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We use instant preheating as a mechanism to reheat the Universe when its evolution is modeled by a
nonoscillating background. Once we obtain the reheating temperature, we calculate the number of e-folds
using two different methods, which allows us to establish a relationship between the reheating temperature
and the spectral index of scalar perturbations. We explore this connection to constrain the spectral index for
different quintessential inflation models.
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I. INTRODUCTION

The reheating temperature and the spectral index of
scalar perturbations are closely linked in inflationary
cosmologies. Therefore, by establishing the relationship
between them and determining the range of viable reheat-
ing temperatures, we can calculate the possible values of
the spectral index and compare them with the observational
data provided by Planck’s team.
With this idea in mind, we calculated the number of

e-folds for nonoscillating inflationary models in two differ-
ent ways. First, we used observational data from the present
to the end of inflation, which allowed us to determine the
number of e-folds as a function of the reheating temper-
ature and the spectral index. Second, we used the infla-
tionary potential, which states that the number of e-folds
depends solely on the spectral index. So, by equating both
expressions, we established the relationship between the
reheating temperature and the spectral index.
The next step is to investigate the relationship between

the reheating temperature and the spectral index when the
reheating mechanism is the well-known “instant preheat-
ing” [1,2]. We apply our results to various quintessential
inflation (QI) scenarios, such as the Peebles-Vilenkin
model [3], exponential α attractors [4], and double expo-
nential models [5]. One of our main findings concerning
instant preheating is that the coupling constant, denoted
by g̃, between the inflaton field and the quantum field
responsible for particle production is highly constrained.
We found that its value must lie between 10−6 and 10−5.
The lower limit is necessary to prevent vacuum polarization
effects during the last e-folds of inflation from affecting
the evolution of the inflaton field. The upper limit is due to
the requirement that the reheating temperature is below
109 GeV to avoid interference with the success of big
bang nucleosynthesis (BBN) [6], caused by the late decay of

gravitationally interacting particles, such as the gravitino or
the moduli fields. For a coupling value around g̃ ≅ 5 × 10−6,
shortly after the start of kination, the created particles become
nonrelativistic, and during thekinationphase, they decay into
lighter particles, which reheats the Universe to a temperature
restricted to the range of 10−12Mpl to 10−10Mpl, whereMpl is
the reduced Planck mass.
After obtaining the maximum and minimum values of

the reheating temperature, we use the link between the
reheating temperature and the spectral index of the scalar
perturbations for a given QI model to constrain it. This
results in a narrow range of viable values, which falls
within the 2σ confidence level of the observable values
obtained by the Planck team.
Finally, we also investigate the implications of this

relationship when reheating occurs via gravitational par-
ticle production. Specifically, we consider an exponential
α-attractor model and show the interconnection between
the spectral index and the mass of the produced particles.
We find that, for a spectral index close to ns ≅ 0.97, there
are heavy as well as light masses that can give rise to viable
reheating temperatures ranging from 1 MeV to 107 GeV.
The present work is organized as follows: In Sec. II, we

investigate the instant preheating mechanism and obtain
the range of viable reheating temperatures. In Sec. III, we
present the two different methods used for calculating the
number of last e-folds and the relationship between the
spectral index and the reheating temperature. In Sec. IV, we
apply this relationship to different QI models. In Sec. V,
we consider reheating via gravitational particle production
and apply it to α attractors to compute feasible reheating
temperatures. Finally, in the concluding section, we sum-
marize our findings and present our conclusions.

II. INSTANT PREHEATING

In this section, we will review one of the most commonly
used reheating mechanisms for nonoscillating models,*jaime.haro@upc.edu
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known as instant preheating, which was introduced by
Felder et al. in [1,2]. The basic concept is that the inflaton
field, denoted as φ, is coupled to a scalar quantum field ϕ,
and this coupling is responsible for particle production.
The Lagrangian density of the quantum field ϕ is

given by

L¼ 1

2

ffiffiffiffiffi
jgj

p
ðgμν∂μϕ∂νϕ− ðm2þ g̃2ðφ−φkinÞ2Þϕ2− ξRϕ2Þ;

ð1Þ

where m is the bare mass of the field, R is the Ricci scalar,
φkin is the value of the inflaton at the beginning of kination,
and g̃ is the dimensionless coupling constant between the
inflation field and the quantum field. Considering con-
formally coupled particles, i.e., choosing ξ ¼ 1=6, the
frequency of the modes will be given by

ω2
kðηÞ ¼ k2 þm2

effðηÞa2ðηÞ; ð2Þ

where meffðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ g̃2ðφðηÞ − φkinÞ2

p
is the effective

mass of the produced particles.
The analytic computation of the Bogoliubov coefficients

is based on the linear approximation φðηÞ − φkin ≅
φ0
kinðη − ηkinÞ and the assumption that the Universe is static

with aðηÞ ¼ akin. Then, the frequency becomes

ω2
kðηÞ ¼ k2 þ ðm2 þ g̃2ðφ0

kinÞ2ðη − ηkinÞ2Þa2kin ð3Þ

and, thus, the analytic value of the β-Bogoliubov coef-
ficients is given by [2]

jβkj2 ≅ exp

�
−
πðk2 þm2a2kinÞ

g̃akinφ0
kin

�

¼ exp

�
−

πðk2 þm2a2kinÞffiffiffi
6

p
g̃a2kinHkinMpl

�
: ð4Þ

This last formula was tested numerically in [7] for the
original Peebles-Vilenkin model [3] and also in [8] for the
nonoscillating background,

a2ðηÞ ¼ 1

2

�
ð1 − tanhðη=ΔηÞÞ 1

1þH2
infη

2

þ ð1þ tanhðη=ΔηÞÞð3þ 2HinfηÞ
�
; ð5Þ

where the scale of inflation, denoted by Hinf, is typically of
the order 10−6Mpl in the majority of inflationary models.
The timescale of the phase transition from the end of
inflation to the beginning of kination is represented by Δη.
Note that the production of particles is exponentially

suppressed for large values of the bare mass, due to the
form of the β-Bogoliubov coefficient. Therefore, we will

set m ¼ 0, which yields meff ¼ g̃ðφ − φkinÞ. Additionally,
the modes that contribute to the particle production are
those satisfying

k2

a2kin
< g̃HkinMpl; ð6Þ

then, in order to have nonrelativistic particles during
kination, which ωkðηÞ ≅ aðηÞmeffðηÞ, we need to demand

g̃HkinMpl < g̃2ðφðηÞ − φkinÞ2 ≅ g̃2M2
plln

2

�
Hkin

HðηÞ
�
; ð7Þ

where we have used that, during kination, the inflaton field
evolves according to

φðηÞ ¼ φkin þ
ffiffiffi
2

3

r
Mpl ln

�
Hkin

HðηÞ
�
: ð8Þ

Therefore, if we consider HðηÞ < Hkin=3, then the
quantity lnðHkin

HðηÞÞ is greater than 1. Additionally, in the

majority of inflationary models, we have Hkin ≅ 10−7Mpl.
So, by imposing the following condition:

g̃HkinMpl < g̃2M2
pl ⇒ g̃ > Hkin=Mpl ≅ 10−7; ð9Þ

we can ensure that the particles become nonrelativistic
shortly after the start of kination.
After the beginning of kination, when the nonrelativistic

particles have already been created, the inflaton field
evolves according to

φ̈þ 3H _φ ¼ −g̃hϕ̂2imeff ; ð10Þ

where hϕ̂2i is the renormalized vacuum average of the
quantum operator ϕ̂2. To prevent an undesirable second
inflationary period, we need to demand that the right-hand
side of Eq. (10) is subdominant before the decay of these
nonrelativistic particles. Therefore, before the decay, we
need to impose the following condition:

H _φ ≫ g̃hϕ̂2imeff : ð11Þ

Effectively, if the right-hand side of Eq. (10) ceases to be
negligible, the inflaton field would be under the action of
the quadratic potential given by

VðφÞ ¼ m2
eff

2
hϕ̂2i ¼ 1

2
g̃2ðφ − φkinÞ2hϕ̂2i: ð12Þ

As a result, the field will roll down to φkin, which could
potentially initiate a new inflationary phase that we do not
desire.
Therefore, taking into account that for nonrelativistic

particles the evolution of ϕ is approximately that of a
harmonic oscillator,
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ðaϕÞ00 þ a2ðηÞm2
effðηÞðaϕÞ ¼ 0: ð13Þ

Because the term ΔðaϕÞ is negligible for nonrelativistic
particles, we have that its evolution is like

aϕ ∝ e−i
R

ameff ⇒ ðaϕÞ0 ∼ aðηÞmeffðηÞðaϕÞ; ð14Þ

meaning that the renormalized vacuum energy density,
which is the effective mass multiplied by the number
density of produced particles, is like that of a harmonic
oscillator, i.e.,

hρ̂ðηÞi ¼ meffðηÞhN̂ðηÞi ≅ 1

2a4ðηÞ hððaϕ̂Þ
0Þ2

þ a2ðηÞm2
effðηÞðaϕ̂Þ2i

≅ m2
effðηÞhϕ̂2ðηÞi; ð15Þ

leading to [2] (see also the Appendix of this work, where a
more rigorous demonstration was done)

hϕ̂2ðtÞi ≅ hN̂ðtÞi
meffðtÞ

; ð16Þ

and recalling that during kinationH ∼ _φ=Mpl, the condition
(11) becomes

_φ2ðtÞ ≫ g̃MplhN̂ðtÞi ⇒ ρBðtÞ ≫ g̃MplhN̂ðtÞi; ð17Þ

where ρBðtÞ ¼ _φ2ðtÞ
2

is the energy density of the background
in the kination phase.
Shortly after the beginning of kination, as we have

already shown, the effective mass of the produced particles
becomes greater than g̃Mpl, meaning that, if they decay into
lighter ones to reheat the Universe before the end of
kination, i.e., if ρBðtÞ ≫ hρ̂ðtÞi ≅ meffðtÞhN̂ðtÞi before
their decay, the bound (11) will be automatically satisfied.
Then, to ensure that the inflaton field rolls toward infinity,
as in all QI models, we will assume that the decay of the
produced particles into lighter ones occurs before the end of
kination.
Now, we calculate the energy densities at the time of

decay, which occurs whenH ∼ Γ, where Γ is the decay rate.
The corresponding energy densities are

ρB;dec ¼ 3Γ2M2
pl and hρ̂deci ≅ mdec

Γ
Hkin

hN̂kini; ð18Þ

where mdec ≡meffðtdecÞ and we have used that during
kination the Hubble rate scales as a−3, which implies
ðakinadec

Þ3 ¼ Γ
Hkin

.

After the decay, the energy densities evolve as

ρBðtÞ ¼ 3Γ2M2
pl

�
adec
aðtÞ

�
6

and

hρ̂ðtÞi ≅ mdec
Γ

Hkin
hN̂kini

�
adec
aðtÞ

�
4

; ð19Þ

and since the reheating occurs at the end of kination, i.e.,
when ρBðtÞ ∼ hρ̂ðtÞi, we have

�
adec
areh

�
2

¼ mdechN̂kini
3ΓHkinM2

pl

; ð20Þ

and thus, using the Stefan-Boltzmann law, the reheating
temperature is given by

Treh ¼
�

30

π2greh

�
1=4

hρ̂rehi1=4

¼
�

10

3π2greh

�
1=4

�
mdechN̂kini

Γ1=3HkinM
8=3
pl

�
3=4

Mpl

¼
�

5
ffiffiffi
3

p

π11greh

�1=4�
g̃3=2

mdecρ
1=4
B;kin

Γ1=3M5=3
pl

�3=4

Mpl; ð21Þ

where greh ¼ 106.75 is the effective number of degrees of
freedom for the Standard Model, and we have taken into
account that

hN̂kini ¼
1

2π2a3kin

Z
∞

0

k2jβkj2dk ¼ 1

8π3

�
g̃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρB;kin

p �
3=2

:

ð22Þ

After some algebra, one has

Treh ≅ 2 × 10−2g̃15=8
� ffiffiffiffiffiffiffiffiffi

Hkin
p

Γ1=3M1=6
pl

�
3=4

ln3=4
�
Hkin

Γ

�
Mpl;

ð23Þ

which for Hkin ≅ 10−7Mpl becomes

Treh ≅ 3 × 10−3g̃15=8
�
Mpl

Γ̄

�
1=4

ln3=4
�
Mpl

Γ̄

�
Mpl; ð24Þ

where we have introduced the notation Γ̄≡ 107Γ.
On the other hand, the condition that the decay occurs

during kination leads to the constraint

ln

�
Mpl

Γ̄

�
g̃hN̂kini
M2

pl

≤ Γ̄ < Mpl=3 ⇔ 3 × 10−7g̃5=2 ln

�
Mpl

Γ̄

�

≤
Γ̄
Mpl

<
1

3
; ð25Þ
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where the condition Γ̄ < Mpl=3 comes from the fact that,
by imposing it, we have mdec ≥ g̃Mpl. For g̃ > 10−7, as we
have already shown, this ensures that the decaying particles
are nonrelativistic.
Noticing that a viable reheating temperature should be

above 1 MeV, as this is the temperature at which BBN
occurs, we have

5 × 10−22Mpl ≤ Treh <
ffiffiffiffiffiffiffiffiffiffi
MplΓ

p
⇒

Γ̄
Mpl

≥ 10−36

⇒ ln

�
Mpl

Γ̄

�
≤ 102; ð26Þ

where we have used the fact that the decay occurs before
reheating. This last restriction implies that the reheating
temperature is bounded by

Treh ≤ 10−1g̃15=8
�
Mpl

Γ̄

�
1=4

Mpl; ð27Þ

which, in order to ensure that the reheating temperature is
bellow 5 × 10−10Mpl ≅ 109 GeV, leads to

Γ̄
Mpl

≥ 2 × 1033g̃15=2: ð28Þ

Consequently, by choosing 10−7 ≤ g̃ ≤ 3 × 10−5, we
ensure that mdec < Mpl, avoiding problems during BBN.
If the effective mass becomes greater than the Planck mass,
each particle would become a Planck-sized black hole,
which would immediately evaporate and produce graviti-
nos or moduli fields. Thus, a late decay could potentially
jeopardize the success of BBN. With this condition
satisfied, the constraint (25) becomes

2 × 1033g̃15=2 ≤
Γ̄
Mpl

< 1=3: ð29Þ

Finally, it is also important to ensure that the vacuum
fluctuations do not disturb the evolution of the inflaton
during the last stages of inflation, which is accomplished by
imposing that meffðtÞ ≥ HðtÞ. Noticing that during the last
stage of inflation the effective mass is of the order g̃Mpl

and assuming, as in most inflationary models, that the scale
of inflation is of the order 10−6Mpl, one has to impose
g̃ ≥ 10−6. We can show this in the case of a quadratic
potential VðφÞ ¼ M2

2
ðφ − φkinÞ2 with mass M, where the

power spectrum of scalar perturbations

Pζ ¼
H2�

8π2M2
plϵ�

≅ 2 × 10−9; ð30Þ

(the asterisk means that the quantities are evaluated at the
horizon crossing), together with the slow-roll parameters ϵ�

and η�, and the well-known relation 1 − ns ¼ 6ϵ� − 2η�,
where ns is the spectral index, tells us that the value of the
mass is M ∼ 16π

ffiffiffiffiffiffiffi
0.3

p ð1 − nsÞ10−4Mpl. Then, the condi-
tion meffðtÞ ≥ HðtÞ becomes

g̃2ðφ − φkinÞ2 ≥ VðφÞ ¼ M2

6M2
pl

ðφ − φkinÞ2 ⇒ g̃

≥
3

4
ð1 − nsÞ10−4 ≅ 10−6; ð31Þ

where we have taken the conservative value 1 − ns ≅ 10−2.
Thus, a successful reheating of the Universe is achieved

through the instant preheating mechanism when the value
of the coupling constant satisfies 10−6 ≤ g̃ ≤ 3 × 10−5,
which improves the result 10−6 ≤ g̃ ≪ 1 obtained in [2].
For example, taking g̃ ¼ 6 × 10−6, we obtain

Treh ≅ 5 × 10−13
�
Mpl

Γ̄

�
1=4

ln3=4
�
Mpl

Γ̄

�
Mpl;

with 10−6 ≤
Γ̄
Mpl

< 1=3; ð32Þ

which leads to the following maximum and minimum
reheating temperatures:

Tmax
reh ≅ 10−10Mpl and Tmin

reh ≅ 7 × 10−13Mpl: ð33Þ

In summary, choosing g̃ ≅ 6 × 10−6 guarantees that the
vacuum polarization effects do not disturb the evolution
of the inflaton field during the last stages of inflation.
Additionally, the particles become nonrelativistic and
have masses less than Mpl soon after the start of kination,
and their decay occurs during this phase. In this situation,
a viable reheating temperature below 5 × 1010Mpl is
obtained, ensuring the success of BBN.

III. NUMBER OF e-FOLDS

Let N be the number of e-folds from horizon crossing to
the end of inflation. Then, we have

a� ¼ e−NaEND; ð34Þ

where “END” denotes the end of inflation, and once again,
the asterisk means that the quantities are evaluated at the
horizon crossing. Since the pivot scale k� is defined as k� ¼
a�H� (at horizon crossing), we have

k�
a0H0

¼ e−N
H�
H0

aEND
akin

akin
aend

aend
am

am
a0

¼ e−N
H�
H0

aEND
akin

ρ−1=12end ρ1=4m

ρ1=6kin

am
a0

; ð35Þ
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where the subindexm denotes the matter-radiation equality,
END is the end of kination, 0 is the present time, and we
have used the relations

ρend ¼ ρkin

�
akin
aend

�
6

; ρm ¼ ρend

�
aend
am

�
4

: ð36Þ

In dealing with instant preheating, we have already
shown that the decay of nonrelativistic particles must occur
prior to the end of kination. Therefore, we will have

ρend ¼ ρreh ¼
grehπ2

30
T4
reh: ð37Þ

Next, as a physical scale, we use kphys;0 ≡ k�=a0 ¼ 2 ×
10−2 Mpc−1 [9], and for the current Hubble scale,
H0 ≅ 2 × 10−4 Mpc−1 ≅ 6 × 10−61Mpl. In addition, since
the evolution is adiabatic after the matter-radiation equality,
i.e., entropy is conserved, we have amTm ¼ a0T0, as well

as the relation ρm ¼ gmπ2

30
T4
m, where gm ¼ 3.36 is the

effective number of degrees of freedom at the matter-
radiation equality. Hence,

N ¼ −4.6þ ln

�
H�
H0

�
þ ln

�
aEND
akin

�
þ 1

6
ln

�
ρreh
ρkin

�

þ 1

4
ln

�
gm
greh

�
þ ln

�
T0

Treh

�
: ð38Þ

Now, considering the formula for the power spectrum
of scalar perturbations (30), we can infer that H� ≈
4 × 10−4

ffiffiffiffiffi
ϵ�

p
Mpl. By using the present values of the

Hubble rate and temperature T0 ≈ 2.73 K ≈ 2×
10−13 GeV ≈ 8 × 10−32Mpl, we can calculate the number
of e-folds as a function of the reheating temperature
and ϵ�,

NðTreh; ϵ�Þ ≅ 54.47þ 1

2
ln ϵ� þ

1

3
ln

�
M2

pl

TrehHEND

�
; ð39Þ

where we have neglected the model-dependent term
lnðaENDakin

Þ since it is close to zero, and we have assumed
that there is no significant drop in energy during the phase
transition from the end of inflation to the beginning of
kination.
It is important to note that, for a given potential V, one

can calculate

ϵ� ¼
M2

pl

2

�
V 0�
V�

�
2

and H2
END ¼ VEND

2M2
pl

: ð40Þ

On the other hand, the number of e-folds can also be
calculated from the formula

N ≅
1

M2
pl

Z
φEND

φ�

				 VðφÞV 0ðφÞ
				dφ ¼ 1

Mpl

Z
φEND

φ�

1ffiffiffiffiffi
2ϵ

p dφ: ð41Þ

As we will see, the number of e-folds is a function of ϵ�,
which is also related with the spectral index ns. By equating
both expressions, we obtain a relationship between the
reheating temperature and the spectral index, given by
NðTreh; ϵ�ðnsÞÞ ¼ NðnsÞ. We will explore this relationship
in the next section.

IV. REHEATING CONSTRAINTS

In this section, we will use the results obtained in the
previous section to analyze the feasibility of three important
quintessential inflation models. Specifically, we will study
the relationship between the reheating temperature and the
spectral index for each of these models. By analyzing these
relationships, we can determine if these models are con-
sistent with observational data and if they are viable
candidates for explaining the evolution of the Universe.

A. The Peebles-Vilenkin model

The first quintessential inflation scenariowas proposed by
Peebles and Vilenkin in their seminal paper [3] at the end of
the 20th century, shortly after the discovery of cosmic
acceleration. The corresponding potential is given by

VðφÞ ¼
(
λðφ4 þM4Þ for φ ≤ 0

λ M8

φ4þM4 for φ ≥ 0:
ð42Þ

Here, λ ∼ 10−14 is a dimensionless parameter and M is a
very small mass compared to the Planck mass Mpl. It is
important to note that the quartic potential is responsible for
inflation, while the inverse power law leads to dark energy
(in this case, quintessence) at later times.

Since for this model ϵ ¼ 8M2
pl

φ2 , we have φEND ¼
−2

ffiffiffi
2

p
Mpl, and taking into account that, for a quartic

potential 3ϵ� ¼ 1 − ns, we get φ� ¼ − 2
ffiffi
6

pffiffiffiffiffiffiffiffi
1−ns

p Mpl. So, the

number of e-folds will be

N ¼ 1

4M2
pl

ðφ2� − φ2
ENDÞ ¼

6

1 − ns
− 2: ð43Þ

On the other hand, using that inflation ends when
ϵEND ¼ 1, i.e., when weff ¼ −1=3, one has _φ2

END ¼
VðφENDÞ, and thus,

ρEND ¼ 3VðφENDÞ
2

¼ 96λM4
pl ⇒ HEND ¼ 4

ffiffiffiffiffi
2λ

p
Mpl: ð44Þ

Then, from Eqs. (39) and (43) we get

6

1 − ns
−
1

2
ln

�
1 − ns

3

�
≅ 56.47þ 1

3
ln

�
Mpl

4
ffiffiffiffiffi
2λ

p
Treh

�
; ð45Þ
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which for λ ≅ 10−14 leads to

Treh ≅ ð1 − nsÞ3=2 exp
�
182 −

18

1 − ns

�
Mpl: ð46Þ

Finally, expressing the reheating temperature Treh as a
function of the spectral index ns, we can use observational
data to constrain the parameter space. According to Planck
2018 data, the spectral index is measured to be ns ¼
0.9649� 0.0042 [9]. At the 2σ confidence level, the
minimum value of ns that leads to the maximum reheating
temperature is ns ¼ 0.9565. However, for this value of ns,
the reheating temperature is found to be abnormally small,

Treh ∼ 10−2e−234Mpl: ð47Þ

This demonstrates that the Peebles-Vilenkin model is not
viable, as it predicts an unreasonably low reheating temper-
ature for the observed spectral index.
Equivalently, the nonfeasibility of the Peebles-Vilenkin

model can also be seen by calculating the number of e-folds
using Eq. (43). At the 2σ confidence level, this leads to the
bound 136 ≤ N ≤ 223, which is in contradiction with the
number of e-folds calculated from Eq. (39). Using Eq. (39)
and requiring a reheating temperature above 1 MeV and
below 109 GeV, the number of e-folds is constrained to
satisfy 63 ≤ N ≤ 74. Therefore, the Peebles-Vilenkin
model is not viable because it predicts a number of
e-folds that is outside of the observational constraints.
A final remark is in order: The latest observational data

constrain the tensor-to-scalar ratio of scalar perturbations r to
be less than 0.1. For the Peebles-Vilenkin model, one has
r ¼ 16

3
ð1 − nsÞ, and taking into account that ns ¼ 0.9649�

0.0042 at 2σ CL, one has the constraint 0.1424 ≤ r ≤ 0.232,
which is incompatible with the observational bound r ≤ 0.1.
This provides another way to show that this model is not
viable. Thedifferencewith ourmethodology is thatwedonot
need a precise bound on the tensor-to-scalar ratio to disregard
this model.

B. Exponential α attractor

We consider a quintessential inflation α-attractor model,
whose potential is given by [10]

VðφÞ ¼ λM4
ple

−n tanh
�

φffiffiffi
6α

p
Mpl

�
; ð48Þ

where λ, α, and n are some dimensionless parameters. The
value of the slow-roll parameter ϵ is

ϵ ¼ n2

12α

1

cosh4
�

φffiffiffiffi
6α

p
Mpl

� ; ð49Þ

and the other slow-roll parameter is given by

η ¼ n
3α

"
tanh

�
φffiffiffiffi

6α
p

Mpl

�
cosh2

�
φffiffiffiffi

6α
p

Mpl

�þ n=2

cosh4
�

φffiffiffiffi
6α

p
Mpl

�
#
: ð50Þ

Both slow-roll parameters must be evaluated at the
horizon crossing, which occurs for large values of

cosh
�

φffiffiffiffi
6α

p
Mpl

�
, obtaining

ϵ� ¼
n2

12α

1

cosh4
�

φ�ffiffiffiffi
6α

p
Mpl

� and

η� ≅ −
n
3α

1

cosh2
�

φ�ffiffiffiffi
6α

p
Mpl

� ; ð51Þ

with φ� < 0. Therefore, the number of e-folds is

N ≅
6α

n
cosh2

�
φ�ffiffiffiffiffiffi
6α

p
Mpl

�
≅

ffiffiffiffiffiffiffi
3α

4ϵ�

s
; ð52Þ

which is related with the spectral index of the scalar
perturbations via the relation

ns − 1 ≅ −6ϵ� þ 2η� ≅ 2η� ¼ −
4

ffiffiffiffiffi
ϵ�

pffiffiffiffiffiffi
3α

p ≅ −
2

N
; ð53Þ

obtaining

NðnsÞ ≅
2

1 − ns
and ϵ�ðnsÞ ≅

3α

16
ð1 − nsÞ2: ð54Þ

From Eq. (54), we can also calculate the relationship
between the parameters of the model. Specifically, since

V� ≅ λM4
ple

n, we have H2� ≅
λM2

pl

3
en. Thus, using the for-

mula for the power spectrum of scalar perturbations, we
obtain the constraint

λ

απ2ð1 − nsÞ2
en ≅ 9 × 10−9: ð55Þ

We also need to calculate HEND, which can be done
by noting that ϵEND ¼ 1 and using arccoshðxÞ ¼
lnðx −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ, to obtain

φEND ¼
ffiffiffiffiffiffi
6α

p
ln

� ffiffiffi
n

p
ð12αÞ1=4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nffiffiffiffiffiffiffiffi
12α

p − 1

r �
M4

pl: ð56Þ

Inserting it in (48) and using the constraint (55), one has

VðφENDÞ ¼ λM4
ple

n
ffiffiffiffiffiffiffiffiffiffi
1−

ffiffiffiffi
12α

p
n

p
≅ λM4

ple
nð1−

ffiffiffi
3α

p
n Þ

≅ 9π2αð1 − nsÞ2e−
ffiffiffiffi
3α

p
10−9Mpl; ð57Þ
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and thus,

ρEND ¼ 3VðφENDÞ
2

⇒ HEND

≅ 3

ffiffiffi
α

2

r
ð1 − nsÞe−

ffiffiffiffi
3α

p
=210−4Mpl: ð58Þ

Therefore, equaling both expressions of the number of
e-folds, we get the reheating temperature as a function of
the spectral index.
Therefore, by equating both expressions for the number

of e-folds, we obtain an expression for the reheating
temperature as a function of the spectral index,

Treh ≅ αð1 − nsÞ2 exp
�
169þ

ffiffiffiffiffiffi
3α

p

2
−

6

1 − ns

�
Mpl: ð59Þ

To be more precise, we will choose α ¼ 10−2, obtaining

Treh ≅ ð1− nsÞ2 exp
�
169þ

ffiffiffi
3

p

20
−

6

1− ns

�
10−2Mpl: ð60Þ

We can check that the allowed values of the spectral
index, which lead to a reheating temperature compatible
with the one obtained in Eq. (33) using instant preheating,
are in the range of (0.9667, 0.9673). Thus, the value of the
spectral index is approximately ns ≅ 0.9670. Additionally,
the ratio of tensor-to-scalar perturbations is given by
r ¼ 16ϵ� ¼ 3αð1 − nsÞ2, and we can conclude that its
value is r ≅ 3 × 10−5.

1. Comparison with other works

In [4], the authors study an exponential α attractor with a
cosmological constant given by

VðφÞ ¼ λM4
pl

�
e
−n tanhð φffiffiffi

6α
p

Mpl
Þ
− e−n

�
; ð61Þ

which at early times coincides with our potential (48), but
at late times, it will become

VðφÞ ¼ 2nλe−nM4
ple

−
ffiffiffi
2
3α

p
φ=Mpl : ð62Þ

This constrains the value of the parameter α to match
with the current Planck data of the effective equation of
state (EOS) parameter for dark energy. As shown in the
Appendix of [4], the parameter α must satisfy α ≥ 3=2
(although it has been shown in [11] that the correct bound
to match the observational data is 0.5 ≤ α ≤ 3.3).
Fortunately, this is not a problem for our model, as
demonstrated in [10,11], where the authors found that α
only has to satisfy the upper bound α < 3.5. For the value
chosen in this work α ¼ 10−2, the present value of the
effective EOS parameter is approximately −0.68, which is

compatible with the Planck data. Additionally, from the

observational dataΩφ;0 ¼ Vðφ0Þ
3H2

0
M2

pl
≅ 0.7 (where the subscript

0 denotes present time), [4] obtains a relationship between
the parameters α, n, and g̃. This is because the present value
of the scalar field depends on the reheating temperature,
which in turn depends on g̃. Looking at Eq. (62), we can see
that Vðφ0Þ depends on all three parameters.
However, this is not the case for our potential (48). At the

present time, Vðφ0Þ ∼ λM4
ple

−n. Thus, Ωφ;0 ≅ 0.7 leads to
λe−n ≅ 10120. Combining this with (55), we obtain the
relationship

e2n ≅ 9απ2ð1 − nsÞ2 × 10111; ð63Þ

which is independent of g̃. In fact, since we have obtained
ns ≅ 0.967 for α ¼ 10−2, we find n ≅ 124 and λ ≅ 10−66.
On the other hand, in contrast to our realistic assumption

that the particles produced during kination decay when they
are nonrelativistic, in [4], it is assumed that the decay of
these particles occurs immediately after their creation. We
find it difficult to justify this assumption because, at the
onset of kination, the effective mass of the produced
particles vanishes. Additionally, it is assumed that the
produced particles decay into light fermions with a decay
rate given by Γ ¼ h2meff

8π (as argued in [2], where the authors
suggest that the decay should occur when the particles
are nonrelativistic). However, the decay that occurs when
H ∼ Γ cannot happen at the beginning of kination because,
at that time, Γ ≅ 0 and Hkin ∼ 10−7Mpl. Nonetheless, it is
possible that another kind of decay may occur.
Assuming that the decay occurs immediately after the

beginning of kination, the reheating temperature can be
calculated using the simple formula

Treh ¼
�

270

π11greh

�
1=4

g̃3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HkinMpl

p
≅ 2 × 10−5g̃3=2Mpl;

ð64Þ

where hρ̂kini is given by

hρ̂kini ¼
1

2π2a4kin

Z
∞

0

k3jβkj2dk ¼ g̃2 _φ2
kin

8π3
; ð65Þ

with _φ2
kin ¼ 6H2

kinM
2
pl, and we have taken Hkin ≅ 10−7Mpl.

It is worth noting that the formula (64) depends solely on g̃,
in contrast to the formula (32), which depends on both g̃
and the decay rate Γ. Additionally, the bounds arising from
the gravitino constraint (Treh ≤ 109 GeV) and the lower
bound Treh ≥ 1 MeV, constrain in different ways the
parameter g̃. Effectively, when the decay is at the onset
of kination, one has 10−4 ≤ g̃ ≤ 10−2, but if it occurs when
the particles are nonrelativistic, as we have already shown,
this parameter has to satisfy 10−6 ≤ g̃ ≤ 3 × 10−5.
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Therefore, in accordance with [4], one must select, in the
corresponding allowed range, values for the parameters α
and n that result in a value of g̃ [since these three parameters
are related for the model (61)] that is consistent with the
constraints arising from the gravitino constraint and the
lower bound of the reheating temperature. Once this value
of g̃ is determined, the reheating temperature can be
calculated using formula (64), and the spectral index can
be calculated using the relationship between the reheating
temperature and the spectral index. In summary, for the set
of allowed parameters α and n, it is possible to calculate the
reheating temperature and the spectral index by choosing
appropriate values for the coupling constant g̃.
This is quite different from our method. In our approach,

we use instant preheating with the realistic assumption that
the created particles can only decay when they become
nonrelativistic, which results in a range of reheating temper-
atures for the potential (48). Therefore, after fixing themodel
and setting α ¼ 10−2 to satisfy the gravitino constraint and
ensure that the vacuum fluctuations do not disturb the
evolution of the scalar field during the last stages of inflation,
the value of g̃ has to belong to a very narrow range. Once we
have fixed the value of g̃, we use formula (32) to obtain the
range of viable values of the reheating temperature. Finally,
by using the relationship between the reheating temperature
and the spectral index, we can determine the range of viable
values of the spectral index for the fixed model.
Another paper that dealswithα attractors is [11],where the

authors study several potentials and use observational data to
constrain the parameters of each model. The work does not
deal with any preferred reheating mechanism, but it com-
pares instant preheating with reheating via gravitational
particle production of light particles, showing that instant
preheating is more efficient because the gravitational pro-
duction of light particles leads to a low reheating temperature
of the order of 105 GeV (see, for instance, [3]). Furthermore,
it is pointed out that, due to the kination phase, the number
of last e-folds is greater in quintessential inflation than in
standard inflation.As a consequence, thevalue of the spectral
index is greater in quintessential inflation than in standard
models. Thus, future improvements in the accuracy of the
measurement of the spectral index may distinguish between
conventional inflationary models with a cosmological con-
stant and quintessential inflation scenarios.
Finally, in [11], the parameters of the models (48) and

(61) are compared with observational data. Only taking
into account that, for lower reheating temperatures, the
inflaton field freezes later during radiation than for higher
reheating temperatures. This means that when reheating is
via gravitational production of light particles, the inflaton
field freezes later than in the case when the reheating
mechanism is instant preheating. Since the models have
completely different tails, this leads to different EOS
parameters at late times, depending on the freeze value of
the inflaton field and thus on the value of the reheating

temperature. This constrains the values of α. Specifically,
for the model described by Eq. (48), the value of α is
bounded by α < 3.5, and therefore our choice of α ¼ 10−2

is entirely acceptable. In contrast, for the model described
by Eq. (61), the observational data only allow values
within the range of 0.5 ≤ α ≤ 3.3.

C. The double exponential model

Next, we consider a combination of two exponential
potentials to depict inflation and quintessence, respectively,

VðφÞ ¼ V0e
−γ̄φn=Mn

pl þM4e−γφ=Mpl ; ð66Þ

where we must choose 0 < γ <
ffiffiffi
2

p
to model the current

cosmic acceleration. This is because, at late times, the

effective equation of state parameter is weff ¼ γ2

3
− 1 <

−1=3.
The first part of the potential is a phenomenological term

responsible for inflation, which has been studied in detail
in [5,12], where it is obtained that

ϵ ¼ γ̄2n2

2

�
φ

Mpl

�
2n−2

: ð67Þ

So, at the end of inflation one has φEND ¼ ð 2
n2 γ̄2Þ

1
2n−2Mpl,

and thus,

ρφ;END¼
3

2
VðφENDÞ≅ 9π2e

−γ̄ð 2

n2 γ̄2
Þ n
2n−2

×10−11M4
pl⇒HEND

≅
ffiffiffiffiffi
3

10

r
e
−γ̄
2
ð 2

n2 γ̄2
Þ n
2n−2

×10−5Mpl; ð68Þ

which will constrain the values of the parameter γ̄ signifi-
cantly, because in all viable inflationary models, the
value of the Hubble rate at the end of inflation is of the
order 10−6Mpl. In fact, when (68) is of the order 10−6Mpl,
we get

γ̄n ¼
ffiffiffi
2

p � ffiffiffi
2

p

3n

�n−1
: ð69Þ

Next, we calculate the other slow-roll parameter

η ¼ −
2ðn − 1Þ

3n
ϵ

n−2
2n−2 þ 2ϵ; ð70Þ

leading to the following spectral index:

1 − ns ¼ 2ϵ� þ
4ðn − 1Þ

3n
ϵ

n−2
2n−2� : ð71Þ

On the other hand, for n > 2, the number of e-folds is
given by
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N ¼ 1

nγ̄ðn − 2Þ

"�
φ�
Mpl

�
2−n

−
�
φEND

Mpl

�
2−n

#

¼ 3n
2ðn − 2Þ

h
ϵ

2−n
2n−2� − 1

i

≅
3n

2ðn − 2Þ ϵ
2−n
2n−2� ≅

2ðn − 1Þ
n − 2

1

1 − ns
; ð72Þ

where we have used the approximation 1 − ns ≅
4ðn−1Þ
3n ϵ

n−2
2n−2� .

Therefore, from Eqs. (39), (71), and (72), we obtain the
reheating temperature as a function of the spectral index,

Treh ¼
�

3n
4n − 4

�
3=2

ð1 − nsÞ3n−3n−2

× exp

�
177.21 −

6n − 6

ðn − 2Þð1 − nsÞ
�
Mpl: ð73Þ

Note that the maximum reheating temperature is obtained
from the minimum observable value of the spectral index,
which at 2σ CL is ns ¼ 0.9565. Consequently,
(1) For n ¼ 3, the maximum reheating temperature is on

the order of 10−51Mpl.
(2) For n ¼ 4, the maximum reheating temperature is on

the order of 9 × 10−20Mpl.
(3) For n ¼ 5, the maximum reheating temperature is on

the order of 4 × 10−9Mpl.
(4) For n ≫ 1, the maximum reheating temperature is

on the order of 6 × 1012Mpl.
In the same way, the maximum observable value of the

spectral index, which at 2σ CL is ns ¼ 0.9733, leads to the
minimum reheating temperature. In the double exponential
model, it is below 109 GeV when n > 2. Thus, since a
viable model has to satisfy that the maximum temperature
is above 1 MeVand the minimum one below 109 GeV, we
can conclude that the viable double exponential models,
those that have a range of values of the spectral index
leading to a reheating temperature between 1 MeV and
109 GeV, are the ones satisfying n > 3.
To end the section, when n ≫ 1, the reheating temper-

ature is approximately

Treh ≅
�
3

4

�
3=2

ð1 − nsÞ3 exp
�
177.21 −

6

ð1 − nsÞ
�
Mpl;

ð74Þ

and the viable values of the spectral index compatible with
the reheating temperature via instant preheating (33) are in
the range 0.9683 ≤ ns ≤ 0.9688, i.e., ns ≅ 0.9685 and r ¼
9ð1 − nsÞ2 ≅ 9 × 10−3.

V. REHEATING VIA GRAVITATIONAL
PARTICLE PRODUCTION

When reheating is produced via gravitational particle
production of heavy particles whose decay is before the end
of kination, the reheating temperature is given by [8]

Treh ¼
�

10

3π2greh

�
1=4

� hρ̂kini3
H3

kinΓM8
pl

�
1=4

Mpl; ð75Þ

where the decay rate Γ has to be within the following range:

hρ̂kini
3HkinM2

pl

≤ Γ ≤ Hkin: ð76Þ

The maximum reheating temperature is reached at the

end of kination, i.e., when hρ̂kini
3HkinM2

pl
¼ Γ. Therefore,

Tmax
reh ¼

�
10

π2greh

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hρ̂kini

HkinM3
pl

s
Mpl: ð77Þ

According to [8], it has been demonstrated that the
energy density of conformally coupled particles created at
the onset of kination can be approximated by the analytical
formula

hρ̂kini ≅
1

4π3
e
− πmχ

2
ffiffi
2

p
HEND

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχffiffiffi
2

p
HEND

r
H2

ENDm
2
χ ; ð78Þ

where mχ is the mass of the produced particles. Inserting
this expression in (77) we get

Tmax
reh ðmχÞ ≅ 2 × 10−2e

− πmχ

4
ffiffi
2

p
HEND

�
mχHEND

M2
pl

�
1=4

mχ : ð79Þ

By applying the previous result to the exponential
α-attractor model with α ¼ 10−2, we can insert Eq. (79)
into Eq. (60) to establish a relationship between the spectral
index and the mass of the produced particles,

2.6057
1−ns

−1.75 logð1−nsÞ¼ 79.301þ1.2398
1−ns

X−1.25 logX;

ð80Þ

where we have introduced the notation X ≡ 104
mχ

Mpl
.

It is important to note that Eq. (80) has a solution for a
minimum value of ns, which is obtained at the minimum
of the function fðXÞ ¼ 1.2398

1−ns
X − 1.25 logX. By inserting

Xmin ¼ 1.25ð1−nsÞ
1.2398 into (80), we obtain
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2.6057
1 − ns

− 0.5 logð1 − nsÞ ¼ 80.5465: ð81Þ

The only solution to this equation is n̄s ≅ 0.9673
because the function

2.6057
1 − ns

− 0.5 logð1 − nsÞ ð82Þ

is increasing. This implies that Eq. (81) has only one solution.
For this minimum value of the spectral index, Eq. (80) also
has a unique solution: mχ ≅ 10−6Mpl, which leads to a
maximum reheating temperature of around 107 GeV.
For values of the spectral index in the range (0.9673,

0.9709) (where ns ¼ 0.9709 is the maximum value lead-
ing to a reheating temperature above 1 MeV), Eq. (80)
has two solutions. For example, when ns ¼ 0.9709, there
are two compatible masses: mχ ≅ 3 × 10−5Mpl and mχ ≅
5 × 10−15Mpl, with a reheating temperature of 1 MeV.
In other words, assuming that the decay occurs at the

end of kination (which leads to the maximum reheating
temperature), the allowed values of the spectral index are
in the range (0.9673, 0.9709), and for each of these values,
there are two compatible masses. Alternatively, for masses
satisfying the inequality 5 × 10−15 ≤ mχ=Mpl ≤ 3 × 10−5,
there is a value of the spectral index in the range
0.9673 < ns < 0.9709, which leads to a viable maximum
reheating temperature.

VI. CONCLUSIONS

Throughout this work, we have emphasized the close
relationship between the reheating temperature and the
spectral index of scalar perturbations. We have explored
this connection in the context of nonoscillating cosmolo-
gies, where the reheating mechanism is the well-known
instant preheating. Our analysis has shown that the viable
range of reheating temperatures falls between 105 and
108 GeV, resulting in a narrow range of viable values for
the spectral index. Specifically, for an exponential α
attractor with α ¼ 10−2, we find that the spectral index
is close to ns ≅ 0.9670, while for a double exponential
model, we obtain ns ≅ 0.9685.
We have also compared themethodology used in this work

with that of [4]. We pointed out that the main difference
between the two approaches is that, in our work, wemake the
realistic assumption (following the spirit of [2]) that the
created particlesmust decaywhen their effectivemass is great
enough to be considered nonrelativistic. This assumption
does not hold in [4], where the authors assume that the
particles decay immediately after their creation, resulting in a
vanishing effective mass. This leads to differences in the
results obtained and in the parameter constraints.
Finally, we have also considered an alternative to

instant preheating: reheating via gravitational particle
production. In this case, we have established a connection

between the spectral index and the masses of the produced
particles. Our analysis shows that the production of heavy
particles with masses less than 10−5Mpl can lead to viable
reheating temperatures, and values of the spectral index
that fall within the observational domain provided by the
Planck team, at 2σ CL.
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APPENDIX: THE DIAGONALIZATION METHOD

Expanding a quantum field conformally coupled
with gravity in terms of the creation and annihilation
operators

ϕ̂ðη;xÞ ¼ 1

ð2πÞ3=2aðηÞ
Z
R3

ðâkχkðηÞeikx þ â†kχ̄kðηÞe−ikxÞ

× d3k; ðA1Þ
where χk and its conjugate χ̄k are the mode solution of the
Klein-Gordon equation

χ00k þ ω2
kðηÞχk ¼ 0; ðA2Þ

with initial conditions, at some early time ηi,

χkðηiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηiÞ
p and χ0kðηiÞ ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηiÞ

2

r
: ðA3Þ

The renormalized vacuum energy density is given by

hρ̂ðηÞi ¼ 1

4π2a4ðηÞ
Z

∞

0

k2dkðjχ0kðηÞj2 þ ω2
kðηÞjχkðηÞj2

−ωkðηÞÞ; ðA4Þ

where we have subtracted the zero point oscillations of the
vacuum.
To express the vacuum energy density in a simple form,

we can use the diagonalization method, which involves
expanding the modes as follows [13] (see also Sec. 9.2
of [14]):

χkðηÞ ¼ αkðηÞϕk;þðηÞ þ βkðηÞϕk;−ðηÞ; ðA5Þ

where αkðηÞ and βkðηÞ are the time-dependent Bogoliubov
coefficients. Here, we have introduced the positive (þ)
and negative (−) frequency modes

ϕk;�ðηÞ ¼
e
∓i
R

η

ηi
ωkðτÞdτffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p : ðA6Þ

JAUME DE HARO PHYS. REV. D 107, 123511 (2023)

123511-10



Now, imposing that the modes satisfy the condition

χ0kðηÞ ¼ −iωkðηÞðαkðηÞϕk;þðηÞ − βkðηÞϕk;−ðηÞÞ; ðA7Þ
one can show that the Bogoliubov coefficients must satisfy
the system (

α0kðηÞ ¼ ω0
kðηÞϕ2

k;−ðηÞβkðηÞ
β0kðηÞ ¼ ω0

kðηÞϕ2
k;þðηÞαkðηÞ;

ðA8Þ

in order for expression (A5) to be a solution of Eq. (A2).
Finally, inserting (A5) into the expression for the vacuum

energy (A4), and taking into account that the Bogoliubov
coefficients satisfy the equation jαkðηÞj2 − jβkðηÞj2 ¼ 1,
one finds the following diagonalized form of the energy
density [13]:

hρðηÞi ¼ 1

2π2a4ðηÞ
Z

∞

0

k2ωkðηÞjβkðηÞj2dk; ðA9Þ

where it is important to notice that jβkðηÞj2 encodes the
vacuum polarization effects and also the production of real
particles, which are only produced when the adiabatic
evolution breaks. In nonoscillating models, this happens
during the phase transition from the end of inflation to the
beginning of kination, and fortunately thepolarization effects
disappear shortly after the beginning of kination, when the
value of jβkðηÞj stabilizes to a value that we will denote by
jβkj. Thus, it only encodes the production of real particles.
It is not difficult to show that the Bogoliubov coef-

ficients stabilize, taking into account that during kination
one has aðtÞ ∝ t1=3 and HðtÞ ∝ 1=t, where t is the cosmic
time. Effectively, taking into account that the modes that
contribute to the particle production are those that satisfy
meffðηÞaðηÞ ≫ k, we will have

ω0
kðηÞ

ωkðηÞ
¼ a0ðηÞaðηÞm2

effðηÞ þ a2ðηÞm0
effðηÞmeffðηÞ

k2 þ a2ðηÞm2
effðηÞ

∼
a0ðηÞ
aðηÞ ¼ aðtÞHðtÞ ∝ t−2=3: ðA10Þ

Therefore, we conclude that the derivative of the
Bogoliubov coefficients goes to zero, meaning that they
stabilize. In fact, when the rate of expansion of the Universe
slows down, the Bogoliubov coefficients always stabilize,
because in that case, aðtÞ ∝ t

2
3ð1þweff Þ, where weff denotes the

effective equation of state parameter, and thus

aðtÞHðtÞ ∝ t−
1þ3weff
3ð1þweff Þ; ðA11Þ

which converges to zero when weff > −1=3, i.e., for a
decelerating expansion.
Finally, we want to calculate

hϕ̂2ðηÞi ¼ 1

4π2a2ðηÞ
Z

∞

0

k2
�
jχkðηÞj2 −

1

2ωkðηÞ
�
dk;

ðA12Þ

where, as we have done with the energy density, we have
renormalized it subtracting the quantity 1

2ωkðηÞ.
From the diagonalization method and using the system

(A8), we can see that

jχkðηÞj2 ¼
jβkðηÞj2
ωkðηÞ

þ ðjβkðηÞj2Þ0
ω0
kðηÞ

þ 1

2ωkðηÞ

≅
jβkj2

aðηÞmeffðηÞ
þ 1

2ωkðηÞ
; ðA13Þ

because the Bogoliubov coefficients stabilize during kin-
ation. Then, inserting it in (A12) we get

hϕ̂2ðtÞi ≅ 1

4π2a3ðtÞmeffðtÞ
Z

∞

0

k2jβkj2dk ¼ hNðtÞi
2meffðtÞ

:

ðA14Þ
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