rare peaks of the
density field. One could study such rare halos by finding an
initial random field with a large overdensity analogously
to [33,34].
There are also a number of other uncertain processes that

could occur at these redshifts, such as the formation of
supermassive black holes [109] and the potential origin of
magnetic fields through structure formation [110], which
may be changed by the increased structure formation of a
blue-tilted power spectrum. If these early forming halos can
survive until later times as subhalos [111], additional types
of constraints are possible due to their gravitational
influence. For instance, higher density halos produced
by an enhanced power spectrum can lead to potentially
detectable signals from astrometric weak gravitational

lensing [112] or through their impact on dark matter
substructure [113].

V. CONCLUSION

We have considered a viable cosmological scenario in
which the first Earth mass halos form much earlier than
they do when large-scale ΛCDM is extrapolated to small
scales. In the linear regime we solved the Boltzmann-
Fokker-Planck equation to obtain a realistic estimate of
how the matter power spectrum is cut off on small scales by
WIMP decoupling from the cosmic plasma. We then used
this solution as initial conditions for N-body simulations to
study halos in the nonlinear regime. We have found that
early nonlinear evolution can lead to substantially increased
annihilation signatures at early redshifts. We also found that
much larger and potentially star forming halos can form at
earlier times as well if the enhancement to the primordial
power spectrum occurs over a broad range of scales. The
next goal is to turn these qualitative conclusions into
specific constraints on the primordial power spectrum
and dark matter microphysics.
However, there are many important physical processes

that we have neglected in our calculation. In the transfer
function, we did not include the effects of neutrino
decoupling and electron-positron annihilation. In our N-
body simulations, we do not include relic thermal velocities
nor the growth of baryonic perturbations. We also find
evidence of artificial halos at similar mass scales to the
predicted first halos, making their study challenging with
our simulation resolution. These deficiencies do not appear
impossible to solve, and improvements in each case would
certainly be worthwhile.
Lastly, we have only considered a single set of WIMP

parameters fmχ ; Td; nγg and running parameters fαs; βsg. It
would be both interesting and useful to study how varying
these parameters may affect the early Universe. For instance,
larger perturbations (either from a further enhanced power
spectrum or by faster decoupling, nγ ≫ 1 [62]) could lead to
more energy injection closer to recombination, from which
CMB constraints can be placed [102]. Alternatively, chang-
ing the WIMP mass or decoupling temperature can lead to a
different minimum halo mass and formation time.
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FIG. 10. Cosmological boost factor computed over the range of
scales and redshifts covered by the two volumes of our simu-
lations. The dashed curve computes the boost factor only until
k ¼ 5 × 106 h−1 Mpc instead. Without running, the boost factor
is ∼10 at z ∼ 30 [38].
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APPENDIX: SIMULATION CONVERGENCE

In this section we present convergence tests of the results
presented in Sec. III of various numerical issues discussed
in Sec. II C.

1. Thermal velocities

To test the impact of thermal velocities on the small
volume simulation, we have implemented a much simplified
version of the method presented in Banerjee et al. [83].
Instead of using many shells to sample f0ðvÞ, we instead use
just a single representative shell. We replace each particle by
a set of six particles, each given the same velocity u but
oriented in the six directions (e.g. þx;−x;þy;−y;þz;−z)
of the initial lattice. The velocity, u, should be representative
of a shell f0ðvÞ ¼ ð1=4πu2ÞδDðv − uÞ. Such a shell
distribution behaves similarly to the Gaussian distribution
except with a damping term j0ðkuðτ − τ0ÞÞ instead of
exp ½−ðkσ∞ðτ − τ0ÞÞ2=2� [81,117]. Of course, there is no
perfect value of u to match the two functions, but we can
match the first two coefficients of the Taylor expansions by
using u ¼ ffiffiffi

3
p

σ∞ and a slightly higher than average value is
conservative for our convergence test. In principle, individual
shells should have distinct transfer functions [118], but for
this test we simply use the DAO density and velocity transfer
functions. Furthermore, we are neglecting any perturbations
in the velocity dispersion, which is expected to introduce
errors ∼δ [119]. As a test of the method, we have also
considered the casewhereweuseu ¼ ffiffiffiffiffiffiffiffi

300
p

σ∞, which could
model WIMPs with ϵ ¼ 10−2 (although with a different
transfer function).
To prevent artificial forces of particles at the same lattice

point, we temporarily turn off the pairwise force at the
beginning of the simulation. Of course, once nonlinear
evolution begins we want particles to feel the pairwise force
and so we turn the pairwise force back on at matter-
radiation equality. Because we use a pairwise force
extended over two extra grid cells and the CUBEP3M fine
force interpolation is via the nearest grid point method, if
we set the particle separation to be four grid cells then
particles between neighboring lattice points also will not
feel a fine force once they move out of their initial cell.
Thus, the number of particles we use is 6=8 the regu-
lar value.
We find that simulations run with this procedure (and for

either value of u) do not have the artificial noise that occurs
with pure random velocities. We show in Fig. 11 the effects
of various methods of including thermal velocities on the
large halo shown in Fig. 6. Using a regular velocity
structure with u ¼ ffiffiffi

3
p

σ∞ leads to a fairly similar result
as the cold case, whereas using u ¼ ffiffiffiffiffiffiffiffi

300
p

σ∞ smooths out
some of the filamentary structure. The random thermal
velocities have additional fragmentation due to Poisson
noise and we therefore do not consider it further. We show
in Fig. 12 the density profile of this halo with the random

motions. We find that the
ffiffiffi
3

p
σ∞ simulation has essentially

the same profile as without random motions, whereasffiffiffiffiffiffiffiffi
300

p
σ∞ is only changed a little. We furthermore have

performed a test where we just halve the number of
particles and find excellent overall convergence. The halo
mass function, shown in Fig. 13, is mostly unchanged for
the lower value of u, however we find that the mass
function as a whole is substantially lower for the larger

FIG. 11. DAO density slice showing the effect of thermal
velocities. The top left panel is the same as in Fig. 6, the top right
panel is with completely random velocities assigned to each
particle, and the bottom two panels use a regular velocity
structure.

FIG. 12. Convergence test of the largest halo profile with
respect to the inclusion of thermal velocities. The CDM and
DAO profiles are the same as in Fig. 8, whereas the two orange
curves show profiles where thermal velocities have been in-
cluded. We also show a convergence test with respect to number
of particles (blue) and initial redshift (green).
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ffiffiffiffiffiffiffiffi
300

p
σ∞. We therefore conclude that our results should be

relatively robust to thermal motions, but some changes
could occur since some particles will have larger than
average velocities. It furthermore appears that introducing
regularity in velocity space is a promising way to include
thermal effects in cold dark matter as well.
We now consider how thermal velocities interact with

the starting redshift of our simulations. In Fig. 14we show the
power spectrum at a ¼ 10−5; 10−4; 10−3, and 10−2.5 for the
DAO simulation without thermal velocities (red) and with
thermal velocities (orange). In green we show a simulation
without thermal velocities, but starting at ai ¼ 10−4

instead of ai ¼ 10−5. We note that there is always some
numerical noise floor in the initial conditions rather than a
pure cutoff. Furthermore, from a ¼ 10−5 to a ¼ 10−4 this

floor growswithout thermal velocities but is suppressedwhen
they are included. At a ¼ 10−3 and z ¼ 299 we find more
substantial deviations between the ai ¼ 10−5 simulation and
the ai ¼ 10−4 one. The thermal velocities appear to suppress
the power spectrum at a ¼ 10−3 leading to better agreement
with a later start; however, by z ¼ 299 the situation is reversed
and the orange curve agrees better with the simulation started
earlier. This is somewhat curious and further motivates a more
complete treatment of thermal velocities. For now,weconsider
this a source of error in our results. The boost factor differs by
∼25% between ai ¼ 10−5 and ai ¼ 10−4 simulations at both
z ¼ 999 and z ¼ 299. We also find suppression in the halo
mass function, shown in Fig. 13, while the halo profile in
Fig. 12 is more robust.

2. Artificial fragmentation

To test the amount of artificial halos in the halo mass
function, we start by performing standard convergence tests
with respect to particle number and length scale.We increase
the number of particles from 2 × 7683 to 2 × 10243 and run
simulations in volumes of ð200 h−1 kpcÞ3, ð400 h−1 kpcÞ3
and ð800 h−1 kpcÞ3 labeled HR, MR, and LR, and with the
MR simulation having an equivalent resolution to that of the
main simulations.We show the results inFig. 16.We find that
on the scales probed there is good agreement.However, in the
HR simulation we observe a substantial uptick in halos
around Mlim ∼ 9 × 10−7M⊙, corresponding to a value of
kp ∼ 5 × 105 h−1 kpc, which is broadly consistent with the
DAO transfer function. In the LR simulation we find that
heavy halos are not quite as suppressed as appears in themain
simulation, which could be due to cosmic variance of the
simulations.
Since it has been suggested that artificial halos arise from

mismatched mass and force resolution [89,90] we have
also tested running the HR simulation with substantially
reduced force resolution. To do this, we reran the HR
simulation but set the softening length to be the interparticle
spacing L=N1=3

p (22=3 fine grid cells). We find that some of

FIG. 13. Convergence tests of the halo mass function at
z ¼ 299. The CDM, DPS, and DAO curves are the same as in
Fig. 7. The orange curves show the impact of adding thermal
velocities, while blue and green curves show the effect of particle
number and starting redshift.

FIG. 14. Convergence test of the DAO power spectrum at
various redshifts. Orange curves show the effect of thermal
velocities, while green curves show the effect of starting redshift.

FIG. 15. An enlarged DAO density field enclosing a 30 × 30 ×
4 ðh−1 kpcÞ3 volume comparing the effects of the standard force
resolution (left) and one where the softening length is set to the
interparticle separation (right). Halos are shown as cyan crosses;
artificial fragmentation is reduced with larger force softening.

DEREK INMAN and KAZUNORI KOHRI PHYS. REV. D 107, 123513 (2023)

123513-16



the artificial halos along filaments are indeed removed. We
show an illustrative region of the simulation in Fig. 15
where the characteristic interspaced halos along filaments
are not found with reduced force resolution. However, we
show in Fig. 16 that there is still a substantial uptick in the
halo mass function. While a small uptick is also observed in
the particle-mesh simulations of Angulo et al. [90], the one
we find appears much more substantial. This could be due

to a number of things including a lack of convergence,
residual noise in the force calculation, the halofinder
finding non/proto-halo structures [90], or potentially some
quirk of our DAO initial conditions. Understanding these
very lightest halos is certainly important, and will require a
more detailed investigation.

3. Baryonic collapse

To test the potential consequences of baryonic clustering
on our larger volume simulations, we run test simulations
where we assume baryons cluster exactly like dark matter
after a certain redshift. We set the initial conditions after
recombination using just the CDM transfer function and
increaseΩc → Ωc þΩb. We use an initial seed correspond-
ing to number 3 in Table I. When we set the initial redshift
to be immediately after recombination, zi ¼ 999, we find a
large enhancement as the number of halos with masses
greater than 105 h−1M⊙ is 64, and the heaviest halo is
1.4 × 106 h−1M⊙. However, if we use zi ¼ 199 then only
18 halos have masses 105 h−1M⊙ and the heaviest halo has
mass 6 × 105 h−1M⊙. This analysis is not meant to be
quantitative, but rather illustrative of the potential role
baryons may play if they catch up to CDM earlier than
expected due to an enhanced power spectrum (as is the case
in some halos studied in Hirano et al. [94]). A correct
understanding of baryonic effects will require hydrody-
namic simulations, but we can expect our results to
underestimate the true amount of clustering.
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and J. Harnois-Déraps, Phys. Rev. D 92, 023502 (2015).

DEREK INMAN and KAZUNORI KOHRI PHYS. REV. D 107, 123513 (2023)

123513-18

https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.93.123527
https://doi.org/10.1103/PhysRevD.93.123527
https://doi.org/10.1093/mnras/stw1076
https://doi.org/10.1093/mnras/stw1076
https://arXiv.org/abs/2203.07354
https://arXiv.org/abs/2203.07049
https://doi.org/10.1088/1475-7516/2008/04/038
https://doi.org/10.1088/1475-7516/2008/04/038
https://doi.org/10.1088/1475-7516/2012/09/017
https://doi.org/10.1088/1475-7516/2012/09/017
https://doi.org/10.1103/PhysRevD.102.063505
https://doi.org/10.1093/mnras/152.1.75
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1093/mnras/168.2.399
https://doi.org/10.1088/1475-7516/2018/02/019
https://doi.org/10.1088/1475-7516/2018/02/019
https://doi.org/10.1103/PhysRevLett.117.131301
https://doi.org/10.1103/PhysRevLett.117.131301
https://doi.org/10.1103/PhysRevLett.113.061301
https://doi.org/10.1103/PhysRevD.94.043527
https://doi.org/10.1103/PhysRevD.94.043527
https://doi.org/10.1088/0004-637X/758/2/76
https://doi.org/10.1088/0004-637X/758/2/76
https://doi.org/10.1103/PhysRevD.96.123519
https://doi.org/10.1103/PhysRevD.97.041303
https://doi.org/10.1088/0004-637X/788/1/27
https://doi.org/10.1093/mnras/staa069
https://doi.org/10.1093/mnras/staa069
https://doi.org/10.1038/s41586-020-2642-9
https://doi.org/10.1038/s41586-020-2642-9
https://doi.org/10.1103/PhysRevD.104.103518
https://doi.org/10.1103/PhysRevD.104.103518
https://doi.org/10.1088/1361-6382/aaea18
https://doi.org/10.1088/1361-6382/aaea18
https://doi.org/10.1103/PhysRevD.74.063509
https://doi.org/10.1088/1367-2630/11/10/105027
https://doi.org/10.1088/1475-7516/2014/03/004
https://doi.org/10.1088/1475-7516/2014/03/004
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1086/177989
https://doi.org/10.1103/PhysRevD.71.103520
https://doi.org/10.1103/PhysRevD.71.103520
https://doi.org/10.1086/176550
https://doi.org/10.1088/1475-7516/2016/11/043
https://doi.org/10.1088/1475-7516/2016/11/043
https://doi.org/10.1103/PhysRevD.99.023523
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1103/PhysRevD.106.083515
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/10.1063/1.2746779
https://doi.org/10.1103/PhysRevD.95.023502
https://doi.org/10.1103/PhysRevD.95.023502
https://doi.org/10.1088/1475-7516/2018/10/030
https://doi.org/10.1086/148599
https://doi.org/10.1086/161460
https://doi.org/10.1093/mnras/sts286
https://doi.org/10.1093/mnras/sts286
https://doi.org/10.1103/PhysRevD.106.103531
https://doi.org/10.1103/PhysRevD.106.103531
https://doi.org/10.1103/PhysRev.112.1456
https://doi.org/10.1103/PhysRev.112.1456
https://doi.org/10.1063/1.862825
https://doi.org/10.1088/1475-7516/2018/01/047
https://doi.org/10.1088/1475-7516/2018/01/047
https://doi.org/10.1088/1475-7516/2019/08/014
https://doi.org/10.1088/1475-7516/2019/08/014
https://doi.org/10.1103/PhysRevD.105.103530
https://doi.org/10.1103/PhysRevD.105.103530
https://doi.org/10.1103/PhysRevD.99.123518
https://doi.org/https://doi.org/10.1103/PhysRevD.104.063512
https://doi.org/10.1093/mnras/stt1591
https://doi.org/10.1093/mnras/stt1591
https://doi.org/10.1103/PhysRevD.100.083528
https://doi.org/10.1103/PhysRevD.100.083528
https://doi.org/10.1103/PhysRevLett.95.011304
https://doi.org/10.1103/PhysRevD.78.043536
https://doi.org/10.1103/PhysRevD.73.063519
https://doi.org/10.1103/PhysRevD.73.063519
https://doi.org/10.1086/524030
https://doi.org/10.1086/524030
https://doi.org/10.1093/mnras/sts078
https://doi.org/10.1088/1475-7516/2017/11/017
https://doi.org/10.1088/1475-7516/2017/11/017
https://doi.org/10.1088/1475-7516/2008/08/020
https://doi.org/10.1088/1475-7516/2010/06/015
https://doi.org/10.1088/1475-7516/2010/06/015
https://doi.org/10.1103/PhysRevD.92.023502


[81] S. Bird, Y. Ali-Haïmoud, Y. Feng, and J. Liu, Mon. Not. R.
Astron. Soc. 481, 1486 (2018).

[82] W. Elbers, C. S. Frenk, A. Jenkins, B. Li, and S. Pascoli,
Mon. Not. R. Astron. Soc. 507, 2614 (2021).

[83] A. Banerjee, D. Powell, T. Abel, and F. Villaescusa-
Navarro, J. Cosmol. Astropart. Phys. 09 (2018) 028.

[84] J. Wang and S. D. M. White, Mon. Not. R. Astron. Soc.
380, 93 (2007).

[85] M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T.
Theuns, J. Wang, S. D. M. White, A. Boyarsky, and O.
Ruchayskiy, Mon. Not. R. Astron. Soc. 420, 2318 (2012).

[86] M. R. Lovell, J. Zavala, M. Vogelsberger, X. Shen, F.-Y.
Cyr-Racine, C. Pfrommer, K. Sigurdson, M. Boylan-
Kolchin, and A. Pillepich, Mon. Not. R. Astron. Soc.
477, 2886 (2018).

[87] M. R. Lovell, C. S. Frenk, V. R. Eke, A. Jenkins, L. Gao,
and T. Theuns, Mon. Not. R. Astron. Soc. 439, 300 (2014).

[88] S. Agarwal and P. S. Corasaniti, Phys. Rev. D 91, 123509
(2015).

[89] A. L. Melott and S. F. Shandarin, Astrophys. J. 343, 26
(1989).

[90] R. E. Angulo, O. Hahn, and T. Abel, Mon. Not. R. Astron.
Soc. 434, 3337 (2013).

[91] J. Stücker, O. Hahn, R. E. Angulo, and S. D. M. White,
Mon. Not. R. Astron. Soc. 495, 4943 (2020).

[92] J. Stücker, R. E. Angulo, O. Hahn, and S. D. M. White,
Mon. Not. R. Astron. Soc. 509, 1703 (2022).

[93] S. Naoz and R. Barkana, Mon. Not. R. Astron. Soc. 377,
667 (2007).

[94] S. Hirano, N. Zhu, N. Yoshida, D. Spergel, and H.W.
Yorke, Astrophys. J. 814, 18 (2015).

[95] J. R. Bond, G. Efstathiou, and J. Silk, Phys. Rev. Lett. 45,
1980 (1980).

[96] N. E. Chisari, M. L. A. Richardson, J. Devriendt, Y.
Dubois, A. Schneider, A. M. C. Le Brun, R. S.
Beckmann, S. Peirani, A. Slyz, and C. Pichon, Mon.
Not. R. Astron. Soc. 480, 3962 (2018).

[97] T. Schaeffer and A. Schneider, Mon. Not. R. Astron. Soc.
504, 3773 (2021).

[98] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys.
J. 490, 493 (1997).

[99] J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, A. V.
Kravtsov, A. A. Klypin, J. R. Primack, and A. Dekel, Mon.
Not. R. Astron. Soc. 321, 559 (2001).

[100] M. S. Delos and S. D. M. White, Mon. Not. R. Astron. Soc.
518, 3509 (2023).

[101] T. Nakama, T. Suyama, K. Kohri, and N. Hiroshima, Phys.
Rev. D 97, 023539 (2018).

[102] M. Kawasaki, H. Nakatsuka, and K. Nakayama, J. Cosmol.
Astropart. Phys. 03 (2022) 061.

[103] N. Hiroshima, K. Kohri, T. Sekiguchi, and R. Takahashi,
Phys. Rev. D 104, 083547 (2021).

[104] M. S. Delos, A. L. Erickcek, A. P. Bailey, and M. A.
Alvarez, Phys. Rev. D 98, 063527 (2018).

[105] P. D. Serpico, E. Sefusatti, M. Gustafsson, and G.
Zaharijas, Mon. Not. R. Astron. Soc. 421, L87 (2012),
https://academic.oup.com/mnrasl/article/421/1/L87/989282.

[106] T. Bringmann, P. Scott, and Y. Akrami, Phys. Rev. D 85,
125027 (2012).

[107] V. Iršič, H. Xiao, and M. McQuinn, Phys. Rev. D 101,
123518 (2020).

[108] N. Lee and Y. Ali-Haïmoud, Phys. Rev. D 104, 103509
(2021).

[109] T. E. Woods, B. Agarwal, V. Bromm, A. Bunker, K.-J.
Chen, S. Chon, A. Ferrara, S. C. O. Glover, L. Haemmerlé,
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