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It is known that magnetic fields exist near black holes and photons can go around black holes due to
strong gravity. Utilizing these facts, we can probe hypothetical pseudoscalar particles, so-called axions. In
fact, photons can be converted into axions when they propagate in a magnetic field. The conversion of such
photons into axions leads to a dimming of the photon ring around the black hole shadow. We show that
photon ring dimming can occur efficiently for supermassive black holes. Remarkably, it turns out that the
maximal dimming rate of the photon ring is 25%. In the case of M87�, dimming of 10% will be observed in
the x-ray and gamma-ray bands if the angular resolution of 10−5 arcsec is achieved. The frequency band
and the magnitude of the dimming depend on the axion-photon coupling and axion mass. Hence, the
distorted spectrum of the photon ring provides a novel tool for detecting axions.
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I. INTRODUCTION

Axions are hypothetical pseudoscalar particles originally
introduced to solve the strong CP problem in quantum
chromodynamics [1–7]. Intriguingly, pseudoscalar particles
will also arise ubiquitously in string theory [8]. We refer to
these pseudoscalar particles simply as axions. Axions can
play important roles in cosmology [9]. Indeed, heavy axions
can realize slow-roll inflation naturally [10–12] because of
shift symmetry. Light axions can be dark matter [13–17].
Axions with the mass 10−33 eV can mimic a cosmological
constant [18–20]. Thus, it is worth probing axions and their
mass from the cosmological point of view.
One of the crucial properties of axions is that they

interact with photons through the coupling Lint ¼
−ðgaγ=4ÞϕFμνF̃μν, where gaγ is the axion-photon coupling
constant, ϕ is the axion field, Fμν is the electromagnetic
field strength, and F̃μν is its dual. An interesting conse-
quence of this interaction in the presence of a magnetic
field is the conversion from photons into axions and vice
versa [21,22]. This photon-axion conversion phenomenon
is the basic principle [23,24] to search for solar axions
[25,26] and axion dark matter [27]. Photon-axion con-
version has been widely discussed in cosmological
and astrophysical contexts. For example, it is argued that

high-energy photons from extragalactic sources propagate to
us through the conversion from photons into axions and
reconversion from axions into photons: Otherwise, such
photons will be annihilated by electron-positron pair pro-
duction [28–33]. There are proposals to account for the
recent detections of high-energy gamma-ray photons based
on this idea [34–42]. It is also suggested that conversion will
lead to spectral distortions of the cosmic microwave back-
ground [43–45] and x or gamma rays from high-energy
sources such as active galactic nuclei [46–53]. On the other
hand, axions could be produced in the cores of supernovae,
super clusters, or white dwarfs, and they will be converted
into photons that we may observe [54–56]. Hence, in any
case, the lack of observational signatures can be translated
into a constraint on the coupling constant gaγ . Together with
observations [57–59], we obtain the upper bound of the
coupling constant as gaγ ≲ 10−11–10−10 GeV−1 in the mass
range ma ≲ 10−5 eV.
Recently, the Event Horizon Telescope observed a

polarized synchrotron emission at 230 GHz from near
the event horizon of the black hole in the center of the M87
galaxy (M87*) and reported that the strength of the
magnetic field is 1–30 G [60]. It is expected that magnetic
fields of these orders of magnitude are commonly present
in the vicinity of black holes in our Universe. Hence, it is
interesting to investigate photon-axion conversion around
black holes. In this case, the propagation length of photons
required for the conversion to axions is typically compa-
rable to or longer than the horizon radius of supermassive
black holes. Thus, one might think that a magnetic field
maintained over the radial distance of that scale is neces-
sary for conversion. However, we should note that the
strong gravity of the black hole allows the photons to stay
in its vicinity for a certain period of time. Specifically, a
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black hole spacetime has a photon sphere, on which
unstable circular orbits of photons exist. For photons
emitted from a source outside the black hole, a part of
the photons will first approach the photon sphere, then stay
around the sphere for a certain period of time, and finally
escape from the sphere, that we observe. While orbiting the
sphere, the photons stay at a nearly constant radius around
the black hole. This fact automatically guarantees that
the magnetic field is maintained during propagation.
Previously, the conversion of photons near the photon
sphere has been studied in Refs. [61,62] focusing on
conversion to gravitons. For gravitons, coupling to photons
is suppressed by the Planck scale,M−1

Pl ∼ 10−19 GeV−1. On
the other hand, coupling of photons to axions is less
constrained by observations. Thus, photon-axion conver-
sion could be more effective. Therefore, in this paper, we
investigate photon-axion conversion near the photon sphere
of black holes.
Photon-axion conversion near the photon sphere is quite

relevant to observations of the near black hole region, in
particular, the bright ringlike image (“photon ring”) created
around the dark region (“black hole shadow”), which is
observed by the Event Horizon Telescope. In fact, the
number of photons emitted from the vicinity of a black hole
will be reduced; i.e., the photon ring will be darkened by
conversion into axions. Remarkably, we will see that
photon ring dimming can occur efficiently for supermassive
black holes, and, in the case of M87�, the dimming will be
10% in the x-ray and gamma-ray bands for the axion with
coupling gaγ ∼ 10−11 GeV−1 and mass ma ≲ 10−7 eV. It
will be shown that, in general, the frequency band and
magnitude of the dimming depend on gaγ and ma. Hence,
observing the distorted spectrum of the photon ring
provides a novel tool for probing the properties of axions.
This paper is organized as follows. In Sec. II, we briefly

review photon-axion conversion in a magnetic field and
clarify the parameter region in which conversion efficiently
occurs. In Sec. III, we study conversion near the photon
sphere of black holes. Section IV is devoted to the
conclusion. Appendixes provide several supplements for
the main sections.
We set c ¼ ℏ ¼ kB ¼ G ¼ 1, where c is the speed of

light, ℏ is the reduced Planck constant, kB is the Boltzmann
constant, and G is the Newton constant. For electromag-
netism, Gaussian units commonly used in astrophysics are
applied in the main sections, while rationalized Heaviside-
Lorentz units are used in Appendix A.

II. PHOTON-AXION CONVERSION

In this section, we briefly review the photon-axion
conversion phenomenon in an external magnetic field.
We will see that conversion can efficiently occur for
x rays and gamma rays propagating in the vicinity of
black holes such as M87�.

A. Conversion probability

We consider photons propagating in an external mag-
netic field. The photons with polarization parallel to the
magnetic field are converted into axions. Let us list
parameters relevant to the conversion:

(i) ω.—frequency of the propagating photons;
(ii) B.—magnetic field perpendicular to the photon

propagation;
(iii) ma.—axion mass;
(iv) gaγ .—axion-photon coupling constant;
(v) ne.—number density of the electron in the medium.

The number density of the electron ne is used to determine
the plasma frequency:

ωpl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne
me

s

¼ 3.7 × 10−11 eV

ffiffiffiffiffiffiffiffiffiffi
ne

cm−3

r
; ð1Þ

where me ¼ 511 keV is the electron mass and α ¼ 1=137
is the fine-structure constant.
After the photons propagate over a distance z, the

probability of conversion from photons to axions is given
by (see Appendix A or Refs. [22,47,63])

Pγ→aðzÞ ¼
�

ΔM

Δosc=2

�
2

sin2
�
Δosc

2
z

�
; ð2Þ

Δ2
osc ≡ ðΔpl − Δvac − ΔaÞ2 þ 4Δ2

M: ð3Þ

Here, ΔM, Δa, Δpl, and Δvac are given, respectively, by

ΔM ¼ 9.8 × 10−23 eV

�
gaγ

10−11 GeV−1

��
B
G

�
; ð4Þ

Δa ¼ 5 × 10−22 eV

�
ma

n eV

�
2
�
keV
ω

�
; ð5Þ

Δpl ¼ 6.9 × 10−25 eV

�
ne

cm−3

��
keV
ω

�
; ð6Þ

Δvac ¼ 9.3 × 10−29 eV

�
ω

keV

��
B
G

�
2

: ð7Þ

The ΔM determined by gaγ and B is an essential parameter
for conversion. The effect of a finite axion mass Δa,
plasma oscillations Δpl, and the Euler-Heisenberg effective
Lagrangian in an external magnetic field incorporating the
one-loop corrections of electrons Δvac generically suppress
the conversion. Note that, for the validity of the present
framework, at least the following three conditions should
be satisfied:
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(a) ðα=ð45πÞÞðB=BcritÞ2 ≪ 1, where Bcrit ≡m2
e=

ffiffiffiffiffiffiffiffi
4πα

p ¼
4 × 1013 G, which comes from the validity of the
Euler-Heisenberg effective Lagrangian;

(b) ω ≫ ma—i.e., axions should be relativistic;
(c) ω ≫ ωpl so that photons can propagate in a surround-

ing plasma.

B. Efficient conversion

The most efficient conversion can be realized when
ðΔpl − Δvac − ΔaÞ2 ≪ 4Δ2

M so that Δosc ≃ 2ΔM; i.e., the
prefactor of the probability (2) approaches unity. In this
case, the typical length scale of the conversion reads

Δ−1
osc ≃ ð2ΔMÞ−1

¼ 1.0 × 1017 cm

�
G
B

��
10−11 GeV−1

gaγ

�

¼ 3.4 × 102 × ð2 × 109M⊙Þ

×

�
G
B

��
10−11 GeV−1

gaγ

�
: ð8Þ

We can see that, for B ∼ 101–2 G, the conversion length will
be comparable to the Schwarzschild radius of a supermassive
black hole with mass ∼109–10M⊙, if gaγ ∼ 10−11 GeV−1.
In fact, observations of M87� tell us that it has a mass of
6 × 109M⊙ [64] and a magnetic field around 30 G in the
vicinity of the black hole [60]. Since photons can stay around
the photon sphere of black holes for some period of time, we
can expect that conversion to axions efficiently occurs.
The above condition ðΔpl − Δvac − ΔaÞ2 ≪ 4Δ2

M is sat-
isfied at least when the photon-axion mixing effect ΔM
dominates over the others Δa, Δpl, and Δvac. The inequal-
ities Δa ≪ ΔM, Δpl ≪ ΔM, and Δvac ≪ ΔM are, respec-
tively, rewritten as

5.1

�
ma

neV

�
2

≪
�

gaγ
10−11 GeV−1

��
ω

keV

��
B
G

�
; ð9Þ

7.0×10−3
�

ne
cm−3

�
≪

�
gaγ

10−11GeV−1

��
ω

keV

��
B
G

�
; ð10Þ

and

�
ω

keV

��
B
G

�
≪ 1.1 × 106

�
gaγ

10−11 GeV−1

�
: ð11Þ

Except for specific cases (i) and (ii) mentioned later, either
Eq. (9) or (10) determines the lower bound of ω where
conversion occurs efficiently. On the other hand, the upper
bound of ω for efficient conversion is given by Eq. (11).
Even when the plasma effect is sizable, Δpl ≳ ΔM,

efficient conversion can be realized if Δpl is canceled by
Δa or Δvac. This is possible because Δpl contributes to Δosc

with opposite sign relative to Δa andΔvac,
1 as we can see in

Eq. (3). Let us see these possibilities below.
(i) Δpl ≃ Δa.—This resonance condition is equivalent

to m2
a ≃ ω2

pl, i.e.,

�
ma

n eV

�
2

≃ 1.4 × 10−3
�

ne
cm−3

�
: ð12Þ

Here, we assumed that the sizable Δpl is compen-
sated by the similarly sizable Δa which is much
larger than Δvac, i.e.,

�
ω

keV

�
2
�
B
G

�
2

≪ 5.4 × 106
�
ma

neV

�
2

: ð13Þ

Note that, in this case, the conversion can occur in all
frequencies satisfying Eq. (13) (and the conditions
for the present treatment to be justified).

(ii) Δpl ≃ Δvac.—This is written as

�
ω

keV

�
2
�
B
G

�
2

≃ 7.4 × 103
�

ne
cm−3

�
; ð14Þ

which determines the resonance frequency. Here, we
assumed Δvac ≫ Δa, i.e,

�
ω

keV

�
2
�
B
G

�
2

≫ 5.4 × 106
�
ma

neV

�
2

: ð15Þ

C. Conversion probability in the ω-ne plane

In this subsection, we try to visualize the conversion
probability in the parameter space to see its behavior at a
glance. To this end, we fix the axion-photon coupling to be
gaγ ¼ 10−11 GeV−1. From Event Horizon Telescope obser-
vations, we know the electron number density ∼104−7 cm−3

and magnetic field ∼1–30 G near M87� [60]. Thus, we
consider ne around that range and use B ¼ 30 G as a
reference value. The conversion probabilities omitting the
z-dependent oscillation factor, i.e., ½ΔM=ðΔosc=2Þ�2, in the
ω − ne plane for axion mass ma ¼ 10−7, 10−8, 10−9 eV are
shown in Fig. 1. There, the region in which the conversion
probability can approach unity is displayed in white. The
horizontal white lines extended toward the low-ω region
correspond to case (i) Δpl ≃ Δa. We can also see that
white bands are extended but getting narrower toward the
upper right, which will be connected to the line of reso-
nance (ii) Δpl ≃ Δvac.

1The definition of Δi ’s ði ¼ M; a; pl; vacÞ here is not exactly
the same as the definition in Ref. [22]. In our paper, Δi’s are
defined to be all positive. On the other hand, in Ref. [22], they
are defined so that the refractive index ni is expressed as
ni ¼ 1þ Δi=ω. In particular, Δa and Δpl (denoted by Δgas in
Ref. [22]) are opposite in sign.
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First, let us see the case ma ¼ 10−7 eV depicted in the
top panel in Fig. 1. Above the horizontal white line at
ne ¼ 7.3 × 106 cm−3, Eq. (10) determines the lower bound
of ω for efficient conversion. Below that line, Eq. (9) gives
the lower bound. The upper bound of ω for efficient
conversion is given by Eq. (11). The white region almost
lies in ω ∼ 106–7 eV. For photons around these frequencies,
e−-eþ pair creations would be relevant, which makes
discussion of photon-axion conversion subtle. If the axion
mass is heavier than 10−7 eV, the window of the efficient
conversion (white region) becomes narrower in the ω
direction and eventually closes except for the resonance
lines due to (i) and (ii). This is because the inequalities
(9)–(11) are hardly satisfied at the same time.
In the case of a smaller axion mass, ma ¼ 10−8 eV,

the effect of Δa proportional to m2
a becomes smaller, and,

hence, the white line corresponding to case (i) moves
toward the smaller ne as we can see in the middle panel
in Fig. 1. The plasma effect represented by Eq. (10)
determines the lower bound of ω for efficient conversion
in a broad region. Below the resonance line, Eq. (9) gives
the lower bound. The upper bound of ω for efficient
conversion is again given by Eq. (11).
If the axion mass isma ¼ 10−9 eV, the plasma effect Δpl

exceeds over the axion mass effect Δa in the whole space
with ne ≳ 103 cm−3. Thus, as we can see in the bottom
panel in Fig. 1, Eq. (10) completely determines the lower
bound of ω for efficient conversion in that space. Still, the
upper bound of ω for efficient conversion is determined
by Eq. (11).
From Fig. 1, we can see that a broad white region exists

for ma ≲ 10−8 eV. This fact indicates that conversion will
occur even in inhomogeneous plasma and magnetic fields,
which are the cases in realistic situations.

III. CONVERSION NEAR PHOTON SPHERES

A. Photon ring dimming

We have seen that photons propagating over a distance
∼Δ−1

osc can be efficiently converted into axions if
Δosc ≃ 2ΔM. The length scale Δ−1

osc is typically as long as
or longer than the Schwarzschild radius of astrophysical
black holes, such as M87�. For photons propagating in the
radial direction from a black hole, a strong magnetic field
has to be maintained over the distance Δ−1

osc for conversion.
On the other hand, a black hole spacetime has a photon
sphere, where unstable circular orbits for photons (or
relativistic particles, in general) exist. For photons orbiting
around the photon sphere, it is automatically guaranteed
that the magnetic field is maintained during propagation,
since they stay at a nearly constant radius. This fact
indicates that conversion from photons to axions efficiently
occurs around the photon sphere.
For simplicity, we take the Schwarzschild black hole

spacetime

FIG. 1. Conversion probability omitting the distance-dependent
oscillation factor ½ΔM=ðΔosc=2Þ�2 in the ω − ne plane. We fix
B ¼ 30 G and gaγ ¼ 10−11 GeV−1. The axion mass is chosen as
ma ¼ 10−7, 10−8, 10−9 eV from top to bottom.
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ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð16Þ

where we defined

fðrÞ ¼ 1 −
2M
r

ð17Þ

with M being the mass of the black hole. In this case,
the photon sphere is located at the radius r ¼ 3M. It is
convenient to define the impact parameter b of a particle as
b≡ L=E, where L is the conserved angular momentum
along the geodesic and E is the conserved energy (see
Appendix B). Photons with the critical impact parameter
bcrit ≡ 3

ffiffiffi
3

p
M can keep orbiting on the photon sphere

unless disturbed by perturbations. For photons emitted
from a source far outside the black hole with impact
parameter b slightly larger than the critical one bcrit, the
trajectories will first approach the photon sphere, then stay
around the sphere for some period of time, and finally
escape away from the sphere. We observe the photons
survived against conversion.
Let d3N=dtdωcdb be the number of photons approach-

ing the photon sphere with impact parameter b close to bcrit,
per unit time t, unit frequency ωc, and unit impact
parameter b. Here, the subscript “c” of ωc reminds us that
it is measured in a local inertial frame at the photon sphere.
The photons with b close to bcrit stay orbiting in a region
near the photon sphere, 3M < r≲ ð3þ ϵÞM with a small
ϵð> 0Þ. The time staying there is given by TðbÞ¼
−3

ffiffiffi
3

p
M ln j2ðb−bcritÞ=ð

ffiffiffi
3

p
ϵ2MÞj as shown in Eq. (B17).

In terms of the proper distance, such photons travel for
z ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð3MÞp

TðbÞ ¼ TðbÞ= ffiffiffi
3

p
. Thus, the number of pho-

tons converted into axions in that region per unit time t and
unit frequency ωc is given by

d2Nγ→a

dtdωc
¼

Z
bcritþ

ffiffi
3

p
ϵ2M=2

bcrit

db
1

2

�
d3N

dtdωcdb

�
Pγ→a

�
TðbÞffiffiffi

3
p

�
;

ð18Þ

where

Pγ→a

�
TðbÞffiffiffi

3
p

�
¼

�
ΔM

Δosc=2

�
2

× sin2
�
−
3MΔosc

2
ln
2ðb − bcritÞffiffiffi

3
p

ϵ2M

�
: ð19Þ

The factor 1=2 in Eq. (18) comes from the fact that
only photons with polarization parallel to the external
magnetic field can be converted into axions. Taking the
integration interval as (bcrit, bcrit þ

ffiffiffi
3

p
ϵ2M=2) in Eq. (18),

we can sum up photons which enter the region 3M <
r≲ ð3þ ϵÞM and escape out to infinity. Note that Δosc
depends on the frequency of the photons ωc, and B in ΔM

and Δvac is a component of the magnetic field normal to
the photon sphere.
Assuming that d3N=dtdωcdb in the integrand of Eq. (18)

does not vary significantly with respect to b, we can replace
it by the value at b ¼ bcrit as an approximation. Then,
Eq. (18) is recast as

d2Nγ→a

dtdωc
≃
1

2

d3N
dtdωcdb

����
b¼bcrit

Z
bcritþ

ffiffi
3

p
ϵ2M=2

bcrit

dbPγ→a

�
TðbÞffiffiffi

3
p

�

¼ 1

2

d3N
dtdωcdb

����
b¼bcrit

×

�
ΔM

Δosc=2

�
2

ffiffiffi
3

p
ϵ2M
4

ð3MΔoscÞ2
1þ ð3MΔoscÞ2

: ð20Þ

Consequently, the fraction of photons entering the region
near the photon sphere that are converted into axions is

d2Nγ→a

dtdωc

�
d2N
dtdωc

≃
1

4

�
ΔM

Δosc=2

�
2 ð3MΔoscÞ2
1þ ð3MΔoscÞ2

; ð21Þ

which depends on ωc. When we observe the vicinity of a
black hole, a bright image like a ring (“photon ring”) can be
seen around a dark region (“shadow”), which is created by
photons traveling around the photon sphere. The analysis
here indicates that we will observe a dimming of the photon
ring at the fraction (21) due to photon-axion conversion.
The above calculation is based on the assumption that
photons propagate without scattering by surrounding
plasma. In fact, the result is reliable when the mean free
path of photons is sufficiently longer than 3M, which is
typically the case as shown in Appendix E.
In particular, let us focus on the case of efficient

conversion satisfying Δosc=2 ≃ ΔM studied in Sec. II B.
In this case, the fraction of photons converted into axions is
given by

d2Nγ→a

dtdωc

�
d2N
dtdωc

≃
1

4

ð6MΔMÞ2
1þ ð6MΔMÞ2

ðif Δosc=2 ≃ ΔMÞ: ð22Þ

The key quantity 6MΔM ¼ 3M=ð2ΔMÞ−1 is the ratio of
the photon sphere radius 3M to the conversion length
Δ−1

osc ≃ ð2ΔMÞ−1, which reads

6MΔM ¼ 4.4 × 10−3
�

M
109M⊙

��
B
G

��
gaγ

10−11 GeV−1

�
:

ð23Þ

If this value is much larger than unity, the magnitude of the
dimming of a photon ring approaches 25%. This is
accounted for by the fact that only photons with polariza-
tion parallel to the magnetic field are converted, and
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photons with that polarization and axions are equally
produced due to large mixing. On the other hand, if
ð6MΔMÞ2 ≪ 1, the magnitude of the dimming is approxi-
mated as ð6MΔMÞ2 × 25%. The dimming at efficient
conversion as a function of 6MΔM is plotted in Fig. 2.
Note that 6MΔM is proportional to the black hole mass M.
Thus, supermassive black holes such as M87� are good
candidates for strong dimming of the photon sphere. In
contrast, for stellar mass black holes, it would be difficult to
observe dimming unless there are strong magnetic fields
compensating for the effect of the small black hole masses.
As for the supermassive black hole at the center of the

galaxyM87, the mass and magnetic field around r ∼ 5M are
estimated as M ≃ 6.2 × 109M⊙ [64] and B ∼ 1–30 G [60],
respectively. The current observational constraint on axion-
photon coupling is given by gaγ ≲ 10−11–10−10 GeV−1 for
ma ≲ 10−5 eV as mentioned in the introduction. Thus,
let us take M ¼ 6.2 × 109M⊙, B ¼ 30 G, and gaγ ¼
10−11 GeV−1 as a trial. Then we have 6MΔM ¼ 0.82,
and, thus, the dimming of the photon ring is

d2Nγ→a

dtdωc

�
d2N
dtdωc

≃ 10%;

0
B@
M¼ 6.2×109M⊙;

B¼ 30 G;

gaγ ¼ 10−11 GeV−1

1
CA ð24Þ

at the frequencies satisfying the condition for efficient
conversion Δosc=2 ≃ ΔM, i.e., the white region in Fig. 1.

B. Photon and axion spectra

1. Spherical gas model

The spectrum of axions produced by photon-axion
conversion near a photon sphere can be calculated based
on the formula (18). Thus, the spectrum of photons
incorporating dimming can be derived by subtracting

the produced axion spectrum from the original photon
spectrum.
Of course, to predict a concrete shape of the spectra, we

have to know the number of photons entering a region near
the photon sphere for each frequency, i.e., the integrand of
Eq. (18). Hence, we need to identify the source of such
photons. For astrophysical black holes, the source of the
photons is thought to be the surrounding gas. In realistic
situations, however, the configuration of the gas would be
complicated, which makes the precise calculation of the
spectra difficult. Instead, as the simplest modeling, here we
assume that the gas emitting photons is distributed in a
spherical region centered at the black hole. This simple
assumption allows us to calculate the spectra without
relying on numerical simulations. Furthermore, a low
radiative efficiency observed for supermassive black holes
such as M87� and Sgr A� implies that their radiating region
is not a simple disk but a geometrically thick hot accretion
flow (see, e.g., Ref. [65]). Thus, we believe that the result
based on our spherical gas model will give us a rough
order-of-magnitude estimation for the spectra.
Under the assumption of the spherical source, the

number of photons approaching a photon sphere is calcu-
lated in Eq. (D5):

d3N
dtdωcdb

¼ 4π2ffiffiffi
3

p
Z

rout

rin

dreJ
ðNÞ
e

�
ωcffiffiffiffiffiffiffiffiffiffiffiffiffi
3fðreÞ

p ; re

�

×
breffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e=fðreÞÞ − b2
p ; ð25Þ

where re is the radial coordinate of an emission point of
photons. Here, we assumed that the emission region is a
spherical shell with the inner diameter rin and the outer

diameter rout. As is defined in Eq. (D1), JðNÞ
e denotes the

number of emitted photons per unit time, unit frequency,
unit volume, and unit solid angle.
Since we are interested in photons with impact parameter

b close to bcrit ¼ 3
ffiffiffi
3

p
M, we set Eq. (25) to the value at

b ¼ bcrit as an approximation as done in Eq. (20). Then, the
integration with respect to b over (bcrit, bcrit þ

ffiffiffi
3

p
ϵ2M=2),

which corresponds to summing up photons entering a
region 3M < r≲ ð3þ ϵÞM, gives

d2N
dtdωc

≃ 2π2ϵ2M
Z

rout

rin

dreJ
ðNÞ
e

�
ωcffiffiffiffiffiffiffiffiffiffiffiffiffi
3fðreÞ

p ; re

�

×
3

ffiffiffi
3

p
Mreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e=fðreÞÞ − 27M2
p : ð26Þ

Here, we assumed that rin is well outside the photon sphere
so that r2in=fðrinÞ>b2 holds for b∈ ðbcrit;bcritþ

ffiffiffi
3

p
ϵ2M=2Þ.

Multiplying Eq. (26) by an energy ωc, we obtain the
original photon spectral luminosity (i.e., the spectral

FIG. 2. The dimming rate of a photon ring due to photon-axion
conversion (in other words, the fraction of photons converted into
axions) at the efficient case satisfying Δosc ≃ 2ΔM is plotted.
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luminosity before incorporating dimming by photon-axion
conversion) in the region 3M < r≲ ð3þ ϵÞM.
On the other hand, by inserting Eq. (25) into Eq. (20), we

can write the number of photons converted into axions near
the photon sphere per unit time and unit frequency as

d2Nγ→a

dtdωc
≃
π2ϵ2M

2

�
ΔM

Δosc=2

�
2 ð3MΔoscÞ2
1þ ð3MΔoscÞ2

×
Z

rout

rin

dreJ
ðNÞ
e

�
ωcffiffiffiffiffiffiffiffiffiffiffiffiffi
3fðreÞ

p ; re

�

×
3

ffiffiffi
3

p
Mreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e=fðreÞÞ − 27M2
p : ð27Þ

2. Thermal bremsstrahlung

From Fig. 1, where the parameters are taken from M87�,
the frequency showing the efficient conversion lies in x-ray,
ω ∼ 103–5 eV, and gamma-ray bands, ω≳ 105 eV. For
supermassive black holes, the main mechanism of such
high-frequency radiation is the thermal bremsstrahlung of
plasma [66]. The radiation energy by thermal bremsstrah-
lung per unit time, unit frequency, and unit volume is given
by (see, e.g., Sec. 5.2 in Ref. [67])

dE
dτedωedVe

¼ 24α3

3me

�
2π

3me

�
1=2

T−1=2
e n2ee−ωe=Te ḡff; ð28Þ

where Te is the electron temperature, ne is the electron
number density, and ḡff is a velocity averaged Gaunt factor.
Here, τe, ωe, and Ve, respectively, denote time, frequency,
and volume in a local inertial frame at the emission point.
We assumed that the ion density ni is equal to ne.
Strictly speaking, ḡff depends on Te and ωe, but, for the
order-of-magnitude estimation, it can be regarded as unity
approximately. Assuming isotropic radiation from each

infinitesimal volume, JðNÞ
e defined by Eq. (D1) reads

JðNÞ
e ðωe; reÞ ¼

4α3

3πme

�
2π

3me

�
1=2

ω−1
e T−1=2

e n2ee−ωe=Te ḡff:

ð29Þ

Let us assume that the electron temperature and number
density obey the power law:

Te ¼ Te;c

�
re
3M

�
−pT

; ð30Þ

ne ¼ ne;c

�
re
3M

�
−pn

; ð31Þ

where Te;c and ne;c are the values at the photon sphere and
pT and pn are parameters. If the gas is heated to the virial

temperature, Tvir ¼ mpM=ð3rÞ ∼ 1012 Kðr=ð3MÞÞ−1 with
mp being the proton mass, we have pT ¼ 1. In theoretical
models, Te is treated as a subvirial temperature due to
cooling processes and inefficient coupling between elec-
trons and ions [65]. In the case of spherical accretion, the
mass accretion rate is written as _M ¼ 4πr2ρvr with mass
density ρ and radial velocity vr. Assuming a constant _M
and free falling gas vr ∝ r−1=2, we have pn ¼ 3=2. Of
course, some other factors (e.g., the presence of outflows)
will modify these parameters. However, a set of parameters
ðpT; pnÞ ¼ ð1; 3=2Þ is a reasonable trial.
We can perform the integral with respect to re in Eq. (26)

with Eqs. (29)–(31) in an elementary way under the
following approximations. As long as the source of photons
is located well outside the photon sphere, the approxima-
tion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2e=fðreÞÞ − 27M2

p
∼ re holds for the last line in

Eq. (26), and fðreÞ in the argument of JðNÞ
e can be set to

unity. The exponential factor e−ωe=Te in Eq. (29) is also
approximately unity if

ωc

Te;c
≪

ffiffiffi
3

p �
3M
re

�
pT

: ð32Þ

We consider ωc such that this inequality is satisfied in a
region outside rin. Then, Eq. (26) reduces to

2

d2N
dtdωc

≃ 27ω−1
c Lω0

Z
rin

dre
3M

�
re
3M

�
−2pnþðpT=2Þ

≃
27

2pn − ðpT=2Þ − 1

�
rin
3M

�
−2pnþðpT=2Þþ1

ω−1
c Lω0;

ð33Þ

where we defined

Lω0 ≡ 2π2ϵ2M3

�
4α3

3πme

��
2π

3me

�
1=2

T−1=2
e;c n2e;cḡff

¼ 1.7 × 1034ϵ2
�

M
109M⊙

�
3
�

Te;c

1011 K

�
−1=2

×

�
ne;c

104 cm−3

�
2

ḡff keV sec−1 keV−1: ð34Þ

In the second line in Eq. (33), we picked up only the term
of rin by assuming −2pn þ ðpT=2Þ þ 1 < 0. In particular,
setting ðpT; pnÞ ¼ ð1; 3=2Þ and rin ¼ 4M, we have the
original photon spectral luminosity near the photon sphere
as Lω ¼ 11.7Lω0 for ωo ≪ Te;cð3M=rinÞ ≃ 9 MeVðTe;c=
1011 KÞð3M=rinÞ, which produces a flat spectrum at
energies below gamma rays. On the other hand, for

2The upper limit of the integration interval is approximately
given by a point where the inequality (32) saturates, but the final
result of Eq. (33) depends only on the lower limit rin.
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ωo ≳ 9 MeVðTe;c=1011 KÞð3M=rinÞ, the spectrum is expo-
nentially damped since there are few high-temperature
electrons which emit such high-energy photons.

3. Observing axions through photon ring dimming

Inserting Eq. (29) with Eqs. (30) and (31) into Eq. (27)
and multiplying the energy ωc, we can obtain the expected
spectral luminosity of axions in the model of thermal
bremsstrahlung of the spherical gas. Thus, the spectral
luminosity of photons from a region near the photon sphere
can be deduced by subtracting the produced axion lumi-
nosity from the original photon luminosity.
We expect that photon-axion conversion will affect the

observed photon spectrum. However, since conversion
occurs only near the photon sphere, we should note that
only the spectrum near the photon sphere can be distorted.
Thus, to observe the spectral distortion, we need to resolve
the near-horizon region itself. While the Event Horizon
Telescope has successfully imaged the near-horizon struc-
ture in the radio band, such high-resolution observations
are not currently operated in the x-ray and gamma-ray
bands. In this situation, the total luminosity from the region
outside the black hole will be relevant. When observing a
black hole over a size Rð> rinÞ, we collect the total
luminosity as

Ltot ¼ 4π

Z
R

rin

drer2e
dE

dτedωedVe

∼
63

ϵ2
1

3 − 2pn þ ðpT=2Þ
�

R
3M

�
3−2pnþðpT=2Þ

Lω0; ð35Þ

where we used Eq. (28) with Eqs. (30) and (31) and
picked up the contribution around re ∼ R. For example,
by setting pT ¼ 1, pn ¼ 3=2, and ϵ ∼ 1, we have
Ltot ∼ 4 × 102ðR=3MÞ1=2Lω0. This implies that the emission
from the region outside the horizon will account for most of
the total luminosity, so that the dimming due to conversion
will be tiny. Clearly, the Chandra observatory with angular
resolution of arcsec is insufficient to see the dimming of
M87�, since it observes over a size R ≫ 3M.
The situation will be improved if the resolution size R

becomes comparable to the horizon radius. In our simple
modeling, the photon sources are not distributed within
rinð> 3MÞ. Hence, if R≲ 3M, we can collect only photons
approaching the photon sphere. In this case, the total
luminosity is derived from Eq. (26) [approximately
Eq. (33)], and the spectral distortion becomes observable.
The required angular resolution θ is determined byR≲ 3M as

θ ¼ R
D
≲ 10−5 arcsec

�
M

1010M⊙

��
10 Mpc

D

�
; ð36Þ

whereD is the distance to the black hole. Thus, in the case of
M87� (D ¼ 16.8 Mpc, M ¼ 6.2 × 109M⊙), we need the

angular resolution of θ ≲ 10−5 arcsec even in the x-ray and
gamma-ray bands.
Several examples of the expected energy spectra are

shown in Fig. 3. There, the horizontal axes are the
frequency we observe ωo, which is related to that at the
photon sphere ωc as ωo ¼ ωc=

ffiffiffi
3

p
due to gravitational

redshift. We neglected other small effects such as peculiar
velocities and cosmic expansion. The thin curves are for
angular resolution of θ ¼ 1 arcsec as in Chandra, while the

FIG. 3. The expected spectral luminosities of photons and
axions are plotted. The horizontal axes are the observed fre-
quency ωo. The thin curves are photon spectra for angular
resolution of θ ¼ 1 arcsec like Chandra, while the black thick
curves are photon spectra for angular resolution of θ ¼
10−5 arcsec at the Event Horizon Telescope level. (The target
is assumed to have the distance and size of M87�.) In each case,
the spectral luminosity on the vertical axis is normalized by the
infrared value. The photons are assumed to be initially produced
by thermal bremsstrahlung of the gas distributed in a spherical
region over r ∈ ðrin ¼ 4M; rout ¼ 103MÞ. The red thick curves
are the axion spectral luminosities produced by the conversion
from the photons, which are normalized by the infrared photon
spectral luminosities at θ ¼ 10−5 arcsec. For the red and black
thick curves, the solid, dashed, and dotted curves are for the axion
mass ma ¼ 10−9, 10−8, and 10−7 eV, respectively. The upper
panel is for ðgaγ=10−11 GeV−1ÞðB=GÞ ¼ 30, and the lower panel
is for ðgaγ=10−11 GeV−1ÞðB=GÞ ¼ 300. In both panels, other
parameters are set as follows:M ¼ 6.2 × 109M⊙, Te;c ¼ 1011 K,
pT ¼ 1, ne;c ¼ 104 cm−3, and pn ¼ 1.5.
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thick curves are for angular resolution of θ ¼ 10−5 arcsec
at the Event Horizon Telescope level. (The target is
assumed to have the distance and size of M87�.) In each
case, the spectral luminosity on the vertical axis is
normalized by the infrared value. We assumed that the
photons are produced by thermal bremsstrahlung of the gas
distributed over a spherical region (rin ¼ 4M, rout ¼ 103M)
around the black hole. Originally, the photon spectrum has
a cutoff around at ωo ∼ Te;c ∼ 107 eV due to the exponen-
tial suppression factor in Eq. (28). In the case of
θ ¼ 1 arcsec, we cannot see any spectral distortion in
the x-ray band due to the lack of angular resolution.
On the other hand, in the case of θ ¼ 10−5 arcsec, we
resolve the photon sphere itself, so we see dimming in the
x-ray band. Namely, the black thick curves are the photon
spectra incorporating conversion into axions around the
photon sphere. The red thick curves are the produced axion
spectra. The solid, dashed, and dotted curves are for the
axion mass ma ¼ 10−9, 10−8, and 10−7 eV, respectively.
In both panels in Fig. 3, we set M ¼ 6.2 × 109M⊙,
Te;c ¼ 1011 K, pT ¼ 1, ne;c ¼ 104 cm−3, and pn ¼ 1.5,
which are taken from M87�. The parameters in the upper
panel are taken so that ðgaγ=10−11 GeV−1ÞðB=GÞ ¼ 30 as
in Fig. 1, while those in the lower panel are taken so that
ðgaγ=10−11 GeV−1ÞðB=GÞ ¼ 300 for which conversion is
more effective.
From Fig. 3, we can see that the frequency range

exhibiting dimming depends on the axion mass. This is
because the lowest frequency of efficient conversion is
determined by the axion mass as we can see from Eq. (9).
On the other hand, the magnitude of dimming at the
efficient conversion is determined by gaγ, B, and M as
shown in Eqs. (22) and (23). In the upper panel, dimming
by 10% can be seen, which is already mentioned in

Eq. (24). In the lower panel, the dimming reaches around
25%, which is the maximum possible value.
The above demonstration shows that there is a chance to

determine (or give a constraint on) the axion mass ma and
axion-photon coupling gaγ by observing the photon spec-
trum from the vicinity of a photon sphere. Let us suppose
that the mass of the black hole M and the magnetic field B
and electron density ne around the photon sphere are
known. The spectral shape is characterized by two quan-
tities: the magnitude of the dimming and the frequency
range exhibiting the dimming. First, given M and B, the
maximum magnitude of the dimming can be translated to
gaγ by using Eqs. (22) and (23). Note that no matter how
large gaγ is, the dimming saturates at 25%. Hence, in the
case that the dimming reaches around 25%, only the lower
bound of gaγ is determined. Second, from Eqs. (9) and (10),
the lowest frequency exhibiting efficient dimming depends
on gaγ , B, and the axion mass ma or plasma frequency ωpl

(or, equivalently, the electron density ne). In the case
ma < ωpl, the lowest frequency is determined by ne, gaγ ,
and B as Eq. (10); thus, it is also useful to read off gaγ from
the dimming. In a more interesting case ma > ωpl, the
lowest frequency is determined by Eq. (9), where ma, gaγ ,
and B appear. In this case, if B and gaγ are known, the
lowest frequency can be used to determine ma. Even if gaγ
has not been determined, we can obtain the one-to-one
relation between ma and gaγ through the lowest frequency
exhibiting dimming. Of course, if no dimming is observed,
we obtain a constraint on ma and gaγ.

4. Approximate formula for axion flux

By using Eqs. (21) and (33), the spectral number flux of
axions from a region near the photon sphere approxi-
mately reads

FðNÞ
a;ω ¼ 1

4πD2

d2Nγ→a

dtdωo

≃
1

4πD2
×

�
1

4

�
ΔM

Δosc=2

�
2 ð3MΔoscÞ2
1þ ð3MΔoscÞ2

�
27

2pn − ðpT=2Þ − 1

�
rin
3M

�
−2pnþðpT=2Þþ1

ω−1
o Lω0

¼ 1.4 × 10−16ϵ2
�
1

4

�
ΔM

Δosc=2

�
2 ð3MΔoscÞ2
1þ ð3MΔoscÞ2

�
27

2pn − ðpT=2Þ − 1

�
rin
3M

�
−2pnþðpT=2Þþ1

×

�
Mpc
D

�
2
�

M
109M⊙

�
3
�

Te;c

1011 K

�
−1=2

�
ne;c

104 cm−3

�
2
�
keV
ωo

�
ḡff cm−2 sec−1 keV−1; ð37Þ

for ωo ≪ 9 MeVðTe;c=1011 KÞð3M=rinÞ, where D is the
distance to the black hole fromus. In particular, by setting the
parameters followingM87� (D ¼ 16.8 Mpc) as in the upper
panel in Fig. 3 with ma ¼ 10−9 eV, the fraction of photons
converted into axions [the square bracket in Eq. (37)] reaches
10% for keV≲ ωo ≲ 10 MeV. Then, with ϵ ∼ ḡff ∼ 1, we

have FðNÞ
a;ω ∼ 1 × 10−16 cm−2 sec−1 keV−1 for ωo ∼ keV. For

the black hole at the center of the Milky Way, Sgr A�

(D ¼ 8 kpc, M ¼ 4 × 106M⊙ [68]), the distance D is
3 orders of magnitude closer than M87�, but the mass M
is 3 orders ofmagnitude smaller. Thus, it is difficult to expect
axion flux larger than M87�.
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IV. CONCLUSION

If axions exist in nature, photons propagating in a
magnetic field are converted into axions through the coupling
ðgaγ=4ÞϕFμνF̃μν. As is well known, there exist black holes in
the center of active galactic nuclei. Moreover, we can expect
sizable magnetic fields around black holes. In this paper, we
have investigated the photon-axion conversion phenomenon
around black holes. For the magnetic field B ∼ 101–2 G and
axion-photon coupling gaγ ∼ 10−11 GeV−1, the propagation
length required for conversion turned out to be comparable to
the Schwarzschild radius of a supermassive black hole with
mass M ∼ 109–10M⊙ as shown in Eq. (8). Naively, it seems
that the magnetic field has to be maintained over the
conversion length in the radial direction. However, photons
can orbit around a photon sphere of black holes for a certain
period of time. Since such orbiting photons stay at a nearly
constant radius, it is automatically ensured that the magnetic
field is maintained during propagation. Thus, it is expected
that photon-axion conversion will efficiently occur near the
photon sphere, which will affect the observation of the
photon ring around the black hole shadow.
Supposing the coupling constant gaγ ∼ 10−11 GeV−1, the

magnetic field B ∼ 30 G, and electron number density
ne ∼ 104–7 cm−3, which are expected values near M87�
[60], we have shown that the photons in the x-ray and
gamma-ray bands can be efficiently converted into axions
in the mass range ma ≲ 10−7 eV (see Fig. 1). This fact
indicates that, when we observe the vicinity of the black
hole with electromagnetic waves, we will see a dimming of
the photon ring in those wavelengths, if a sufficiently high
resolution is achieved in the future. We have shown that the
maximum dimming rate of the photon ring is 25%. In the
case of M87�, we found that the dimming rate could be
around 10% if the angular resolution of the Event Horizon
Telescope level, i.e., θ ∼ 10−5 arcsec, is achieved. In
general, the magnitude of dimming depends on gaγ, M,
and B as in Eqs. (22) and (23). We depicted the dependence
in Fig. 2. Provided M and B are known from other
observations, we can determine the value of (or a constraint
on) gaγ from the photon ring dimming. The larger M, the
greater the dimming; thus, supermassive black holes such
as M87� are good candidates for observing photon ring
dimming. Furthermore, the frequency range exhibiting
dimming has information on the axion mass. In the case
that the axion massma is smaller than the plasma frequency
ωpl, the lowest frequency of dimming is determined by
Eq. (10), where gaγ , ne, and B appear. On the other hand, in
the case ma > ωpl, it is determined by Eq. (9), where gaγ ,
ma, and B appear. Hence, the lowest frequency of dimming
can be used to measure gaγ and ma. We have demonstrated
photon ring dimming in Fig. 3, where the photons are
assumed to be sourced by thermal bremsstrahlung of gas
spherically distributed around the black hole. Of course, to
see the photon ring dimming, it is necessary to observe the

near-horizon region with much high resolution. While the
Event Horizon Telescope has succeeded in imaging the
region in the radio band, such high-resolution observations
have not yet been achieved in the x-ray and gamma-ray
bands. The present study anticipates the future potential of
multiwavelength observations with higher resolution. As to
this direction, we refer the reader to Ref. [69], which
proposed high-resolution x-ray interferometry. We believe
that our results will give motivation for future observations.
In this paper, themagnetic field and the plasma density are

treated as homogeneous near the photon sphere for simplic-
ity. Interestingly, from Fig. 1, we can see that conversion
occurs in the large parameter region. Therefore, we expect
that conversion will occur even in more realistic cases,
namely, inhomogeneous magnetic fields and inhomo-
geneous plasma density.
There are several directions to be pursued beyond the

present work. One is to include the rotation of the black
hole. Interestingly, the Kerr black hole has circular orbits of
photons at two different radii on the equatorial plane. Since
the photons emitted from the different radii undergo
different gravitational redshifts, conversion into axions at
those radii may create dimming at different frequencies.
Another important issue is to study the effect of photon-
axion conversion on the polarization of light coming from
the photon sphere. It is also worth studying conversion not
only in the background of the magnetic field but also in the
background of the axion [70], while only the former is
considered in this paper. In fact, axions could be dark matter
[9,13,16,17] or produced by superradiance around black
holes [71,72]. Finally, we have estimated the axion flux from
the photon sphere of a single black hole in Eq. (37), which is
too tiny to be detected. However, there are a huge number of
black holes in our Universe. Especially, quasars are signifi-
cantly brighter than low-luminosity active galactic nuclei
such as M87�, and resulting axion luminosity may also be
larger than that ofM87�. The sum of these contributions will
makeup apart of the cosmic axionbackground [73]. Itwill be
intriguing to evaluate these contributions. We leave these
issues for future work.
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APPENDIX A: DERIVATION OF THE
PHOTON-AXION CONVERSION PROBABILITY

In this appendix, we study the conversion phenomenon
between photons and axions in a constant external
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magnetic field. Our purpose is to derive a formula for
the conversion probability in flat space. (The derivation
has been done, e.g., in Refs. [22,47,63].) Throughout
this appendix, we set ℏ ¼ c ¼ 1 and use rationalized
Heaviside-Lorentz units for electromagnetism, where 4π
does not appear in the Maxwell equations but does in the
Coulomb law.
We consider a system of the axion and photon:

L ¼ −
1

4
FμνFμν −

1

2
∂μϕ∂

μϕ −
1

2
m2

aϕ
2 −

1

4
gaγϕFμνF̃μν;

ðA1Þ

where ϕ is the axion field with mass ma, gaγ is the axion-
photon coupling constant, Fμν is the electromagnetic
field strength tensor, and F̃μν is the dual of Fμν given by
F̃μν ¼ ð1=2ÞϵμνρσFρσ with ϵμνρσ being completely antisym-
metric in its indices and normalized as ϵ0123 ¼ 1.
The equations of motion for the axion and photon are

□ϕ −m2
aϕ ¼ 1

4
gaγFμνF̃μν ðA2Þ

and

∂μFμν ¼ −gaγF̃μν
∂μϕ; ðA3Þ

respectively,3 where we defined □ ¼ ∂
μ
∂μ.

We consider a situation where electromagnetic waves
propagate in the background of a constant magnetic field.
The electromagnetic field is the sum of the magnetic field
and electromagnetic waves:

Fμν ¼ F̄μν þ ∂μAν − ∂νAμ: ðA4Þ

The background magnetic field F̄μν is represented by

F̄0i ¼ 0; ðA5Þ

˜̄F0i ¼
1

2
ϵ0ijkF̄jk ¼ Bið¼ constÞ: ðA6Þ

For the propagating photons Aμ, we choose the Coulomb
gauge condition

∇ ·A ¼ 0: ðA7Þ

Hereafter, we use equations in the linear order of Aμ or ϕ.
Under the Coulomb gauge, the spatial components of
Eq. (A3) read

□A − ∇ _A0 ¼ gaγB _ϕ; ðA8Þ

where a dot represents a time derivative. The A0 component
is determined by a constraint equation following from the
ν ¼ 0 component of Eq. (A3):

∇2A0 ¼ −gaγB · ∇ϕ: ðA9Þ

On the other hand, the equation of motion of the axion (A2)
is recast to

ð□ −m2
aÞϕ ¼ −gaγB · ð _Aþ ∇A0Þ: ðA10Þ

From Eqs. (A8) and (A10), it can be seen that only the
component of A parallel to B has mixing with the axion.
For simplicity, let us take A and ϕ to be plane waves
propagating along the z direction. The Az component
vanishes because of the Coulomb gauge condition.
Without loss of generality, we can take B to lie in the
x-z plane. Thus, in the ðx; y; zÞ coordinates, we set4

B ¼ ðB sinΘ; 0; B cosΘÞ; ðA11Þ

A ¼ ðiAkðt; zÞ; iA⊥ðt; zÞ; 0Þ; ðA12Þ

where Θ is the angle between the direction of B and the z
axis (the direction of the wave number vector) and the
factor i in the definition of Ak and A⊥ is put for later
convenience. In the leading (free field) approximation, Ak
and A⊥ have plane wave solutions ∝ e−iðωt−kzÞ with k ¼ ω,
and we can safely set A0 ¼ 0. Furthermore, when we
consider relativistic axions with momentum k ≫ ma, it is
also a good approximation to take the axions as the plane
wave ∝ e−iðωt−kzÞ with k ¼ ω at the leading order.
In the presence of the magnetic field, we need to consider

the Euler-Heisenberg effective Lagrangian:

LEH ¼ α2

90m4
e

�
ðFμνFμνÞ2 þ 7

4
ðFμνF̃μνÞ2

�
; ðA13Þ

where α ¼ 1=137 is the fine-structure constant and
me ¼ 511 keV is the electron mass. This Lagrangian
induces the following term:

4α2

45m4
e
∂μ

�
FρσFρσFμν þ 7

4
FρσF̃ρσF̃μν

�
ðA14Þ

into the right-hand side of Eq. (A3). Using the para-
metrization (A12) and assuming the plane wave solution,
we have

FμνFμν ¼ 2B2 þ 4ωB sinΘA⊥; ðA15Þ

3In the derivation, the Bianchi identity ∂μF̃μν ¼ 0 is used.

4Note that B sinΘ here is simply denoted by B in the main
sections.
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FμνF̃μν ¼ −4ωB sinΘAk; ðA16Þ

in the linear order ofA. Then, at the leading approximation,
the ν ¼ x component of Eq. (A14) reads

−iω2
4α2

45m4
e
7ðB sinΘÞ2Ak; ðA17Þ

and the ν ¼ y component reads

−iω2
4α2

45m4
e
4ðB sinΘÞ2A⊥: ðA18Þ

By adding these terms to the right-hand side of Eq. (A8),
we have

□Ak þ 7ω2ξsin2ΘAk þ ωgaγB sinΘϕ ¼ 0; ðA19Þ

□A⊥ þ 4ω2ξ sin2ΘA⊥ ¼ 0; ðA20Þ

where

ξ ¼ α

45π

�
B
Bcrit

�
2

; Bcrit ≡m2
e

e
; ðA21Þ

and now □ ¼ −∂2t þ ∂
2
z. Hereafter, we concentrate only on

Ak to see mixing with the axion. The effects of surrounding
plasma can be incorporated by adding a term −ω2

plAk to the
equation, where ωpl denotes the plasma frequency:

□Ak − ω2
plAk þ 7ω2ξ sin2ΘAk þ ωgaγB sinΘϕ ¼ 0:

ðA22Þ

The equation of motion of the axion (A10) is now given by

ð□ −m2
aÞϕþ ωgaγB sinΘAk ¼ 0: ðA23Þ

To see the conversion, it is convenient to express Ak
and ϕ as

Akðt; zÞ ¼ ÃðzÞe−iðωt−kzÞ þ H:c:; ðA24Þ

ϕðt; zÞ ¼ ϕ̃ðzÞe−iðωt−kzÞ þ H:c:; ω ¼ k: ðA25Þ

The plane wave e−iðωt−kzÞ solves the free and massless wave
equations, □Akðt; zÞ ¼ □ϕðt; zÞ ¼ 0. We investigate how
the photons propagating over a distance in the z direction
convert into axions. We have taken into account the
z-dependent amplitudes ÃðzÞ and ϕ̃ðzÞ in order to see
how these amplitudes vary depending on the distance z. It is
expected that the variation of these amplitudes is slow in the
sense that j∂2zÃðzÞj ≪ kj∂zÃðzÞj and j∂2zϕ̃ðzÞj ≪ kj∂zϕ̃ðzÞj.
Thus, we have

□Akðt; zÞ ≃ 2iω∂zÃðzÞe−iðωt−kzÞ þ H:c:; ðA26Þ

□ϕðt; zÞ ≃ 2iω∂zϕ̃ðzÞe−iðωt−kzÞ þ H:c: ðA27Þ

These are the lowest-order approximations to see the z
dependence of Ã and ϕ̃. Now, the equations of motion
reduce to

i
d
dz

�
ÃðzÞ
ϕ̃ðzÞ

�
¼

�Δpl − Δvac −ΔM

−ΔM Δa

��
ÃðzÞ
ϕ̃ðzÞ

�
; ðA28Þ

where ΔM, Δa, Δpl, and Δvac are defined as follows:

ΔM ¼ 1

2
gaγB sinΘ; ðA29Þ

Δa ¼
m2

a

2ω
; ðA30Þ

Δpl ¼
ω2
pl

2ω
; ðA31Þ

Δvac ¼
7

2
ω

4α2

45m4
e
ðB sinΘÞ2: ðA32Þ

It is convenient to rewrite the equation as

i
d
dz

Ψ⃗ðzÞ ¼ MΨ⃗ðzÞ; ðA33Þ

where we used the notations

Ψ⃗ðzÞ ¼
�
ÃðzÞ
ϕ̃ðzÞ

�
; ðA34Þ

M ¼
� Δk −ΔM

−ΔM Δa

�
; Δk ¼ Δpl − Δvac: ðA35Þ

The eigenvalues of the matrix M are

λ� ¼
Δk þ Δa �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔk − ΔaÞ2 þ 4Δ2

M

q
2

: ðA36Þ

Since M is a real and symmetric matrix, it can be
diagonalized by an orthogonal matrix R:

RTMR ¼
�
λþ 0

0 λ−

�
; R ¼

�
cos θ − sin θ

sin θ cos θ

�
:

ðA37Þ

The direct calculation gives the off-diagonal component of
RTMR as
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RTMR ¼
� � �
cos 2θð−ΔMÞ þ 1

2
sin 2θðΔa − ΔkÞ �

�
;

ðA38Þ

whichmust vanish. Thus, themixing angle θ is determined as

tan 2θ ¼ 2ΔM

Δa − Δk
: ðA39Þ

Using the matrix R, Eq. (A33) reduces to

i
d
dz

ðRTΨ⃗ðzÞÞ ¼
�
λþ 0

0 λ−

�
ðRTΨ⃗ðzÞÞ: ðA40Þ

It is easy to solve this equation as

Ψ⃗ðzÞ ¼ R

�
e−iλþz 0

0 e−iλ−z

�
RTΨ⃗ð0Þ: ðA41Þ

Finally, we obtain the general solutions

ÃðzÞ ¼ ðcos2θe−iλþz þ sin2θe−iλ−zÞÃð0Þ
þ sin θ cos θðe−iλþz − e−iλ−zÞϕ̃ð0Þ; ðA42Þ

ϕ̃ðzÞ ¼ sin θ cos θðe−iλþz − e−iλ−zÞÃð0Þ
þ ðsin2 θe−iλþz þ cos2 θe−iλ−zÞϕ̃ð0Þ: ðA43Þ

Given ϕ̃ð0Þ ¼ 0 and Ãð0Þ ¼ 1 as the initial condition,we can
obtain the conversion probability at a distance z as

Pγ→aðzÞ ¼ jϕ̃ðzÞj2

¼ sin22θsin2
�
Δosc

2
z

�

¼
�

ΔM

Δosc=2

�
2

sin2
�
Δosc

2
z

�
; ðA44Þ

where we used Eq. (A39) and defined

Δ2
osc ¼ ðΔpl − Δvac − ΔaÞ2 þ 4Δ2

M: ðA45Þ

APPENDIX B: ORBITING TIME OF A PHOTON
AROUND A PHOTON SPHERE

In this appendix, we consider a geodesic of a photon in
Schwarzschild spacetime and give a formula for the
orbiting time of a photon around a photon sphere in terms
of the impact parameter of the photon incident on the black
hole. The discussion here is based on Sec. VII in Ref. [74].
The Schwarzschild metric is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2M
r

: ðB1Þ

Let us consider a geodesic of a photon denoted by xμðλÞ ¼
ðtðλÞ; rðλÞ; θðλÞ;ϕðλÞÞ in the Schwarzschild coordinates,
where λ is an affine parameter. Since the Schwarzschild
spacetime has spherical symmetry, we can take the geo-
desic on an equatorial plane θ ¼ π=2 without loss of
generality. The timelike and rotational Killing vectors ∂t
and ∂ϕ lead to two conserved quantities along the geodesic:

E≡ −ð∂tÞμ
dxμ

dλ
¼ fðrÞ dt

dλ
; ðB2Þ

L≡ ð∂ϕÞμ
dxμ

dλ
¼ r2

dϕ
dλ

: ðB3Þ

The conserved quantities E and L are the energy and the
angular momentum of the photon, respectively. The impact
parameter of the incident photon to the black hole is
defined by

b≡ L
E
: ðB4Þ

Using the null condition of the geodesic, gμνðdxμ=
dλÞðdxν=dλÞ ¼ 0, togetherwith Eqs. (B2) and (B3), we have

dr
dt

¼ �fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b2fðrÞ
r2

r
; ðB5Þ

dϕ
dt

¼ bfðrÞ
r2

: ðB6Þ

In Eq. (B5), the signs þ and − represent the outward and
inward photons, respectively.
In a particular case b ¼ bcrit ≡ 3

ffiffiffi
3

p
M, Eq. (B5) can be

integrated analytically as

t ¼ �FðrÞ; ðB7Þ

where we defined the function

FðrÞ ¼ −3
ffiffiffi
3

p
M ln

����
ffiffiffiffiffi
3r

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 6M

p
ffiffiffiffiffi
3r

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 6M

p
����þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðrþ 6MÞ

p

þ 4M ln

� ffiffiffiffiffi
r
M

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r
M

þ 6

r �

þ 2M ln

�
2

ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 6M

p

2
ffiffiffi
r

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 6M

p
�
: ðB8Þ

From the first term of the right-hand side of Eq. (B8), we
can see that the photon can travel for an infinitely long time
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on r ¼ 3M, which corresponds to the photon sphere. For
later convenience, we define a function F̃ðtÞ by inverting
the equation t ¼ FðrÞ for r > 3M as

r − 3M ¼ F̃ðtÞ; ðB9Þ

which describes the outward photon with b ¼ bcrit outside
the photon sphere. In the neighborhood of r ¼ 3M,
approximately we have

F̃ðtÞ ≃M exp

�
t − C

3
ffiffiffi
3

p
M

�
; ðB10Þ

where a constant C is given by

C ¼ 3
ffiffiffi
3

p
M þ 4M lnð3þ

ffiffiffi
3

p
Þ þ 2M ln

�
2

ffiffiffi
3

p þ 3

2
ffiffiffi
3

p
− 3

�

− 3
ffiffiffi
3

p
M ln 18: ðB11Þ

On the other hand, the trajectory of the inward photon with
b ¼ bcrit outside the photon sphere can be obtained by
flipping the sign of t in Eq. (B9).
Now let us consider a photon with impact parameter b

slightly larger than bcrit coming from outside the black hole.
We can expect that such a photon will be approaching the
photon sphere, then orbiting near the sphere, and finally
escaping from the sphere. We model such a trajectory by
the formula

r − 3M ¼ F̃ð−t −DÞ þ F̃ðtÞ: ðB12Þ

In the early time, F̃ð−t −DÞ is dominant so that it
represents the incident inward photon. On the other hand,
in the late time, F̃ðtÞ is dominant so that it represents the
photon escaping away from the black hole. The constant D
determined by the impact parameter b characterizes the
time during which the photon is staying near the photon
sphere.
To determine D, first note that Eq. (B12) is approx-

imately given by

r−3M≃Mexp

�
−t−C−D

3
ffiffiffi
3

p
M

�
þMexp

�
t−C

3
ffiffiffi
3

p
M

�
ðB13Þ

in the neighborhood of r ¼ 3M. The minimum of the right-
hand side determines the pericenter of the photon’s
trajectory, rp, as

rp − 3M ¼ 2M exp

�
−C − ðD=2Þ

3
ffiffiffi
3

p
M

�
: ðB14Þ

On the other hand, the pericenter rp can be given in terms of
b by finding the zero of dr=dt given by Eq. (B5).

Introducing δrp ¼ rp − 3M and δb ¼ b − bcritð> 0Þ, we
can perturbatively solve the equation dr=dt ¼ 0 as

δrp
3M

¼
ffiffiffiffiffiffiffiffiffiffiffi
2

3

δb
bcrit

s
þO

�
δb
bcrit

�
: ðB15Þ

Inserting Eq. (B15) into Eq. (B14), we can writeD in terms
of b as

D ¼ −2C − 3
ffiffiffi
3

p
M ln

b − bcritffiffiffiffiffi
12

p
M

; ðB16Þ

where we neglected the quantities with the order of
MOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δb=bcrit
p Þ.

The first term of the right-hand side in Eq. (B13)
becomes less than ϵM=2 (where ϵ > 0) for t > −C−
D − 3

ffiffiffi
3

p
M lnðϵ=2Þ, while the second term becomes less

than ϵM=2 for t < Cþ 3
ffiffiffi
3

p
M lnðϵ=2Þ. Thus, we can

expect that the photon remains in a region 3M < r <
ð3þ ϵÞM for the time interval

TðbÞ ¼ 2CþDþ 6
ffiffiffi
3

p
M ln

ϵ

2

¼ −3
ffiffiffi
3

p
M ln

2ðb − bcritÞffiffiffi
3

p
ϵ2M

: ðB17Þ

Given Eq. (B17), we can find an impact parameter
at which the time interval within 3M < r < ð3þ ϵÞM
vanishes as b ¼ bcrit þ ϵ2

ffiffiffi
3

p
M=2. On the other hand,

from Eq. (B5), the impact parameter with pericenter r ¼
ð3þ ϵÞM turns out to be b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ ϵÞ3=ð1þ ϵÞ

p
M ¼

bcrit þ ϵ2
ffiffiffi
3

p
M=2 − ϵ34M=ð3 ffiffiffi

3
p Þ þOðϵ4Þ, and photons

with larger b than this value cannot enter the region
r < ð3þ ϵÞM. This difference is originated from the error
of TðbÞ of MOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δb=bcrit
p Þ. However, for a small ϵ, this

difference becomes negligible so that we can regard
Eq. (B17) as a good approximation for the orbiting time
interval in a region 3M < r≲ ð3þ ϵÞM. In fact, the
formula (B17) reproduces the result obtained by solving
the geodesic equation numerically [74].

APPENDIX C: EMISSION ANGLE
AND IMPACT PARAMETER

Let us consider a light ray emitted from a point pe, which
is located at r ¼ re in the Schwarzschild coordinates,
toward the black hole photon sphere with impact parameter
b defined by Eq. (B4). To describe the trajectory of the
photon, we introduce an angle Θe between the initial
direction of the incident photon and the direction to the
center of the black hole in the local inertial frame at pe as
shown in Fig. 4. More specifically, we introduce a tetrad
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e0 ¼
1ffiffiffiffiffiffiffiffiffi
fðrÞp ∂t; ðC1Þ

e1 ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
∂r; ðC2Þ

e2 ¼
1

r
∂θ; ðC3Þ

e3 ¼
1

r sin θ
∂ϕ ðC4Þ

and its dual

e0 ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dt; ðC5Þ

e1 ¼ 1ffiffiffiffiffiffiffiffiffi
fðrÞp dr; ðC6Þ

e2 ¼ rdθ; ðC7Þ

e3 ¼ r sin θdϕ; ðC8Þ

where fðrÞ is defined in Eq. (B1). For a while, we take the
trajectory to lie on the θ ¼ π=2 plane in the Schwarzschild
coordinates. Then, e1 and e3 are orthonormal bases parallel
and normal to the direction to the center of the black hole,
respectively. Thus, the angle Θe is given by

tanΘe ¼
���� k

μðe3Þμ
kνðe1Þν

����
pe

¼
����r

ffiffiffiffiffiffiffiffiffi
fðrÞ

p dϕ
dr

����
pe

; ðC9Þ

where kμ ¼ dxμðλÞ=dλ is the tangent vector of the geodesic
with the affine parameter λ. By virtue of Eqs. (B5) and (B6),
we have

b ¼ reffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p sinΘe: ðC10Þ

This formula relates the emission angle Θe and radial
coordinate of the emission point re with the impact
parameter b.

APPENDIX D: FLOW INTO A PHOTON SPHERE
FROM A SPHERICAL REGION

Let us imagine a spherical region centered at a black
hole, in which photons are emitted isotropically from each
point with a certain emission rate. In this appendix, we will
estimate how many such emitted photons can approach a
photon sphere of the black hole. For simplicity, here we
model the geometry to be Schwarzschild spacetime
neglecting the rotation of the black hole, for which the
metric is given by Eq. (16).
We begin by considering an infinitesimal volume dVe at

a point pe, which is located at the radial (Schwarzschild)
coordinate re. Let us write the number of photons within a
frequency width dωe emitted from dVe and passing through
an infinitesimal solid angle dΩe viewed from the emission
point pe per unit time τe as

5

d6
�
dN
dτe

�
¼ JðNÞ

e ðωe; reÞdΩedVedωe: ðD1Þ

Here, the frequency ωe, time τe, solid angleΩe, and volume
Ve are measured in a local inertial frame at pe. In that frame
with the origin at pe, we take Θe to denote the zenith angle
measured from the direction to the black hole (see Fig. 4)
and Φe to denote the azimuth angle in the plane normal to
the direction to the black hole. We assume that the emission

from a point pe is isotropic so that J
ðNÞ
e does not depend on

Θe and Φe.
It is convenient to rewrite Eq. (D1) in terms of the impact

parameter of a photon b. For this purpose, we can use
Eq. (C10), and db ¼ ðre=

ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p Þ cosΘedΘe, which fol-
lows from Eq. (C10) for a fixed re. Using these relations
and integrating Eq. (D1) over the azimuth angle Φe, we
have the number of photons emitted toward the photon
sphere per unit time as

d5
�
dN
dτe

�
¼ 1

2
× 2πJðNÞ

e ðωe; reÞ
ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p
re

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2e=fðreÞÞ − b2

p
× dbdVedωe; ðD2Þ

FIG. 4. A light ray emitted from a point pe toward a photon
sphere of a black hole is schematically shown by a red curve. The
point pe is located on a sphere with the radius re centered at the
black hole in the Schwarzschild coordinates. On the point pe,
the light ray is emitted with the zenith angle Θe measured from
the line connecting pe and the center of the black hole.

5“d6” in the left-hand side stands for the dimension of the
infinitesimal volume of the right-hand side. Here, we treat dΩe
and dVe as two- and three-dimensional infinitesimal volume
elements, respectively.
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where we multiply a factor of 1=2 taking into account that
only photons with 0 ≤ Θe ≤ π=2 can approach the photon
sphere.
The time element dτe and volume element dVe in a

local inertial frame at pe are, respectively, given by dτe ¼ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p
dt and dVe ¼ ðr2e=

ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p Þ sin θdredθdϕ in terms
of the Schwarzschild coordinates. The integration of
Eq. (D2) over θ and ϕ leads to the number of photons
emitted from a spherical shell of width dre with impact
parameter (b, bþ db) per unit Schwarzschild time t and
unit frequency ωe as

d2
�

d2N
dtdωe

�
¼ 4π2JðNÞ

e ðωe; reÞ
bre

ffiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2e=fðreÞÞ − b2

p dredb:

ðD3Þ
Note that ωe above is given as the frequency in a local

inertial frame at the emission point pe, i.e.,

ωe ¼ kμðe0Þμjpe

¼ dt
dλ

ffiffiffiffiffiffiffiffiffi
fðrÞ

p ����
pe

¼ Effiffiffiffiffiffiffiffiffiffiffi
fðreÞ

p ; ðD4Þ

where kμ ¼ dxμðλÞ=dλ is the tangent vector of the geodesic
of the photon with affine parameter λ and ðe0Þμ is a member
of the tetrad introduced in Eq. (C5). In the last line, we
have used Eq. (B2). The frequency measured in a local
inertial frame at the photon sphere located at r ¼ 3M is
ωc ¼ E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð3MÞp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3fðreÞ
p

ωe. Thus, the number of
photons approaching the photon sphere per unit time t
and unit frequency ωc with impact parameter ðb; bþ dbÞ is
given by6

d

�
d2N
dtdωc

�
¼ 4π2ffiffiffi

3
p

Z
rout

rin

dreJ
ðNÞ
e

�
ωcffiffiffiffiffiffiffiffiffiffiffiffiffi
3fðreÞ

p ; re

�

×
breffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2e=fðreÞÞ − b2
p db; ðD5Þ

where we assumed that the emission region is a sphere with
inner diameter rin and outer diameter rout.

APPENDIX E: LIGHT SCATTERING BY PLASMA

In Sec. III, we have omitted the possibility that photons
may be scattered by surrounding plasma during propagation.
Taking into account the finite mean free path of photons,
the expression for the number of photons converted into
axions per unit time and unit frequency (18) should be
modified as

d2Nγ→a

dtdωc
¼

Z
db

1

2

�
d3N

dtdωcdb

�
Pγ→a

�
TðbÞffiffiffi

3
p

�

× exp

�
−
TðbÞffiffiffi

3
p 1

l

�
; ðE1Þ

where TðbÞ is given by Eq. (B17),Pγ→a is given by Eq. (19),
and l is the mean free path of photons. As in Eq. (20),
we replace d3N=dtdωcdb in the integrand by the value at
b ¼ bcrit for approximation. Then, we can perform the
integration over b ∈ ðbcrit; bcrit þ

ffiffiffi
3

p
ϵ2M=2Þ as

d2Nγ→a

dtdωc
≃
1

2

d3N
dtdωcdb

����
b¼bcrit

×

�
ΔM

Δosc=2

�
2

ffiffiffi
3

p
ϵ2M
4

1

1þ ð3M=lÞ

×
ð3MΔoscÞ2

ð1þ ð3M=lÞÞ2 þ ð3MΔoscÞ2
: ðE2Þ

It is obvious that the result in Eq. (20) is reproduced when
3M=l ≪ 1. For photonswith a frequency below the electron
mass, the mean free path is given by

l ¼ 1

σTne

¼ 1.5 × 1024 cm
�
cm−3

ne

�
; ðE3Þ

where σT ¼ 8πα2=ð3m2
eÞ ¼ 0.67 × 10−24 cm2 is the

Thomson cross section and ne is the electron density. For
blackholes considered in this paper, the condition3M=l ≪ 1
is satisfied. Thus, Eq. (20) neglecting l is applicable.

6Strictly speaking, the pericenter of a photon’s trajectory
depends on b as Eq. (B15). Here, we approximate the radial
coordinate of the trajectory as the value on the photon sphere,
r ¼ 3M, for all photons.
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