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We consider a generalization of the quintessence type scalar field cosmological models, by adding a
multiplicative dissipative term in the scalar field Lagrangian, which generally is represented in an
exponential form. The generalized dissipative Klein-Gordon equation is obtained in a general covariant
form in Riemann geometry, from the variational principle with the help of the Euler-Lagrange equations.
The energy-momentum tensor of the dissipative scalar field is also obtained from the dissipative
Lagrangian, and its properties are discussed in detail. Several applications of the general formalism
are presented for the case of the cosmological Friedmann-Lemaitre-Robertson-Walker metric. The
generalized Friedmann equations in the presence of the dissipative scalar field are obtained for a specific
form of dissipation, with the dissipation exponent represented as the time integral of the product of the
Hubble function, and of a function describing the dissipative properties of the scalar field. For this case the
Friedmann equations reduce to a system of differential-integral equations, which, by means of some
appropriate transformation, can be represented in the redshift space as a first order dynamical system.
Several cosmological models, corresponding to different choices of the dissipation function, and of the
scalar field potential, are considered in detail. For the different values of the model parameters the evolution
of the cosmological parameters (scale factor, Hubble function, deceleration parameter, the effective density
and pressure of the scalar field, and the parameter of the dark energy equation of state, respectively)
is considered in detail by using both analytical and numerical techniques. A comparison with the
observational data for the Hubble function and with the predictions of the standard ACDM paradigm is
presented for each dissipative scalar field model. In the large time limit the model describes an accelerating
universe, with the effective negative pressure induced by the dissipative effects associated with the scalar
field. Accelerated expansion in the absence of the scalar field potential is also possible, with the kinetic
term dominating the expansionary evolution. The dissipative scalar field models describe well the data,
with the model free parameters obtained by a trial and error method. The obtained results show the
dissipative scalar field model offers an effective dynamical possibility for replacing the cosmological
constant and for explaining the recent cosmological observational data.
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I. INTRODUCTION

The theory of general relativity [1,2] is extremely
successful in explaining the gravitational phenomena at
the level of the Solar System. A large number of obser-
vational and even experimental tests, including the high
precision studies of the deflection of light, of the perihelion
precession of the planet Mercury, of the Shapiro time delay
effect, of the frame-dragging effect, and of the Nordtvedt
effect in lunar motion, respectively, have confirmed the
validity and the scientific soundness of the theory [3].
Recently, another of the theoretical predictions of general
relativity was brilliantly confirmed by the experimental
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detection of the gravitational waves [4]. The gravitational
wave studies open a new window into the universe, leading
to a new perspective on the properties of the black holes and
on the mass distribution of the massive compact astro-
physical objects, for example, the neutron stars [5]. Very
recently, the Event Horizon Telescope (EHT) was able to
detect the shadow of the black hole in the center of the
MS87#* galaxy [6,7], with the observations confirming the
general relativistic black hole model. The shadow of a
black hole is an important testing ground for the predictions
of general relativity and of the modified theories of gravity.

However, the improvement of the observational tech-
niques, and the extension of the observations on a much
wider scale, led to the unexpected result that for gravita-
tional systems much bigger than the Solar System, general
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relativity may not be able to provide an accurate description
of their gravitational properties. This situation already
appears at the galactic scale, and it becomes even more
severe at cosmological scales. Hence, it seems that the
theory of general relativity must face a number of very
serious challenges, whose solutions may require a funda-
mental change in our view of gravity and of the physical
properties of the large scale structures in the universe.

One of the major discoveries of the past few decades was
related to the strong observational evidence indicating that
presently the universe is in a state of accelerating expan-
sion [8—15]. These results were obtained from the astro-
physical observations of the distant type Ia supernovae,
whose spatial distribution extends up to a redshift of z =~ 2.
Surprising results also came from the high precision deter-
minations of the temperature fluctuations of the Cosmic
Microwave Background Radiation (CMBR), obtained by the
Planck satellite [16,17]. Moreover, the stunning finding
that the matter content of the universe consists of only 5%
baryonic matter has also been decisively confirmed by
multiple observations. Hence, the present day observational
situation in cosmology convincingly indicates that 95% of
the total composition of the universe resides in the form of
two main (and mysterious) constituents, dark energy and
dark matter, respectively. On the other hand, it is important to
point out that a cosmic fluid, formed of normal matter, and
obeying a perfect fluid type equation of state, cannot trigger
and sustain the accelerated expansion of the universe [18].

A theoretical interpretation of the cosmological obser-
vations can be achieved through the reintroduction in the
Einstein field equations of the cosmological constant A,
first proposed by Einstein in 1917 [19], in order to obtain a
static cosmological model. For the interesting history of the
cosmological constant, of its rejections and returns, as well
as of its many possible interpretations see Refs. [20-24].
The cosmological model, obtained by adding to the
Einstein field equations the cosmological constant A, as
well as a cold dark matter component, is called the ACDM
model. Presently, the ACDM model represents one of the
main theoretical instruments used for the comprehension
of the cosmic dynamics, and for the interpretation of the
observational data.

The ACDM paradigm gives very good fits to the
observations. But it lacks a convincing theoretical founda-
tion, which is first of all related to the interpretational
problems related to the cosmological constant itself. This
makes the physical basis of the ACDM model problematic.
Moreover, the ACDM model is recently facing another
major problem. Measurements of the Hubble constant
in the early universe indicate a value of the order of
Hy < 69 km/s/Mpc, while local measurements give
Hy > 71 km s/Mpc [25]. The contradictions between
the values obtained in the measurements of the Hubble
constant are known as the Hubble tensions, and their
extents depend on the used datasets.

Therefore, to obtain a theoretically consistent description
of the universe, several approaches have been proposed,
which try to solve the cosmological constant problem by
assuming some alternative explanations of the cosmic
dynamics, which could be described as the dark compo-
nent, the dark gravity, and the dark coupling models [26].

One of the important alternatives to the ACDM models is
represented by the dark components model [27-31]. In the
framework of this approach one postulates that the basic
constituents of the universe are the dark energy and the
dark matter, respectively, whose physical properties could
explain, at least at a phenomenological level, the cosmo-
logical observations. Many proposals for the physical
nature of these two dark constituents have been considered
and investigated in detail. Perhaps the simplest dark energy
model can be obtained by using the quintessence type
theories [32-36]. In the quintessence theory the cosmo-
logical evolution of the universe is fully determined and
described by a single scalar field ¢, in the presence of a
self-interaction potential V(¢). The simplest gravitational
action for the quintessence models is given by

2
s= [ [ r-000 -vio)| s )

where by R we have denoted the Ricci scalar, while M,
represents the Planck mass. The cosmological energy density
and pressure of the quintessence scalar field are obtained
as po = ¢*/2 + V(¢) and pg = ¢*/2 - V() [37], giving
for the equation of state w of the quintessence field the
expression w = po/pg = (¢°/2=V($))/($*/2+ V(9)).
Quintessence type cosmological models have been very
successful in interpreting and explaining important charac-
teristics of the cosmic evolution. For recent reviews on
quintessence theories see Refs. [38,39]. In particular,
quintessential cosmological models can solve the og tension
by allowing the conformal coupling of a single dark energy
scalar field to dark matter through a constant coupling [40].
The Hubble tension can be alleviated by considering a
quintessence field that transitions from a matterlike to a
cosmological constant behavior between the recombination
and the present time [41]. The discrepancy between the local
measurements of H, and that inferred from the cosmic
microwave background observations can be reconciled by
assuming the existence of an electroweak axion in the
minimal supersymmetric standard model, with the axion
energy density identified with the observed dark energy [42].
The best-fit of the dark energy parameters was used to
reconstruct the quintessence Lagrangian in [43]. Because of
the derived late phantom behavior of w(z), the reconstructed
quintessence models have a negative kinetic term. The
possibility of alleviating both the H and the og tensions
simultaneously by means of the Albrecht-Skordis “quintes-
sence” potential was considered in [44]. The quintessence
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field can reduce the size of the sound horizon r,, while
suppressing the power in matter density fluctuations before it
dominates the present day energy density. For some recent
works on the cosmological implications of the quintessence
model see Refs. [45-52].

In [53] the coupled quintessence (CQ) model was
proposed, in which the scalar field ¢ and the dark matter
fluid interact with each other through a source term Q,,
which appears in the conservation equations as

v,uTl:((/,) = _Qw vyTl;(m) = Qw (2)

where T, - and T", | are the energy-momentum tensors of
() v(m)

the scalar field and of the dark matter, respectively. It was
also suggested [53] that the source term can be given by
Q, = —kp($)T )V, $, where T, is the trace of the
matter energy-momentum tensor, and $(¢) is the coupling
function that determines the strength of the interaction.

Several other scalar field models have been explored
from a cosmological perspective. In a class of string
theories, depending on the form of the tachyon potential,
the tachyon scalar field can act as a source of the dark
energy [54-57]. The effective Lagrangian for the tachyon
scalar field is given by

L= —V(p)\/1+ 0,00, (3)

where ¢ is the tachyon scalar field and V(¢) is its potential.
The energy density and the pressure of the tachyon field are
given by

giving for the parameter of the equation of state wy the
expression

wp =21 — g7 1. (5)
Pr

For recent studies on the tachyonic field cosmology see
Refs. [58-60].

Another interesting scalar field theory that was intro-
duced to explain the cosmological observations is the k-
essence scalar field model of dark energy. The main
characteristic of the model is the presence of a scalar field
with a noncanonical kinetic energy term. The scalar field
action for the k-essence is a function of the field ¢ and of

y= (1.52/2, and it is given by [61-63],

SZ/PDE(¢7)(>\/__9d4xv (6)

where the Lagrangian density corresponds to the pressure
of a scalar field with a noncanonical kinetic term, given by

Pk = (@) (=x +27), (7)

The energy density of the k-essence field is given by

pr = f(@)(=x +31°). (8)

For the parameter wg of the equation of state of the
k-essence field we obtain

x—1
= 9
Wk 31 9)

For the cosmological applications, and implications, of
the k-essence models, see Refs. [64-68], and references
therein.

Finally, we mention the dilaton scalar field model, which
is an attempt to solve the dark energy problem by using
string theory [69-73]. For the dilation scalar the energy
density and the pressure are given by

pp =—x +3cey?, pp=—y+cey’,  (10)
where ¢ and A are constants. The parameter of the equation
of state of the dilaton scalar field is given by

1 —ce™
WD:i]—?,ce}“/)' (11)

There are also some other approaches to the cosmologi-
cal phenomenology. For example, in the dark gravity
approach it is assumed the gravitational interaction itself
is modified on the galactic and cosmological scales. One
possibility to modify gravity is to go beyond the
Riemannian geometry of general relativity and to use more
general geometries to describe gravity. In this direction
theories in the presence of torsion [74—77], of nonmetric-
ity [78-83], or in the Weitzenbock geometry [84,85] have
been intensively investigated. The third theoretical avenue
for explaining the cosmological phenomenology is the dark
coupling approach, which assumes that ordinary matter can
couple with geometry, through a curvature-matter coupling.
The existence of such a coupling could explain the
accelerated expansion of the universe, as well as the dark
matter problem [86-90]. For reviews of the modified
gravity theories see Refs. [91-96].

Decay processes play a central role in a wide range of
phenomena, including nuclear fission or optical emission.
Dissipation also appears in quantum systems, and it is a
consequence of the dissipative interaction of the quantum
system with its environment [97]. Energy decay is usually
considered as a consequence of a thermodynamic system
exchanging energy irreversibly with its environment, usu-
ally assumed to be a thermal bath. However, there are
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energy decay processes that cannot be explained by
assuming a direct coupling to a thermal bath [98].

A class of dissipative effects, the bulk and shear viscous
processes, has been extensively investigated in astrophysical
and cosmological settings, and they are assumed to play an
important role in the early evolution of the universe. A
cosmic fluid with bulk viscous pressure, in the presence of
the quintessence field can trigger the accelerated expansion
phase of the universe [99]. The presence of bulk viscosity
could also solve the coincidence problem of cosmology. The
bulk viscous Chaplygin gas model was considered in [100].
A recent investigation of a unified cosmic fluid scenario in
the presence of bulk viscosity, with the coefficient of the bulk
viscosity having a power law evolution was carried out
in [101]. Considering such a general bulk viscous scenario,
the observational constraints using the latest cosmological
datasets were obtained, and their behavior was analyzed at
the level of both background solutions and cosmological
perturbations. The observational analyses did show that a
nonzero bulk viscous coefficient is always favored.
Moreover, some of the bulk viscous models can weaken
the current H, tension for some datasets. But from the
Bayesian evidence analysis, it follows that the ACDM model
is favored over the cosmological models with bulk viscosity.

A problem less investigated in the physical literature is
the possibility of a Lagrangian description of dissipative
phenomena. In this respect one must make a clear dis-
tinction between physical (standard) and mathematical
(nonstandard) Lagrangians. A physical Lagrangian is a
Lagrangian function that can be represented as the differ-
ence between a kinetic energy term and a potential energy
term. Other Lagrangians, which also give the correct
equation of motion, but which cannot be represented as
the difference of a kinetic and a potential term, are called
mathematical, or nonstandard, Lagrangians. For example,
the equation of motion of the damped oscillations, describ-
ing the motion of a single particle of mass m in an external
field with potential V(x) and in the presence of friction, can
be obtained, via the Euler-Lagrange equations,

- _ 4o 12
Oox dt ox 0 (12)

from the physical Lagrangian [102,103]

1
L= 67’ <Em).C2 - V<x>>’ (13)
where a dot denotes the derivative with respect to the time ¢
and is given by

.. lav(x)
X+yx+—
m dx

=0. (14)

One can also construct a Hamiltonian for the damped
oscillator in the standard way. By defining p = dLox =
me''x, H = px — L, one immediately obtains

Hze‘“zp—m—i-ey’V(x), H=e" (%m)'cz—l—V(x)). (15)

It is important to note that H as defined above is not the
energy of the system, which is still defined as E =
mx*/2 + V(x), and satisfies the relation dE/dt = F,x,
where F,; = —myx is the dissipative force. Therefore,
H = ¢"E, and it cannot be interpreted as the energy of
the system [104]. It is also interesting to point out that the
equation X + kx = 0 can be derived from the physical
(standard) Lagrangian L = e¥'%?/2, as well as from
the nonphysical Lagrangians L = 1/(e*'x + €¥), L =
%In|&| — kx, or L = (¥* 4 e *¥)1/¥ respectively [102].

From a mathematical point of view, the Klein-Gordon
equation describing the cosmological evolution of a scalar
field in a Friedmann-Lemaitre-Robertson-Walker (FLRW)
geometry belongs to the general class of equations of the
form

i+ F()i+g(x) =0, (16)

where F and g are arbitrary functions of time. Equation (16)
can be derived from the dissipative physical Lagrangian,
=0,

L= o FO ze - g(x)), (17)

with the use of the Euler-Lagrange equations, by taking
into account that OJL/0x :)'cefF<’)d’, d(oL/ox)/dt =

efF(t)dt[J'é + F(t)x], and dL/ox = —g/(x)efF(')d', respec-
tively.

In the Minkowskian space a natural dissipative extension
of the scalar field and of the Klein-Gordon equation can be
considered by adopting for the Lagrangian density the
expression [105]

Ly= e (30.000-v@). ()

where k, are constants. From the Euler-Lagrange equa-
tions, dL/d¢p — 0,(dL/o¢ ) = 0, where ¢ , = o¢p/0x*, we
obtain the equation of motion of the dissipative scalar
field as

0,0 + k, 0"+ V'(¢p) = 0. (19)

In the above equation, by analogy with the equations of
motion for the damped oscillators, one could interpret the
term k,0"¢ as corresponding to a dissipative friction term.

It is the goal of the present paper to extend and formulate
the variational formulation of the dissipative scalar field
by using a fully covariant approach in the Riemannian
geometric framework, and to formulate the dissipative
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Klein-Gordon equation for the scalar field in a general
covariant form. The dissipation is introduced in the
Lagrangian via a dissipation exponent I', assumed to be,
in general, a function of the metric tensor, of the scalar
field, and of the coordinates of the base spacetime mani-
fold. By using the analogy with the simple damped
harmonic oscillator, the dissipative Lagrangian is obtained
then by multiplying the Lagrangian of the “ideal” scalar
field with the exponential of I, so that the new Lagrangian
is constructed as the product of e and the standard
Lagrange function of the scalar field. The generalized
Klein-Gordon equations are obtained in a fully covariant
form for the case of the dissipation exponent having various
functional forms. Particular cases of the dissipative Klein-
Gordon equation are also discussed in detail.

Once the Lagrangian density L, of the scalar field is
known, the basic physical properties of the field can be
obtained from the energy-momentum tensor, which can be
straightforwardly obtained from L through variation with
respect to the metric. We obtain the general form of the
energy-momentum tensor of the dissipative scalar field,
which involves the presence of a new tensor, the dissipation
tensor, which gives a new, significant, and important con-
tribution both to the energy density and to the pressure of ¢.

As a particular example of the general formalism we
consider the case in which the dissipation exponent can be
expressed as the invariant integral of the divergence of a four-
vector u* and of an arbitrary function Q(x*), which we call
the dissipation function, having the mathematical represen-
tation given by I'(gus.x*) = [ V,u*Q(x*),/=gd*x. This
case is analyzed in detail, and the dissipative Klein-Gordon
equation, as well as the corresponding energy-momentum
tensor, is obtained in a covariant form.

We extensively apply the obtained results to generalize,
and extend, the standard cosmological scalar field models,
which have been successfully used to explain the recent
acceleration of the universe. To do this, we restrict our
analysis to the case of the flat, isotropic, and homogeneous
FLRW geometries. For the specific cosmological applica-
tions, we assume that the dissipation exponent can be
expressed as the integral of the product of the Hubble
function H(r) and of the dissipation function Q(t), in the
form I'(r) =3 [ H(r)Q(t)dr. We obtain the generalized
dissipative Klein-Gordon equation, as well as the corre-
sponding energy-momentum tensor for the field in a
cosmological setting. With the help of these quantities,
the generalized Friedmann equation describing the cosmo-
logical evolution in the presence of the dissipative scalar
field is obtained.

To test the cosmological viability of the dissipative scalar
field model, we consider several explicit cosmological
models, corresponding to various choices of the dissipation
function Q. First, the existence of the de Sitter type solution
for this model is proven. Then, several classes of cosmo-
logical models, corresponding to a constant Q and to a

redshift dependent dissipation, are considered in detail.
Models in which the kinetic term and the potential term of
the field can be neglected are investigated numerically. In
each case a comparison with the observational data for the
Hubble function and with the standard ACDM model are
performed, and it is shown that the models give a good
description of the data. The obtained results indicate that
the dissipative scalar field model can be considered as a
viable extension of the standard quintessence type cosmo-
logical models. This model also offers a firm theoretical
foundation, via its variational principle, to different classes
of scalar field cosmologies, and allows the possibility of
their rigorous generalization.

The present paper is organized as follows. In Sec. II, after
briefly reviewing the basic theory of the ideal cosmological
scalar fields, we introduce the dissipative scalar field in the
FLRW geometry via the variational principle. The gener-
alized Klein-Gordon equations are obtained for a dissipa-
tion exponent given by I'(r) = 3 [ H()Q(¢(1), t)dt, with
several particular cases considered. The covariant form of
the Klein-Gordon equation is obtained, and a particular
case is investigated in detail. The Einstein and the gener-
alized Friedmann equations are obtained in Sec. III. Simple
cosmological applications of the dissipative scalar field
model are investigated in Sec. IV, by considering some
simple forms of the scalar field, and by assuming a constant
Q. Comparisons with the observational data and the
standard ACDM model are also performed. A cosmological
model with a dynamic, redshift dependent dissipation
function Q is analyzed in Sec. V. Finally, we discuss
and conclude our results in Sec. VI.

In the present paper we use the Landau-Lifshitz [106]
sign and geometric conventions.

II. THE DISSIPATIVE
KLEIN-GORDON EQUATION

In this section we will introduce the basic variational
formalism for the description of the dissipative scalar fields.
After briefly reviewing the nondissipative case, as well as
its cosmological applications, we proceed to the systematic
presentation of the various forms of the dissipative Klein-
Gordon equation and of their cosmological formulations.

A. Nondissipative (ideal) scalar fields

In a Riemannian geometry, the action for an ideal scalar
field with self-interaction potential V() is given by

1 0P o
o= [ Loax= [ Lo S8 - vip| v=sats. o

where ¢* are the components of the metric tensor and —g is
its determinant.

The Euler-Lagrange equations, giving the minimum of
the action, are
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0 oL, oL,
0x"op, Oop

Therefore, we obtain

£ it) a0

But, it is easy to check that [106]

1
./ dx

where by V, we have denoted the covariant derivative with
respect to the metric and O] = V,V? is the d’Alembert
operator. Hence, we obtain the covariant Klein-Gordon
equation in Riemann geometry, describing the dynamics of
an ideal, nondissipative scalar field, as given by

o (v 35) = v =g, @

ap+ YD (24)

dg

The energy-momentum tensor is defined generally by
the relation [106]

V= B )

where L(g,s.¢) is any physical Lagrangian function,
which is assumed to be independent of the derivatives of
the metric tensor. Hence, for the energy-momentum tensor
of the ideal scalar field we obtain

Ta/)’ =

<¢ a/i ¢a¢/}' - <% gﬂy¢,y¢.b - V(¢)>g(zﬁ' (26)

With the use of the Klein-Gordon equation (24), one
could immediately check that the energy-momentum tensor
of the ideal scalar field satisfies the conservation condi-
tion V(1 ) = 0.

T, can be recast in the standard form of a perfect fluid,

Top = Py + Pp)UsUp = PypGap: (27)

where we have introduced the energy density p, and the
pressure p, of the scalar field, defined as

1
Py = Egﬂy¢.u¢,u + V(¢)1

b= 50D~ V(D) (28)

and the effective four-velocity of the field U,, given by

b
vV gﬂy¢,ﬂ¢,y 7

U, = (29)

respectively.

1. Application: The case of the FLRW geometry

The standard flat, isotropic, and homogeneous cosmo-
logical FLRW metric is given by

ds® = c*df* — a®(t)(dx? + dy* + dz?), (30)

where a(t) is the scale factor. Then, we have \/—g = a>(1).
Furthermore, we assume ¢ = ¢(f). An important observa-
tional quantity, the Hubble parameter, is defined as

H(1) = a(1)/a(?).
The Lagrangian of the time-dependent ideal scalar field
is given by

Ly=d quz - V(qs)). (31)

Thus, Eq. (21) gives

1d [ ,dp\ adv(g)

or, equivalently,
$+3Hp + V' () = 0. (33)

The energy density and the pressure of the cosmological
scalar field become

pp=5H TV, pe=3H V(). (4

B. The dissipative scalar field

We consider now the variational formulation of the
dissipative Klein-Gordon equation. We begin our analysis
with the simple case of the cosmological scalar fields,
which are further generalized to a full covariant formalism.

1. Dissipation in the FLRW geometry

The Lagrangian of a dissipative scalar field in a FLRW
type geometry can be taken as

— @3 H0e <§¢2 - V(qb)). (35)

In the following we will call the function T'(¢) =
3 [ H(t)Q(t)dt the dissipation exponent, where Q = Q1)
is the dissipation function. Then, the Euler-Lagrange
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equation giving the minimum of the action constructed with
the help of the Lagrangian (35) takes the form

dp 3 dp  d*¢  dV(¢) ,
3a*a—- +3 H()Q()dt+a pra 7 a
% e3fH(r)Q(t)dt -0, (36)
giving, for a # 0,
av(¢)

G(1) + 3H(1)(1 + Q(1))(r) + =0. (37)

dg

Hence, the function Q(¢) acts as a novel dissipative term
in the cosmological Klein-Gordon equation.

a. Scalar field dependent dissipation function. Let us
assume now that O = Q(¢(7)). In the following by a prime
we denote the derivative with respect to ¢ or, more
generally, with the argument of the function. In this case
the Euler-Lagrange equation leads to the evolution equation
of the dissipative scalar field as given by

¢ +3H(1+ Q(p(1))h+ V'(¢)
-3 [ HOQ W57 -vie)) =0. (%)

b. Hamiltonian formulation for the time dependent
dissipation function. We introduce now the generalized
momentum, defined, in the case of the Lagrangian (35), as

oL .
P, = 95d _ 303 fH(t)Q(t)dtd)’ (39)

which allows one to introduce the generalized, time
dependent Hamiltonian function H as

G(ﬁz N V(¢)>e3 Jrwowa (40)

as well as the generalized effective energy density of the
scalar field py, defined according to

1.
pﬁpeff) _ <¢2 n V(¢)>63fH(I)Q(t)dt

H:P¢¢—L¢:a3

2
_ p¢63 fH(t)Q(t)dt_ (41)

These expressions for the Hamiltonian and energy
density are also valid for the case of the scalar field
dependent dissipation function, Q = Q(¢(1)).

c. Potentials depending on the time derivative of the
scalar field only. We consider now scalar field models in
which the potential depends on the time derivatives of the
scalar field only, V = V(¢). Then the Euler-Lagrange
equation takes the form

d [ 33 100

a (3 29DY] o,

dg

and it admits the first integral

- dv_@ _ a_(/;e—3 fH(t)Q(t)dt’ (43)

dep

where C is an arbitrary constant of integration. In the
particular case
yv)
; ¢
V A
(@) .

~(1-a) (44)

the dissipative scalar field satisfies the first order differ-
ential equation, given by

. Ce? [ H(HO()dr
p=—m. (45)

a a

C. Covariant formulation of the dissipative
Klein-Gordon equation

We introduce now the Lagrangian of the dissipative
scalar field in the general covariant form as

Sp = / Lyy/=gd*x
:/e (Gupohx) [ ¢V, pV,p — V() |/=gd*x, (46)

where the dissipation exponent I'(g,. ¢, x) is an arbitrary
scalar function of the metric tensor, of the scalar field, and
of the coordinates. A particular, and useful, representation
of the dissipation function is given by the expression

T (gups ho3) = / Vi Q) y=gd'y,  (47)

with u* denoting the velocity four-vector of the cosmo-
logical fluid. In the case of the FLRW geometry, in
the comoving frame u*=(1,0,0,0), and V,u* =
(1//=9)04(/=gu®) = (1/a*) 4 a* = 3H. In an arbitrary
coordinate system [106],

ﬁzLi( /=g l):a_”/lJr i 10— (48)
a /=g 0x* =5 /=g 0x* g

The Euler-Lagrange equations corresponding to the
action (46) are given by
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VoG040
av or afps ¥ “ n
+ |: d;¢) _ (9 gq;b X ):| ol (Gap .0 )\/__g =0 (49)

or, equivalently,

0 a, ¢ a, a¢ aF(.g(l/)” ¢,xa)
s (VB 55) + v GG

L {d‘;;qﬁ) (ga/; ¢, X")]

V=3 =0, (50)

finally giving the dissipative covariant Klein-Gordon equa-
tion as

D¢ + gaﬁvaqﬁvﬁr(gaﬁ’ d)v xa) + V/(Q’))
0T (g 5%

b =0. (51)

D. The energy-momentum tensor
of the dissipative scalar field
By taking into account that 8,/=g=—(1/2)\/=09u309",
and that the Lagrangian density of the scalar field does not
depend on the derivatives of the metric, we obtain for the
energy-momentum tensor the general expression

oL

_ ¢
<{/))Ta/i - ZW - L(/)ga/iv (52)
from which one obtains the energy-momentum tensor of
the dissipative scalar field as

(¢ >Tﬂ—e (Gapb-x") {v oV
1
+ (®aﬁ _gaﬂ) X <§g”yvy¢vu¢_ V(¢)>:| ’ (53)

where we have denoted

5F(ga/}’ ¢’ xﬂ)

G)aﬁ(glw’ ¢’ xﬂ) =2 5gaﬁ

(54)

We may call the tensor ©,4(g, ¢, x*) the dissipation tensor
of the scalar field. For ©,; = 0 and I' = 0, we recover the
energy-momentum tensor of the ideal scalar field.

With the help of the energy density and pressure of the
ideal scalar field, the energy-momentum tensor of the
dissipative scalar field can be written as

(¢>Ta/3 — er(gaﬁs¢,x‘l> [(p¢ +p¢>UaUﬂ 4+ (®aﬂ _gaﬁpqﬁ)}' (55)

1. The particular case I'(g,z3.x*

= [V,u*Q(x*),/=gd*x

For the particular case of the d1ss1pat10n exponent given
by Eq. (47), for the variation with respect to the metric of
I'(g,p.x*) we obtain

6F<ga/7'» xﬂ)

_ 6 1 — 4
5g™ _69“/’/ Ve QW) y=gd'x

:/ 5giﬂ
—/[(ZiZ)WJFVM o
Sl e
X Q(x*)\/—gd*x. (56)

With the use of Eq. (48), we obtain

Vi Q) /=gld*x

71 0w d'x

s(Vut) o sut 1) (

dln /=
=2 O (wZEYTI) (s
S ga/)’ ot s ga/ S ga/

ox*

The variation of the four-velocity with respect to the
metric is given by

1
out = 5 U gy, (58)

which can be obtained from the relations 5g“ﬁuauﬂ =
2u,6ut = 2u, ("8G u,up/2), respectively, where we
have also used the condition of the normalization of the
four-velocity, g% usug = 1. Thus, we immediately find

sut 1
W = 5 u’luauﬂ. (59)
Hence, Eq. (57) becomes

§(Vu)
5gaﬁ

0 éu*  Su*dln,/=g
s ap 5w
 ox og*””  og ox*
1 ou? 1,0
= 2ap a3 g att)

1 dny=g 1,9

0 8ln/=g

+ut
ox*  Sg*%

+2M I/lal/t/; o 7 EM wgaﬂ
1 al,{}L dln \/ 1 a(uau/)’ - g(lﬁ)
_—(@‘Fu )uauﬂ—f—zu 7@)&
1 0
:—V,lu Uy uﬁ+2u pw — (Uglty = Gop)> (60)

where we have used the relation &ln./=g/8¢” =

(1//=9)6\/=g/89".
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Consequently,
8(V,ut) 1 6/—
ofp + a} ﬂ'{
5 /=g 8g*
= E Vﬂu’lhaﬁ + uiwhaﬂ s (61)

where we have introduced the projection operator /i,
defined according to h,; = u,up — g,5. Hence, for the
variation of the dissipative exponent of this particular case,
defining the dissipation tensor of the scalar field, we obtain

0
®aﬁ _/ |:V,1u'1haﬁ + lehaﬁ Q(x”)\/:_§d4x. (62)

Therefore, for a dissipation exponent I =
JV,u*Q(x*)\/=gd*x, depending on the metric, a vector
field u*, and the coordinates only, the energy-momentum
tensor of the dissipative scalar field can be written as

DT 5= [V o) y=gd'x
X [Va(ﬁvﬂrb—i— </ |:V}LM ha/)’-f'u aa ha/}:|
1
x Q(x)\/=gd*x ~ ga,;) <§gﬂvvﬂ¢vu¢ - V(¢)>} .
(63)

a. Dissipative energy-momentum tensor in FLRW geom-
etry. For an FLRW universe, the components of the
energy-momentum tensor of the dissipative scalar field
become

o=t (1021 (1-0p)vie)| <o, (64

o) (30 - vio))

i=1,203. (65)

—ri = er(ga/ivt)(l —

= pyal,

In the particular case of the dissipation exponent given
by Eq. (47), by taking into account that in the FLRW
geometry hy, = 0, we obtain for the 00 component of the
energy-momentum tensor the expression

wrg =100 <§¢2+V(¢>>=p£;ff>. (66)

Equation (66) also gives the Hamiltonian constraint for
the Lagrangian of the dissipative scalar field.

E. The dissipative Klein-Gordon equation with
ek type dissipation

We consider now an alternative Lagrangian for the
description of the dissipative scalar field, given by

S¢ == /L¢\/—_gd4x
= [ e 30T~ V)| vt (o)

where k, are the components of a constant four-vector and
x* a=0, 1, 2, 3, are the coordinates on the spacetime
manifold. For this form of dissipation the Euler-Lagrange
equations take the form

0 " 0 #
2 (vEarrene ) + P e im0 (o)
ox ox?

giving the following dissipative Klein-Gordon equation:

dav(e)

L¢ + g"/’kavﬁqb + 7

= 0. (69)

The energy-momentum tensor of the dissipative scalar
field becomes

(¢)Taﬁ =e k! |: a¢vﬁ¢ (70)

- Ggﬂ%qﬁvm - V<¢>) (9ap = kaxﬂﬂ - ()

In the case of the FLRW geometry, with k, =
(ko,0,0,0), the action of the dissipative scalar field is
given by

1.
i ()
leading to the dissipative Klein-Gordon equation

¢+ BH + ko) + V'(¢) = 0. (73)

The components of the energy-momentum tensor of this
type of dissipative scalar fields are obtained as

l(1 +kot)

(A)T9 — gkot
0=¢ 3

+(1=ko)V($) | =pS™  (74)

and
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AT =—¢ <¢ V(¢)> -p$™. =123, (75)

respectively.

F. Potentials depending on the gradient
of the scalar field

Finally, we consider the covariant formulation of the
dissipative Klein-Gordon equation in the presence of a
potential that depends on the magnitude of the gradients of
the scalar field X, V = V(X), with X =V, ¢V?p. The
action of the dissipative scalar field system is given by

S¢ = /er(gaﬁ X9) |: “ﬂv ¢V/j¢ V( ):| \/—_gd“x, (76)

leading to the Euler-Lagrange equation

dv(X
<1‘ % >D¢+9””Vﬂ¢vaf<gaﬁ,¢,xﬂ>

dv(X)
— PV )Y 2
g ﬂ¢ a dx
% ar(.ga/)'» ¢7 xﬂ)
o
The energy-momentum tensor of the scalar field in the

presence of scalar field dependent potentials is obtained in
the form

91 =004 (1-2280) 9 40,

25F(gaﬂ’¢’xﬂ)
5q%

L= V)|

= 0. (77)

i —gaﬂ) Ggﬂ”wquﬁ—V(X))] .

(78)
III. THE EINSTEIN GRAVITATIONAL

FIELD EQUATIONS

In the following we consider a gravitational model,
containing, besides the gravitational term, a nonminimally
coupled dissipative scalar field, with Lagrangian density
L,, and an ordinary matter term, described by the
Lagrangian L,,. Hence, the action of the present theory
can be generally written down as

4
c
S=1[ |- R
/Q[ 162G
A
= - R
A[ 162G

- V(d)(x"’))) + Lm] V/—gd*x. (79)

(9)+L,+ Lm} /—gd*x

. 1 0p(x) 0p(x")
F(gu/i»x $0ap) [ Z v ZFNT T
(9) +e (2 T "o oax

The variation of the Ricci scalar is obtained in the
following form:

S(Ry/=9)R=5(R.g" \/=9)
— (R ) V00" 43R/ (50

The term ¢*“6R,, can be written as g““6R,, = V,w*,
where w? = g#6I'%, — ¢**6I%,, with T%, denoting the
Christoffel symbols associated with the Riemannian metric
g. In the standard approaches to general relativity, the
boundary term ¢**6R,, /=g is canceled out with the use of

the Gauss theorem,
/ g“”&Rﬂy,/—gd‘*x = / V wh/=gd*x
Q Q

== / WldSﬂ, (81)
oQ

where dS; is the element of integration over the hypersur-
face surrounding the four-volume element d€2, under the
assumption that the variations of the field cancel at the
integration limits. Hence, the gravitational field equations
in the presence of a dissipative scalar field and a vanishing
boundary term take the form

1 &G

R/w - Egm/ = 7

(<¢)Tﬂl/ + (m)Tﬂv)’ (82)
where the energy-momentum tensor of the dissipative
scalar field is given by Eq. (53), while T, is the
energy-momentum tensor of ordinary matter, defined as
('”)T,w =(2/\/=9)6(\/=gL,,)/8¢"*. The variation of the
action (79) with respect to the scalar field ¢ gives the
equation of motion of the scalar field, Eq. (51),
respectively.

A. The generalized Friedmann equations

We will consider in the following the case of a dissipative
scalar field with a dissipation exponent given by I'(¢) =

3 [H(1)Q(r)dr. Then the effective density p" of the

dissipative scalar field (the Hamiltonian constraint) is given
by Eq. (41).
We also assume that in the comoving frame the energy-

momentum tensor of the scalar field is given by ()T} =

pf;ff) and T = — {(/fff>61 i =1, 2, 3. For the adopted

form of the dissipation exponent the effective energy of the
scalar field is given by Eq. (66).

To determine the form of the effective pressure p[(/) D of
the dissipative scalar field, we impose the condition of the
conservation of the effective quantities in the cosmological

background, which can be formulated as
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Equivalently, Eq. (83) can be written as
py+3H(1+ Q)py +3HpS Ve T =0 (84)

or

b +v (@) + 310 + )% L OV()

+3HpSMe T =0, (85)

+3H(1

With the use of the dissipative Klein-Gordon equa-
tion (37) we can now fix the effective form of the pressure
of the dissipative scalar field as

Py = (14 Q)pye™® (86)

It is easy to check that with this form of pf;ff), Eq. (83)is
equivalent to the dissipative Klein-Gordon equation (37).
Hence, for the flat FLRW metric (30), the Friedmann
equations in the presence of a dissipative scalar field, with

the dissipative exponent I'(z) = 3 f H(1)Q(t)dt, take the
form

871G | (eff
3H? = =5 (p§™ + puc?)

8 8zG | (1.

n KE > 3fH(z)Q(r)dz+pm02} (87)

. 87G , (e
2H +3H? = =3 (py" + p)
kY4

__c—[( +Q)( ¢’ —V(¢>>
W & H0ewdr pm], (88)

which must be considered together with the dissipative
Klein-Gordon equation, Eq. (37). By eliminating the term
3H? between Egs. (87) and (88) we obtain the time
evolution of the Hubble function as

871G
_—2(me2 +pm) (89)

For Q = 0 we recover the basic equations describing the
standard quintessence cosmological models.

Once V(¢), Q(r), and the equation of state of the
cosmological matter p,, = p,,(p,,) are known, the system
of Egs. (87)—(89) and (37) represents a system of differ-
ential-integral equations for the unknowns (H, ¢, p,,).

From the Friedmann equations (87) and (88) we can
obtain the generalized conservation equation

3

& p=0. (90)

d, 5 (),  da® (e
(a ) ”

d 2
2Py +—(@puc?) +

ar v

Since we have already assumed that the effective dis-
sipative scalar field is conserved, it follows that the matter
energy density is also conserved, and hence no energy-
matter transfer can take place between the dissipative scalar
field and the normal baryonic matter. Hence, the baryonic
matter content of the universe satisfies the conservation
equation,

pm+3H(pm+il) —0. (91)

A useful cosmological observational quantity, the decel-
eration parameter ¢, having the definition

d 1 H
1= dtH H? , (92)
is obtained as
:l 1+3(1+Q( ))( ¢ 3fH(t>Q(t)dt+pm
2 G+ 3fH Mt pc?
(93)

We can also introduce the parameter w of the equation of
state of the dark energy, which is given by

(eff)

V4
w= Z/;ff) :(1+Q)@~ (94)
Py
Py

1. Dimensionless form of the generalized
Friedmann equations

To simplify the mathematical expressions of the
Friedmann equations, we define a set of dimensionless
variables (z, h,®, U, r,, P,,), defined according to

3c
t=—1. H=Hyh, O,
Hy' o P=\ g6
3H3c? 3H? 3HZ?
v=""0p, =0 =0 p 95
872G P =gz m  Pn=gg P ()

where H|, is the present day value of the Hubble function.

The dimensionless matter density can also be written as
P = Pm/Pe = Q. Where p. = 3H3/87xG is the critical
density, while Q,, denotes the density parameter of the
baryonic matter.
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Then the Friedman, the Klein-Gordon, and the energy
balance equations take the form

2
"= F <d®> +U(<1>>} QM0 Ly (96)

2\ dr
dh ) 1 /d®\2
e[ o (3(40) - vw)]
x &2 J e P,,,}, (97)
i dod
it 1 T LU(e) =
d12+3h( +0) dT+U( ) =0, (98)
d
"m o 3n(r, + P,) = 0. (99)
dr

Moreover, we introduce the substitution

u() —/h(r)Q(r)dr, (100)

giving u'(r) = Q(7)h(z). Then the system of the
Friedmann-Klein-Gordon equations of the dissipative
quintessence cosmology can be formulated as a second
order differential system, given by

() -o{ L) uo]oon) oo

2u_2dudg 3 (dny?
Qdi* Q*drdr  Q*\dr

— _3{ B <§)2 - U((D)} e 4 Pm}, (102)

AL 1\ dud®d

31+ ) )y =0, (103

dT2+<+Q>deT+ (®) (103)
d
"m o 3n(r, + P,) = 0. (104)
dr

2. The generalized Friedmann equations in the
redshift space

To allow a straightforward comparison between the
theoretical predictions and cosmological observations we
introduce, instead of the time variable, the redshift z,
defined as 1/a =1+ z.

Then the system of equations describing the cosmologi-
cal evolution in the presence of a dissipative scalar field
takes the form

=2 (105)

do(z)  v(z)
dz  (1+2)h@)’ (106)
h*(z) = B (1+2)%h*(2) (d?l_iz))z + U((I)):| o3u()
(2. (107)
—2(1 +z)h(z)&(;)+3h2(z)

—-3{ a0 (3 (1+ 96 () -v@))

« e3“(z>}, (108)
dv(z) ,
—(1+ z)h(z)d—z—i- 3h(z)(1 + Q(2))v(z) + U'(®) = 0,
(109)
—(1+2) drzl’(z>+3rm(z) =0, (110)
Z

where we have denoted v =d®/dr and we have
assumed P,, = 0.

By eliminating /#%(z) between Egs. (107) and (108), we
obtain for A(z) the following differential equation:

h(z) dhiz) _ B(l + 2)h(2) (1 +%Z)) <&(Z)>2

dz
0(z)
1+z

3 ry,
2147

_% U(q))} eHle) 4 (111)

Equations (105)—(110) represent a system of first order
ordinary differential equations with the unknowns
(u, @, v, h,r,), with the solution satisfying the constraint
(107). To solve the system, the functional form of the
functions Q(z) and U(¢) must be provided. The system
must be integrated with the initial conditions u(0) = u,
®(0) =@y, v(0) =wvy, h(0)=1, and r,(0) = ryu,
respectively. Equation (110) can be immediately integrated
to give for the matter density parameter the expression

rm(2) = Q,(2)

= QmO(l =+ Z)37 (112)

where Q,, is the present day matter density parameter.

IV. SIMPLE COSMOLOGICAL MODELS
WITH DISSIPATIVE SCALAR FIELD

In the present section we will investigate the cosmo-
logical implications of the dissipative scalar field models by
considering some simple analytical forms of the dissipation
function Q(z). We will consider the effects of dissipation
only on the late cosmological evolution, and hence we will
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neglect the effects of the matter pressure in the field
equations (105)—(110), which are the basic equations
describing the expansionary dynamics of the universe for
the dissipation exponent given by I'(z) = 3 [ H(7)Q(z)dx.

To test the cosmological viability of the dissipative scalar
field model we will compare its theoretical predictions with
the standard ACDM model, and with a set of observational
data for the Hubble function.

In a three component universe, consisting of baryonic
matter, dark matter, and dark energy, respectively, the
Hubble function of the ACDM model is given by

\/ —5 +QA_H0\/Q” 1+2)0°+Q,, (113)

where QI = Q) + Q' and Q" = p,/per Qow =
LM/ Pers and Q,\ = A/p,,denote the density parameters of
the baryonic matter, dark matter, and dark energy, respec-
tively. In the ACDM model the deceleration parameter is
given by the relation

3(1 +2)°Q,,
2[Q) + (1 4+ 2)°Q,,]

q(z) = -1 (114)

In the following we adopt for the matter and dark energy
density parameters of the ACDM model the values
Qpy = 0.2589, Q, = 0.0486, and Q, = 0.6911, respec-
tively [17]. Then total matter density parameter €, =
Qpm + Q, has the value Q,, = 0.3089. The present day
value of the deceleration parameter is given by
q(0) = —0.5381, indicating that presently the universe is
in an accelerating phase.

A. The de Sitter solution

As a first example of a cosmological model with
dissipative scalar field we will consider the case for which
the Hubble function is a constant, # = hy, = const, corre-
sponding to an exponential expansion of the universe, and
with a deceleration parameter ¢ = —1. Moreover, we
assume a vacuum universe, with r,, = 0. Then, by adding
Egs. (96) and (97) we obtain the relation

h22+Q

01+Qe @) = 2U(®).

(115)

This equation is identically satisfied for Q = —2, and
U(®) = 0. The Klein-Gordon equation becomes

D d®
S _3hy— =0,

- (116)

with the general solution given by

() = <L

63}10‘[ + C s
3h, 2

(117)

where C; and C, are arbitrary constants of integration. We
can take C, = 0 without any loss of generality. For the
dissipation exponent we obtain the expression I'(7) = —6hgz.
Hence, in this simple model, the exponential expansion of the
universe is triggered by the exponential increase of the scalar
field, downsized by the decrease of the dissipation exponent.

An alternative approach for obtaining de Sitter type
solutions is based on directly solving the Friedmann
constraint equation (96) for a constant ~# and vanishing
matter energy density. Then we obtain the differential

2 —F(‘[) ] ¢

- (118)

which, once the field potential and the dissipation exponent
are known, can be directly integrated to give the evolution
of the scalar field ®(z). For U(®) = 0, we obtain

®(7) = V2h, / e T

For I'(z) = —6hyr, and taking the additive integration
constant as zero, we obtain ®(z) = (v/2/3)e*?, which
allows us to fix the integration constant C; in Eq. (117)

as Cl = \/§h0

I/2dz 4 const. (119)

1. de Sitter type expansion with constant dissipation
Junction Q, # -2
Let us assume now that the dissipation function Q takes

constant values at least on a finite time interval, so that
0 = Qy = const # —2. Then, we obtain

52+ Qo =300t

v@(E) =21

Qo #-2. (120)

In the limit of large z, the scalar field potential tends to
zero, lim,_  U(®(z)) =0
The Klein-Gordon equation takes the form

d (dD\? d®\?
E(E) +6h0(1+Q0)(E>

2+ Qo 31,0

-3
%1+ Qp

= 0. (121)

A first integration leads to

do B (2+ Qo)h§ —3hyQor
dr \/C3 (15 Qo)1 +6ho(1+ Q)] - 12
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where Cj is an arbitrary integration constant, leading to the
time evolution of the scalar field as given by

o(r) = 2,/Cy | — h3(2+ Qp)e 3t
 3hoQy C3(14 Qo) [6h(1 + Q) + 1]

’

~ h2<2—|— Qo)e—BhOQOt
_ 1 _ 0
fanh (\/ TG T+ 00)6ho (15 00) + 1])

(123)

where an integration constant has been set to zero. In this
model the dependence of the potential on the scalar field is
given in a parametric form, U = U(zr), ® = ®(z). Both
positive and negative values of Q, are possible, and the
evolution of the scalar field, and of its potential, is basically
determined by the dissipation constant. Hence, depending
on the numerical value of Q,, a large number of exponen-
tially expanding vacuum cosmological models can be
obtained. In the limit of large times, as one can see from
Eq. (122), ®(7) ~ 1/C;1, and, even in the absence of the
potential of the scalar field, the de Sitter expansionary
phase is triggered by the time derivative of the scalar field.

B. Models with dynamical Hubble function

In the present subsection we will consider two simple
cosmological models in the presence of a dissipative scalar
field and of a matter component. We will consider two
classes of models, under the assumptions that either the
scalar field potential or its kinetic term can be neglected. A
comparison with the observational data, and with the
standard ACDM model will also be performed.

1. Models with vanishing scalar field potential

We consider now a cosmological model in the presence
of a dissipative scalar field and of ordinary pressureless
matter, in which we give up the assumption of the global
constancy of the Hubble function. For simplicity, we
assume that the dissipation function Q is a constant,
0 = Q, = const, and that the potential of the scalar field
vanishes, U(®) = 0. Then, the evolution of the matter
density is given by Eq. (112). From the Klein-Gordon
equation (98) we obtain for the time derivative of the scalar
field the expression

® = Dyq—301+00), (124)

where @, is an arbitrary constant of integration. For the
dissipation exponent we obtain '=3Q, [ (z)dt=3Q,Ina.
By combining Egs. (96) and (97), we obtain the cosmological
evolution equation of the model as

dh )
—§<1 +%>cb2er—§rm. (125)

dr 2 2 2

In the redshift space we obtain the following differential
equation for A(z):

3
2

(126)

Equation (126) must be integrated with the initial
condition h(0) = 1, after fixing the numerical values of
the parameters (Qy, Dy, Q,0)-

The variations of the Hubble function and of the
deceleration parameter are presented as a function of the
redshift z in Fig. 1. The cosmological parameters corre-
sponding to the ACDM model are also shown, together
with a set of observational data for the Hubble function, as
compiled in [107].

As one can see from Fig. 1, this simple dissipative
cosmological model gives a good description of the
observational data and coincides with the predictions of
the ACDM model for a large range of redshifts. The Hubble
function can be expressed in an exact form as

h(z) = \/1 +§[(1 + 230 = 1] 4 Q0 [(1 +2)° 1],

(127)

while the deceleration parameter can be obtained in the
form

142z)dh(z
Q(Z):(h(z)) d(z -
_ (24 1)[3Q0(14+2)2 +30F(2+ Q) (1 +2)2+7] »
2{1+103[(14+2)°200) — 1] +.Q,[(1 +2)° = 1]}
(128)

The parameter of the equation of state of the dissipative
scalar field takes the form
w = (14 Q) = const. (129)

The best fit with the observational data is provided for

Qo = —1.29, which gives w = —0.29. The variations of the

effective density p((/)eff)

pressure p},eff) are represented in Fig. 2.

For the best fit values Q, = —1.29, the effective density
and pressure of the scalar field are constants, with the
pressure taking small negative values. Such a dissipative

of the scalar field,and of its effective
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2.0 25

FIG. 1. Variation of the dimensionless Hubble function %(z) (left panel) and of the deceleration parameter ¢(z) (right panel), in the
dissipative scalar field cosmological model with U(®) = 0, for <i>0 = 0.12, for Q,,, = 0.30, and for different values of Qy: Qg = —0.29
(dotted curve), Oy = —0.49 (short dashed curve), Q, = —0.69 (dashed curve), Q, = —0.89 (long dashed curve), and Q, = —1.29
(ultralong dashed curve), respectively. The predictions of the ACDM model are represented by the red solid curve, while the
observational data are represented together with their error bars.
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FIG. 2. Variation of the effective energy density p; ) of the scalar field (left panel) and of the effective pressure pf, ) (right panel), in

the dissipative scalar field cosmological model with U(®) = 0, for (iDO =0.12, Q,,0 = 0.30, and for different values of Qy: Qg = —0.29
(dotted curve), Oy = —0.49 (short dashed curve), Q, = —0.69 (dashed curve), Q, = —0.89 (long dashed curve), and Q, = —1.29
(ultralong dashed curve), respectively.

For Q) = —1.29, the behavior of the Om(z) function in
this dissipative scalar field model is very close to its
behavior in the standard ACDM paradigm.

scalar field behaves like a cosmological constant even in
the absence of the potential term.

For the sake of completeness, we will also consider
one more parameter for the present cosmological model,

which allows testing its viability, namely, the Om(z)
diagnostic, with

h*(z) -1

Om(z) = m .

(130)

For the ACDM model, the function Om(z) is a constant,
equal to the present day matter density €2,,,. The variation
of the Om(z) function is represented in Fig. 3.

2. Dissipative scalar field models
with negligible kinetic term

We consider now the case in which the potential term
dominates the effective energy density and pressure of
the scalar field; that is, U(®) satisfies the condition
U(®) > ®*/2. For simplicity, we assume that the scalar
field potential is given by the expression

LY

U(@) =3

(131)
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FIG. 3. Variation of the Om(z) diagnostic function in the

dissipative scalar field cosmological model with U(®) =0,
for ®y = 0.12, Q,,o = 0.30, and for different values of Qy: Qy =
—0.29 (dotted curve), Qg = —0.49 (short dashed curve), Q, =
—0.69 (dashed curve), Qy = —0.89 (long dashed curve), and

o = —1.29 (ultralong dashed curve), respectively. The solid red
curve represents the Om(z) function in the ACDM cosmology.

where m is a constant. In the following we also neglect the
matter pressure, taking P,, =0, and assume that the
dissipation function is a constant. Then, in the redshift
space, the system of equations describing the evolution of
the scalar field and of the Hubble function takes the form

The system of equations (132)—(134) must be solved
with the initial conditions ®(0) = ®,, u(0) = u, and
h(0) = 1, respectively.

The redshift evolutions of the Hubble function and of the
deceleration parameter of the dissipative scalar field model
with a negligible kinetic term are represented in Fig. 4. As
one can see from the two panels of Fig. 4, with the values of
Qo moving into the negative range, the concordance with
the cosmological data and the ACDM model becomes
better and better for both 4(z) and ¢(z). For Qy = —0.45,
both the Hubble function and the deceleration parameter
are basically visually indistinguishable from the predictions
of the standard cosmological paradigm.

The variation of the scalar field potential and the Om(z)
diagnostic function are presented in Fig. 5. The scalar field
potential is roughly a constant, almost exactly mimicking a
cosmological constant. The redshift variation of the ® type
potential is (almost) exactly compensated by the dissipation
exponent, resulting in an almost constant contribution to
the Friedmann equations. However, the cosmological
evolution, even accelerated, is not exactly of the de
Sitter type. The Om(z) function also tends toward its
ACDM value, and thus this cosmological parameter is well
recovered in the dissipative scalar field cosmology.

The parameter of the equation of state of the dissipative
quintessence type dark energy is given by

do
d(Z) G M(Z)h ’ (132)
o < (1+2)h(2) w=—(1+ Qp) ~ —0.55, (135)
(142)h(2) % 2= 3h(z) (14 Qo)u(z) ~m®(2) =0, (133)
dh(z) 3 3 if one uses the best empirical approximation of Q,. This
h(z) dz _ZQqu)z(Z)(l +z)30! +§Qm0(1 +2% constant negative equation of state is different from the
(134) equation of state of the quintessence fields with negligible
kinetic terms, which is w = —1.
0.4 ;' ' ' ' ' '
o2}
= —~ 0.0'
-0.2 » 1
-0.4 » .
-0.6 '1 1 1 1 1 1

z

0.0 0.5 1.0 1.5 2.0 25

FIG. 4. Variation of the dimensionless Hubble function /(z) (left panel) and of the deceleration parameter ¢(z) (right panel), in the
dissipative scalar field cosmological model with a negligibly kinetic term, and U(®) = m®?/2, for ®(0) = 0.11, u(0) = 0.30,
Q,.0 = 0.30, m = 0.12, and for different values of Qy: Qo = 0.45 (dotted curve), Qy = 0.35 (short dashed curve), Oy, = 0.15 (dashed
curve), Qg = —0.15 (long dashed curve), and Q, = —0.45 (ultralong dashed curve), respectively. The predictions of the ACDM model
are represented by the red solid curve, while the observational data are represented together with their error bars.
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values of Qy: Qg = 0.45 (dotted curve), O, = 0.35 (short dashed curve), Q, = 0.15 (dashed curve), O,

= —0.15 (long dashed curve),

and Q) = —0.45 (ultralong dashed curve), respectively. The predictions of the ACDM model are represented by the red solid curve.

V. COSMOLOGICAL MODELS WITH
DYNAMICAL DISSIPATION FUNCTION

We consider now a more general class of cosmological
models, in which the dissipation function is dynamical. For
simplicity, we adopt for Q a simple functional representa-
tion as

0(z) = Qo(1 + 2)%,

where O and a are constants. For the potential of the scalar
field we still adopt the simple quadratic form (131), and we
also keep the kinetic term of the field in the mathematical
formalism. The system of equations to be solved is
Egs. (105)—(110), together with a set of appropriately
chosen initial conditions. By taking into account the
explicit form of Q(z), Eq. (105) can be integrated to give

u(z) Qo

— (1 +2)~
a
Then, the equations describing the cosmological evolu-
tion of the universe in the presence of a dissipative scalar
field with a dynamic dissipation function take the form

v(z)
(1+2)h(z)’

(136)

(137)

do(z)

dz

(138)

wo e 3 { 24 Qo1 +2)(1 + 22 (‘%’)2
—mQy(1 + Z)a_lq)z(Z)}e‘}go(l“)"
P01 + 2 (139)

(1494 L 3 (2) 140y (14 2)70(2) - m(2) =0.

(140)

The system of equations (138)—(140) must be integrated
with the initial conditions ®(0) = ®,, v(0) = vy, and
h(0) = 1, once the numerical values of the parameters
(Qg, @, m) have been specified.

For the sake of comparison we also present the
cosmological evolution in the presence of the ideal
quintessence field with quadratic potential, with I" = 0,
that is, in the absence of any dissipative phenomena.
The results of the numerical integration of the ideal
quintessence field equations are represented by an orange
curve.

The redshift variations of the Hubble function and
of the deceleration parameter are represented in Fig. 6,
for a constant Q, and different values of a. The numeri-
cal results show a relatively strong dependence on the
numerical values of the parameter «, but for a = —0.60,
the predictions of the dissipative scalar field cosmologi-
cal model, and of the ACDM model basically coincide
for both the Hubble function and the deceleration param-
eter. For low redshifts, up to z~ 1.5, the cosmological
evolution is basically independent of the numerical
values of ¢, and the concordance with the ACDM model
is very good, at least for the rescaled Hubble function
h(z). The model can also reproduce very well the
predictions of the ACDM model for the deceleration
parameter.

The variations of the effective energy density of the
dissipative scalar field, as well as the behavior of the
effective pressure for the quadratic field potential, are
represented in Fig. 7. For the best fit values of the model
with the cosmological observations both the energy density
and the pressure become approximately constant in the
considered range of z, and hence they mimic a cosmologi-
cal constant.

The parameter w(z) of the equation of state of the scalar
field is given by
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FIG. 6. Variation of the dimensionless Hubble function /(z) (left panel) and of the deceleration parameter ¢(z) (right panel), in the
dissipative scalar field cosmological model with dynamical dissipation function, and quadratic scalar field potential U(®) = m®?/2, for
®(0) =0.11, »(0) = 0.30, Q,,,0 = 0.3089, m = 0.12, Oy = —0.89, and for different values of a: @« = —1.29 (dotted curve), a = —1.15
(short dashed curve), @ = —0.98 (dashed curve), a = —0.85 (long dashed curve), and @ = —0.60 (ultralong dashed curve), respectively.
The predictions of the ACDM model are represented by the red solid curve, while the observational data are given together with their
error bars. The evolution of the cosmological parameters of the ideal quintessence field with quadratic potential, with I' =0, is
represented for m = 0.682, ®(0) = 0.19, and v(0) = 0.01 by the orange curve.

(14 Qp(1+2)7][(1 + Z)zhz(z)(d?;_iz))Z — m®2(z)] On. the other hand, as one can see from Figs.. 6,7, and 8,
w(z) = 212, dD()2 5 . by using a different set of values for the potential parameter
(14 2)*h(2) (Fg) "+ m®*(2)] m and for the initial conditions ®(0) and (0), the ideal

(141)  quintessence field model with quadratic potential can also

give a good description of the observational data for the

The variation of the functions w(z) and Om(z) are  Hubble function, and of the ACDM model. However,

represented in Fig. 8. It is interesting to note that even the  significant differences do appear in the behaviors of the

parameter of the equation of state of the scalar field is  energy density and pressure of the ideal and dissipative

positive for all considered redshift range, and the model still ~ scalar field, as well as in the parameter of the equation of
can explain satisfactorily the observational data and gives  state of the dark energy.

almost the same predictions as the ACDM model. The Hence, at least in principle, it is possible to construct
behavior of the Om(z) function is strongly dependent on  ideal quintessence models that mimic their dissipative
the numerical values of a, but for « = —0.60 it approaches  counterparts at the background evolution level by adopting
significantly the ACDM value. different values for the potential parameters, and for the
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FIG. 7. Variation of the effective energy density of the scalar field (left panel) and of the effective pressure (right panel), in the
dissipative scalar field cosmological model with a dynamical dissipation function, for ®(0) = 0.11, »(0) = 0.30, Q,,o = 0.3089,
m = 0.12, Qo = —0.89, and for different values of a: « = —1.29 (dotted curve), a = —1.15 (short dashed curve), a = —0.98 (dashed
curve), « = —0.85 (long dashed curve), and o = —0.60 (ultralong dashed curve), respectively. The evolution of the cosmological
parameters of the ideal quintessence field with quadratic potential, with ' = 0, is represented for m = 0.682, ®(0) = 0.19, and
v(0) = 0.01 by the orange curve.
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FIG. 8. Variation of the equation of state w(z) (left panel) and of the Om(z) function (right panel), in the dissipative scalar field
cosmological model with a dynamical dissipation function, for ®(0) = 0.11, »(0) = 0.30, Q,,0 = 0.3089, m = 0.12, Oy = —0.89, and
for different values of a: @ = —1.29 (dotted curve), a = —1.15 (short dashed curve), a = —0.98 (dashed curve), a = —0.85 (long dashed
curve), and @ = —0.60 (ultralong dashed curve), respectively. The prediction of the ACDM model for the Om(z) function is represented
by the red solid line. The evolution of the cosmological parameters of the ideal quintessence field with quadratic potential, with " = 0, is
represented for m = 0.682, ®(0) = 0.19, and »(0) = 0.01 by the orange curve.

initial conditions of the scalar field. The opposite situation
may also be possible, with dissipative scalar field models
giving an equivalent effective description of ideal quintes-
sential field models. However, a rigorous statistical analysis
of the observational datasets (Hubble, Pantheon, etc.) may
still allow one to clearly discriminate between ideal and
dissipative quintessence field models, due to their very
different predictions for the parameter of the dark energy
equation of state.

Nevertheless, important differences may appear at the
perturbative level between ideal and dissipative quintes-
sence models. In [108] it was shown, after performing a
dynamical system analysis of the background and pertur-
bation equations in the ACDM cosmology and in the
quintessence models with an exponential potential, that in
the case of quintessence the perturbations drastically
modify the properties and stability of the background
evolution. It turns out that in the quintessence model there
is one and only one stable point. The behavior of this stable
point leads either to an exponentially increasing matter
clustering, not detected in cosmological observations, or to
a physically not interesting Laplacian instability. Hence, the
quintessence cosmological models may be in a severe
disadvantage as compared to the standard ACDM model.
Some of these problems may be solvable in the dissipative
quintessence scenario, which, for example, may limit the
exponential increase of the matter clustering via the
dissipation of the scalar field energy.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the cosmologi-
cal implications of a dissipative scalar field, whose theo-
retical description can be obtained from a variational
principle, inspired by the case of the simple damped

harmonic oscillator. In performing such a generalization
and extension of the scalar field models we assume that
dissipation may be a general property of physical systems,
and its presence should be unavoidable in any natural
process. It is interesting to note that at very low temper-
atures the superfluid component of the liquid helium
behaves as an irrotational ideal fluid, flowing without
friction [72,73]. However, once a critical velocity v, is
reached, dissipation sets in, and the flow is not frictionless
anymore. In the standard physical interpretation of this
process, it is assumed that dissipation in the superfluid flow
is due to the creation, motion, and evolution of the
superfluid quantized vortices in the liquid [72,73].
Dissipation can generally be attributed to the interaction
of the given physical system with an external (thermal, for
example) bath or to the interaction with another physical
system. The interaction between dark energy and dark
matter may provide a possible physical mechanism for the
presence of the dissipative effects of the two basic
components of the universe.

Various forms of the dissipative Klein-Gordon equation
have been investigated, mostly from a mathematical point
of view. The dissipative Klein-Gordon equations are
usually strongly nonlinear partial differential equations.
An equation of the form

Ou+u = —g(o,u)?, (142)

where ¢ is a constant, and (u = 97 — 92, was investigated
in [109], where it was shown that the solution of the
nonlinear equation has an additional logarithmic time
decay in comparison with the free evolution. The dissipa-
tive one-dimensional Klein-Gordon equation
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Uy = Uy + b(x)u, + f(u) + h(Vu) =0, (143)
where f, g, h, b are arbitrary functions, was studied
in [110]. A particular dissipative nonlinear Klein-Gordon
equation of the form
Uy, — Uy, +au—pu’ =0, (144)

with @ and f constants, plays an important role in many
fields of physics, such as in the study of the liquid helium,
dislocations in crystals, the Bloch wall motion, ferromag-
netic materials, the unified theory of elementary particles,
Josephson array, charge density waves, and the propagation
of magnetic flux on a Josephson line. (See Refs. [110] and
references therein.) A nonlinear dissipative Klein-Gordon
equation, given by

Uy — Au+u+ yu, = |ulP~! (145)
was studied from a mathematical point of view in [111].
Hence, a large number of dissipative Klein-Gordon type
equations have been proposed and investigated in detail in
both mathematical and physical literature. However, most
of these equations have been proposed on a phenomeno-
logical basis, as mostly empirical models for the description
of some physical processes.

In dealing with the dissipation problem, in the present
work we have introduced a comprehensive description of
the dissipative scalar fields, based on a variational principle,
which was inspired by the mathematics of one of the
simplest possible dissipative systems, the damped har-
monic oscillator. Dissipative processes can also be
described by variational principles, even that these princi-
ples are not as commonly used as the variational principles
for conservative systems. However, the Lagrangians for
dissipative systems are almost as simple as those for
conservative systems, and, with the use of the Euler-
Lagrange equations, they allow a direct and systematic
derivation of the equation of motion, as well as to obtain the
basic physical properties and characteristics of the dis-
sipative systems.

In the present approach to the scalar field physics we have
introduced theoretical models in which the ordinary
Lagrangian of the field is multiplied by an arbitrary function
of the coordinates, of the metric, and of the scalar field. The
Euler-Lagrange equations straightforwardly lead to various
dissipative formulations and extensions of the Klein-Gordon
equation, whose forms depend now on the dissipation
exponent, and function. In a Riemannian geometry, the
variational mathematical formalism allows one to obtain
the dissipative Klein-Gordon equations in an explicitly
covariant form. The main goal of the present study was,
besides introducing the theoretical formalism, to explore the
implications of the dissipative scalar fields in cosmology.
Scalar fields have already been extensively used as successful

dark energy models, which can mimic/replace the cosmo-
logical constant, and thus provide powerful alternatives to the
standard ACDM paradigm. To develop some cosmological
applications, we have considered dissipative scalar field
models leading to the generalized Klein-Gordon equation
of the form ¢ + 3H(1 + Q)¢ + V'(¢p) = 0, which was also
considered previously in the framework of warm inflationary
cosmological models, but without being derived from a
variational principle [112,113]. This dissipative Klein-
Gordon equation can be derived from the standard

Lagrangian L = A H(t>Q(t)dtp(/)

The variational principle allows not only the systematic
introduction of the dissipation in scalar field models but
also obtains the effective energy density and pressure that
can be associated with the scalar field. The effective energy
of the field can be obtained as the effective Hamiltonian
derived in the standard way from the field Lagrangian. On
the other hand, to obtain the effective pressure of the field
we have imposed the cosmological conservation of the
effective quantities. Generally, the Friedmann equations
imply the conservation of the total matter-field content of
the universe. By imposing the independent conservation
laws for matter and field we have neglected the possibility
of any interaction between scalar field and cosmological
matter, even that such a possibility cannot be ruled out
a priori.

The generalized conservation equation, with the effects
of the matter ignored, uniquely determines the effective

pressure of the dissipative field in the form pf;ff) =

(1+ Q><¢2/2 - V(¢))€3fH<t)Q<t)d’. This effective field
pressure and the effective density p((;ff) = (§*/2-V(})) x

e3f HOCWA e the physical quantities that appear in the
generalized Friedmann equations that describe the cosmo-
logical dynamics. From a mathematical point of view, the
Friedmann equations become differential-integral equa-
tions, with the inclusion of the dissipative effects leading
to a significant increase in the mathematical problem of the
cosmological evolution. However, the cosmological prob-
lem is still solvable relatively straightforwardly for the
considered dissipation exponent, since by means of simple
mathematical transformations, one can reformulate the
Friedmann-Klein-Gordon system in the redshift space as
a first order differential dynamical system, whose solutions
can be obtained easily numerically. We have examined in
detail several cosmological models, which were obtained
for different choices of the dissipation function, and of the
scalar field potential. From the point of view of the
dissipation function, we have considered models with
constant Q and with Q a particular function of the redshift.
For the scalar field potential we have also adopted two
forms only, V(¢) = 0 and V(¢) = m¢?/2, respectively.
From a cosmological point of view, the most significant
change in the modeling of dark energy comes from the
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expression of the effective pressure. First of all, successful
cosmological models without the presence of the potential
can easily be constructed by assuming that the dissipation
function satisfies the condition 1 4+ Q < 0. With this choice
the kinetic term of the pressure becomes positive in the
second Friedmann equation, and an effective negative

pressure of the form p((;ff) =((1+ Q)é§2/2)e3fH(t)Q(t)dt
can effectively trigger, and control, the accelerated expan-
sion of the universe, thus playing the role of the cosmo-
logical constant and of the dark energy. On the other hand,
for this model, the sign of the kinetic term in the effective
energy of the field has the correct sign. Hence, no self-
interacting potential is necessary for a dissipative scalar
field to accelerate the universe, the role of the potential
being taken over by the dissipation function. On the other
hand, while many fundamental physical models do exist for
the scalar field potential, to the best knowledge of the
present author, no theoretical models for the dissipation
exponent have been considered in the framework of the
fundamental theories of elementary particle physics.

It is important to point out that, even at low redshifts
7 < 2, the predictions of the dissipative quintessence model
do coincide with the predictions of the ACDM model, and
with the observational data, some significant deviations
may appear at higher redshifts z > 2.5. For standard
quintessence models, the deviations from the evolution
of the ACDM are bounded to be below the 10% level at
95% confidence at redshifts below z = 1.5 [114]. It would
be interesting to investigate if the inclusion of the dis-
sipative processes of the scalar field could significantly
change this bound. On the other hand, in the present models
the dissipation function can be taken as an increasing
function of the redshift (a decreasing function of time), and
thus, at enough high redshifts, due to the presence of the
function e in the expressions of py and py, in the early
universe the contributions of the scalar field energy density
and pressure become negligible, and the universe is matter
dominated, with a decelerating evolution. Hence, generally,
we expect that the dissipative quintessence evolution takes
place in three phases. In the first phase, at low redshifts
z <2, the model (almost) coincides with ACDM and
describes the present day accelerating evolution. At inter-
mediate redshifts, in the (approximate) range 2 < z < 5,
the dissipative quintessential cosmological expansion may
differ, even significantly, from the ACDM evolution.
However, at z > 5, both models become matter dominated,
and thus their large redshift dynamics coincides again.
Hence, the early matter dominated cosmological phase is

recovered in a large redshift limit in the present model,
due to the presence of the dissipation function in the
expressions of the basic quantities describing the quintes-
sence field, and without the necessity of introducing any
supplementary assumptions, for example, a change of the
potential or specific initial conditions. Moreover, there are
no restrictions on the scalar field potential, since the
inclusion of a proper dissipation function in the scalar
field equations would automatically recover the early
matter dominated era.

To confront this theoretical model with the observations
we have considered several simple models, obtained by
assuming some simple forms for the dissipation function
and for the scalar field potential. All the considered cases
have been compared with a (limited) set of observational
data for the Hubble function and with the predictions of the
ACDM model. The generalized Friedmann equations have
been solved numerically, with the initial conditions chosen
for the scalar field and its derivative so that the models
come as close as possible to the observations and to the
ACDM model. I would like to point out that no fitting was
used to obtain, and fix, the free parameters of the models,
but the results have been obtained by the trial and search
method. As a general conclusion of these investigations one
can say that the dissipative scalar field model, in its various
versions, can give a good description of the observational
cosmological data and succeeds in reproducing the pre-
dictions of the ACDM model. Of course, a detailed analysis
of a larger number of cosmological data is necessary, before
one could give a fair estimate of the potential of the
dissipative scalar field cosmological models. And deep
investigations into the origin and physical mechanisms of
dissipation at both classical and quantum levels are also
necessary.

By taking into account the results of the present work,
the dissipative scalar field cosmological models could
become an attractive physical alternative to the standard
ACDM model concerning the theoretical interpretation and
the explanation of the observational data. It may also give a
new vision, and a better comprehension of the complex,
and unexpected, dynamical processes that take place in the
universe.
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