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We consider a generalization of the quintessence type scalar field cosmological models, by adding a
multiplicative dissipative term in the scalar field Lagrangian, which generally is represented in an
exponential form. The generalized dissipative Klein-Gordon equation is obtained in a general covariant
form in Riemann geometry, from the variational principle with the help of the Euler-Lagrange equations.
The energy-momentum tensor of the dissipative scalar field is also obtained from the dissipative
Lagrangian, and its properties are discussed in detail. Several applications of the general formalism
are presented for the case of the cosmological Friedmann-Lemaître-Robertson-Walker metric. The
generalized Friedmann equations in the presence of the dissipative scalar field are obtained for a specific
form of dissipation, with the dissipation exponent represented as the time integral of the product of the
Hubble function, and of a function describing the dissipative properties of the scalar field. For this case the
Friedmann equations reduce to a system of differential-integral equations, which, by means of some
appropriate transformation, can be represented in the redshift space as a first order dynamical system.
Several cosmological models, corresponding to different choices of the dissipation function, and of the
scalar field potential, are considered in detail. For the different values of the model parameters the evolution
of the cosmological parameters (scale factor, Hubble function, deceleration parameter, the effective density
and pressure of the scalar field, and the parameter of the dark energy equation of state, respectively)
is considered in detail by using both analytical and numerical techniques. A comparison with the
observational data for the Hubble function and with the predictions of the standard ΛCDM paradigm is
presented for each dissipative scalar field model. In the large time limit the model describes an accelerating
universe, with the effective negative pressure induced by the dissipative effects associated with the scalar
field. Accelerated expansion in the absence of the scalar field potential is also possible, with the kinetic
term dominating the expansionary evolution. The dissipative scalar field models describe well the data,
with the model free parameters obtained by a trial and error method. The obtained results show the
dissipative scalar field model offers an effective dynamical possibility for replacing the cosmological
constant and for explaining the recent cosmological observational data.
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I. INTRODUCTION

The theory of general relativity [1,2] is extremely
successful in explaining the gravitational phenomena at
the level of the Solar System. A large number of obser-
vational and even experimental tests, including the high
precision studies of the deflection of light, of the perihelion
precession of the planet Mercury, of the Shapiro time delay
effect, of the frame-dragging effect, and of the Nordtvedt
effect in lunar motion, respectively, have confirmed the
validity and the scientific soundness of the theory [3].
Recently, another of the theoretical predictions of general
relativity was brilliantly confirmed by the experimental

detection of the gravitational waves [4]. The gravitational
wave studies open a new window into the universe, leading
to a new perspective on the properties of the black holes and
on the mass distribution of the massive compact astro-
physical objects, for example, the neutron stars [5]. Very
recently, the Event Horizon Telescope (EHT) was able to
detect the shadow of the black hole in the center of the
M87* galaxy [6,7], with the observations confirming the
general relativistic black hole model. The shadow of a
black hole is an important testing ground for the predictions
of general relativity and of the modified theories of gravity.
However, the improvement of the observational tech-

niques, and the extension of the observations on a much
wider scale, led to the unexpected result that for gravita-
tional systems much bigger than the Solar System, general*tiberiu.harko@aira.astro.ro
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relativity may not be able to provide an accurate description
of their gravitational properties. This situation already
appears at the galactic scale, and it becomes even more
severe at cosmological scales. Hence, it seems that the
theory of general relativity must face a number of very
serious challenges, whose solutions may require a funda-
mental change in our view of gravity and of the physical
properties of the large scale structures in the universe.
One of the major discoveries of the past few decades was

related to the strong observational evidence indicating that
presently the universe is in a state of accelerating expan-
sion [8–15]. These results were obtained from the astro-
physical observations of the distant type Ia supernovae,
whose spatial distribution extends up to a redshift of z ≈ 2.
Surprising results also came from the high precision deter-
minations of the temperature fluctuations of the Cosmic
MicrowaveBackgroundRadiation (CMBR), obtained by the
Planck satellite [16,17]. Moreover, the stunning finding
that the matter content of the universe consists of only 5%
baryonic matter has also been decisively confirmed by
multiple observations. Hence, the present day observational
situation in cosmology convincingly indicates that 95% of
the total composition of the universe resides in the form of
two main (and mysterious) constituents, dark energy and
darkmatter, respectively. On the other hand, it is important to
point out that a cosmic fluid, formed of normal matter, and
obeying a perfect fluid type equation of state, cannot trigger
and sustain the accelerated expansion of the universe [18].
A theoretical interpretation of the cosmological obser-

vations can be achieved through the reintroduction in the
Einstein field equations of the cosmological constant Λ,
first proposed by Einstein in 1917 [19], in order to obtain a
static cosmological model. For the interesting history of the
cosmological constant, of its rejections and returns, as well
as of its many possible interpretations see Refs. [20–24].
The cosmological model, obtained by adding to the
Einstein field equations the cosmological constant Λ, as
well as a cold dark matter component, is called the ΛCDM
model. Presently, the ΛCDM model represents one of the
main theoretical instruments used for the comprehension
of the cosmic dynamics, and for the interpretation of the
observational data.
The ΛCDM paradigm gives very good fits to the

observations. But it lacks a convincing theoretical founda-
tion, which is first of all related to the interpretational
problems related to the cosmological constant itself. This
makes the physical basis of the ΛCDM model problematic.
Moreover, the ΛCDM model is recently facing another
major problem. Measurements of the Hubble constant
in the early universe indicate a value of the order of
H0 < 69 km=s=Mpc, while local measurements give
H0 > 71 km s=Mpc [25]. The contradictions between
the values obtained in the measurements of the Hubble
constant are known as the Hubble tensions, and their
extents depend on the used datasets.

Therefore, to obtain a theoretically consistent description
of the universe, several approaches have been proposed,
which try to solve the cosmological constant problem by
assuming some alternative explanations of the cosmic
dynamics, which could be described as the dark compo-
nent, the dark gravity, and the dark coupling models [26].
One of the important alternatives to theΛCDMmodels is

represented by the dark components model [27–31]. In the
framework of this approach one postulates that the basic
constituents of the universe are the dark energy and the
dark matter, respectively, whose physical properties could
explain, at least at a phenomenological level, the cosmo-
logical observations. Many proposals for the physical
nature of these two dark constituents have been considered
and investigated in detail. Perhaps the simplest dark energy
model can be obtained by using the quintessence type
theories [32–36]. In the quintessence theory the cosmo-
logical evolution of the universe is fully determined and
described by a single scalar field ϕ, in the presence of a
self-interaction potential VðϕÞ. The simplest gravitational
action for the quintessence models is given by

S ¼
Z �

M2
p

2
R − ∂μϕ∂

μ − VðϕÞ
� ffiffiffiffiffiffi

−g
p

d4x; ð1Þ

where by R we have denoted the Ricci scalar, while Mp

represents the Planckmass. The cosmological energydensity
and pressure of the quintessence scalar field are obtained
as ρQ ¼ _ϕ2=2þ VðϕÞ and pQ ¼ _ϕ2=2 − VðϕÞ [37], giving
for the equation of state w of the quintessence field the
expression w¼ pQ=ρQ ¼ ð _ϕ2=2−VðϕÞÞ=ð _ϕ2=2þVðϕÞÞ.
Quintessence type cosmological models have been very
successful in interpreting and explaining important charac-
teristics of the cosmic evolution. For recent reviews on
quintessence theories see Refs. [38,39]. In particular,
quintessential cosmological models can solve the σ8 tension
by allowing the conformal coupling of a single dark energy
scalar field to dark matter through a constant coupling [40].
The Hubble tension can be alleviated by considering a
quintessence field that transitions from a matterlike to a
cosmological constant behavior between the recombination
and the present time [41]. The discrepancy between the local
measurements of H0 and that inferred from the cosmic
microwave background observations can be reconciled by
assuming the existence of an electroweak axion in the
minimal supersymmetric standard model, with the axion
energy density identified with the observed dark energy [42].
The best-fit of the dark energy parameters was used to
reconstruct the quintessence Lagrangian in [43]. Because of
the derived late phantom behavior ofwðzÞ, the reconstructed
quintessence models have a negative kinetic term. The
possibility of alleviating both the H0 and the σ8 tensions
simultaneously by means of the Albrecht-Skordis “quintes-
sence” potential was considered in [44]. The quintessence
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field can reduce the size of the sound horizon rs, while
suppressing the power inmatter density fluctuations before it
dominates the present day energy density. For some recent
works on the cosmological implications of the quintessence
model see Refs. [45–52].
In [53] the coupled quintessence (CQ) model was

proposed, in which the scalar field ϕ and the dark matter
fluid interact with each other through a source term Qν,
which appears in the conservation equations as

∇μT
μ
νðϕÞ ¼ −Qν; ∇μT

μ
νðmÞ ¼ Qν; ð2Þ

where Tμ
νðϕÞ and T

μ
νðmÞ are the energy-momentum tensors of

the scalar field and of the dark matter, respectively. It was
also suggested [53] that the source term can be given by
Qν ¼ −κβðϕÞTðmÞ∇νϕ, where TðmÞ is the trace of the
matter energy-momentum tensor, and βðϕÞ is the coupling
function that determines the strength of the interaction.
Several other scalar field models have been explored

from a cosmological perspective. In a class of string
theories, depending on the form of the tachyon potential,
the tachyon scalar field can act as a source of the dark
energy [54–57]. The effective Lagrangian for the tachyon
scalar field is given by

L ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂

μϕ
q

; ð3Þ

where ϕ is the tachyon scalar field and VðϕÞ is its potential.
The energy density and the pressure of the tachyon field are
given by

ρT ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; pT ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
; ð4Þ

giving for the parameter of the equation of state wT the
expression

wT ¼ pT

ρT
¼ _ϕ2 − 1: ð5Þ

For recent studies on the tachyonic field cosmology see
Refs. [58–60].
Another interesting scalar field theory that was intro-

duced to explain the cosmological observations is the k-
essence scalar field model of dark energy. The main
characteristic of the model is the presence of a scalar field
with a noncanonical kinetic energy term. The scalar field
action for the k-essence is a function of the field ϕ and of
χ ¼ _ϕ2=2, and it is given by [61–63],

S ¼
Z

pDEðϕ; χÞ
ffiffiffiffiffiffi
−g

p
d4x; ð6Þ

where the Lagrangian density corresponds to the pressure
of a scalar field with a noncanonical kinetic term, given by

pK ¼ fðϕÞð−χ þ χ2Þ; ð7Þ

The energy density of the k-essence field is given by

ρK ¼ fðϕÞð−χ þ 3χ2Þ: ð8Þ

For the parameter wK of the equation of state of the
k-essence field we obtain

wK ¼ χ − 1

3χ − 1
: ð9Þ

For the cosmological applications, and implications, of
the k-essence models, see Refs. [64–68], and references
therein.
Finally, we mention the dilaton scalar field model, which

is an attempt to solve the dark energy problem by using
string theory [69–73]. For the dilation scalar the energy
density and the pressure are given by

ρD ¼ −χ þ 3ceλϕχ2; pD ¼ −χ þ ceλϕχ2; ð10Þ

where c and λ are constants. The parameter of the equation
of state of the dilaton scalar field is given by

wD ¼ 1 − ceλϕ

1 − 3ceλϕ
: ð11Þ

There are also some other approaches to the cosmologi-
cal phenomenology. For example, in the dark gravity
approach it is assumed the gravitational interaction itself
is modified on the galactic and cosmological scales. One
possibility to modify gravity is to go beyond the
Riemannian geometry of general relativity and to use more
general geometries to describe gravity. In this direction
theories in the presence of torsion [74–77], of nonmetric-
ity [78–83], or in the Weitzenböck geometry [84,85] have
been intensively investigated. The third theoretical avenue
for explaining the cosmological phenomenology is the dark
coupling approach, which assumes that ordinary matter can
couple with geometry, through a curvature-matter coupling.
The existence of such a coupling could explain the
accelerated expansion of the universe, as well as the dark
matter problem [86–90]. For reviews of the modified
gravity theories see Refs. [91–96].
Decay processes play a central role in a wide range of

phenomena, including nuclear fission or optical emission.
Dissipation also appears in quantum systems, and it is a
consequence of the dissipative interaction of the quantum
system with its environment [97]. Energy decay is usually
considered as a consequence of a thermodynamic system
exchanging energy irreversibly with its environment, usu-
ally assumed to be a thermal bath. However, there are
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energy decay processes that cannot be explained by
assuming a direct coupling to a thermal bath [98].
A class of dissipative effects, the bulk and shear viscous

processes, has been extensively investigated in astrophysical
and cosmological settings, and they are assumed to play an
important role in the early evolution of the universe. A
cosmic fluid with bulk viscous pressure, in the presence of
the quintessence field can trigger the accelerated expansion
phase of the universe [99]. The presence of bulk viscosity
could also solve the coincidence problem of cosmology. The
bulk viscous Chaplygin gas model was considered in [100].
A recent investigation of a unified cosmic fluid scenario in
the presence of bulk viscosity, with the coefficient of the bulk
viscosity having a power law evolution was carried out
in [101]. Considering such a general bulk viscous scenario,
the observational constraints using the latest cosmological
datasets were obtained, and their behavior was analyzed at
the level of both background solutions and cosmological
perturbations. The observational analyses did show that a
nonzero bulk viscous coefficient is always favored.
Moreover, some of the bulk viscous models can weaken
the current H0 tension for some datasets. But from the
Bayesian evidence analysis, it follows that theΛCDMmodel
is favored over the cosmological models with bulk viscosity.
A problem less investigated in the physical literature is

the possibility of a Lagrangian description of dissipative
phenomena. In this respect one must make a clear dis-
tinction between physical (standard) and mathematical
(nonstandard) Lagrangians. A physical Lagrangian is a
Lagrangian function that can be represented as the differ-
ence between a kinetic energy term and a potential energy
term. Other Lagrangians, which also give the correct
equation of motion, but which cannot be represented as
the difference of a kinetic and a potential term, are called
mathematical, or nonstandard, Lagrangians. For example,
the equation of motion of the damped oscillations, describ-
ing the motion of a single particle of mass m in an external
field with potential VðxÞ and in the presence of friction, can
be obtained, via the Euler-Lagrange equations,

∂L
∂x

−
d
dt

∂L
∂_x

¼ 0; ð12Þ

from the physical Lagrangian [102,103]

L ¼ eγt
�
1

2
m_x2 − VðxÞ

�
; ð13Þ

where a dot denotes the derivative with respect to the time t
and is given by

ẍþ γ _xþ 1

m
dVðxÞ
dx

¼ 0: ð14Þ

One can also construct a Hamiltonian for the damped
oscillator in the standard way. By defining p ¼ ∂L∂_x ¼
meγt _x, H ¼ p_x − L, one immediately obtains

H¼e−γt
p2

2m
þeγtVðxÞ; H¼eγt

�
1

2
m_x2þVðxÞ

�
: ð15Þ

It is important to note that H as defined above is not the
energy of the system, which is still defined as E ¼
m_x2=2þ VðxÞ, and satisfies the relation dE=dt ¼ Fd _x,
where Fd ¼ −mγ _x is the dissipative force. Therefore,
H ¼ eγtE, and it cannot be interpreted as the energy of
the system [104]. It is also interesting to point out that the
equation ẍþ k_x ¼ 0 can be derived from the physical
(standard) Lagrangian L ¼ ekt _x2=2, as well as from
the nonphysical Lagrangians L ¼ 1=ðe2kt _xþ ektÞ, L ¼
_x ln j_xj − kx, or L ¼ ð_xν þ e−νktÞ1=ν, respectively [102].
From a mathematical point of view, the Klein-Gordon

equation describing the cosmological evolution of a scalar
field in a Friedmann-Lemaître-Robertson-Walker (FLRW)
geometry belongs to the general class of equations of the
form

ẍþ FðtÞ_xþ g0ðxÞ ¼ 0; ð16Þ

where F and g are arbitrary functions of time. Equation (16)
can be derived from the dissipative physical Lagrangian,
¼ 0,

L ¼ e
R

FðtÞdt
�
1

2
_x2 − gðxÞ

�
; ð17Þ

with the use of the Euler-Lagrange equations, by taking

into account that ∂L=∂_x ¼ _xe
R

FðtÞdt, dð∂L=∂_xÞ=dt ¼
e
R

FðtÞdt½ẍþ FðtÞ_x�, and ∂L=∂x ¼ −g0ðxÞe
R

FðtÞdt, respec-
tively.
In the Minkowskian space a natural dissipative extension

of the scalar field and of the Klein-Gordon equation can be
considered by adopting for the Lagrangian density the
expression [105]

Lϕ ¼ ekαx
α

�
1

2
∂μðϕÞ∂μϕ − VðϕÞ

�
; ð18Þ

where kα are constants. From the Euler-Lagrange equa-
tions, ∂L=∂ϕ − ∂μð∂L=∂ϕ;μÞ ¼ 0, where ϕ;μ ¼ ∂ϕ=∂xμ, we
obtain the equation of motion of the dissipative scalar
field as

∂μ∂
μϕþ kμ∂μϕþ V 0ðϕÞ ¼ 0: ð19Þ

In the above equation, by analogy with the equations of
motion for the damped oscillators, one could interpret the
term kμ∂μϕ as corresponding to a dissipative friction term.
It is the goal of the present paper to extend and formulate

the variational formulation of the dissipative scalar field
by using a fully covariant approach in the Riemannian
geometric framework, and to formulate the dissipative
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Klein-Gordon equation for the scalar field in a general
covariant form. The dissipation is introduced in the
Lagrangian via a dissipation exponent Γ, assumed to be,
in general, a function of the metric tensor, of the scalar
field, and of the coordinates of the base spacetime mani-
fold. By using the analogy with the simple damped
harmonic oscillator, the dissipative Lagrangian is obtained
then by multiplying the Lagrangian of the “ideal” scalar
field with the exponential of Γ, so that the new Lagrangian
is constructed as the product of eΓ and the standard
Lagrange function of the scalar field. The generalized
Klein-Gordon equations are obtained in a fully covariant
form for the case of the dissipation exponent having various
functional forms. Particular cases of the dissipative Klein-
Gordon equation are also discussed in detail.
Once the Lagrangian density Lϕ of the scalar field is

known, the basic physical properties of the field can be
obtained from the energy-momentum tensor, which can be
straightforwardly obtained from Lϕ through variation with
respect to the metric. We obtain the general form of the
energy-momentum tensor of the dissipative scalar field,
which involves the presence of a new tensor, the dissipation
tensor, which gives a new, significant, and important con-
tribution both to the energy density and to the pressure of ϕ.
As a particular example of the general formalism we

consider the case in which the dissipation exponent can be
expressed as the invariant integral of the divergence of a four-
vector uλ and of an arbitrary function QðxμÞ, which we call
the dissipation function, having the mathematical represen-
tation given by Γðgαβ; xμÞ ¼

R
Ω∇λuλQðxμÞ ffiffiffiffiffiffi−gp

d4x. This
case is analyzed in detail, and the dissipative Klein-Gordon
equation, as well as the corresponding energy-momentum
tensor, is obtained in a covariant form.
We extensively apply the obtained results to generalize,

and extend, the standard cosmological scalar field models,
which have been successfully used to explain the recent
acceleration of the universe. To do this, we restrict our
analysis to the case of the flat, isotropic, and homogeneous
FLRW geometries. For the specific cosmological applica-
tions, we assume that the dissipation exponent can be
expressed as the integral of the product of the Hubble
function HðtÞ and of the dissipation function QðtÞ, in the
form ΓðtÞ ¼ 3

R
HðtÞQðtÞdt. We obtain the generalized

dissipative Klein-Gordon equation, as well as the corre-
sponding energy-momentum tensor for the field in a
cosmological setting. With the help of these quantities,
the generalized Friedmann equation describing the cosmo-
logical evolution in the presence of the dissipative scalar
field is obtained.
To test the cosmological viability of the dissipative scalar

field model, we consider several explicit cosmological
models, corresponding to various choices of the dissipation
functionQ. First, the existence of the de Sitter type solution
for this model is proven. Then, several classes of cosmo-
logical models, corresponding to a constant Q and to a

redshift dependent dissipation, are considered in detail.
Models in which the kinetic term and the potential term of
the field can be neglected are investigated numerically. In
each case a comparison with the observational data for the
Hubble function and with the standard ΛCDM model are
performed, and it is shown that the models give a good
description of the data. The obtained results indicate that
the dissipative scalar field model can be considered as a
viable extension of the standard quintessence type cosmo-
logical models. This model also offers a firm theoretical
foundation, via its variational principle, to different classes
of scalar field cosmologies, and allows the possibility of
their rigorous generalization.
The present paper is organized as follows. In Sec. II, after

briefly reviewing the basic theory of the ideal cosmological
scalar fields, we introduce the dissipative scalar field in the
FLRW geometry via the variational principle. The gener-
alized Klein-Gordon equations are obtained for a dissipa-
tion exponent given by ΓðtÞ ¼ 3

R
HðtÞQðϕðtÞ; tÞdt, with

several particular cases considered. The covariant form of
the Klein-Gordon equation is obtained, and a particular
case is investigated in detail. The Einstein and the gener-
alized Friedmann equations are obtained in Sec. III. Simple
cosmological applications of the dissipative scalar field
model are investigated in Sec. IV, by considering some
simple forms of the scalar field, and by assuming a constant
Q. Comparisons with the observational data and the
standardΛCDMmodel are also performed. A cosmological
model with a dynamic, redshift dependent dissipation
function Q is analyzed in Sec. V. Finally, we discuss
and conclude our results in Sec. VI.
In the present paper we use the Landau-Lifshitz [106]

sign and geometric conventions.

II. THE DISSIPATIVE
KLEIN-GORDON EQUATION

In this section we will introduce the basic variational
formalism for the description of the dissipative scalar fields.
After briefly reviewing the nondissipative case, as well as
its cosmological applications, we proceed to the systematic
presentation of the various forms of the dissipative Klein-
Gordon equation and of their cosmological formulations.

A. Nondissipative (ideal) scalar fields

In a Riemannian geometry, the action for an ideal scalar
field with self-interaction potential VðφÞ is given by

Sϕ¼
Z

Lϕd4x¼
Z �

1

2
gαβ

∂ϕ

∂xα
∂ϕ

∂xβ
−VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð20Þ

where gαβ are the components of the metric tensor and −g is
its determinant.
The Euler-Lagrange equations, giving the minimum of

the action, are

DISSIPATIVE QUINTESSENCE AND ITS COSMOLOGICAL … PHYS. REV. D 107, 123507 (2023)

123507-5



∂

∂xα
∂Lϕ

∂ϕ;α
−
∂Lϕ

∂ϕ
¼ 0: ð21Þ

Therefore, we obtain

∂

∂xα

� ffiffiffiffiffiffi
−g

p
gαβ

∂ϕ

∂xβ

�
þ dVðϕÞ

dϕ
ffiffiffiffiffiffi
−g

p ¼ 0: ð22Þ

But, it is easy to check that [106]

1ffiffiffiffiffiffi−gp ∂

∂xα

� ffiffiffiffiffiffi
−g

p
gαβ

∂ϕ

∂xβ

�
¼ ∇α∇αϕ ¼ □ϕ; ð23Þ

where by ∇α we have denoted the covariant derivative with
respect to the metric and □ ¼ ∇α∇α is the d’Alembert
operator. Hence, we obtain the covariant Klein-Gordon
equation in Riemann geometry, describing the dynamics of
an ideal, nondissipative scalar field, as given by

□ϕþ dVðϕÞ
dϕ

¼ 0: ð24Þ

The energy-momentum tensor is defined generally by
the relation [106]

Tαβ ¼
2ffiffiffiffiffiffi−gp δ½ ffiffiffiffiffiffi−gp

Lðgαβ;ϕÞ�
δgαβ

; ð25Þ

where Lðgαβ;ϕÞ is any physical Lagrangian function,
which is assumed to be independent of the derivatives of
the metric tensor. Hence, for the energy-momentum tensor
of the ideal scalar field we obtain

ðϕÞTαβ ¼ ϕ;αϕ;β −
�
1

2
gμνϕ;μϕ;ν − VðϕÞ

�
gαβ: ð26Þ

With the use of the Klein-Gordon equation (24), one
could immediately check that the energy-momentum tensor
of the ideal scalar field satisfies the conservation condi-
tion ∇βððϕÞTβ

αÞ ¼ 0.
Tαβ can be recast in the standard form of a perfect fluid,

Tαβ ¼ ðρϕ þ pϕÞUαUβ − pϕgαβ; ð27Þ

where we have introduced the energy density ρϕ and the
pressure pϕ of the scalar field, defined as

ρϕ ¼ 1

2
gμνϕ;μϕ;ν þ VðϕÞ;

pϕ ¼ 1

2
gμνϕ;μϕ;ν − VðϕÞ; ð28Þ

and the effective four-velocity of the field Uα, given by

Uα ¼
ϕ;αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνϕ;μϕ;ν
p ; ð29Þ

respectively.

1. Application: The case of the FLRW geometry

The standard flat, isotropic, and homogeneous cosmo-
logical FLRW metric is given by

ds2 ¼ c2dt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð30Þ

where aðtÞ is the scale factor. Then, we have ffiffiffiffiffiffi−gp ¼ a3ðtÞ.
Furthermore, we assume ϕ ¼ ϕðtÞ. An important observa-
tional quantity, the Hubble parameter, is defined as
HðtÞ ¼ _aðtÞ=aðtÞ.
The Lagrangian of the time-dependent ideal scalar field

is given by

Lϕ ¼ a3
�
1

2
_ϕ2 − VðϕÞ

�
: ð31Þ

Thus, Eq. (21) gives

1

a3
d
dt

�
a3

dϕ
dt

�
þ dVðϕÞ

dϕ
¼ 0 ð32Þ

or, equivalently,

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0: ð33Þ

The energy density and the pressure of the cosmological
scalar field become

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ; pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð34Þ

B. The dissipative scalar field

We consider now the variational formulation of the
dissipative Klein-Gordon equation. We begin our analysis
with the simple case of the cosmological scalar fields,
which are further generalized to a full covariant formalism.

1. Dissipation in the FLRW geometry

The Lagrangian of a dissipative scalar field in a FLRW
type geometry can be taken as

Lϕ ¼ a3e3
R

HðtÞQðtÞdt
�
1

2
_ϕ2 − VðϕÞ

�
: ð35Þ

In the following we will call the function ΓðtÞ ¼
3
R
HðtÞQðtÞdt the dissipation exponent, where Q ¼ QðtÞ

is the dissipation function. Then, the Euler-Lagrange

TIBERIU HARKO PHYS. REV. D 107, 123507 (2023)

123507-6



equation giving the minimum of the action constructed with
the help of the Lagrangian (35) takes the form

�
3a2 _a

dϕ
dt

þ 3a3HðtÞQðtÞ dϕ
dt

þ a3
d2ϕ
dt2

þ dVðϕÞ
dϕ

a3
�

× e3
R

HðtÞQðtÞdt ¼ 0; ð36Þ

giving, for a ≠ 0,

ϕ̈ðtÞ þ 3HðtÞð1þQðtÞÞ _ϕðtÞ þ dVðϕÞ
dϕ

¼ 0: ð37Þ

Hence, the function QðtÞ acts as a novel dissipative term
in the cosmological Klein-Gordon equation.
a. Scalar field dependent dissipation function. Let us

assume now thatQ ¼ QðϕðtÞÞ. In the following by a prime
we denote the derivative with respect to ϕ or, more
generally, with the argument of the function. In this case
the Euler-Lagrange equation leads to the evolution equation
of the dissipative scalar field as given by

ϕ̈þ 3Hð1þQðϕðtÞÞÞ _ϕþ V 0ðϕÞ

− 3

Z
HðtÞQ0ðϕðtÞÞdt

�
1

2
_φ2 − VðϕÞ

�
¼ 0: ð38Þ

b. Hamiltonian formulation for the time dependent
dissipation function. We introduce now the generalized
momentum, defined, in the case of the Lagrangian (35), as

Pϕ ¼ ∂Lϕ

∂ _ϕ
¼ a3e3

R
HðtÞQðtÞdt _ϕ; ð39Þ

which allows one to introduce the generalized, time
dependent Hamiltonian function H as

H ¼ Pϕ
_ϕ − Lϕ ¼ a3

�
1

2
_ϕ2 þ VðϕÞ

�
e3
R

HðtÞQðtÞdt; ð40Þ

as well as the generalized effective energy density of the
scalar field ρϕ, defined according to

ρðeffÞϕ ¼
�
1

2
_ϕ2 þ VðϕÞ

�
e3
R

HðtÞQðtÞdt

¼ ρϕe
3
R

HðtÞQðtÞdt: ð41Þ

These expressions for the Hamiltonian and energy
density are also valid for the case of the scalar field
dependent dissipation function, Q ¼ QðϕðtÞÞ.
c. Potentials depending on the time derivative of the

scalar field only. We consider now scalar field models in
which the potential depends on the time derivatives of the
scalar field only, V ¼ Vð _ϕÞ. Then the Euler-Lagrange
equation takes the form

d
dt

�
a3e3

R
HðtÞQðtÞdt

�
_ϕ −

dVð _ϕÞ
d _ϕ

��
¼ 0; ð42Þ

and it admits the first integral

_ϕ −
dVð _ϕÞ
d _ϕ

¼ C
a3

e−3
R

HðtÞQðtÞdt; ð43Þ

where C is an arbitrary constant of integration. In the
particular case

Vð _ϕÞ ¼ ð1 − αÞ
_ϕ2

2
; ð44Þ

the dissipative scalar field satisfies the first order differ-
ential equation, given by

_ϕ ¼ C
α

e−3
R

HðtÞQðtÞdt

a3
: ð45Þ

C. Covariant formulation of the dissipative
Klein-Gordon equation

We introduce now the Lagrangian of the dissipative
scalar field in the general covariant form as

Sϕ ¼
Z

Lϕ
ffiffiffiffiffiffi
−g

p
d4x

¼
Z

eΓðgαβ ;ϕ;xαÞ
�
1

2
gμν∇μϕ∇νϕ − VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð46Þ

where the dissipation exponent Γðgαβ;ϕ; xαÞ is an arbitrary
scalar function of the metric tensor, of the scalar field, and
of the coordinates. A particular, and useful, representation
of the dissipation function is given by the expression

Γðgαβ;ϕ; xαÞ ¼
Z

∇λuλQðϕ; xμÞ ffiffiffiffiffiffi
−g

p
d4x; ð47Þ

with uλ denoting the velocity four-vector of the cosmo-
logical fluid. In the case of the FLRW geometry, in
the comoving frame uλ ¼ ð1; 0; 0; 0Þ, and ∇λuλ ¼
ð1= ffiffiffiffiffiffi−gp Þ∂αð ffiffiffiffiffiffi−gp

uαÞ ¼ ð1=a3Þ d
dt a

3 ¼ 3H. In an arbitrary
coordinate system [106],

∇λuλ ¼
1ffiffiffiffiffiffi−gp ∂

∂xλ
ð ffiffiffiffiffiffi

−g
p

uλÞ¼ ∂uλ

∂xλ
þuλ

1ffiffiffiffiffiffi−gp ∂

∂xλ
ffiffiffiffiffiffi
−g

p
: ð48Þ

The Euler-Lagrange equations corresponding to the
action (46) are given by
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∇αð
ffiffiffiffiffiffi
−g

p
gαβeΓðgαβ ;ϕ;xαÞ∇βϕÞ

þ
�
dVðϕÞ
dϕ

−
∂Γðgαβ;ϕ; xαÞ

∂ϕ

�
eΓðgαβ ;ϕ;xμÞ

ffiffiffiffiffiffi
−g

p ¼ 0 ð49Þ

or, equivalently,

∂

∂xα

� ffiffiffiffiffiffi
−g

p
gαβ

∂ϕ

∂xβ

�
þ ffiffiffiffiffiffi

−g
p

gαβ
∂ϕ

∂xβ
∂Γðgαβ;ϕ; xαÞ

∂xα

þ
�
dVðϕÞ
dϕ

−
∂Γðgαβ;ϕ; xαÞ

∂ϕ

� ffiffiffiffiffiffi
−g

p ¼ 0; ð50Þ

finally giving the dissipative covariant Klein-Gordon equa-
tion as

□ϕþ gαβ∇αϕ∇βΓðgαβ;ϕ; xαÞ þ V 0ðϕÞ

−
∂Γðgαβ;ϕ; xαÞ

∂ϕ
¼ 0: ð51Þ

D. The energy-momentum tensor
of the dissipative scalar field

By taking into account that δ
ffiffiffiffiffiffi−gp ¼−ð1=2Þ ffiffiffiffiffiffi−gp

gαβδgαβ,
and that the Lagrangian density of the scalar field does not
depend on the derivatives of the metric, we obtain for the
energy-momentum tensor the general expression

ðϕÞTαβ ¼ 2
δLϕ

δgαβ
− Lϕgαβ; ð52Þ

from which one obtains the energy-momentum tensor of
the dissipative scalar field as

ðϕÞTαβ ¼ eΓðgαβ ;ϕ;xαÞ
�
∇αϕ∇βϕ

þðΘαβ−gαβÞ×
�
1

2
gμν∇μϕ∇νϕ−VðϕÞ

��
; ð53Þ

where we have denoted

Θαβðgμν;ϕ; xμÞ ¼ 2
δΓðgαβ;ϕ; xμÞ

δgαβ
: ð54Þ

Wemay call the tensorΘαβðg;ϕ; xμÞ the dissipation tensor
of the scalar field. For Θαβ ¼ 0 and Γ ¼ 0, we recover the
energy-momentum tensor of the ideal scalar field.
With the help of the energy density and pressure of the

ideal scalar field, the energy-momentum tensor of the
dissipative scalar field can be written as

ðϕÞTαβ ¼ eΓðgαβ ;ϕ;xαÞ½ðρϕþpϕÞUαUβþðΘαβ−gαβpϕÞ�: ð55Þ

1. The particular case Γðgαβ;xαÞ =
R
∇λuλQðxμÞ ffiffiffiffiffiffiffi

− g
p

d4x

For the particular case of the dissipation exponent given
by Eq. (47), for the variation with respect to the metric of
Γðgαβ; xμÞ we obtain

δΓðgαβ; xμÞ
δgαβ

¼ δ

δgαβ

Z
∇λuλQðxμÞ ffiffiffiffiffiffi

−g
p

d4x

¼
Z

δ

δgαβ
½∇λuλQðxμÞ ffiffiffiffiffiffi

−g
p �d4x

¼
Z �

δð∇λuλÞ
δgαβ

ffiffiffiffiffiffi
−g

p þ∇λuλ
δ
ffiffiffiffiffiffi−gp

δgαβ

�
QðxμÞd4x

¼
Z �

δð∇λuλÞ
δgαβ

þ 1ffiffiffiffiffiffi−gp δ
ffiffiffiffiffiffi−gp

δgαβ
∇λuλ

�

×QðxμÞ ffiffiffiffiffiffi
−g

p
d4x: ð56Þ

With the use of Eq. (48), we obtain

δð∇λuλÞ
δgαβ

¼ ∂

∂xλ
δuλ

δgαβ
þ δ

δgαβ

�
uλ

∂ ln
ffiffiffiffiffiffi−gp

∂xλ

�
: ð57Þ

The variation of the four-velocity with respect to the
metric is given by

δuλ ¼ 1

2
uλuαuβδgαβ; ð58Þ

which can be obtained from the relations δgαβuαuβ ¼
2uμδuμ ¼ 2uμðuμδgαβuαuβ=2Þ, respectively, where we
have also used the condition of the normalization of the
four-velocity, gαβuαuβ ¼ 1. Thus, we immediately find

δuλ

δgαβ
¼ 1

2
uλuαuβ: ð59Þ

Hence, Eq. (57) becomes

δð∇λuλÞ
δgαβ

¼ ∂

∂xλ
δuλ

δgαβ
þ δuλ

δgαβ
∂ ln

ffiffiffiffiffiffi−gp
∂xλ

þuλ
∂

∂xλ
δ ln

ffiffiffiffiffiffi−gp
δgαβ

¼ 1

2

∂uλ

∂xλ
uαuβþ

1

2
uλ

∂

∂xλ
ðuαuβÞ

þ1

2
uλuαuβ

∂ ln
ffiffiffiffiffiffi−gp

∂xλ
−
1

2
uλ

∂

∂xλ
gαβ

¼ 1

2

�
∂uλ

∂xλ
þuλ

∂ ln
ffiffiffiffiffiffi−gp

∂xλ

�
uαuβþ

1

2
uλ

∂ðuαuβ − gαβÞ
∂xλ

¼ 1

2
∇λuλuαuβþ

1

2
uλ

∂

∂xλ
ðuαuβ − gαβÞ; ð60Þ

where we have used the relation δ ln
ffiffiffiffiffiffi−gp

=δgαβ ¼
ð1= ffiffiffiffiffiffi−gp Þδ ffiffiffiffiffiffi−gp

=δgαβ.
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Consequently,

δð∇λuλÞ
δgαβ

þ 1ffiffiffiffiffiffi−gp δ
ffiffiffiffiffiffi−gp

δgαβ
∇λuλ

¼ 1

2

�
∇λuλhαβ þ uλ

∂

∂xλ
hαβ

�
; ð61Þ

where we have introduced the projection operator hαβ,
defined according to hαβ ¼ uαuβ − gαβ. Hence, for the
variation of the dissipative exponent of this particular case,
defining the dissipation tensor of the scalar field, we obtain

Θαβ ¼
Z �

∇λuλhαβ þ uλ
∂

∂xλ
hαβ

�
QðxμÞ ffiffiffiffiffiffi

−g
p

d4x: ð62Þ

Therefore, for a dissipation exponent Γ ¼R ∇λuλQðxμÞ ffiffiffiffiffiffi−gp
d4x, depending on the metric, a vector

field uλ, and the coordinates only, the energy-momentum
tensor of the dissipative scalar field can be written as

ðϕÞTαβ ¼ e
R
∇λuλQðxμÞ ffiffiffiffi−gp

d4x

×

�
∇αϕ∇βϕþ

�Z �
∇λuλhαβþuλ

∂

∂xλ
hαβ

�

×QðxμÞ ffiffiffiffiffiffi
−g

p
d4x−gαβ

��
1

2
gμν∇μϕ∇νϕ−VðϕÞ

��
:

ð63Þ

a. Dissipative energy-momentum tensor in FLRW geom-
etry. For an FLRW universe, the components of the
energy-momentum tensor of the dissipative scalar field
become

ðϕÞT0
0¼eΓðgαβ ;tÞ

�
ð1þΘ0

0Þ
_ϕ2

2
þð1−Θ0

0ÞVðϕÞ
�
¼ρðeffÞϕ ; ð64Þ

−ðϕÞTi
i ¼ eΓðgαβ;tÞð1 − Θi

iÞ
�
1

2
_ϕ2 − VðϕÞ

�

¼ pðeffÞ
ϕ δii; i ¼ 1; 2; 3: ð65Þ

In the particular case of the dissipation exponent given
by Eq. (47), by taking into account that in the FLRW
geometry h00 ¼ 0, we obtain for the 00 component of the
energy-momentum tensor the expression

ðϕÞT0
0 ¼ e3

R
HðtÞQðtÞdt

�
1

2
_ϕ2 þ VðϕÞ

�
¼ ρðeffÞϕ : ð66Þ

Equation (66) also gives the Hamiltonian constraint for
the Lagrangian of the dissipative scalar field.

E. The dissipative Klein-Gordon equation with
ekμx

μ
type dissipation

We consider now an alternative Lagrangian for the
description of the dissipative scalar field, given by

Sϕ ¼
Z

Lϕ
ffiffiffiffiffiffi
−g

p
d4x

¼
Z

ekμx
μ

�
1

2
gαβ∇αϕ∇βϕ − VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð67Þ

where kα are the components of a constant four-vector and
xα, α ¼ 0, 1, 2, 3, are the coordinates on the spacetime
manifold. For this form of dissipation the Euler-Lagrange
equations take the form

∂

∂xα

� ffiffiffiffiffiffi
−g

p
gαβekμx

μ ∂ϕ

∂xβ

�
þ dVðϕÞ

dϕ
ekμx

μ ffiffiffiffiffiffi
−g

p ¼ 0; ð68Þ

giving the following dissipative Klein-Gordon equation:

□ϕþ gαβkα∇βϕþ dVðϕÞ
dϕ

¼ 0: ð69Þ

The energy-momentum tensor of the dissipative scalar
field becomes

ðϕÞTαβ ¼ ekμx
μ

�
∇αϕ∇βϕ ð70Þ

−
�
1

2
gμν∇μϕ∇νϕ − VðϕÞ

�
ðgαβ − kαxβÞ

�
: ð71Þ

In the case of the FLRW geometry, with kα ¼
ðk0; 0; 0; 0Þ, the action of the dissipative scalar field is
given by

Lϕ ¼ a3e3k0t
�
1

2
_ϕ2 − VðϕÞ

�
; ð72Þ

leading to the dissipative Klein-Gordon equation

ϕ̈þ ð3H þ k0Þ _ϕþ V 0ðϕÞ ¼ 0: ð73Þ

The components of the energy-momentum tensor of this
type of dissipative scalar fields are obtained as

ðϕÞT0
0¼ ek0t

�
1

2
ð1þk0tÞ _ϕ2þð1−k0tÞVðϕÞ

�
¼ ρðeffÞϕ ð74Þ

and
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ðϕÞTi
i¼−ek0t

�
1

2
_ϕ2−VðϕÞ

�
¼−pðeffÞ

ϕ ; i¼ 1;2;3; ð75Þ

respectively.

F. Potentials depending on the gradient
of the scalar field

Finally, we consider the covariant formulation of the
dissipative Klein-Gordon equation in the presence of a
potential that depends on the magnitude of the gradients of
the scalar field X, V ¼ VðXÞ, with X ¼ ∇αϕ∇αϕ. The
action of the dissipative scalar field system is given by

Sϕ ¼
Z

eΓðgαβ ;xμ;ϕÞ
�
1

2
gαβ∇αϕ∇βϕ − VðXÞ

� ffiffiffiffiffiffi
−g

p
d4x; ð76Þ

leading to the Euler-Lagrange equation�
1 −

dVðXÞ
dX

�
□ϕþ gαβ∇βϕ∇αΓðgαβ;ϕ; xμÞ

− gαβ∇βϕ∇α
dVðXÞ
dX

−
�
1

2
gαβ∇αϕ∇βϕ − VðXÞ

�

×
∂Γðgαβ;ϕ; xμÞ

∂ϕ
¼ 0: ð77Þ

The energy-momentum tensor of the scalar field in the
presence of scalar field dependent potentials is obtained in
the form

ðϕÞTαβ¼eΓðgαβ ;ϕ;xμÞ
��

1−2
dVðXÞ
dX

�
∇αϕ∇βϕ

þ
�
2
δΓðgαβ;ϕ;xμÞ

δgαβ
−gαβ

��
1

2
gμν∇μϕ∇νϕ−VðXÞ

��
:

ð78Þ

III. THE EINSTEIN GRAVITATIONAL
FIELD EQUATIONS

In the following we consider a gravitational model,
containing, besides the gravitational term, a nonminimally
coupled dissipative scalar field, with Lagrangian density
Lϕ, and an ordinary matter term, described by the
Lagrangian Lm. Hence, the action of the present theory
can be generally written down as

S¼
Z
Ω

�
−

c4

16πG
RðgÞ þLϕ þLm

� ffiffiffiffiffiffi
−g

p
d4x

¼
Z
Ω

�
−

c4

16πG
RðgÞ þ eΓðgαβ ;xα;ϕ;∂αϕÞ

�
1

2
gμν

∂ϕðxαÞ
∂xμ

∂ϕðxαÞ
∂xν

−VðϕðxαÞÞ
�
þLm

� ffiffiffiffiffiffi
−g

p
d4x: ð79Þ

The variation of the Ricci scalar is obtained in the
following form:

δðR ffiffiffiffiffiffi
−g

p ÞR¼δðRμνgμν
ffiffiffiffiffiffi
−g

p Þ

¼
�
Rμν−

1

2
gμν

� ffiffiffiffiffiffi
−g

p
δgμνþgμνδRμν

ffiffiffiffiffiffi
−g

p
: ð80Þ

The term gμνδRμν can be written as gμνδRμν ¼ ∇λwλ,
where wλ ¼ gμνδΓλ

μν − gμλδΓν
μν, with Γλ

μν denoting the
Christoffel symbols associated with the Riemannian metric
g. In the standard approaches to general relativity, the
boundary term gμνδRμν

ffiffiffiffiffiffi−gp
is canceled out with the use of

the Gauss theorem,

Z
Ω
gμνδRμν

ffiffiffiffiffiffi
−g

p
d4x ¼

Z
Ω
∇λwλ ffiffiffiffiffiffi

−g
p

d4x

¼
Z
∂Ω

wλdSλ; ð81Þ

where dSλ is the element of integration over the hypersur-
face surrounding the four-volume element dΩ, under the
assumption that the variations of the field cancel at the
integration limits. Hence, the gravitational field equations
in the presence of a dissipative scalar field and a vanishing
boundary term take the form

Rμν −
1

2
gμν ¼

8πG
c4

ððϕÞTμν þ ðmÞTμνÞ; ð82Þ

where the energy-momentum tensor of the dissipative
scalar field is given by Eq. (53), while ðmÞTμν is the
energy-momentum tensor of ordinary matter, defined as
ðmÞTμν ¼ ð2= ffiffiffiffiffiffi−gp Þδð ffiffiffiffiffiffi−gp

LmÞ=δgμν. The variation of the
action (79) with respect to the scalar field ϕ gives the
equation of motion of the scalar field, Eq. (51),
respectively.

A. The generalized Friedmann equations

Wewill consider in the following the case of a dissipative
scalar field with a dissipation exponent given by ΓðtÞ ¼
3
R
HðtÞQðtÞdt. Then the effective density ρðeffÞϕ of the

dissipative scalar field (the Hamiltonian constraint) is given
by Eq. (41).
We also assume that in the comoving frame the energy-

momentum tensor of the scalar field is given by ðϕÞT0
0 ¼

ρðeffÞϕ and ðϕÞTi
i ¼ −pðeffÞ

ϕ δii, i ¼ 1, 2, 3. For the adopted
form of the dissipation exponent the effective energy of the
scalar field is given by Eq. (66).
To determine the form of the effective pressure pðeffÞ

ϕ of
the dissipative scalar field, we impose the condition of the
conservation of the effective quantities in the cosmological
background, which can be formulated as
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_ρðeffÞϕ þ 3HðρðeffÞϕ þ pðeffÞ
ϕ Þ ¼ 0: ð83Þ

Equivalently, Eq. (83) can be written as

_ρϕ þ 3Hð1þQÞρϕ þ 3HpðeffÞ
ϕ e−ΓðtÞ ¼ 0 ð84Þ

or

_ϕ ϕ̈þ _ϕV0ðϕÞ þ 3Hð1þQÞ
_ϕ2

2
þ 3Hð1þQÞVðϕÞ

þ 3HpðeffÞ
ϕ e−ΓðtÞ ¼ 0: ð85Þ

With the use of the dissipative Klein-Gordon equa-
tion (37) we can now fix the effective form of the pressure
of the dissipative scalar field as

pðeffÞ
ϕ ¼ ð1þQÞpϕeΓðtÞ: ð86Þ

It is easy to check that with this form of pðeffÞ
ϕ , Eq. (83) is

equivalent to the dissipative Klein-Gordon equation (37).
Hence, for the flat FLRW metric (30), the Friedmann

equations in the presence of a dissipative scalar field, with
the dissipative exponent ΓðtÞ ¼ 3

R
HðtÞQðtÞdt, take the

form

3H2 ¼ 8πG
c2

ðρðeffÞϕ þ ρmc2Þ

¼ 8πG
c2

��
1

2
_ϕ2 þ VðϕÞ

�
e3
R

HðtÞQðtÞdt þ ρmc2
�
; ð87Þ

2 _H þ 3H2 ¼ −
8πG
c2

ðpðeffÞ
ϕ þ pmÞ

¼ −
8πG
c2

�
ð1þQÞ

�
1

2
_ϕ2 − VðϕÞ

�

× e3
R

HðtÞQðtÞdt þ pm

�
; ð88Þ

which must be considered together with the dissipative
Klein-Gordon equation, Eq. (37). By eliminating the term
3H2 between Eqs. (87) and (88) we obtain the time
evolution of the Hubble function as

2 _H ¼ −
8πG
c2

��
1þQ

2

�
−QVðϕÞ

�
e3
R

HðtÞQðtÞdt

−
8πG
c2

ðρmc2 þ pmÞ: ð89Þ

For Q ¼ 0 we recover the basic equations describing the
standard quintessence cosmological models.
Once VðϕÞ, QðtÞ, and the equation of state of the

cosmological matter pm ¼ pmðρmÞ are known, the system
of Eqs. (87)–(89) and (37) represents a system of differ-
ential-integral equations for the unknowns ðH;ϕ; ρmÞ.

From the Friedmann equations (87) and (88) we can
obtain the generalized conservation equation

d
dt
ða3ρðeffÞϕ Þþda3

dt
pðeffÞ
ϕ þ d

dt
ða3ρmc2Þþ

da3

dt
pm¼ 0: ð90Þ

Since we have already assumed that the effective dis-
sipative scalar field is conserved, it follows that the matter
energy density is also conserved, and hence no energy-
matter transfer can take place between the dissipative scalar
field and the normal baryonic matter. Hence, the baryonic
matter content of the universe satisfies the conservation
equation,

_ρm þ 3H

�
ρm þ pm

c2

�
¼ 0: ð91Þ

A useful cosmological observational quantity, the decel-
eration parameter q, having the definition

q ¼ d
dt

1

H
− 1 ¼ −

_H
H2

− 1; ð92Þ

is obtained as

q ¼ 1

2

�
1þ 3

ð1þQðtÞÞð1
2
_ϕ2 − VðϕÞÞe3

R
HðtÞQðtÞdt þ pm

ð1
2
_ϕ2 þ VðϕÞÞe3

R
HðtÞQðtÞdt þ ρmc2

�
:

ð93Þ

We can also introduce the parameter w of the equation of
state of the dark energy, which is given by

w ¼ pðeffÞ
ϕ

ρðeffÞϕ

¼ ð1þQÞpϕ

ρϕ
: ð94Þ

1. Dimensionless form of the generalized
Friedmann equations

To simplify the mathematical expressions of the
Friedmann equations, we define a set of dimensionless
variables ðτ; h;Φ; U; rm; PmÞ, defined according to

t¼ 1

H0

τ; H¼H0h; ϕ¼
ffiffiffiffiffiffiffiffiffi
3c2

8πG

r
Φ;

V¼ 3H2
0c

2

8πG
U; ρm ¼ 3H2

0

8πG
rm; pm ¼ 3H2

0c
2

8πG
Pm; ð95Þ

where H0 is the present day value of the Hubble function.
The dimensionless matter density can also be written as

rm ¼ ρm=ρc ¼ Ωm, where ρc ¼ 3H2
0=8πG is the critical

density, while Ωm denotes the density parameter of the
baryonic matter.

DISSIPATIVE QUINTESSENCE AND ITS COSMOLOGICAL … PHYS. REV. D 107, 123507 (2023)

123507-11



Then the Friedman, the Klein-Gordon, and the energy
balance equations take the form

h2 ¼
�
1

2

�
dΦ
dτ

�
2

þ UðΦÞ
�
e3
R

hðτÞQðτÞdτ þ rm; ð96Þ

2
dh
dτ

þ 3h2 ¼ −3
��

ð1þQÞ
�
1

2

�
dΦ
dτ

�
2

−UðΦÞ
��

× e3
R

hðτÞQðτÞdτ þ Pm

�
; ð97Þ

d2Φ
dτ2

þ 3hð1þQÞ dΦ
dτ

þ U0ðΦÞ ¼ 0; ð98Þ

drm
dτ

þ 3hðrm þ PmÞ ¼ 0: ð99Þ

Moreover, we introduce the substitution

uðτÞ ¼
Z

hðτÞQðτÞdτ; ð100Þ

giving u0ðτÞ ¼ QðτÞhðτÞ. Then the system of the
Friedmann-Klein-Gordon equations of the dissipative
quintessence cosmology can be formulated as a second
order differential system, given by

�
du
dτ

�
2

¼ Q2

��
1

2

�
dΦ
dτ

�
2

þ UðΦÞ
�
e3u þ rm

�
; ð101Þ

2

Q
d2u
dτ2

−
2

Q2

du
dτ

dQ
dτ

þ 3

Q2

�
du
dτ

�
2

¼ −3
��

1

2

�
dΦ
dτ

�
2

−UðΦÞ
�
e3u þ Pm

�
; ð102Þ

d2Φ
dτ2

þ 3

�
1þ 1

Q

�
du
dτ

dΦ
dτ

þ U0ðΦÞ ¼ 0; ð103Þ

drm
dτ

þ 3hðrm þ PmÞ ¼ 0: ð104Þ

2. The generalized Friedmann equations in the
redshift space

To allow a straightforward comparison between the
theoretical predictions and cosmological observations we
introduce, instead of the time variable, the redshift z,
defined as 1=a ¼ 1þ z.
Then the system of equations describing the cosmologi-

cal evolution in the presence of a dissipative scalar field
takes the form

duðzÞ
dz

¼ −
QðzÞ
1þ z

; ð105Þ

dΦðzÞ
dz

¼ −
vðzÞ

ð1þ zÞhðzÞ ; ð106Þ

h2ðzÞ ¼
�
1

2
ð1þ zÞ2h2ðzÞ

�
dΦðzÞ
dz

�
2

þ UðΦÞ
�
e3uðzÞ

þ rmðzÞ; ð107Þ

− 2ð1þ zÞhðzÞdhðzÞ
dz

þ 3h2ðzÞ

¼−3
��

ð1þQðzÞÞ
�
1

2

�
1þ zÞ2h2ðzÞ

�
dΦ
dz

�
2

−UðΦÞ
��

× e3uðzÞ
�
; ð108Þ

−ð1þ zÞhðzÞ dvðzÞ
dz

þ 3hðzÞð1þQðzÞÞvðzÞ þ U0ðΦÞ ¼ 0;

ð109Þ

−ð1þ zÞ drmðzÞ
dz

þ 3rmðzÞ ¼ 0; ð110Þ

where we have denoted v ¼ dΦ=dτ and we have
assumed Pm ¼ 0.
By eliminating h2ðzÞ between Eqs. (107) and (108), we

obtain for hðzÞ the following differential equation:

hðzÞ dhðzÞ
dz

¼
�
3

2
ð1þ zÞh2ðzÞ

�
1þQðzÞ

2

��
dΦðzÞ
dz

�
2

−
3

2

QðzÞ
1þ z

UðΦÞ
�
e3uðzÞ þ 3

2

rm
1þ z

: ð111Þ

Equations (105)–(110) represent a system of first order
ordinary differential equations with the unknowns
ðu;Φ; v; h; rmÞ, with the solution satisfying the constraint
(107). To solve the system, the functional form of the
functions QðzÞ and UðϕÞ must be provided. The system
must be integrated with the initial conditions uð0Þ ¼ u0,
Φð0Þ ¼ Φ0, vð0Þ ¼ v0, hð0Þ ¼ 1, and rmð0Þ ¼ rm0,
respectively. Equation (110) can be immediately integrated
to give for the matter density parameter the expression

rmðzÞ ¼ ΩmðzÞ ¼ Ωm0ð1þ zÞ3; ð112Þ

where Ωm0 is the present day matter density parameter.

IV. SIMPLE COSMOLOGICAL MODELS
WITH DISSIPATIVE SCALAR FIELD

In the present section we will investigate the cosmo-
logical implications of the dissipative scalar field models by
considering some simple analytical forms of the dissipation
function QðτÞ. We will consider the effects of dissipation
only on the late cosmological evolution, and hence we will
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neglect the effects of the matter pressure in the field
equations (105)–(110), which are the basic equations
describing the expansionary dynamics of the universe for
the dissipation exponent given by ΓðτÞ ¼ 3

R
HðτÞQðτÞdτ.

To test the cosmological viability of the dissipative scalar
field model we will compare its theoretical predictions with
the standard ΛCDM model, and with a set of observational
data for the Hubble function.
In a three component universe, consisting of baryonic

matter, dark matter, and dark energy, respectively, the
Hubble function of the ΛCDM model is given by

H¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðcrÞ

m

a3
þΩΛ

s
¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðcrÞ

m ð1þ zÞ3þΩΛ

q
; ð113Þ

where ΩðcrÞ
m ¼ ΩðcrÞ

b þ Ωðcr
DM, and ΩðcrÞ

b ¼ ρb=ρcr, ΩDM ¼
ρDM=ρcr, andΩΛ ¼ Λ=ρcr denote the density parameters of
the baryonic matter, dark matter, and dark energy, respec-
tively. In the ΛCDM model the deceleration parameter is
given by the relation

qðzÞ ¼ 3ð1þ zÞ3Ωm

2½ΩΛ þ ð1þ zÞ3Ωm�
− 1: ð114Þ

In the following we adopt for the matter and dark energy
density parameters of the ΛCDM model the values
ΩDM ¼ 0.2589, Ωb ¼ 0.0486, and ΩΛ ¼ 0.6911, respec-
tively [17]. Then total matter density parameter Ωm ¼
ΩDM þ Ωb has the value Ωm ¼ 0.3089. The present day
value of the deceleration parameter is given by
qð0Þ ¼ −0.5381, indicating that presently the universe is
in an accelerating phase.

A. The de Sitter solution

As a first example of a cosmological model with
dissipative scalar field we will consider the case for which
the Hubble function is a constant, h ¼ h0 ¼ const, corre-
sponding to an exponential expansion of the universe, and
with a deceleration parameter q ¼ −1. Moreover, we
assume a vacuum universe, with rm ¼ 0. Then, by adding
Eqs. (96) and (97) we obtain the relation

h20
2þQ
1þQ

e−ΓðτÞ ¼ 2UðΦÞ: ð115Þ

This equation is identically satisfied for Q ¼ −2, and
UðΦÞ ¼ 0. The Klein-Gordon equation becomes

d2Φ
dτ2

− 3h0
dΦ
dτ

¼ 0; ð116Þ

with the general solution given by

ΦðτÞ ¼ C1

3h0
e3h0τ þ C2; ð117Þ

where C1 and C2 are arbitrary constants of integration. We
can take C2 ¼ 0 without any loss of generality. For the
dissipation exponent we obtain the expressionΓðτÞ¼−6h0τ.
Hence, in this simplemodel, the exponential expansionof the
universe is triggered by the exponential increase of the scalar
field, downsized by the decrease of the dissipation exponent.
An alternative approach for obtaining de Sitter type

solutions is based on directly solving the Friedmann
constraint equation (96) for a constant h and vanishing
matter energy density. Then we obtain the differential
equation,

h20e
−ΓðτÞ ¼ 1

2

�
dΦ
dτ

�
2

þ UðΦÞ; ð118Þ

which, once the field potential and the dissipation exponent
are known, can be directly integrated to give the evolution
of the scalar field ΦðτÞ. For UðΦÞ ¼ 0, we obtain

ΦðτÞ ¼
ffiffiffi
2

p
h0

Z
e−ΓðτÞ=2dτ þ const: ð119Þ

For ΓðτÞ ¼ −6h0τ, and taking the additive integration
constant as zero, we obtain ΦðτÞ ¼ ð ffiffiffi

2
p

=3Þe3h0τ, which
allows us to fix the integration constant C1 in Eq. (117)
as C1 ¼

ffiffiffi
2

p
h0.

1. de Sitter type expansion with constant dissipation
function Q0 ≠ − 2

Let us assume now that the dissipation function Q takes
constant values at least on a finite time interval, so that
Q ¼ Q0 ¼ const ≠ −2. Then, we obtain

UðΦðτÞÞ ¼ h20
2

2þQ0

1þQ0

e−3h0Q0τ; Q0 ≠ −2: ð120Þ

In the limit of large τ, the scalar field potential tends to
zero, limτ→∞UðΦðτÞÞ ¼ 0.
The Klein-Gordon equation takes the form

d
dτ

�
dΦ
dτ

�
2

þ 6h0ð1þQ0Þ
�
dΦ
dτ

�
2

− 3h30
2þQ0

1þQ0

e−3h0Q0τ ¼ 0: ð121Þ

A first integration leads to

dΦ
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3−

ð2þQ0Þh20
ð1þQ0Þ½1þ6h0ð1þQ0Þ�

e−3h0Q0τ

s
; ð122Þ
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where C3 is an arbitrary integration constant, leading to the
time evolution of the scalar field as given by

ΦðτÞ ¼ 2
ffiffiffiffiffiffi
C3

p
3h0Q0

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

h20ð2þQ0Þe−3h0Q0t

C3ð1þQ0Þ½6h0ð1þQ0Þ þ 1�

s

− tanh−1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
h20ð2þQ0Þe−3h0Q0t

C3ð1þQ0Þ½6h0ð1þQ0Þ þ 1�

s !#
;

ð123Þ

where an integration constant has been set to zero. In this
model the dependence of the potential on the scalar field is
given in a parametric form, U ¼ UðτÞ, Φ ¼ ΦðτÞ. Both
positive and negative values of Q0 are possible, and the
evolution of the scalar field, and of its potential, is basically
determined by the dissipation constant. Hence, depending
on the numerical value of Q0, a large number of exponen-
tially expanding vacuum cosmological models can be
obtained. In the limit of large times, as one can see from
Eq. (122), ΦðτÞ ≈ ffiffiffiffiffiffi

C3

p
τ, and, even in the absence of the

potential of the scalar field, the de Sitter expansionary
phase is triggered by the time derivative of the scalar field.

B. Models with dynamical Hubble function

In the present subsection we will consider two simple
cosmological models in the presence of a dissipative scalar
field and of a matter component. We will consider two
classes of models, under the assumptions that either the
scalar field potential or its kinetic term can be neglected. A
comparison with the observational data, and with the
standard ΛCDM model will also be performed.

1. Models with vanishing scalar field potential

We consider now a cosmological model in the presence
of a dissipative scalar field and of ordinary pressureless
matter, in which we give up the assumption of the global
constancy of the Hubble function. For simplicity, we
assume that the dissipation function Q is a constant,
Q ¼ Q0 ¼ const, and that the potential of the scalar field
vanishes, UðΦÞ ¼ 0. Then, the evolution of the matter
density is given by Eq. (112). From the Klein-Gordon
equation (98) we obtain for the time derivative of the scalar
field the expression

_Φ ¼ _Φ0a−3ð1þQ0Þ; ð124Þ

where _Φ0 is an arbitrary constant of integration. For the
dissipation exponent we obtain Γ¼3Q0

R
hðτÞdτ¼3Q0 lna.

By combiningEqs. (96) and (97),weobtain the cosmological
evolution equation of the model as

dh
dτ

¼ −
3

2

�
1þQ0

2

�
_Φ2eΓ −

3

2
rm: ð125Þ

In the redshift space we obtain the following differential
equation for hðzÞ:

hðzÞ dhðzÞ
dz

¼ 3

2

�
1þQ0

2

�
_Φ2
0ð1þ zÞ5þ3Q0

þ 3

2
Ωm0ð1þ zÞ2: ð126Þ

Equation (126) must be integrated with the initial
condition hð0Þ ¼ 1, after fixing the numerical values of
the parameters ðQ0; _Φ0;Ωm0Þ.
The variations of the Hubble function and of the

deceleration parameter are presented as a function of the
redshift z in Fig. 1. The cosmological parameters corre-
sponding to the ΛCDM model are also shown, together
with a set of observational data for the Hubble function, as
compiled in [107].
As one can see from Fig. 1, this simple dissipative

cosmological model gives a good description of the
observational data and coincides with the predictions of
theΛCDMmodel for a large range of redshifts. The Hubble
function can be expressed in an exact form as

hðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

_Φ2
0

2
½ð1þ zÞ3ð2þQ0Þ − 1� þΩm0½ð1þ zÞ3 − 1�

s
;

ð127Þ

while the deceleration parameter can be obtained in the
form

qðzÞ¼ð1þzÞ
hðzÞ

dhðzÞ
dz

−1

¼ ðzþ1Þ½3Ωm0ð1þzÞ2þ3
2
_Φ2
0ð2þQ0Þð1þzÞ3Q0þ5�

2f1þ1
2
_Φ2
0½ð1þzÞ3ð2þQ0Þ−1�þΩm0½ð1þzÞ3−1�g−1:

ð128Þ

The parameter of the equation of state of the dissipative
scalar field takes the form

w ¼ ð1þQ0Þ ¼ const: ð129Þ

The best fit with the observational data is provided for
Q0 ¼ −1.29, which gives w ¼ −0.29. The variations of the
effective density ρðeffÞϕ of the scalar field,and of its effective

pressure pðeffÞ
ρ are represented in Fig. 2.

For the best fit values Q0 ¼ −1.29, the effective density
and pressure of the scalar field are constants, with the
pressure taking small negative values. Such a dissipative
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scalar field behaves like a cosmological constant even in
the absence of the potential term.
For the sake of completeness, we will also consider

one more parameter for the present cosmological model,
which allows testing its viability, namely, the OmðzÞ
diagnostic, with

OmðzÞ ¼ h2ðzÞ − 1

ð1þ zÞ3 − 1
: ð130Þ

For the ΛCDM model, the function OmðzÞ is a constant,
equal to the present day matter density Ωm0. The variation
of the OmðzÞ function is represented in Fig. 3.

For Q0 ¼ −1.29, the behavior of the OmðzÞ function in
this dissipative scalar field model is very close to its
behavior in the standard ΛCDM paradigm.

2. Dissipative scalar field models
with negligible kinetic term

We consider now the case in which the potential term
dominates the effective energy density and pressure of
the scalar field; that is, UðΦÞ satisfies the condition
UðΦÞ ≫ _Φ2=2. For simplicity, we assume that the scalar
field potential is given by the expression

UðΦÞ ¼ m
2
Φ2; ð131Þ

FIG. 2. Variation of the effective energy density ρðeffÞϕ of the scalar field (left panel) and of the effective pressure pðeffÞ
ρ (right panel), in

the dissipative scalar field cosmological model with UðΦÞ ¼ 0, for _Φ0 ¼ 0.12,Ωm0 ¼ 0.30, and for different values ofQ0:Q0 ¼ −0.29
(dotted curve), Q0 ¼ −0.49 (short dashed curve), Q0 ¼ −0.69 (dashed curve), Q0 ¼ −0.89 (long dashed curve), and Q0 ¼ −1.29
(ultralong dashed curve), respectively.

FIG. 1. Variation of the dimensionless Hubble function hðzÞ (left panel) and of the deceleration parameter qðzÞ (right panel), in the
dissipative scalar field cosmological model with UðΦÞ ¼ 0, for _Φ0 ¼ 0.12, for Ωm0 ¼ 0.30, and for different values ofQ0: Q0 ¼ −0.29
(dotted curve), Q0 ¼ −0.49 (short dashed curve), Q0 ¼ −0.69 (dashed curve), Q0 ¼ −0.89 (long dashed curve), and Q0 ¼ −1.29
(ultralong dashed curve), respectively. The predictions of the ΛCDM model are represented by the red solid curve, while the
observational data are represented together with their error bars.
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where m is a constant. In the following we also neglect the
matter pressure, taking Pm ¼ 0, and assume that the
dissipation function is a constant. Then, in the redshift
space, the system of equations describing the evolution of
the scalar field and of the Hubble function takes the form

dΦðzÞ
dz

¼ −
uðzÞ

ð1þ zÞhðzÞ ; ð132Þ

ð1þzÞhðzÞduðzÞ
dz

−3hðzÞð1þQ0ÞuðzÞ−mΦðzÞ¼0; ð133Þ

hðzÞ dhðzÞ
dz

¼ −
3

4
Q0mΦ2ðzÞð1þ zÞ3Q0−1 þ 3

2
Ωm0ð1þ zÞ2:

ð134Þ

The system of equations (132)–(134) must be solved
with the initial conditions Φð0Þ ¼ Φ0, uð0Þ ¼ u0, and
hð0Þ ¼ 1, respectively.
The redshift evolutions of the Hubble function and of the

deceleration parameter of the dissipative scalar field model
with a negligible kinetic term are represented in Fig. 4. As
one can see from the two panels of Fig. 4, with the values of
Q0 moving into the negative range, the concordance with
the cosmological data and the ΛCDM model becomes
better and better for both hðzÞ and qðzÞ. For Q0 ¼ −0.45,
both the Hubble function and the deceleration parameter
are basically visually indistinguishable from the predictions
of the standard cosmological paradigm.
The variation of the scalar field potential and the OmðzÞ

diagnostic function are presented in Fig. 5. The scalar field
potential is roughly a constant, almost exactly mimicking a
cosmological constant. The redshift variation of theΦ2 type
potential is (almost) exactly compensated by the dissipation
exponent, resulting in an almost constant contribution to
the Friedmann equations. However, the cosmological
evolution, even accelerated, is not exactly of the de
Sitter type. The OmðzÞ function also tends toward its
ΛCDM value, and thus this cosmological parameter is well
recovered in the dissipative scalar field cosmology.
The parameter of the equation of state of the dissipative

quintessence type dark energy is given by

w ¼ −ð1þQ0Þ ≈ −0.55; ð135Þ

if one uses the best empirical approximation of Q0. This
constant negative equation of state is different from the
equation of state of the quintessence fields with negligible
kinetic terms, which is w ¼ −1.

FIG. 3. Variation of the OmðzÞ diagnostic function in the
dissipative scalar field cosmological model with UðΦÞ ¼ 0,
for _Φ0 ¼ 0.12, Ωm0 ¼ 0.30, and for different values of Q0: Q0 ¼
−0.29 (dotted curve), Q0 ¼ −0.49 (short dashed curve), Q0 ¼
−0.69 (dashed curve), Q0 ¼ −0.89 (long dashed curve), and
Q0 ¼ −1.29 (ultralong dashed curve), respectively. The solid red
curve represents the OmðzÞ function in the ΛCDM cosmology.

FIG. 4. Variation of the dimensionless Hubble function hðzÞ (left panel) and of the deceleration parameter qðzÞ (right panel), in the
dissipative scalar field cosmological model with a negligibly kinetic term, and UðΦÞ ¼ mΦ2=2, for Φð0Þ ¼ 0.11, uð0Þ ¼ 0.30,
Ωm0 ¼ 0.30, m ¼ 0.12, and for different values of Q0: Q0 ¼ 0.45 (dotted curve), Q0 ¼ 0.35 (short dashed curve), Q0 ¼ 0.15 (dashed
curve), Q0 ¼ −0.15 (long dashed curve), and Q0 ¼ −0.45 (ultralong dashed curve), respectively. The predictions of the ΛCDM model
are represented by the red solid curve, while the observational data are represented together with their error bars.
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V. COSMOLOGICAL MODELS WITH
DYNAMICAL DISSIPATION FUNCTION

We consider now a more general class of cosmological
models, in which the dissipation function is dynamical. For
simplicity, we adopt for Q a simple functional representa-
tion as

QðzÞ ¼ Q0ð1þ zÞα; ð136Þ
whereQ0 and α are constants. For the potential of the scalar
field we still adopt the simple quadratic form (131), and we
also keep the kinetic term of the field in the mathematical
formalism. The system of equations to be solved is
Eqs. (105)–(110), together with a set of appropriately
chosen initial conditions. By taking into account the
explicit form of QðzÞ, Eq. (105) can be integrated to give

uðzÞ ¼ −
Q0

α
ð1þ zÞα: ð137Þ

Then, the equations describing the cosmological evolu-
tion of the universe in the presence of a dissipative scalar
field with a dynamic dissipation function take the form

dΦðzÞ
dz

¼ −
vðzÞ

ð1þ zÞhðzÞ ; ð138Þ

hðzÞ dhðzÞ
dz

¼ 3

4

�
½2þQ0ð1þ zÞα�ð1þ zÞh2½z�

�
dΦ
dz

�
2

−mQ0ð1þ zÞα−1Φ2ðzÞ
�
e−

3Q0
α ð1þzÞα

þ 3

2
Ωm0ð1þ zÞ2; ð139Þ

ð1þzÞhðzÞdvðzÞ
dz

−3hðzÞ½1þQ0ð1þzÞα�vðzÞ−mΦðzÞ¼0:

ð140Þ

The system of equations (138)–(140) must be integrated
with the initial conditions Φð0Þ ¼ Φ0, vð0Þ ¼ v0, and
hð0Þ ¼ 1, once the numerical values of the parameters
ðQ0; α; mÞ have been specified.
For the sake of comparison we also present the

cosmological evolution in the presence of the ideal
quintessence field with quadratic potential, with Γ ¼ 0,
that is, in the absence of any dissipative phenomena.
The results of the numerical integration of the ideal
quintessence field equations are represented by an orange
curve.
The redshift variations of the Hubble function and

of the deceleration parameter are represented in Fig. 6,
for a constant Q0 and different values of α. The numeri-
cal results show a relatively strong dependence on the
numerical values of the parameter α, but for α ¼ −0.60,
the predictions of the dissipative scalar field cosmologi-
cal model, and of the ΛCDM model basically coincide
for both the Hubble function and the deceleration param-
eter. For low redshifts, up to z ≈ 1.5, the cosmological
evolution is basically independent of the numerical
values of α, and the concordance with the ΛCDM model
is very good, at least for the rescaled Hubble function
hðzÞ. The model can also reproduce very well the
predictions of the ΛCDM model for the deceleration
parameter.
The variations of the effective energy density of the

dissipative scalar field, as well as the behavior of the
effective pressure for the quadratic field potential, are
represented in Fig. 7. For the best fit values of the model
with the cosmological observations both the energy density
and the pressure become approximately constant in the
considered range of z, and hence they mimic a cosmologi-
cal constant.
The parameter wðzÞ of the equation of state of the scalar

field is given by

FIG. 5. Variation of the scalar field potential UðΦÞ ¼ mΦ2=2 (left panel) and of the OmðzÞ function (right panel), in the dissipative
scalar field cosmological model with a negligibly kinetic term, for Φð0Þ ¼ 0.11, uð0Þ ¼ 0.30, Ωm0 ¼ 0.30, m ¼ 0.12, and for different
values of Q0: Q0 ¼ 0.45 (dotted curve), Q0 ¼ 0.35 (short dashed curve), Q0 ¼ 0.15 (dashed curve), Q0 ¼ −0.15 (long dashed curve),
and Q0 ¼ −0.45 (ultralong dashed curve), respectively. The predictions of the ΛCDM model are represented by the red solid curve.
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wðzÞ ¼ ½1þQ0ð1þ zÞα�½ð1þ zÞ2h2ðzÞðdΦðzÞ
dz Þ2 −mΦ2ðzÞ�

½ð1þ zÞ2h2ðzÞðdΦðzÞ
dz Þ2 þmΦ2ðzÞ�

:

ð141Þ
The variation of the functions wðzÞ and OmðzÞ are

represented in Fig. 8. It is interesting to note that even the
parameter of the equation of state of the scalar field is
positive for all considered redshift range, and the model still
can explain satisfactorily the observational data and gives
almost the same predictions as the ΛCDM model. The
behavior of the OmðzÞ function is strongly dependent on
the numerical values of α, but for α ¼ −0.60 it approaches
significantly the ΛCDM value.

On the other hand, as one can see from Figs. 6, 7, and 8,
by using a different set of values for the potential parameter
m and for the initial conditions Φð0Þ and vð0Þ, the ideal
quintessence field model with quadratic potential can also
give a good description of the observational data for the
Hubble function, and of the ΛCDM model. However,
significant differences do appear in the behaviors of the
energy density and pressure of the ideal and dissipative
scalar field, as well as in the parameter of the equation of
state of the dark energy.
Hence, at least in principle, it is possible to construct

ideal quintessence models that mimic their dissipative
counterparts at the background evolution level by adopting
different values for the potential parameters, and for the

FIG. 6. Variation of the dimensionless Hubble function hðzÞ (left panel) and of the deceleration parameter qðzÞ (right panel), in the
dissipative scalar field cosmological model with dynamical dissipation function, and quadratic scalar field potentialUðΦÞ ¼ mΦ2=2, for
Φð0Þ ¼ 0.11, vð0Þ ¼ 0.30, Ωm0 ¼ 0.3089, m ¼ 0.12, Q0 ¼ −0.89, and for different values of α: α ¼ −1.29 (dotted curve), α ¼ −1.15
(short dashed curve), α ¼ −0.98 (dashed curve), α ¼ −0.85 (long dashed curve), and α ¼ −0.60 (ultralong dashed curve), respectively.
The predictions of the ΛCDM model are represented by the red solid curve, while the observational data are given together with their
error bars. The evolution of the cosmological parameters of the ideal quintessence field with quadratic potential, with Γ ¼ 0, is
represented for m ¼ 0.682, Φð0Þ ¼ 0.19, and vð0Þ ¼ 0.01 by the orange curve.

FIG. 7. Variation of the effective energy density of the scalar field (left panel) and of the effective pressure (right panel), in the
dissipative scalar field cosmological model with a dynamical dissipation function, for Φð0Þ ¼ 0.11, vð0Þ ¼ 0.30, Ωm0 ¼ 0.3089,
m ¼ 0.12, Q0 ¼ −0.89, and for different values of α: α ¼ −1.29 (dotted curve), α ¼ −1.15 (short dashed curve), α ¼ −0.98 (dashed
curve), α ¼ −0.85 (long dashed curve), and α ¼ −0.60 (ultralong dashed curve), respectively. The evolution of the cosmological
parameters of the ideal quintessence field with quadratic potential, with Γ ¼ 0, is represented for m ¼ 0.682, Φð0Þ ¼ 0.19, and
vð0Þ ¼ 0.01 by the orange curve.
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initial conditions of the scalar field. The opposite situation
may also be possible, with dissipative scalar field models
giving an equivalent effective description of ideal quintes-
sential field models. However, a rigorous statistical analysis
of the observational datasets (Hubble, Pantheon, etc.) may
still allow one to clearly discriminate between ideal and
dissipative quintessence field models, due to their very
different predictions for the parameter of the dark energy
equation of state.
Nevertheless, important differences may appear at the

perturbative level between ideal and dissipative quintes-
sence models. In [108] it was shown, after performing a
dynamical system analysis of the background and pertur-
bation equations in the ΛCDM cosmology and in the
quintessence models with an exponential potential, that in
the case of quintessence the perturbations drastically
modify the properties and stability of the background
evolution. It turns out that in the quintessence model there
is one and only one stable point. The behavior of this stable
point leads either to an exponentially increasing matter
clustering, not detected in cosmological observations, or to
a physically not interesting Laplacian instability. Hence, the
quintessence cosmological models may be in a severe
disadvantage as compared to the standard ΛCDM model.
Some of these problems may be solvable in the dissipative
quintessence scenario, which, for example, may limit the
exponential increase of the matter clustering via the
dissipation of the scalar field energy.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered the cosmologi-
cal implications of a dissipative scalar field, whose theo-
retical description can be obtained from a variational
principle, inspired by the case of the simple damped

harmonic oscillator. In performing such a generalization
and extension of the scalar field models we assume that
dissipation may be a general property of physical systems,
and its presence should be unavoidable in any natural
process. It is interesting to note that at very low temper-
atures the superfluid component of the liquid helium
behaves as an irrotational ideal fluid, flowing without
friction [72,73]. However, once a critical velocity vc is
reached, dissipation sets in, and the flow is not frictionless
anymore. In the standard physical interpretation of this
process, it is assumed that dissipation in the superfluid flow
is due to the creation, motion, and evolution of the
superfluid quantized vortices in the liquid [72,73].
Dissipation can generally be attributed to the interaction
of the given physical system with an external (thermal, for
example) bath or to the interaction with another physical
system. The interaction between dark energy and dark
matter may provide a possible physical mechanism for the
presence of the dissipative effects of the two basic
components of the universe.
Various forms of the dissipative Klein-Gordon equation

have been investigated, mostly from a mathematical point
of view. The dissipative Klein-Gordon equations are
usually strongly nonlinear partial differential equations.
An equation of the form

□uþ u ¼ −gð∂tuÞ2; ð142Þ

where g is a constant, and □u ¼ ∂
2
t − ∂

2
x, was investigated

in [109], where it was shown that the solution of the
nonlinear equation has an additional logarithmic time
decay in comparison with the free evolution. The dissipa-
tive one-dimensional Klein-Gordon equation

FIG. 8. Variation of the equation of state wðzÞ (left panel) and of the OmðzÞ function (right panel), in the dissipative scalar field
cosmological model with a dynamical dissipation function, for Φð0Þ ¼ 0.11, vð0Þ ¼ 0.30, Ωm0 ¼ 0.3089, m ¼ 0.12, Q0 ¼ −0.89, and
for different values of α: α ¼ −1.29 (dotted curve), α ¼ −1.15 (short dashed curve), α ¼ −0.98 (dashed curve), α ¼ −0.85 (long dashed
curve), and α ¼ −0.60 (ultralong dashed curve), respectively. The prediction of the ΛCDMmodel for theOmðzÞ function is represented
by the red solid line. The evolution of the cosmological parameters of the ideal quintessence field with quadratic potential, with Γ ¼ 0, is
represented for m ¼ 0.682, Φð0Þ ¼ 0.19, and vð0Þ ¼ 0.01 by the orange curve.
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ut − uxx þ bðxÞut þ fðuÞ þ hð∇uÞ ¼ 0; ð143Þ

where f, g, h, b are arbitrary functions, was studied
in [110]. A particular dissipative nonlinear Klein-Gordon
equation of the form

utt − uxx þ αu − βu3 ¼ 0; ð144Þ

with α and β constants, plays an important role in many
fields of physics, such as in the study of the liquid helium,
dislocations in crystals, the Bloch wall motion, ferromag-
netic materials, the unified theory of elementary particles,
Josephson array, charge density waves, and the propagation
of magnetic flux on a Josephson line. (See Refs. [110] and
references therein.) A nonlinear dissipative Klein-Gordon
equation, given by

utt − Δuþ uþ γut ¼ jujp−1 ð145Þ

was studied from a mathematical point of view in [111].
Hence, a large number of dissipative Klein-Gordon type
equations have been proposed and investigated in detail in
both mathematical and physical literature. However, most
of these equations have been proposed on a phenomeno-
logical basis, as mostly empirical models for the description
of some physical processes.
In dealing with the dissipation problem, in the present

work we have introduced a comprehensive description of
the dissipative scalar fields, based on a variational principle,
which was inspired by the mathematics of one of the
simplest possible dissipative systems, the damped har-
monic oscillator. Dissipative processes can also be
described by variational principles, even that these princi-
ples are not as commonly used as the variational principles
for conservative systems. However, the Lagrangians for
dissipative systems are almost as simple as those for
conservative systems, and, with the use of the Euler-
Lagrange equations, they allow a direct and systematic
derivation of the equation of motion, as well as to obtain the
basic physical properties and characteristics of the dis-
sipative systems.
In the present approach to the scalar field physics we have

introduced theoretical models in which the ordinary
Lagrangian of the field is multiplied by an arbitrary function
of the coordinates, of the metric, and of the scalar field. The
Euler-Lagrange equations straightforwardly lead to various
dissipative formulations and extensions of the Klein-Gordon
equation, whose forms depend now on the dissipation
exponent, and function. In a Riemannian geometry, the
variational mathematical formalism allows one to obtain
the dissipative Klein-Gordon equations in an explicitly
covariant form. The main goal of the present study was,
besides introducing the theoretical formalism, to explore the
implications of the dissipative scalar fields in cosmology.
Scalar fields have alreadybeen extensively used as successful

dark energy models, which can mimic/replace the cosmo-
logical constant, and thus provide powerful alternatives to the
standard ΛCDM paradigm. To develop some cosmological
applications, we have considered dissipative scalar field
models leading to the generalized Klein-Gordon equation
of the form ϕ̈þ 3Hð1þQÞ _ϕþ V 0ðϕÞ ¼ 0, which was also
considered previously in the framework ofwarm inflationary
cosmological models, but without being derived from a
variational principle [112,113]. This dissipative Klein-
Gordon equation can be derived from the standard

Lagrangian Lϕ ¼ e3
R

HðtÞQðtÞdtρϕ.
The variational principle allows not only the systematic

introduction of the dissipation in scalar field models but
also obtains the effective energy density and pressure that
can be associated with the scalar field. The effective energy
of the field can be obtained as the effective Hamiltonian
derived in the standard way from the field Lagrangian. On
the other hand, to obtain the effective pressure of the field
we have imposed the cosmological conservation of the
effective quantities. Generally, the Friedmann equations
imply the conservation of the total matter-field content of
the universe. By imposing the independent conservation
laws for matter and field we have neglected the possibility
of any interaction between scalar field and cosmological
matter, even that such a possibility cannot be ruled out
a priori.
The generalized conservation equation, with the effects

of the matter ignored, uniquely determines the effective
pressure of the dissipative field in the form pðeffÞ

ϕ ¼
ð1þQÞð _ϕ2=2 − VðϕÞÞe3

R
HðtÞQðtÞdt. This effective field

pressure and the effective density ρðeffÞϕ ¼ ð _ϕ2=2 − VðϕÞÞ×
e3
R

HðtÞQðtÞdt are the physical quantities that appear in the
generalized Friedmann equations that describe the cosmo-
logical dynamics. From a mathematical point of view, the
Friedmann equations become differential-integral equa-
tions, with the inclusion of the dissipative effects leading
to a significant increase in the mathematical problem of the
cosmological evolution. However, the cosmological prob-
lem is still solvable relatively straightforwardly for the
considered dissipation exponent, since by means of simple
mathematical transformations, one can reformulate the
Friedmann-Klein-Gordon system in the redshift space as
a first order differential dynamical system, whose solutions
can be obtained easily numerically. We have examined in
detail several cosmological models, which were obtained
for different choices of the dissipation function, and of the
scalar field potential. From the point of view of the
dissipation function, we have considered models with
constant Q and with Q a particular function of the redshift.
For the scalar field potential we have also adopted two
forms only, VðϕÞ ¼ 0 and VðϕÞ ¼ mϕ2=2, respectively.
From a cosmological point of view, the most significant

change in the modeling of dark energy comes from the
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expression of the effective pressure. First of all, successful
cosmological models without the presence of the potential
can easily be constructed by assuming that the dissipation
function satisfies the condition 1þQ < 0. With this choice
the kinetic term of the pressure becomes positive in the
second Friedmann equation, and an effective negative

pressure of the form pðeffÞ
ϕ ¼ ðð1þQÞ _ϕ2=2Þe3

R
HðtÞQðtÞdt

can effectively trigger, and control, the accelerated expan-
sion of the universe, thus playing the role of the cosmo-
logical constant and of the dark energy. On the other hand,
for this model, the sign of the kinetic term in the effective
energy of the field has the correct sign. Hence, no self-
interacting potential is necessary for a dissipative scalar
field to accelerate the universe, the role of the potential
being taken over by the dissipation function. On the other
hand, while many fundamental physical models do exist for
the scalar field potential, to the best knowledge of the
present author, no theoretical models for the dissipation
exponent have been considered in the framework of the
fundamental theories of elementary particle physics.
It is important to point out that, even at low redshifts

z < 2, the predictions of the dissipative quintessence model
do coincide with the predictions of the ΛCDM model, and
with the observational data, some significant deviations
may appear at higher redshifts z > 2.5. For standard
quintessence models, the deviations from the evolution
of the ΛCDM are bounded to be below the 10% level at
95% confidence at redshifts below z ¼ 1.5 [114]. It would
be interesting to investigate if the inclusion of the dis-
sipative processes of the scalar field could significantly
change this bound. On the other hand, in the present models
the dissipation function can be taken as an increasing
function of the redshift (a decreasing function of time), and
thus, at enough high redshifts, due to the presence of the
function eΓ in the expressions of ρϕ and pϕ, in the early
universe the contributions of the scalar field energy density
and pressure become negligible, and the universe is matter
dominated, with a decelerating evolution. Hence, generally,
we expect that the dissipative quintessence evolution takes
place in three phases. In the first phase, at low redshifts
z < 2, the model (almost) coincides with ΛCDM and
describes the present day accelerating evolution. At inter-
mediate redshifts, in the (approximate) range 2 < z < 5,
the dissipative quintessential cosmological expansion may
differ, even significantly, from the ΛCDM evolution.
However, at z > 5, both models become matter dominated,
and thus their large redshift dynamics coincides again.
Hence, the early matter dominated cosmological phase is

recovered in a large redshift limit in the present model,
due to the presence of the dissipation function in the
expressions of the basic quantities describing the quintes-
sence field, and without the necessity of introducing any
supplementary assumptions, for example, a change of the
potential or specific initial conditions. Moreover, there are
no restrictions on the scalar field potential, since the
inclusion of a proper dissipation function in the scalar
field equations would automatically recover the early
matter dominated era.
To confront this theoretical model with the observations

we have considered several simple models, obtained by
assuming some simple forms for the dissipation function
and for the scalar field potential. All the considered cases
have been compared with a (limited) set of observational
data for the Hubble function and with the predictions of the
ΛCDM model. The generalized Friedmann equations have
been solved numerically, with the initial conditions chosen
for the scalar field and its derivative so that the models
come as close as possible to the observations and to the
ΛCDM model. I would like to point out that no fitting was
used to obtain, and fix, the free parameters of the models,
but the results have been obtained by the trial and search
method. As a general conclusion of these investigations one
can say that the dissipative scalar field model, in its various
versions, can give a good description of the observational
cosmological data and succeeds in reproducing the pre-
dictions of theΛCDMmodel. Of course, a detailed analysis
of a larger number of cosmological data is necessary, before
one could give a fair estimate of the potential of the
dissipative scalar field cosmological models. And deep
investigations into the origin and physical mechanisms of
dissipation at both classical and quantum levels are also
necessary.
By taking into account the results of the present work,

the dissipative scalar field cosmological models could
become an attractive physical alternative to the standard
ΛCDMmodel concerning the theoretical interpretation and
the explanation of the observational data. It may also give a
new vision, and a better comprehension of the complex,
and unexpected, dynamical processes that take place in the
universe.
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