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Classically conformal Standard Model extensions predict an intriguing thermal history of the early
Universe. In contrast to the common paradigm, the onset of the electroweak phase transition can be
significantly delayed while the Universe undergoes a period of thermal inflation. Then, a first-order chiral
phase transition could not only trigger electroweak symmetry breaking but also initiate the exit from
supercooling. To study the dynamics of this scenario, we focus on low-energy quark-based QCD effective
models that exhibit a first-order transition. While a large amount of latent heat is naturally involved if
thermal inflation ends, we find that a supercooling period prior to the QCD scale considerably enhances the
timescale of the transition. This enhancement implies great observational prospects at future gravitational
wave observatories. Our results are readily applicable to a wide class of scale-invariant SM extensions, as
well as strongly coupled dark sectors.
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I. INTRODUCTION

Future gravitational wave (GW) observatories—such as
the Laser Interferometer Space Antenna (LISA) [1,2] or the
Einstein Telescope (ET) [3]—could probe yet unexplored
epochs of the cosmic evolution. In particular, detecting a
stochastic gravitational wave background (SGWB) [4]
sourced in the early Universe would provide evidence for
new physics. Such a background of gravitational radiation
could, e.g., originate from a cosmological first-order phase
transition (PT) [5–8], as predicted by many theories beyond
the Standard Model (SM). Examples of such theories are
scalar SMextensions [9–19]or secludeddark sectors [20–26].
Particularly motivated SM extensions are classically

conformal (CC) theories which are the focus of this work.
Their key feature is the absence of dimensionful terms in the
Lagrangian. As a consequence, the breaking of the electro-
weak (EW) symmetry is realized dynamically, either by
radiative corrections [27–36] or strong dynamics [37–44].
Classically conformal theories therefore not only alleviate
the hierarchy problem [45], but can also account for dark
matter [46–57], generate the baryon asymmetry of the
Universe [58–64], and produce a SGWB [65–74].

In classically conformal models, the Universe may
undergo a vastly different cosmological history than pre-
dicted by the SM [75]. A period of thermal inflation can be
induced, while the Higgs field remains trapped in the
unbroken phase. If this epoch lasts until the temperature of
the thermal bath approaches the scale of quantum chromo-
dynamics (QCD), there can be a first-order chiral phase
transition (χPT) with six massless flavors [76,77] which
subsequently triggers electroweak symmetry breaking
(EWSB) [68,78–83].
In this work, we study the scenario where the combined

QCD-EW phase transition initiates the exit from super-
cooling. Then a large amount of energy is naturally released
during a supercooled transition. The duration of the PT, on
the other hand, is governed by the nucleation rate of hadronic
bubbles. Hence, it is crucial to model the strong dynamics.
To this end, we resort to different low-energy quark-based
QCD effective models which feature a first-order transition.
Such models have mainly been employed in the context of
strongly coupled hidden sectors [22,24,84]. Because of the
short transition timescale, the associated GW signatures are
typically weak. Conversely, we show that our setup enhan-
ces the duration of the PT which significantly improves
observational prospects. Our analysis remains largelymodel
independent regarding the field content of the extended SM,
which renders our results applicable to a wide landscape of
classically conformal theories.
Our work is structured as follows. Section II motivates

our setup with a discussion of the dynamics which arise in
scale-invariant extensions of the SM. Subsequently, we
discuss different low-energy quark-based QCD effective
models in Sec. III. This includes the Nambu–Jona-Lasinio
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(NJL) model and two Polyakov loop extended versions
thereof. With these tools at hand, we compute the dynamics
of the chiral phase transition in a supercooled Universe in
Sec. IV. Finally, Sec. Vestimates the expectedGWsignature
and discusses their observational prospects. Lastly, some
technical details of effective QCD theories are collected in
Sec. A, while we discuss the robustness and model depend-
ence of our results in Sec. B. In addition, we provide access
to our results in the Supplemental Material [85].

II. DYNAMICS OF CLASSICALLY
CONFORMAL SM EXTENSIONS

Classically conformal SM extensions exhibit interesting
dynamics at or above the electroweak scale. This section
reviews their most important aspects in a model-independent
fashion. The key feature of this class of models is an
additional gauge symmetry besides the SM gauge groups
while imposing scale invariance at tree level. Consequently,
quadratic terms are absent in the Lagrangian and the scalar
sector of a CC extended SM reads

VðΦ; HÞ ¼ λHðH†HÞ2 þ λΦðΦ†ΦÞ2
− λpðΦ†ΦÞðH†HÞ; ð1Þ

where H is the SM Higgs doublet and Φ a beyond the
Standard Model (BSM) scalar field. Hence, the SM Higgs
mass term is replaced by a portal coupling, λp, to the new
field Φ,

−μ2HH2 → −λpΦ2H2: ð2Þ
The characteristic feature is that EWSB is now tied to the
dynamics of the conformal sector. In contrast to the SM
where EWSB is realized by a negative mass term, the SM
Higgs potential is recovered via the negative portal coupling
once Φ acquires a vacuum expectation value (VEV) vΦ.
Then we have μ2H ≃ λpv2Φ and the EW symmetry is broken in
analogy to the SM, with the difference that the EW scale is
now generated dynamically. In the following, we assume
that the conformal symmetry breaking occurs radiatively via
the Coleman-Weinberg mechanism [86]. The same outcome
could also be achieved by strongly coupled new phys-
ics [79].
The scale of radiatively broken theories is characterized

by the gauge bosonmassM after symmetry breaking, as one
typically hasM ∼ gvΦ with g the corresponding gauge cou-
pling. The lack of evidence for new particles below the
electroweak scale hints at vΦ ≫ vH ¼ 246 GeV. Therefore,
the symmetry breaking in a classically conformal setup is
expected to occur first along the Φ direction, with a critical
temperature Tc;Φ > TEW. Then the first PT is well described
by considering the BSM sector independently [71].
Transitions in a multifield space exhibit a few typical

outcomes. At large temperatures, both scalars sit at the
origin, and the potential in the Φ direction is

VeffðΦ; TÞ ¼ λΦðΦ†ΦÞ2 þ VCWðΦÞ þ VTðΦ; TÞ; ð3Þ

where VCWðΦÞ is the temperature-independent one-loop
contribution that induces a VEV for Φ. The finite-temper-
ature corrections are contained in VTðΦ; TÞ, which renders
a thermal barrier separating the true from the metastable
vacuum. This barrier persists down to T → 0 due to the
conformal invariance at tree level. If the tunneling rate is
sufficiently small, classically conformal SM extensions can
therefore feature a large amount of supercooling. Then, the
system remains trapped in the false vacuum at temperatures
well below the critical temperature. As a consequence, the
EW symmetry remains unbroken at small temperatures.
Initially, the Universe is radiation dominated at high

temperatures. During supercooling, the false vacuum
energy of the extended SM eventually becomes sizable
compared to the thermal bath, and starts to dictate the
cosmic expansion rate. We expect an era of thermal
inflation1 starting at the temperature Ti defined by

Veffð0; TiÞ ¼
π2

30
g⋆;ϵT4

i ; ð4Þ

where Veff is shifted such that VeffðvΦ; T ¼ 0Þ ¼ 0. The
energetic degrees of freedom g⋆;ϵ > 106.75 depend on the
particle content of the extended SM. The thermal infla-
tionary epoch and therefore supercooling terminates when
Φ tunnels to the true vacuum at the temperature Tp < Ti.
The false vacuum energy is transferred back to the radiation
bath and the plasma is reheated to a temperature TRH close
or equal to the inflationary temperature TRH ≲ Ti. TRH is
determined by the duration of the reheating period.
Depending on the scale of Tp, different thermal histories

can be realized:
(i) Tp > TEW;SM > TQCD.—The conformal PT occurs

above the electroweak scale, while the EW sym-
metry remains unbroken due to temperature correc-
tions. Therefore, all dynamics below Tp, such as the
EWand chiral symmetry breaking (χSB), proceed as
in the SM.

(ii) TEW;SM > Tp > TQCD.—EWSB is delayed to a
temperature Tp well below TEW;SM. The conformal
and EW symmetry breaking occur simultaneously.
Subsequently, the EW symmetry may be restored if
TRH > TEW;SM. The QCD scale is untouched by the
new physics.

(iii) TEW;SM>TQCD≥Tp.—The system remains trapped
in the unbroken phase all the way to the QCD scale.
First, χSB occurs, and triggers the EW and even-
tually the conformal PT.

1Thermal inflation typically lasts only a small number of
e-folds and is not to be mistaken with the period of cosmic
inflation; see e.g. [87] for a review.
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We are interested in the last scenario. In fact, this outcome
is expected in a large fraction of the parameter space, e.g.
for gB-L ≲ 0.25 in the Uð1ÞB-L extended SM [69,72].
Including QCD effects then induces peculiar dynamics
which we now demonstrate.
Since the EW symmetry remains unbroken, χSB occurs

with six massless flavors. Quark condensation then takes
place at TQCD ∼ 85 MeV [88]. In the massless limit,
different symmetry breaking patterns can be realized [80],
depending on if the transition is rendered first or second
order. Below, we assume a first-order χPT [76,77]. When
quark condensation takes place, we have

qq̄ → hqq̄i ≠ 0: ð5Þ
Because of the bilinear coupling of the quarks to the SM
Higgs field∼yqqq̄H, the Higgs potential is destabilized and

VðΦ ¼ 0; h; T ≤ TQCDÞ ≃
1

4
λHh4 þ

ytffiffiffi
2

p htt̄ih; ð6Þ

where only the top quark contribution is considered. To
remain model independent, we neglect corrections to the
Higgs potential stemming from both vacuum loops as well
as thermal effects. Therefore, QCD necessarily triggers the
breaking of the electroweak symmetry [68,79,80] as the
Higgs field acquires a VEV,

vh;QCD ¼
�
−

ytffiffiffi
2

p
λH

htt̄i
�
1=3

: ð7Þ

In turn, the Higgs VEV backreacts onto the BSM direction
via the λp-portal term in Eq. (1) and

VT≤TQCD
ðΦ; TÞ ¼ VT>TQCD

ðΦ; TÞ − λp
2
v2h;QCDΦ2: ð8Þ

Since the sign of the portal coupling is negative, the
additional term counteracts the thermal barrier. This leads
to one of the following scenarios, schematically displayed
in Fig. 1:

(I) The height of the barrier in VeffðΦ; TÞ shrinks and
the onset of the conformal transition is accelerated.
Then Φ tunnels at a temperature close to, but well
below, TQCD.

(II) The QCD term in Eq. (8) cancels the barrier in
VeffðΦ; TÞ, thus triggering the breaking of the
conformal symmetry and initiates the end of the
supercooling epoch right at TQCD. Subsequently,
the Higgs field takes its SM VEV vH ¼ 246 GeVas
Φ rolls down to vΦ.

In the following, we explore scenario II. We assume that
quark condensation first occurs in the light quark sector [80]
in a first-order transition. In this case, we further assume
that the impact of the Higgs field on the χPT is negligible.
Eventually, however, the Higgs potential is destabilized as
the top condensate forms.As a consequence,Φ rolls down to
its potential minimum inside the hadronic bubbles. Then,
also the Higgs evolves towards its SM VEV.
As the QCD transition marks the exit from supercooling,

the PT involves a large amount of latent heat which may
generate a sizable stochastic gravitational wave back-
ground. This energy budget is determined by the false
vacuum energy of the scale-invariant sector which drives
supercooling and can thus be expressed via Ti [cf. Eq. (4)]
in a model-independent fashion. The false vacuum energy
can, however, only be released in patches of space where
the chiral symmetry is broken. Therefore, the initial stage of
the PT, namely the nucleation of bubbles, is governed by
QCD. Hence, it is crucial to accurately model the strong
dynamics to understand the transition.

FIG. 1. Schematic overview of scenarios I and II at T ¼ TQCD. Scenario I: Φ remains in the metastable vacuum after χSB. Therefore,
the Universe keeps inflating until the conformal sector undergoes a PT at a temperature well below TQCD. The energy budget of
χSB is solely sourced by QCD and hence small Ωvac ≃ ρvac;QCD=ðρvac;BSM þ ρradÞ ≪ 1. Scenario II: quark condensation triggers the
PT in the conformal sector. The false vacuum energy responsible for the thermal inflation is released in the transition, thus
Ωvac ≃ ρvac;BSM=ðρvac;BSM þ ρradÞ ≃ 1.
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III. EFFECTIVE DESCRIPTION OF QCD

We introduce two quark-based effective QCD models
with Nf¼Nc¼3. Both models feature a SUð3ÞL × SUð3ÞR
chiral symmetry, which is broken down to SUð3ÞV dur-
ing χSB. The choice of installing Nf ¼ 3 reflects our
assumption that the quarks condense first in the light sector.
While the proposed models with Nf ¼ 3 do not reflect the
symmetry of full QCD, they are also convenient since then
the model parameters can be fixed by hadronic physics.
The main findings of our work are largely independent of

the concrete EFT description of QCD, as we will stress
later. The only requirement for the applicability of our
mechanism is that the model exhibits a first-order tran-
sition. For a recent review on QCD phase transitions
see Ref. [89].

A. Nambu–Jona-Lasinio (NJL) model

To study the strong dynamics in our setup, we employ a
Nambu–Jona-Lasinio (NJL) model [90] with Nf ¼ 3 fla-
vors; see e.g. [91,92] for reviews. The free parameters of
the model are fitted to recover the correct meson masses
and decay constants of QCD. Then, we take the chiral limit
to approximate scenario II introduced in Sec. II.
The Lagrangian density of the NJL model reads [93,94]

LNJL ¼ q̄ði∂ − m̂Þqþ L4F þ L6F; ð9Þ
and includes as multifermion interactions L4F and the six-
fermion determinant interaction L6F for three flavors:

L4F ¼ G
XN2
f−1

a¼0

½ðq̄TaqÞ2 þ ðq̄iγ5TaqÞ2�; ð10Þ

L6F ¼ GD½det ðq̄ð1 − γ5ÞqÞ þ det ðq̄ð1þ γ5ÞqÞ�; ð11Þ
with effective coupling parameters G and GD. Here, Ta

denote the generators of SUðNfÞ, hence the sum in the second
term runs from a ¼ 0; 1;…; N2

f − 1. The sextic interaction
L6F is known as the ’t Hooft determinant [95–97]. This
determinant mimics the anomalous breaking of the axial
Uð1ÞA symmetry in QCD by including a six-point quark
interaction which breaks Uð1ÞA explicitly. This leaves the
Lagrangian with an unbroken SUð3ÞL × SUð3ÞR × Uð1ÞV
symmetry.
The quark mass term ∼m̂ q̄ q in Eq. (9) breaks chiral

symmetry explicitly. With q ¼ ðu; d; sÞT , the mass matrix
reads

m̂ ¼ diagðmu;md;msÞ ¼ diagðyu; yd; ysÞ
hhiffiffiffi
2

p ; ð12Þ

whereh is the physical SMHiggs.As long as the electroweak
symmetry remains unbroken, we have hhi ¼ 0. Thus, the
mass term in the Lagrangian vanishes and we obtain a
SUð3ÞL × SUð3ÞR symmetric expression. This limit is

referred to as the chiral limit, which we will consider once
all model parameters are fixed in the massive limit.
To perform computations within the NJL model,

typically the self-consistent mean-field approximation
(MFA) [98–100] is applied. In its compact form, the NJL
Lagrangian (9) is given by [39]

LNJL ¼ q̄ði∂ − m̂Þqþ L4F þ L6F;

L4F ¼ 2GTrðΨ†ΨÞ;
L6F ¼ GDðdetΨþ H:c:Þ; ð13Þ

with the fermion bilinear Ψij ¼ q̄jð1 − γ5Þqi. In the MFA,
theLagrangian is expressedbyΨ and the expectationvalueof
the quark bilinear hΨi, which, in turn, can be expressed in
terms of auxiliary meson fields

−4GhΨi ¼ ðσ þ iηÞ1þ 2ðaa þ iπaÞTa; ð14Þ

where Ta are the SUð3Þ generators in the fundamental
representation, and

σ ¼ −
4G
3

hq̄qi; ð15Þ

for the scalar singlet as well as η0 ∼ hq̄γ5qi for the pseudo-
scalar singlet, aa ∼ hq̄Taqi the scalar octet, and πa ∼
hq̄γ5Taqi the pseudoscalar octet, which are related to
the respective chiral condensates.2 Consequently, the
Lagrangian (13) is split into a mean-field term that contains
only terms up to quadratic order in the fermion fields and a
term that encodes higher-order interactions; the explicit NJL
Lagrangian in the MFA is given in [22].
Expressing the NJL Lagrangian in the MFA via Eq. (15)

yields the tree-level potential [22]

VNJL
0 ðσ;η0;aa;πaÞ

¼þ 1

8G
ð3σ2þ3η02þ2πaπaþ2aaaaÞ

−
GD

16G3
½σðσ2þπaπa−3η02−aaaaÞþ5aaπaη0�: ð16Þ

Since during χSB only σ can acquire a VEV,3 we have
vanishing η0 ¼ aa ¼ πa ¼ 0, viz.,

VNJL
0 ðσÞ ¼ 3

8G
σ2 −

GD

16G3
σ3: ð17Þ

2In general, these condensates are spatially inhomogeneous [101],
e.g. σ ¼ σðxÞ, which is relevant at finite chemical potential.

3Mesons that couple fermions of different flavor cannot
acquire a VEV. Defining the effective scalar meson fields via
their constituent fermions and given that the isospin symmetry
SUð3ÞV remains intact, only σ can obtain a finite VEV since it is
the only meson proportional to the identity matrix. Pseudoscalars
cannot acquire a nonzero VEV because the vacuum is parity even.
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This is the tree-level Lagrangian relevant for studying the
chiral phase transition.
Radiative corrections at one-loop level are obtained by

integrating out the fermions. This corresponds to comput-
ing the fermion vacuum energy

VNJL
1 ðσÞ ¼ −Nc

X
i

Z
d4p

ið2πÞ4 ln det ðp −MiÞ: ð18Þ

In the chiral limit, only one of the respective auxiliary
meson field masses Mi remains. This corresponds to the
effective quark mass [102]

Mi ≡MðσÞ ¼ σ −
GD

8G2
σ2: ð19Þ

In principle, the above expression contains a linear-in-H
term ∼yiH with H the SM Higgs doublet, which vanishes
in the chiral limit of our setup.
Because of the multifermion interactions in Eq. (9), the

NJL model is nonrenormalizable. Therefore, a regulariza-
tion procedure is necessary by truncating the model to the
six-fermion operator and installing a hard momentum
cutoff Λ as a model parameter. Different regularization
schemes are compared in [103]. While UV divergences,
such as the vacuum energy in Eq. (18), are rendered
finite, now the model crucially depends on the employed
cutoff scheme. A four-dimensional cutoff scheme is used
in [22,39,41,70] and inspected in our Appendix B, whereas
a three-dimensional scheme is used in [24,104,105].
Because of the thermal aspect of the computation, we
employ a sharp 3D momentum cutoff in the main part of
this work, replacing all

Z
d4p
ð2πÞ4 →

Z
dp0

2π

Z
Λ

p
; ð20Þ

where the d-dimensional measure is
R
p ≡μ3−d

R ddp
ð2πÞd with

d ¼ 3. Such a sharp cutoff follows [104] in contrast to a
cutoff of only the fermion vacuum energy (18) à la [105].
To estimate the robustness of our results with regard to the
cutoff scheme, we compare to the 4D approach in
Appendix B. With a 3D cutoff, the one-loop part of the
effective potential (18) evaluates to

VNJL
1;3DðσÞ ¼ −2NcNf

Z
Λ

p
Ep

¼ −
NcNf

8π2
Λ4

�
ð2þ ξ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p

þ ξ4

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p

þ 1

�
; ð21Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and ξ ¼ M=Λ. As a consequence,

the NJL model has three parameters G, GD, and Λ.

By reproducing the hadron spectrum of QCD, all three
parameters can be fixed. In Table I, we summarize the
employed values, taken from Ref. [102].
At one-loop level and finite temperature, the effective

potential receives another contribution from the interaction
with the thermal medium. Since the degrees of freedom are
fermionic, we can incorporate this contribution via

VNJL
T ðσ; TÞ ¼ gqNcJFðM2=T2Þ; ð22Þ

where the number of quark degrees of freedom is gq ¼
NfðquarksÞ × 2ðantiquarksÞ × 2ðspinÞ ¼ 12 and the fer-
mionic thermal integral is

JFðM;TÞ ¼ −T
Z
p
ln½1þ e−Ep=T �: ð23Þ

This completes the construction of the effective potential
for the NJL model. To summarize, we have

VNJL
eff ðσ; TÞ ¼ VNJL

0 ðσÞ þ VNJL
1 ðσÞ þ VNJL

T ðσ; TÞ: ð24Þ

The potentials for the employed quark-based QCD effec-
tive models, are visualized in Fig. 2 for different values of
the chiral condensate σ and temperature T.
For the NJL model in Fig. 3, we display the evolution of

the chiral condensate σ (blue) as a function of temperature.
The NJL model features a discontinuity at Tc ≈ 128 MeV,
indicating a first-order transition.

B. Polyakov loop enhanced NJL (PNJL) model

Along the phase transition of χSB, the gluon dynamics is
characterized by the order parameter l, which is the
fundamental traced Polyakov loop [107]

lðxÞ ¼ 1

Nc
TrcL; ð25Þ

LðxÞ ¼ P exp

�
igs

Z
1=T

0

dτA4ðx; τÞ
�
; ð26Þ

TABLE I. Upper panel: NJL parameters which reproduce the
QCD meson spectrum [102]. Here, G has been rescaled via
G ¼ gS=2, with gS from [102], to match our different coupling
conventions. Lower panel: parameters for the pure glue part [106].

Λ (MeV) GΛ2 GDΛ5

631.4 1.835 −9.29

a0 a1 a2 a3 Tglue (MeV)

3.51 −2.47 15.2 −1.75 178
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where Trc is the trace in color space, P denotes the path
ordering along the time direction, gs is the strong coupling,
l will be the charge conjugated Polyakov loop, and
A4 ¼ iA0 is the Euclidean temporal component of the
gauge field. In the mean-field approximation, we take A4

spatially homogeneous [108].
The dynamics of the Polyakov loop can be included in

the NJL model; see e.g. [109] for an extensive review of the
Polyakov loop. Its effect is included by augmenting the
NJL Lagrangian (9) by a pure gauge part [110–112],

LPNJL ¼ LNJL − Vglueðl;l; TÞ; ð27Þ

where ∂μ → Dμ is now the covariant derivative and Vglue

contributes as the Polyakov-loop potential in the effective
potential.
While the gluon potential Vglueðl;l; TÞ cannot be

computed from first principles, it can be parametrized
and effectively fitted to lattice data. Different parametriza-
tions of the Polyakov loop potential are conceivable. Below
we employ one logarithmic parametrization that accounts
for the Haar measure [106,109] which reads

Vglueðl;l;TÞ¼T4

�
−
1

2
aðTÞll

þbðTÞ lnð1−6llþ4ðl3þl3Þ−3ðllÞ2Þ
�
:

ð28Þ
Here, the expectation value of the Polyakov loop is restricted
to lie within the interval l ¼ 0 (confined) and l ¼ 1
(deconfined). Because of this interval, utilizing Eq. (28) is
more convenient for our numerical studies compared to a
polynomial parametrization [109,112], whichwas, e.g., used
in Refs. [24,113]. However, our results do not depend
crucially on the employed parametrization.
The coefficients of Eq. (28) are temperature dependent

and parametrizable as

aðTÞ ¼ a0 þ a1

�
Tglue

T

�
þ a2

�
Tglue

T

�
2

; ð29Þ

bðTÞ ¼ b3

�
Tglue

T

�
3

; ð30Þ

where Tglue ¼ 178 MeV [114] is the temperature associ-
ated with the breaking of the Z3 center symmetry of
SU(3) [115], hence the confinement scale. The parameters
a0;…; a2 and b3 are then fitted to lattice data. In Table I, we
collect the employed parameters.
The next-to-leading order (NLO) effective potential in

the PNJL model can be expressed as

VPNJL
eff ðσ; TÞ ¼ VPNJL

0 ðσÞ þ VPNJL
1 ðσÞ

þ VPNJL
T ðσ;l;l; TÞ þ Vglueðl;l; TÞ; ð31Þ

where

VPNJL
0 ðσÞ ¼ VNJL

0 ðσÞ; VPNJL
1 ðσÞ ¼ VNJL

1 ðσÞ: ð32Þ
Besides the novel pure gauge potential Vglueðl;l; TÞ, in the
PNJL model also the one-loop medium interaction in
Eq. (22) is affected by the Polyakov loop. A Polyakov
loop in the fundamental representation yields [24]

VPNJL
T ðσ;l;l;TÞ¼VNJL

T ðσ;TÞ

−gqT
Z
p
ln½1þð3l−1Þe−Ep=Tþe−2Ep=T �;

ð33Þ

FIG. 3. Evolution of the chiral condensate σ (solid) and the
Polyakov loop l (dashed) as a function of temperature for
different quark-based QCD effective models. Here, σ0 denotes
the potential minimum at T ¼ 0. All models feature a first-order
chiral transition, as the quark condensate jumps from zero to a
finite value (dotted).

FIG. 2. Effective potential for the NJL model as a function of
the chiral condensate σ and temperature T, normalized to the false
vacuum energy V0 ¼ Veffðσ ¼ 0; T ¼ 0Þ. The critical temper-
ature is denoted by Tc. At large T > Tc, the chiral symmetry is
restored. As the Universe cools, a second minimum forms, which
is separated from the origin by a thermal barrier, indicating a first-
order transition. Both the PNJL model and its improved version
show a similar symmetry breaking pattern.
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which results from including a suppression of the thermal
weight with the Polyakov loop l. Here, Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
and M ¼ MðσÞ from Eq. (19).
We observe that the expectation value of the chiral

condensate undergoes a jump at Tc≈159MeV (cf. Fig. 3),
while the Polyakov loop evolves smoothly with temperature.

C. Improved Polyakov loop potential

One immediate shortcoming of the PNJLmodel is that the
parameters of the Polyakov loop potential Vglue are fitted
against pure Yang-Mills data instead of full QCD. Since the
presence of quarks alters the thermodynamic properties of
the system, their effect should be included. This can be
achieved by a rescaling of the temperature [116].
To this end, we define the reduced temperatures

tglue ¼
T − Tglue

cr

Tglue
cr

; tYM ¼ T − TYM
cr

TYM
cr

; ð34Þ

with the absolute temperature scales TYM
cr ¼ 270 MeV [117]

being the critical temperature in pure Yang-Mills, and Tglue
cr

the critical temperature of a QCD-like theory [114]. In our
case, Tglue

cr ¼ 178 MeV for Nf ¼ 3 massless flavors. With
these definitions, the temperature-dependent terms in the
Polyakov loop potential are rewritten as

Tglue

T
→

1

1þ tglue
: ð35Þ

For a given reduced glue temperature tglue the corresponding
Polyakov looppotentialVglue canbe foundby rescaling [116]

tYMðtglueÞ ≈ 0.57tglue: ð36Þ

The glue potential is then obtained by

Vglueðl;l; tglueÞ
T4
glue

¼ VYMðl;l; tYMðtglueÞÞ
T4
YM

: ð37Þ

Together with this temperature rescaling, another variant of
the NJL is established. In the following, it is referred to as the
improved PNJLmodel. As shown in Fig. 3, we find a slightly
lower critical temperature Tc ≈ 154 MeV compared to the
conventional PNJL model.

IV. SUPERCOOLED CHIRAL
PHASE TRANSITION

When investigating the dynamics of the chiral phase
transition for the different models, we assume that the
Universe undergoes an era of thermal inflation prior to
χSB, driven by a conformal sector; see Sec. II. For a model-
independent analysis, we characterize the new physics
merely by the temperature Ti where the false vacuum

energy starts to dominate. The Hubble parameter at the
QCD scale is therefore approximately constant and

HðTQCDÞ ¼
�
ρvac þ ρradðTQCDÞ

3M2
Pl

�1
2

≃
�
π2

90
g⋆;ϵðTiÞ

T4
i

M2
Pl

�1
2

≃HðTiÞ; ð38Þ

where the second line is valid for large Ti ≫ TQCD, and
ρvac ¼ Veff from Eq. (4). While the energetic degrees of
freedom are set to the SM value g⋆;ϵðTiÞ ¼ 106.75, the
exact value is slightly larger as it depends on the concrete
particle content of the SM extension. We then study
scenario II from Sec. II, where the chiral phase transition
initiates the exit from supercooling.
The key quantity that sets the PT dynamics is the false

vacuum decay rate [5,6,118–120] of the chiral condensate,
which is approximated by

ΓðTÞ ¼ T4

�
S3
2πT

�3
2

exp

�
−
S3
T

�
: ð39Þ

Here, S3 denotes the three-dimensional Euclidean bounce
action [22,121]

S3½σ� ¼ 4π

Z
drr2

�
Z−1
σ

2

�
dσ
dr

�
2

þ Veffðσ; TÞ
�
; ð40Þ

where Veffðσ; TÞ is the (P)NJL effective potential from
Sec. III. Regarding the Polyakov loop extended models,
we take l ¼ l since we have zero chemical potential [109].
Then we determine l such that Veffðσ;l; TÞ is minimized
for every combination of ðσ; TÞ, i.e. Veffðσ; TÞ ¼
Veffðσ;lmin; TÞ. In the effective theories considered here,
σ is not a fundamental degree of freedom and classically
nonpropagating. Therefore, the kinetic term is generated at
loop level and the bounce action is augmented by the wave
function renormalization Z−1

σ ¼ Z−1
σ ðσ;l;l; TÞ. The com-

putation of Zσ in the 3D cutoff scheme is detailed in
Appendix A and Ref. [24].
The bounce action (40) is evaluated for the scalar field

profile which solves the corresponding equation of motion,

d2σ
dr2

þ 2

r
dσ
dr

−
1

2

d logZσ

dσ

�
dσ
dr

�
2

¼ Zσ
dVeffðσ; TÞ

dσ
; ð41Þ

with boundary conditions

dσðr ¼ 0; TÞ
dr

¼ 0; lim
r→∞

σ ¼ 0; ð42Þ

where r is the radius of the nucleating bubble. For a given
temperature,wenumerically obtain the critical bubble profile
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by employing a modified version of the COSMOTRANSITIONS

package [122].
Next, let us introduce the relevant temperature scales. To

determine the onset of bubble nucleation, we demand

ΓðTnÞ ¼ HðTnÞ4; ð43Þ
which corresponds to the emergence of approximately one
bubble per horizon. The nucleation temperature Tn, how-
ever, is not a reliable indicator of the completion of the
phase transition. To this end, we define the percolation
temperature Tp via the probability for a point in space to
remain in the false vacuum [123,124],

P ¼ exp ½−IðTÞ�: ð44Þ

The exponent is given by [125]

IðTÞ ¼ 4π

3

Z
Tc

T

dT 0

T 04
ΓðT 0Þ
HðT 0Þ

�Z
T 0

T
dT̃

vw

HðT̃Þ
�

3

; ð45Þ

where vw is the bubble wall velocity. Starting at the critical
temperature Tc, we track the evolution of IðTÞ until
IðTpÞ ¼ 0.34 [125]. This corresponds to P ≈ 0.7, which
we use as the criterion for successful percolation. Therefore,
all relevant parameters are evaluated atTp. Inside the hadronic
bubbles, the BSM scalar Φ rolls down to its potential
minimum.Therefore, a large amount of latentheat is involved,
from which we conclude that we can safely take vw ¼ 1.
Since the Universe is exponentially expanding during the

χPT, we need to ensure that the volume of space in the true
vacuum configuration indeed increases. This imposes an
additional constraint on IðTÞ (cf., e.g., Ref. [74]),

1

Vfalse

dVfalse

dt
¼ HðTÞ

�
3þ T

dIðTÞ
dT

�
< 0; ð46Þ

where Vfalse is the volume which remains in the false
vacuum. This yields an upper bound on Ti.
The different QCD effective models share similar char-

acteristics of the phase transition. Figure 4 shows the
evolution of S3=T within the (improved) (P)NJL model.
The results from our numerical evaluation (dotted) are
contrasted with the best fit as obtained with the para-
metrization from Ref. [22]:

S3ðTÞ
T

≃ b

�
1 −

T
Tc

�
−γ
: ð47Þ

The best fit values are listed in Table II. These fits are used
for the evaluation of the PT parameters. For all three
models, we observe that the bounce action drops rapidly
with decreasing temperature. This indicates that the rel-
evant dynamics take place close to Tc. Overall, the
Polyakov loop extended versions feature a rather steep
slope compared to the NJL model. This already hints

towards a decrease in the transition timescale by the
inclusion of the Polyakov loop.
The corresponding exponential suppression of the false

vacuum IðTÞ from Eq. (45) is shown in Fig. 5 as a function
of temperature. The onset of bubble nucleation is indicated
by the triangles, while the horizontal line marks
IðTÞ ¼ 0.34, thus successful percolation. Here, we choose
three example values for Ti. The corresponding benchmark
without supercooling is less realistic in our setup and rather
resembles the dynamics of a dark sector chiral phase
transition as, e.g., considered in Refs. [22,24]. However,
we include this case as a reference to illustrate the impact of
the inflationary expansion. We observe that with an earlier
onset of thermal inflation both the nucleation Tn and
percolation temperature Tp are decreased. This is a con-
sequence of the large expansion rate in a supercooling
Universe. Since the fraction of space in the true vacuum is
suppressed by H, a larger tunneling rate or conversely
lower Tp, is required to render bubble nucleation efficient.
To see this explicitly, we display the ratio of the

percolation and critical temperature Tp=Tc as a function
of Ti in Fig. 6. While for little supercooling this ratio is
close to one, the percolation temperature is considerably
lowered with increasing Ti. This indicates an enlarged
transition timescale in a supercooled Universe.
Based on the above results, we now focus on computing

the parameters relevant for GW emission, with particular
focus on the impact of the supercooling period.

TABLE II. Best fit values of the bounce action S3=T for
different quark-based QCD effective models obtained with the
parametrization in Eq. (47) from Ref. [22].

NJL PNJL Improved PNJL

b 0.0118 0.0054 0.0085
γ 1.614 1.583 1.585

FIG. 4. Three-dimensional bounce action S3 as a function of
temperature. Numerical results obtained from COSMOTRANSI-

TONS (dotted) are contrasted with the best fits from Eq. (47)
(colored lines). The fit parameters are found in Table II.
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V. GRAVITATIONAL WAVE BACKGROUND

Anisotropies that were generated in the early Universe via
first-order phase transitions can induce a characteristic
observational relic: a stochastic gravitational wave back-
ground. We first introduce relevant quantities such as the
energy budget and transition timescale before discussing the

efficiency coefficients and the estimation of contributions of
different GW sources within our setup. To conclude, we
show the predicted GW spectrum for the different QCD
effective models, depending on the amount of supercooling.

A. Transition strength α and bubble wall speed vw
The transition strength of a cosmological phase tran-

sition reads [126,127]

αðTÞ≡ 1

ρrad

�
ΔVeff −

T
4
Δ
dVeff

dT

�����
T¼Tp

≃
ΔVeff

ρradðTQCDÞ
; ð48Þ

where ΔVeff denotes the potential energy of the metastable
vacuum. As discussed in Sec. II, we are interested in
scenario II where quark condensation triggers the end of
supercooling. Therefore, we can define the transition
strength in a model-independent fashion via the temper-
ature where thermal inflation starts:

α ≃
ρradðTiÞ

ρradðTQCDÞ
¼

�
Ti

TQCD

�
4

≫ 1: ð49Þ

Thus, the latent heat which drives the bubble expansion is
extremely large and we can assume

vw ¼ 1; ð50Þ

for the bubble wall velocity.

B. Inverse timescale β=H

In contrast to the energy budget of the transition, the
inverse timescale is fully determined by QCD dynamics.
The false vacuum energy of the conformal SM can only be
released in patches of space where the chiral symmetry is
broken. Therefore, the duration of the transition is set by the
nucleation rate of hadronic bubbles.
From the suppression of the false vacuum decay rate

ΓðtÞ ∝ eβt; ð51Þ
with time t, one obtains

β⋆
H

¼ Tp
d
dT

S3ðTÞ
T

����
T¼Tp

; ð52Þ

for the inverse timescale of the transition. All parameters
with subscript ⋆ are computed at the time of percolation.
For our numerical evaluation, however, we employ an
alternative definition of β⋆=H by introducing the average
bubble radius at collision [128,129]

R⋆ ¼
�
Tp

Z
Tc

Tp

dT 0

T 02
ΓðT 0Þ
HðT 0Þ e

−IðT 0Þ
�
−1
3

: ð53Þ

This method is widely used in the literature and found to be
more robust against numerical instabilities compared to the

FIG. 5. Suppression of the false vacuum IðTÞ via Eq. (45) as a
function of temperature. We employ three benchmark values for
Ti. The onset of nucleation according to Eq. (43) is marked by the
triangles, while the black dots denote IðTpÞ ¼ 0.34 [125], which
is the criterion for successful percolation.

FIG. 6. Percolation temperature Tp as function of Ti. For little
supercooling, bubble percolation completes rapidly after the thermal
bathpassesTc.With increasingTi, the temperature scalesdrift apart.
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standard definition in Eq. (52). From Eq. (53), the inverse
timescale of the transition is calculated via

β⋆ ¼ η

R⋆
; ð54Þ

where we again take vw ¼ 1 following the previous
reasoning. The standard choice [126] for the proportion-
ality factor is η ¼ ð8πÞ13. However, recent simulations [130]
have shown that η ≈ 5 for strongly supercooled PTs.
The inverse timescale β⋆=H as a function ofTi is shown in

Fig. 7 (left). The region with no significant supercooling is
comparable to studies of, e.g., dark chiral phase transitions
in QCD-like hidden sectors [22,24]. In agreement with the
results therein, we find β⋆=H ¼ Oð104–105Þ for all models.
Similar results are obtained for both chiral and confinement/
deconfinement phase transitions in holographic stud-
ies [23,26] of strongly coupled theories. These values are
orders ofmagnitude larger compared to the inverse timescale
of cosmological phase transitions in nonstrongly interacting
models, where typically β⋆=H ¼ Oð100Þ. With an increas-
ing duration of thermal inflation, however, we observe that
the inverse timescale clearly declines. To provide some
analytical understanding, we insert Eq. (47) into Eq. (52),
which yields

β⋆
H

¼ γ

�
Tc

Tp
− 1

�
−1 S3ðTÞ

T
: ð55Þ

From this expression, one can read off that in a supercooled
Universe, lowering the ratio Tp=Tc (cf. Fig. 6) directly
decreases β⋆=H.
This trend, however, terminates at a maximum value

Ti;max, beyond which the inflationary temperature cannot
be raised without violating Eq. (46). For larger Ti, the

expansion rate prevents the hadronic phase from expanding
efficiently. For all three QCD effective models, this corre-
sponds to β⋆=H ¼ Oð5–10Þ and Ti;max ¼ Oð108 GeVÞ,
translating to approximately Nmax ≃ 20 e-folds of thermal
inflation. If supercooling started above Ti;max, other mech-
anisms would have to be invoked to realize the exit from
supercooling, e.g. the destabilization of the false vacuum by
the growth of quantum fluctuations [131]. This is however
beyond the scope of this work and we therefore restrict
ourselves to Ti ≤ Ti;max. Regarding the dependence on the
employed QCD model, we find an Oð1Þ deviation between
theNJL and PNJLmodel in the low-Ti region, which shrinks
as supercooling becomes more prominent.
The enhanced timescale has crucial consequences

for the resulting GW spectrum which is suppressed
by [126,127,132–135]

ΩGW ∝
�
H
β⋆

�
n
: ð56Þ

As addressed in the next section, the exponent n ¼ f1; 2g
depends on the GW source which is based on the fact that
fast bubble nucleation yields small radii at collision. To
obtain large spatial perturbations and therefore a strong
GW signal, the transition timescale, or Ti, should be
sufficiently large. In Fig. 7 (right), we exemplify the impact
of Ti on the GW peak amplitude from bubble collisions.
We observe that the spectrum is enhanced by ∼8 orders of
magnitude between the lower and upper limit of Ti.
This is one of the main results of our work. In addition to

the large latent heat that is released, if QCD initiates the exit
of supercooling, the duration of the transition is signifi-
cantly increased. As a consequence, the suppression of the

FIG. 7. Left: inverse timescale of the transition normalized to the Hubble parameter for different Ti. The duration of the transition
increases for longer supercooling periods. Right: GW peak amplitude as a function of Ti, redshifted to today (indicated by the subscript
0). As a consequence of the enlarged timescale, the GW amplitude is enhanced for large Ti. In both plots, the shaded region on the left
displays the parameter space where the false vacuum energy is too small to account for the friction exerted by the mass gain of the
electroweak gauge bosons and the top quark [cf. Eq. (57)]. The shaded region on the right denotes the maximum Ti ≈ 108 GeV for
which the true vacuum can efficiently expand [cf. Eq. (46)].
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GW amplitude is considerably weakened. We now discuss
different contributions to the GW spectrum.

C. Gravitational wave sources

First-order phase transitions feature different sources of
GWs. In addition to gravitational radiation induced by the
collision of bubbles of true vacuum, the interaction of the
bubble wall with the surrounding plasma generates GWs
from the propagation of sound waves and the formation of
turbulences. Which source is the most prominent is deter-
mined by the friction between the bubble wall and the
thermal bath. The pressure difference across the wall reads

ΔP ¼ ΔVeff − P1→1 − P1→N; ð57Þ
where the first term denotes false vacuum energy. Although
bubble nucleation is governed by QCD, we expect the new
physics to quickly dominate the bubble expansion.
Therefore, the latent heat is primarily sourced by the new
physics and [cf. Eq. (4)]

ΔVeff ∼ T4
i : ð58Þ

To successfully realize the exit from supercooling, this
energy budget has to withstand the inward pressure exerted
by all particles in the classically conformal SM. To leading
order (LO), the pressure is given by the second term in
Eq. (57). This corresponds to friction from particles gaining
a mass during the transition. We have [136]

P1→1 ≃
X
i

ciki
24

M2
i T

2
p; ð59Þ

where the sum is over all contributing particle species i,
ci ¼ 1ð1=2Þ for bosons (fermions), and ki denote the
massive degrees of freedom of the respective species.
The third term in Eq. (57) accounts for transition

radiation at the bubble wall. There exist different results
in the literature for this NLO contribution which differ in
the scaling behavior of the bubble wall Lorentz factor γ:

P1→N ≃ γ2
X
i

kigiT4
p; ð60Þ

P1→N ≃ γ
X
i

giMiT3
p; ð61Þ

given by Refs. [137,138], respectively. Here, all bosons i
contribute that couple to the bubble wall with coupling
strength gi. The equilibrium γ factor is then obtained by
setting ΔP ¼ 0

γeq ¼
�
ΔVeff − P1→1

P1→N=γn

�1
n

; ð62Þ

where n is the power of γ appearing in Eqs. (60) and (61),
respectively. At bubble collision, the Lorentz factor
reads [139]

γ⋆ ¼ minðγ̃⋆; γeqÞ; with γ̃⋆ ≃
2

3

R⋆
R0

; ð63Þ

where R⋆ is given by Eq. (53), and R0 is the initial radius of
a nucleated hadronic bubble. If γ⋆ ¼ γeq, a terminal
velocity is reached before collision, and plasma sources
are the dominant source of GWs. Whether such a steady
state can be reached is highly sensitive to the scale Ti, the
corresponding particle masses, as well as the gauge
couplings. This cannot be computed reliably within our
model-independent framework. Therefore, we restrict our-
selves to a more qualitative discussion.
If supercooling commences well above the electroweak

scale at Ti > TEW;SM ≫ TQCD, the vacuum energy is
necessarily dominated by the new physics and we have

ΔVeff ∼M4 ∼ T4
i ≫ T4

p; ð64Þ
where M is the gauge boson mass of the conformal sector.
The relation between ΔVeff and M is a direct consequence
of radiative symmetry breaking. Because of the large
hierarchy of scales, we may conclude that both the LO
and NLO friction contributions are strongly suppressed.
Hence, γeq is rendered large and we expect γ⋆ ¼ γ̃⋆, i.e. a
runaway transition with bubble collisions as the dominant
source of GWs. This has been verified, e.g., for the
Uð1ÞB-L [72] and SUð2ÞX [74] extended SM.
If, on the other hand, thermal inflation sets in between

the QCD and the EW scale, TEW > Ti > TQCD, the scale
hierarchy is less severe. Then the generation of GWs via
sound waves might become efficient. Our model-
independent ansatz does however not allow for precise
statements since we lack information of the new physics. A
lower limit on Ti can be determined by assuming that there
are no masses above the electroweak scale. Friction is then
determined by the SM fields. We therefore demand that the
vacuum energy is sufficiently large to overcome the LO
pressure ΔVeff ¼ P1→1 (59) exerted by the top quark and
the EW gauge bosons i.e. Mi ∈ fmt;mZ; mWg. This gives

Ti;min ≈ 1 GeV; ð65Þ
as an approximate, model-independent lower bound on Ti.
Otherwise, a negative net pressure would prohibit the
broken EW phase to expand efficiently.
The behavior of the different GW sources in strongly

supercooled PTs has been studied in Ref. [130]. For large
transition strengths α ≫ 1, it was found that fluid dynamics
play a negligible role since fluid shells propagate as
relativistic shocks. As a consequence, sound-wave and
collision-sourced GWs are equally suppressed and show a
comparable spectrum. In the case of a gauged SM exten-
sion, the provided fit template is given by [130]

ΩGW;⋆ ¼
�
H
β⋆

�
2
�
κeffα

1þ α

�
2

SfitðfÞ; ð66Þ
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with its spectral shape

SfitðfÞ ¼ Aðaþ bÞc
�
f
fp

�
a
�
bþ a

�
f
fp

�aþb
c
�
−c
; ð67Þ

for modes which are inside the horizon at collision. The
parameters A, a, b, c, and the peak frequency fp are
adopted from [130]. In addition, we set κeff ¼ 1 due to the
same spectral shape—within errors—of collision and
sound wave sources.

D. Reheating period and redshift

To obtain predictions on the detectability of the χPT, we
evolve the GW spectrum from the time of collision until
today. To do so, we need to take into account that the
Universe undergoes a period of reheating after the PT. In
this stage, the fraction of false vacuum energy which has
neither been converted into plasma motion nor gravitational
radiation is transferred back to the heat bath. If reheating
proceeds sufficiently slow, a phase of matter domination is
induced where the BSM scalar Φ oscillates around its true
minimum. As a consequence, the GWabundance is diluted
ΩGW ∝ a⋆=aRH, where aRH (a⋆) is the scale factor at the
end of reheating (percolation). The rate of energy transfer
ΓΦ from Φ to the SM is again highly model dependent,
which makes a general conclusion hard to achieve. In the
following, we therefore assume ΓΦ > HðTQCDÞ. Then,
reheating completes quickly and we have

TRH ≈ Ti; ð68Þ

which corresponds to a sudden decay of Φ. For models
with a finite reheating period, the resulting GW spectrum
might be suppressed [72].

The redshifted GW spectrum and frequency read

h2ΩGW;0 ¼ ΩGW;⋆
�
H⋆
H0

�
2
�
a⋆
a0

�
4

¼ 1.67 × 10−5
�

100

g⋆ðTRHÞ
�1

3

ΩGW;⋆; ð69Þ

f0 ¼ f⋆
aRH
a0

¼ f⋆
T0

TRH

�
g⋆ðT0Þ
g⋆ðTRHÞ

�1
3

; ð70Þ

where the subscript 0 (⋆) denotes quantities evaluated today
(at percolation).

E. Observational prospects

Today’s gravitational wave spectra as predicted by the
(improved) (P)NJL model are shown in Fig. 8. We depict
three benchmark bubble collision spectra, varying the
duration of the supercooling period prior to χSB and
evolve the spectral peak (solid, black). For the spectral
peak, Ti is varied between the minimum and maximum
value allowed by Eqs. (65) and (46), respectively. The
colored regions display the prospected power-law inte-
grated sensitivities of several future observatories. If there
is an overlap between the spectra and the sensitivity curve,
the corresponding signal is considered detectable.
For the benchmark at Ti ¼ 1 GeV, the predicted GW

signal is strongly suppressed. This is a consequence of the
short timescale β⋆=H ¼ Oð104–105Þ of the transition. For
all models, the signal is barely visible by most future
experiments. The most promising prediction is obtained
within the NJL model, where the GW spectrum shows a
slight overlap with μARES [140].

FIG. 8. Today’s GW spectra from the QCD chiral phase transition in a supercooled Universe for three different QCD effective models:
NJL (left), PNJL (middle), and improved PNJL (right). The benchmark spectra are computed via Eq. (66) and correspond to different
supercooling periods prior to the QCD scale. We impose Ti ¼ 1 GeV, Ti ¼ 5 × 104 GeV, and Ti ¼ 5 × 107 GeV. In addition, we
display the power-law integrated sensitivities of several future experiments. The black curve evolves the spectral peak with increasing
amount of supercooling, and the black dot denotes the maximum Ti;max ¼ Oð108 GeVÞ which can be obtained without violating
Eq. (46). From the enhancement of the transition timescale, the GW amplitude grows considerably with increasing Ti, significantly
improving the observational prospects.
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The second benchmark spectra correspond to an onset
of thermal inflation at Ti ¼ 5 × 104 GeV, hence well
above the electroweak scale. The inverse timescale of
the transition is considerably decreased, which leads to a
boost of the GW amplitude, while the spectral peak moves
to larger frequencies. Hence, we find the best detection
prospects for the Big Bang Observer (BBO) [141]. The
shift of the peak frequency can be understood from the
scaling relation [cf. Eq. (38)]

f⋆ ∝
β⋆

HðTiÞ
HðTiÞ ∝

β⋆
HðTiÞ

T2
i : ð71Þ

From the redshift, we have a factor of T−1
RH ≃ T−1

i , and

f0 ∝
β⋆

HðTiÞ
Ti: ð72Þ

Therefore, the peak frequency is determined by the inter-
play between increasing Ti and the induced suppression of
β⋆=H. As a consequence, after a maximum, the peak
frequency moves to smaller frequencies again, while the
amplitude is substantially enhanced. This is the case for
Ti ≳ 5 × 106 GeV. In this range, the suppression of β⋆=H
is more rapid than the increase of Ti. For this temperature
range, the bubble collision spectra are pushed into the range
of ET [3,142], as can be seen for the third benchmark point.
Here, we imposed Ti ¼ 5 × 107 GeV, which yields
β⋆=H ≈ 100 (cf. Fig. 7). The low-frequency tail cuts into
the sensitivity regions of the BBO.
The most optimistic scenario is denoted by the black dot

and dictated by the maximum Ti ¼ Oð108 GeVÞ allowed
by Eq. (46). Beyond that limit, the expansion rate is too fast
for the true vacuum to successfully expand. Because of the
steep spectral slope for small frequencies, we do not
anticipate any observational prospects at LISA [1,2,143],
even for the most extreme scenarios.

VI. CONCLUSIONS

In this work, we considered a mechanism which natu-
rally arises in classically conformal SM extensions: a
period of thermal inflation which ends with the (first-order)
QCD phase transition. While the energy budget of such a
transition is set by the false vacuum energy of the extended
SM, bubble nucleation is governed by QCD. To study these
dynamics model independently, we characterized the new
physics merely by the temperature of the onset of super-
cooling. To model chiral symmetry breaking with massless
quarks, we employed three low-energy QCD effective
theories: the NJL model and two Polyakov loop extended
versions which incorporate the gluon dynamics. These are
constructed to reproduce certain properties of the QCD
meson spectrum, and subsequently taken to the chiral limit.
Our main observation is that the inverse timescale of the

transition, and therefore the strength of the GW signal,
strongly depends on the background evolution. For little or

no supercooling, the duration of the transition is short,
leading to a large suppression of the GWamplitude. This is
consistent with previous findings in comparable studies of
χSB in dark QCD models [22,24]. We showed that in a
supercooled Universe, the resulting GW spectrum is con-
siderably enhanced. First, the exit from thermal inflation
induces a large latent heat, thus a large transition strength
α ≫ 1. Furthermore, as a consequence of the rapid expan-
sion of the Universe, the timescale of the transition grows.
Hence, the GWamplitude is overall amplified. As the peak
frequency is in addition shifted to larger values, we find the
most promising observational prospects in the frequency
regime governed by BBO and ET. This is realized for an
onset of thermal inflation well above the electroweak scale.
While our predictions are to a large extent model

independent, some model dependence remains. The pre-
dicted timescale of the transition, and therefore the resulting
GW amplitude, can differ by an Oð1Þ factor between the
different effective theories for small Ti. In the range where
the transition is strong, the model dependence becomes
milder, hence our results are robust. To model the strong
dynamics more reliably, first-principle methods such as
lattice techniques are required. This is left for futurework. In
addition, the full SUð6ÞL × SUð6ÞR symmetry of QCD
should be included. However, the impact of the inflationary
period on the χPTwill remain the same. The enhancement of
the transition timescale is a pure cosmological consequence,
and thus independent of the chosen model as long as it
exhibits a first-order transition. However, recent lattice
studies [144] indicate that this requirement may not hold
in the chiral limit, even for a large number of flavors.
Another intriguing aspect relegated to future work is the

impact of the Higgs field on the transition. If quark
condensation would first occur in the heavy quark sector,
the nonperturbative top quark Yukawa cannot be
neglected [80]. Then, more sophisticated techniques are
required to treat the QCDþ Higgs system. Such an
analysis cannot be model independent since also new
physics can alter the Higgs potential.
Our results are relevant for a wide class of models which

feature similar dynamics. Examples are the scale invariant
Uð1ÞB-L [65,68,69,72] or SUð2ÞX extended SM [71,74], as
well as strongly coupled SM extensions [44,79]. Such
strongly supercooled phase transitions remain an exciting
open topic. At such low temperatures and potentially large
field values, the high-temperature expansion may be
invalidated. Thermal resummation necessary for infrared
sensitive contributions to the effective potential is therefore
beyond the current state-of-the-art formalism of high-
temperature dimensional reduction [145–147]. We will
address this in the future, if this formalism is applicable
even for such extremely supercooled scenarios as discussed
in this work. Then, a precision analysis of specific
conformal SM extensions could scope the parameter space
where the presented scenario is realizable.
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Lastly, our work may also have implications in the
context of dark sector model building. Since the predicted
signals from hidden chiral or confinement phase transitions
are typically weak, our work may improve their observa-
tional prospects.
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APPENDIX A: WAVE FUNCTION
RENORMALIZATION

Quark-basedQCDeffectivemodels ofNJL type are purely
fermionic and the quark condensate after bosonization, σ,
does not propagate at tree level. Its kinetic term is rendered
only at loop level, hence the bounce action (40) is augmented
by a wave function renormalization factor Z−1

σ . This section
computes the wave function renormalization for the NJL
model. To this end,we largely follow [24],which provides an
instructive discussion of Z−1

σ for the PNJL model.
The wave function renormalization factor is computed

from the σ two-point correlation function. From the NJL
Lagrangian (13) in the MFA [39] and the tree level potential
(17), we identify the Feynman rules and obtain two
Feynman diagrams as radiative corrections at one-loop
level for the σ two-point function,

ðA1Þ

where solid lines are σ fields and directed lines are quarks.
The overall two-point function up to one-loop level is

Γσσðq0;q; σÞ ¼ −
3

4G
þ 3GD

8G3
σ þ GD

4G2
NfNcIVðσÞ

−
�
1 −

GDσ

4G2

�
2

NfNcISðq0;q; σÞ; ðA2Þ

where Nf ¼ Nc ¼ 3, IVðσÞ and ISðq0;q; σÞ correspond to
the loop integrals in Eq. (A1), respectively. At finite
temperature, we have q0 ¼ iωB

n , where ωB
n ¼ 2nπT with

n ∈ Z denotes bosonic Matsubara frequencies. Since Z−1
σ is

computed from

Z−1
σ ¼ −

dΓσσðq0;q; σÞ
dq2

����
q0¼0
q¼0

; ðA3Þ

it suffices to consider the last integral ∝ ISðq0;q; σÞ
in Eq. (A2) which gives rise to the only momentum
dependence. The relevant integral reads

ISðiωB
n ;q; σÞ ¼

1

Nc
Trc

XZ Λ

fPg

Tr½ðpþMÞðpþ qþMÞ�
½p2 −M2�½ðpþ qÞ2 −M2� ;

ðA4Þ

where the curly brackets indicate the fermionic nature of
thermal sums,

PR
fPg ¼ T

P
ωF
n

R
p, M is given by Eq. (19),

P¼ðp0;pÞ, p0 ¼ iωF
n, and ωF

n ¼ ð2nþ 1ÞπT are fermionic
Matsubara frequencies. By decomposing [24]

Z−1
σ ¼ −

�
1 −

GDσ

4G2

�
2

2NfNc½Ið0Þ þ 4M2I0ð0Þ�; ðA5Þ

we denote

IðiωB
n ;q; σÞ ¼

1

Nc
Trc

XZ Λ

fPg

1

½p2 −M2�½ðpþ qÞ2 −M2� ;

ðA6Þ

Ið0Þ ¼ IðiωB
n ¼ 0;q¼ 0;σÞ; I0ð0Þ ¼ dI

dq2

����
ωn¼0
q¼0

; ðA7Þ

where the integration
PR Λ

P denotes the strict three-
dimensional momentum regularization of the NJL model.
The strategy to evaluate the integral IðiωB

n ;q; σÞ is the
standard one [148] employed in [149,150]. First, the sum
overMatsubaramodes is converted into a twofold sumwith a
Kronecker delta function δðp0Þ ¼ T

R β
0 dτ expðip0τÞ. The

summation yields directly

T
X
ωF
n

eiðωF
n−iμÞτ

ðωF
n − iμÞ2 þ E2

¼ 1

2E
½fðEþ μÞeðβ−τÞEþβμ − fðE − μÞeτE�; ðA8Þ

which we employ at zero chemical potential μ ¼ 0. In this
limit, the Fermi-Dirac distribution is given by

fðEÞ ¼ 1

eβE þ 1
; ðA9Þ

where β ¼ 1=T. For Polyakov loop extended models, the
fermionic distribution function fðEÞ receives anl-dependent
modification [24,104]. The τ integral over the delta functions
is straightforward, leaving linear terms of the distribution
functions in the numerator with fractions of the three-energies
Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. We can write Eq. (A6) as

Ið0;q; σÞ ¼
Z

Λ

p

1

2EpEpþq

�
fðEpÞ − fðEpþqÞ

Ep − Epþq

þ 1 − fðEpÞ − fðEpþqÞ
Ep þ Epþq

�
: ðA10Þ
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By reinserting this expression into Eq. (A5), we can compute
Z−1
σ . Up to modifying the thermal distribution, this yields the

same expression as given in Ref. [24]. The final result,
however, takes negative values for a large range of values,
which is related to the breaking of Lorentz invariance in the
3D cutoff scheme. To this end, we adopt a modified wave
function renormalization factor [24], viz.,

Z−1
σ;mðσ; TÞ

¼
�
1 −

GDσ

4G2

�
2 NcNf

4π2

×

�Z
Λ

0

dp
p2

E3
p

�
−2fðEpÞ þ 2Ep

dfðEpÞ
dEp

þ 1

�

þMðσÞ2
Z

Λ

0

dp
p2

E5
p

�
6fðEpÞ − 2Ep

dfðEpÞ
dEp

− 1

��
:

ðA11Þ

Figure 9 shows Z−1
σ;mðσ; TÞ for different temperatures around

Tc as a function of the chiral condensate.

APPENDIX B: CUTOFF SCHEME DEPENDENCE

In the main part of this work, we have employed a 3D
cutoff to regularize the NLO part of the NJL potential. To
estimate the robustness of our results, we now compare our
predictions with the results we obtain in the 4D cutoff
scheme, which is, e.g., used in Refs. [22,39]. The corre-
sponding model parameters are listed in Table III. With a
4D momentum cutoff, the integral for the vacuum energy in
Eq. (18) evaluates to

VNJL
1;4Dðσ̄Þ ¼ −

NcNf

ð4πÞ2 Λ
4½ln ð1þ ξ2Þ

− ξ4 ln ð1þ ξ−2Þ þ ξ2�; ðB1Þ

where ξ ¼ M=Λ. The thermal contributions to the effective
potential are the same as in Eq. (22). Since these are
naturally three dimensional, the thermal integrals now
cannot be treated with the same cutoff as the vacuum
contribution. Therefore, we take Λ → ∞ for the thermal
part. Regarding the wave function renormalization, we use
the expression of Ref. [22].
We compute the bounce action as a function of temper-

ature and fit it to the parametrization (47). The resulting fit
parameters, together with the critical temperatures, are
found in Table III. Since we take a larger temperature
range into account for the fit, we obtain slightly different fit
parameters as in Ref. [22] for the NJL and PNJL models.
The resulting inverse timescale is shown in Fig. 10 as a

function of the temperature where thermal inflation starts.
As expected, β=H ¼ Oð104Þ is large for small Ti. When
increasing the amount of supercooling prior to the QCD
scale, the timescale of the transition becomes enhanced.
Thus we observe the same qualitative behavior as in Fig. 7.
This is not surprising since the enlarged timescale is a
consequence purely from the background evolution set by
the conformally extended SM.

TABLE III. Upper panel: NJL parameters which reproduce the
QCD meson spectrum for the 4D cutoff scheme [41]. Lower
panel: best fit values of the bounce action S3=T for different
quark-based QCD effective models obtained with the paramet-
rization in Eq. (47).

Λ (MeV) GΛ2 GDΛ5

930 4.44 130.30

NJL PNJL Improved PNJL

b 0.223 0.008 0.028
γ 1.609 1.735 1.739
Tc [MeV] 71.71 121.77 101.10

FIG. 9. Modified wave function renormalization factor Z−1
σ;m,

evaluated within the NJL model for different temperatures.

FIG. 10. Inverse timescale of the transition at the time of
percolation normalized to the Hubble parameter for different Ti
computed within the 4D cutoff scheme; see Fig. 7 for the
corresponding display within the 3D cutoff scheme.
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Some quantitative differences between the two cutoff
schemes remain. First, the 4D cutoff scheme generally
predicts larger transition timescales which is especially
pronounced for small Ti. Here, the inverse timescale differs
by about an order of magnitude, for e.g. the NJL model,
when compared to the value obtained in the 3D scheme. The
deviation becomes milder when increasing Ti. In the large-
Ti range, both schemes agree reasonably well. Since this is
the regimewhere a strong transition is expected,we consider
our results robust. It is also worth noticing that the 4D cutoff
scheme exhibits a considerably larger spread of the predicted
timescales in between the different low-energy effective
theories. For short periods of thermal inflation, the different
models span approximately 1 order of magnitude between
the minimal and maximal β⋆=H. In the 3D scheme, we
observe a much milder model dependence (cf. Fig. 7).

To illustrate the impact of the cutoff scheme on the
observational prospects, we show the evolution of the peak
amplitudes in Fig. 11. The two panels correspond to
different cutoff schemes, while colors indicate the chosen
model. The 4D cutoff approach produces overall stronger
signals. Already for the minimum amount of supercooling
Ti ≈ 1 GeV, the predicted spectra show good overlap with
the sensitivity region of μARES. Such a feature is absent in
the 3D cutoff scheme.
However, as already anticipated from the inverse time-

scale, the spectra obtained within the 3D scheme exhibit
significantly less model dependence. In the strong super-
cooling regime, on the other hand, the two schemes again
agree reasonably well. From that, we conclude to employ
the 3D cutoff scheme, which is also more consistent at
finite temperature.
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