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We explore the effect magnetic fields have on self-gravitating accretion disks around spinning black
holes via numerical evolutions in full dynamical magnetohydrodynamic spacetimes. The configurations we
study are unstable to the Papaloizou-Pringle instability (PPI). PPI-saturated accretion tori have been shown
to produce gravitational waves, detectable to cosmological distances by third-generation gravitational wave
(GW) observatories. While the PPI operates strongly for purely hydrodynamic disks, the situation can be
different for disks hosting initially small magnetic fields. Evolutions of disks without self-gravity in fixed
black hole (BH) spacetimes have shown that small seed fields can initiate the rapid growth of the magneto-
rotational instability (MRI), which then strongly suppresses the PPI. Since realistic astrophysical disks are
expected to be magnetized, PPI-generated GW signals may be suppressed as well. However, it is unclear
what happens when the disk self-gravity is restored. Here, we study the impact of magnetic fields on the
PPI-saturated state of a self-gravitating accretion disk around a spinning BH (χ ¼ 0.7) aligned with the disk
angular momentum, as well as one around a nonspinning BH. We find the MRI is effective at reducing
the amplitude of PPI modes and their associated GWs, but the systems still generate GWs. Estimating the
detectability of these systems across a wide range of masses, we show that magnetic fields reduce the
maximum detection distance by Cosmic Explorer from 300 Mpc (in the pure hydrodynamic case) to
45 Mpc for a 10M⊙ system, by LISA from 11500 to 2700 Mpc for a 2 × 105M⊙ system, and by DECIGO
from z ≈ 5 down to z ≈ 2 for a 1000M⊙ system.

DOI: 10.1103/PhysRevD.107.123031

I. INTRODUCTION

Thick gaseous tori that orbit and accrete onto black holes
have been a major topic of study in astrophysics for
decades. Early theoretical work on these systems was
motivated by the need to model x-ray binaries and active
galactic nuclei [1]. Supermassive star collapse [2], tidal
disruption events by black holes, mergers of binary neutron
stars, and of binary black hole-neutron stars [3,4] can all
form short-lived (massive) accretion tori. Thus, black hole
(BH) disk systems are known to be ubiquitous in the
Universe, and much work has been done to model the
electromagnetic signatures of these objects. However, with
the rise of gravitational wave (GW) astronomy [5] and the
promise of third generation GW observatories to open up
new frequency ranges and achieve greater sensitivity [6–8],
interest has arisen in BH-disk systems as potential GW
sources.

In order to produce GW radiation, an astrophysical object
must have significant time variation of its quadrupole
moment.1 For BH-disk systems, the simplest way for this
to occur is for the disk to be nonaxisymmetric, with a
significant concentration of mass in one or more orbiting
lumps that persist for many orbits. The well-known hydro-
dynamic Papaloizou-Pringle instability (PPI) [9] saturates to
such a quasi-steady-state configuration [10]. The PPI is a
global instability with modes that grow exponentially in
amplitude from initially small perturbations in axisymmetric
disks. Thegrowth of PPImodes can beunderstood intuitively
as a runaway feedback loop resulting from the exchange
of a conserved—but not lower-bounded—quantity between

1GWs may also be produced by changes in higher-order mass
and angular momentum moments, but in practice these are
typically subdominant contributions.
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wavelike disturbances on the inner edge of the disk which
propagate opposite the flow, and wavelike disturbances
on the outer edge of the disk which propagate with the
flow [11–16]. The fastest-growing modes of the PPI are
simple nonaxisymmetric perturbations of the rest-mass
density ρ0 of the form

ρ0 ∝ eiðmϕ−σtÞ; ð1Þ

where ϕ is the azimuthal angular coordinate and m is the
integer mode number, which determines the number of
overdense lumps produced in the disk, σ is a different
complex number for each m, with a real component that
controls the pattern’s orbital frequency, and an imaginary
component that controls its exponential growth rate. The
low-mmodes are fastest growing, with patterns that rotate at
roughly theorbital frequencyof themaximum-density region
of the disk.
Susceptibility to the PPI is determined by the specific

angular momentum profile of the initially axisymmetric
disk. In a Newtonian context, the specific angular momen-
tum is defined as

j≡ rvϕ; ð2Þ

where r is the cylindrical radius and vϕ the azimuthal
component of the velocity. For axisymmetric disks j
typically is nearly a power law in terms of r, and the
criteria for PPI instability is [17]

j ∝ r2−q;
ffiffiffi
3

p
< q ≤ 2: ð3Þ

Disks with (q > 2) have radially decreasing specific
angular momentum, and are quickly accreted due to
a runaway axisymmetric instability first described by
Rayleigh [18]: we will not concern ourselves with such
disks. While the criteria above were originally derived in
the Newtonian regime, it turns out that these criteria can
still fruitfully be applied to the PPI in relativistic disks [19],
provided we use a relativistic definition for the specific
angular momentum,

j≡ utuϕ; ð4Þ
where uμ is the fluid four-velocity in a polar coordinate
system.
The PPI was first studied for a self-gravitating disk

orbiting a nonspining BH in full, dynamical spacetime
numerical relativity in [20]. Shortly thereafter longer
evolutions of a similar BH disk system were published
by [21], who were able to extract long GW waveforms
produced by the PPI, and assessed the potential detect-
ability of such signals. Smoothed-particle hydrodynamics
simulations of tori produced by tidal disruption events
demonstrated one astrophysically plausible pathway for
producing PPI-unstable disks [22], although the estimates

of GWs produced by those disks [23] show that the
amplitude would be much lower than the configuration
studied in [21]. In [24] PPI-unstable self-gravitating disks
were evolved around tilted, spinning black holes, but
starting from constraint-violating initial data.
In [25] we studied the PPI in self-gravitating disks

around spinning BHs with constraint-satisfying initial data
for the first time. Three nearly identical BH disk systems
were evolved, differing primarily in the spin of the central
BH, which in one case had no spin, and in the other two
had a dimensionless spin magnitude of χ ¼ 0.7 either
aligned or antialigned with the disk orbital angular momen-
tum. We found that BH spin only altered the PPI dynamics
through the changes induced in disk orbital angular
frequency, but that the behavior of the instability was
generally unchanged. However, in the aligned-spin case,
the reduction in the innermost stable circular orbit (ISCO)
radius slowed accretion and improved signal duration. We
also carried out a thorough assessment of detectability,
showing that such a system could potentially be detected
out to cosmological distances by next-generation space-
based GW observatories. In [26] we followed up with
hydrodynamic simulations of self-gravitating tori tilted
with respect to the BH spin, where we found that PPI
saturates earlier and these systems generate GWs beyond
the dominant (2,2) mode. In [27] GWs produced by the
growth of low-m nonaxisymmetries in thick tori with
shallow j profiles around spinning BHs were investigated
as a plausible alternative explanation for GW190521.
While these results are exciting from a GW astronomy

point of view, these studies did not account for magnetic
fields. Magnetic fields are important because the magneto-
rotational instability (MRI) grows rapidly in weakly mag-
netized accretion disks [28]. MRI quickly amplifies small
initial fields and drives turbulence that transports angular
momentum which allows accretion to proceed [29].
Since the quadrupole moment of the BH-disk system is

primarily dictated by the large-scale bulk motion of the
disk, an end-state configuration produced by the MRI could
be unfavorable to detecting GWs. Both the PPI and the
MRI grow at rates near the orbital frequency of the tori, so it
is an open question which instability would prevail in PPI-
unstable disks hosting small seed magnetic fields. In the
context of neglecting the disk self-gravity, this question was
answered in [30], where simulations of accretion tori with
weak toroidal seed fields (the configuration with the
slowest MRI growth rate) revealed that the MRI over-
powers the PPI, leading to a final state with no hint of the
large nonaxisymmetries favored by the PPI. For disks that
start out with nearly axisymmetric configurations, this has
effectively ruled out the potential for the PPI to grow and
produce detectable gravitational waves, unless the initial
field is very weak [22,30].
However, when considering astrophysical processes that

can produce massive accretion disks around black holes it
is plausible that disk self-gravity could make a difference.
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Furthermore, the dynamical events that produce massive tori
generically lead to configurations that can be significantly
nonaxisymmetric from the outset, e.g., tidal disruption of a
neutron star by a black hole. The disk self-gravity was not
treated in [30], and no prior work has determined what final
configuration such diskswill evolve to, orwhether such disks
can retain significant nonaxisymmetry long enough to
produce a detectable gravitational wave signal.
In this paper, we take the first step in exploring such

configurations. We take advantage of the evolutions per-
formed in our previous study of the PPI [25], in which self-
gravitating disks evolved into highly nonaxisymmetric
stable configurations. In this study, we resume two of
these prior simulations from near the time of maximum
m ¼ 1 mode amplitude, but with the introduction of small
seed poloidal magnetic fields. In this way, these configu-
rations can stand for a generic case of an initially non-
axisymmetric massive torus with weak initial magnetic
fields. This way we also give the PPI the best chance at
surviving the magnetic fields. In other words, if the PPI is
suppressed by MRI when then PPI is already saturated,
then it is unlikely that PPI will be able to dominate over the
MRI in any other scenario.
In general we find that, for the configurations we simu-

lated, the MRI reduces the amplitude of the PPI-favored
m ¼ 1 modes by a factor of 5 within a few orbits. At late
times, our simulations still show an elevated m ¼ 1 ampli-
tude in their settled states, which results in weak but
discernable GW signals. Given that the resolution of our
simulations is limitedwe take our evolutions as characteristic
of the impact of magnetic fields on persistent nonaxisym-
metric modes in accretion disks, and calculate the effect on
GW detectability. Since our simulations end before the GW
signals stop, we fit our extracted GWwaveforms to a simple
model of the full duration signal, as we did in [25], and then
exploit the scale freedom in our evolution equations to scale
the signals from our simulations to a range of masses. These
are chosen to span a range including BH disks left over from
BH-NS mergers (∼10M⊙), and supermassive star (SMS)
collapse of (∼1000M⊙) and (∼2 × 105M⊙). We find that the
maximum detection luminosity distances are reduced by
factors of 3.16–6.67 for the magnetized configurations. This
limits Cosmic Explorer (CE) to detecting 10M⊙ systems
within 45Mpc, LISA to detecting 2 × 105M⊙ systemswithin
2700Mpc, andDECIGO,which for nonmagnetizedBHdisks
could detect GWs from a 1000M⊙ system out to z ≈ 5, to
within just z ≈ 2. Overall, we find the optimistic model still
sharply reduces the expectation of detection for the magnet-
ized disk configurations studied here, despite the large
headstart given to the PPI and the presence of strong self-
gravitation.
This paper is organized as follows. In Sec. II we describe

our methods. This covers the generation of initial data, the
evolution of hydrodynamic and magnetohydrodynamic
disks, and the definitions of all diagnostics we compute
to track the behavior of our BH disk systems. In Sec. III we

use these diagnostics to quantify the dynamics of our disks
and compare the new magnetized evolutions to our prior
unmagnetized ones. We also extract GW signals and repeat
the analysis of [25] to assess the effect magnetization has
on the maximum detection distance of such sources by
LIGO, Cosmic Explorer (CE), DECIGO, and LISA. We
conclude in Sec. IV with a discussion of our results and
their broader implications for multimessenger astronomy.
In this work we use geometrized units where (G ¼ c ¼ 1),
except where stated otherwise. M designates the
Christodoulou mass [31] of the central BH.

II. METHODS

Here we summarize the methods used to produce initial
data and evolve it in this study. These techniques have all
been discussed in detail elsewhere, and we provide appro-
priate references accordingly. We also describe in detail the
diagnostics used in our analysis. Analysis and visualization
of data produced by Cactus-based codes was carried out with
the help of the KUIBIT Python module [32].

A. Initial data

The initial configurations evolved in this study were
previously generated and evolved in [25]. The only
significant difference between the two configurations is
the spin angular momentum of the central BH, which is
zero in the case we refer to as S0, but is parallel to the disk
orbital angular momentum and possesses a dimensionless
magnitude of χ ¼ 0.7 in the case we refer to as S↑. Using
the techniques in [33], the COCAL code solves the initial
data problem in general relativity (GR) for each configu-
ration. Starting from an initially Kerr configuration, an
elliptic form of the Einstein equations is solved via the
Komatsu-Eriguchi-Hachisu scheme [34] as applied to BHs
[35], producing spacetime and fluid initial data for equi-
librium nonmagnetized BH-disk configurations with the
disk self-gravity included. Both BH-disk configurations
have equal BH Christodoulou masses [31], M, and the
inner edges of each disk are placed at the same radial
coordinate, which is well outside the respective innermost
stable circular orbit (ISCO). Disk material is modeled as a
perfect fluid with a polytropic equation of state,

P ¼ kρΓ0 ; ð5Þ

where Γ ¼ 4=3, ρ0 is the rest-mass density, and k is the
polytropic constant, which scales out of the problem.
To be PPI unstable, these disk configurations are

designed to possess shallow specific angular momentum
profiles of the form,

jðΩÞ ¼ A2ðB0 −ΩÞ; ð6Þ
as in [33], with A ¼ 0.1. B0 and the other disk parameters
are determined by an iteration procedure that repeatedly
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generates configurations until finding ones that satisfy
the requirements that the disk rest masses be approximately
∼0.1M.
We also make sure that the disk rest masses differ from

one another by less than 10%. The result is self-gravitating
disks on a nearly-Kerr spacetime, where j ∼ r0.01, as shown
in Fig. 1, which corresponds to q ≈ 2 thereby satisfying the
criteria of Eq. (3) for PPI susceptability.2 The parameters
for both configurations are presented in Table I.
The COCAL code solves for initial data configurations on

a polar coordinate system in which the interior of the BH is
excised. In order to evolve this data with a moving-puncture
scheme as described in Sec. II C, it is necessary to provide
initial data for the excised region as well, since it includes
parts of the BH interior that are still covered by the puncture
coordinates. Fortunately, the additional initial data can be
constraint violating without influencing the BH exterior as
long as it is sufficiently smooth, and so we use the so-called
“smooth junk-filling” technique to fill the BH interior [37].

B. Evolution grid structure

For time evolution the initial data is interpolated from the
spherical coordinates used by COCAL onto Cartesian grids.
Our grids are a nested hierarchy of concentric cubes of half-
side lengths which are powers of 2 starting at the finest
level 2.19M and extending to 2250M for a total of 11 levels
of refinement, with each successive level having half the
resolution of the coarsest one that it contains. This allows
the stringent requirements for resolving the event horizon
near the BH to be met, as well as the more relaxed
requirements for resolving disk dynamics, while avoiding
excessive resource use in the outlying regions of the
domain where there is little spatial or temporal variation.

In our experience, it is not uncommon for evolutions
of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation of general relativity in our code to slowly accu-
mulate secular drifts of the coordinates, which, over long
evolutions, result in the center of mass of the system
gradually meandering. Indeed, we encounter just such a
drift in these simulations as well as those of [25]. The exact
cause of this phenomena in our code has not been closely
studied. In our evolution of the shift we use up-winding
stencils which could potentially be sensitive to a minor
numerical instability leading to an error buildup which could
cause this coordinate motion. While the drift starts too early
for any physical causal influence from the boundary to have
propagated into center of the domain, BSSN exhibits some
gauge modes which are superluminal, so this could also be a
boundary effect. There are other conceivable explanations,
however, regardless of the cause, the secular coordinate drift
only impacts the coordinate gauge and does not directly
influence the physical degrees of freedom of the system.
On the other hand, the coordinate drift is a hazard to the

mesh-refinement scheme, since it might cause the BH to
stray across refinement boundaries and become under-
resolved. To prevent this, the simulation is periodically
regridded every 2.5M, with all data interpolated onto a new
set of grids centered on the current BH apparent horizon
centroid.3 Table II lists the grid parameters. The jump in
size between the n ¼ 3 and n ¼ 4 grids is to ensure that the
disk is well resolved and to avoid a mesh-refinement
boundary intersecting with the bulk of the disk, which
could introduce artifacts. This compares favorably to the
grids used to study the PPI in [20,21], and in our prior study
[25] this exact structure was used and shown to successfully
capture the dynamics of the PPI.

C. Nonmagnetized evolution

Initially, we evolve our disks purely hydrodynamically.
These are the same evolutions reported previously in [25]

FIG. 1. The equatorial specific orbital angular momentum (j) as
a function of radial coordinate (r). The black dotted line shows
the steepest specific angular momentum profile that is PPI
unstable, configurations with steeper profiles will be stable to
the PPI according to the criterion in Eq. (3).

TABLE I. Parameters of initial data. All masses, distances, and
timescales expressed in terms of BH Christodolou mass [31] M.
From left to right we have: the dimensionless spin parameter of
central BH (χ); the ADM mass of the spacetime (MADM);
coordinate radii of the innermost stable circular orbit (rISCO)
inner edge of the disk (rinner), maximum density point of the disk
(rc), outer edge of the disk (router); the disk orbital period at rc
(torb); and the rest mass of the disk (Mdisk).

Model (χ) MADM
M

rISCO
M

rInner
M

rc
M

rOuter
M

torb
M

Mdisk
M

S↑ 0.7 1.13 3.39 9.00 15.6 31.7 390 0.12
S0 0.0 1.14 6.00 9.00 16.9 35.0 427 0.135

2The disks are not gravitationally unstable: the specific angular
momentum profiles are steep enough that the Toomre stability
criterion [36] is robustly satisfied, even ignoring the stabilizing
effect of finite thickness.

3Although the grid structure is moved, we do not alter the
coordinates themselves, so this procedure does not repeatedly
move the BH to the center of the coordinate system.
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for the S↑ and S0 cases. We use the Illinois GRMHD

adaptive-mesh-refinement (AMR) code [38–40], which
was built within the open-source Cactus-Carpet infrastruc-
ture [41,42] and is itself the basis of the publicly available
counterpart in the Einstein Toolkit [43]. This code evolves
the metric via the BSSN formulation of the Einstein
equations [44,45]. Moving puncture gauge conditions are
used [46,47] with 1þ log time slicing [48] and the “gamma
driver” shift condition [49] cast into a first-order form as in
Eq. (18) of [50].
The disk material is treated as a perfect fluid with a Γ-law

equation of state (EOS),

P ¼ ðΓ − 1Þρ0ϵ; ð7Þ

where ε is the internal specific energy, and Γ ¼ 4=3 as
before. This fluid model is consistent with the polytropic
fluid model used in the initial data [Eq. (5)] when the disk
material is isentropic, as it is assumed to be in the initial
data. The choice of Γ ¼ 4=3 is realistic for an optically
thick radiation-pressure dominated gas, and allows also
close comparison to the work of [30].

D. Magnetic field insertion

Using checkpoints of our original hydrodynamic evo-
lutions we resume our simulations from shortly after the
PPI growth saturates—when the m ¼ 1 PPI nonaxisym-
metic mode is near its maximum, and after a short period of
hydrodynamic evolution when the time of all refinement
levels is the same, we seed an initial magnetic field to
render the disk MRI unstable.
The vector potential and magnetic field, here defined

with respect to coordinate-stationary observers, are Ai and
Bi, respectively, and they are related by

Bi ¼ ϵijk∂jAk; ð8Þ

where ϵijk is the Levi-Civita tensor associated with spatial
slice metric γij. In terms of the vector potential, our initial
field is

Aϕ ¼ Ab max ðP − Pcut; 0Þ: ð9Þ

Ab is a strength parameter of the field, which indirectly
determines the ratio of magnetic to gas pressure at the disk
center. The cutoff term Pcut is chosen to be 10% of the
maximum pressure to ensure that the field is supported only
within the high-density region of the disk, and the purely
ϕ-directed vector potential results in a B field that is
initially poloidal. Critically, the configurations we study
here have pressure below Pcut all along the azimuthal axis,
and in our hydrodynamics scheme all shocks are smoothed
over a few grid cells, so this choice of vector potential has
no discontinuities. Additionally, although the max function
is not formally differentiable at one point, this is not a

problem for derivatives calculated by finite difference
methods.
To choose the field strength Ab, we consider the fact that

in order for the disk to be MRI unstable, λMRI must fit
within the vertical height of the high-density region of the
disk, otherwise the growth of the MRI modes would be
incompatible with the effective boundary conditions at the
disk edge. The MRI wavelength is

λMRI ≡ 2π
jvAj
jΩj ; ð10Þ

where Ω is the orbital frequency for local material. The
Alfvén velocity is

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=ðb2 þ ρ0ð1þ ϵÞ þ PÞ

q
; ð11Þ

where bi ¼ Bi
u=

ffiffiffiffiffiffi
4π

p
and Bi

ðuÞ is the magnetic field

observed in the fluid rest frame [39]. In the limit of a
weak field b2 ≪ ρ0ð1þ ϵÞ þ P, so vA ∝ jbj in general,
which implies λMRI ∝ jbj. Therefore, the constraint that the
MRI mode fit within the disk provides an upper bound on
the value of b2, or equivalently B2, and thus on the field
strength parameter Ab.
For the lower limit on Ab, we follow the empirical

guidance of [51], who found that an average of
λMRI=ΔðnÞ ≈ 10 in the vertical direction and ≈20 in the
toroidal direction was sufficient to resolve the MRI
turbulent state. In our case, the dense region of the disks
sits between about 10M and 35M, and so Δð4Þ from
Table II is the grid spacing that determines the minimum
resolvable λMRI.
For both of the disks we evolved, we seeded fields with

parameters that met all these criteria. Figure 2 compares the
disk rest-mass configuration to the vertical MRI wave-
length at the time of field insertion.
We can also compare the magnetic energy of the seed

field to the internal energy of the gas at the moment of field
insertion, which is shown in Fig. 3. As can be seen from the
figure, the inserted field is weak in the sense that the energy
is still dominated by the gas. This means that the gas will

TABLE II. Parameters of the nested Cartesian grids. From left
to right: the refinement level (n), the box half-side length (or
“minimum radius”) for the grid of level n ½rboxðnÞ�, the grid
spacing for the grid of level n ½ΔðnÞ�. The grids are all perfect
cubes initially centered at the origin but periodically updated
to follow the BH centroid. Grid spacings are equal to ΔðnÞ in the
x, y, and z directions.

n rboxðnÞ ΔðnÞ
1 2.19M (M=25.6)
2–3 2ðn−1Þrboxð1Þ 2ðn−1ÞΔð1Þ
4–11 2nrboxð1Þ 2ðn−1ÞΔð1Þ
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not be significantly disrupted by the field, and that the
resulting magnetized configuration is still constraint sat-
isfying to within numerical fidelity. Thus, we can think of
the moment of field insertion as specifying a new initial
configuration, which can be evolved and meaningfully
compared to our previous nonmagnetized evolutions.

E. Magnetized evolution

With magnetic fields now inserted, we continue the
evolution using the Illinois GRMHD AMR code (as described
in Sec. II C) adopting ideal magnetohydrodynamics. The
magnetic induction equation is evolved using a vector
potential method to ensure perfect satisfaction of the
∇ · B ¼ 0 condition [39]. This code has previously been
used for numerous studies of magnetohydrodynamics in
extreme dynamical spacetimes, such as magnetized BH-NS
mergers [4,40], MRI-driven jet launching from binary
neutron star merger remnant disks [52], MRI-driven accre-
tion disks around binary black holes [53,54], etc. For our
electromagnetic gauge choice, we adopt the generalized
Lorenz gauge condition developed in [55], which avoids
the development of spurious magnetic fields across the
AMR levels, setting the generalized Lorenz gauge damping
parameter to ξ ¼ 0.5=M for the nonspinning case and ξ ¼
0.65=M for the spinning case. A slightly higher value was
used in the spinning case because an early test run suffered
an instability triggered by magnetic flux buildup on the
refinement boundary nearest the BH. Since the dynamics of
magnetic fields near the spinning BH are different than for

the nonspinning case, and the curvature at the horizon is
slightly greater, the need for a slightly different level of
damping was not totally unexpected. As this parameter
only impacts the gauge evolution, it should have no effect
on the physical dynamics of the simulations besides
keeping them numerically stable. Separately from the
second-order dissipation in the generalized Lorenz gauge,
we apply higher-order Kreiss-Oliger dissipation to the
vector potential and fluid quantities inside the apparent
horizon. This suppresses any poorly resolved short-
wavelength modes that might appear there, which could
otherwise potentially leak out of the horizon due to finite-
difference truncation error.

F. Diagnostics

To ensure the quality of the spacetime evolution, we
monitor the normalized Hamiltonian and momentum con-
straints as defined in [56] [Eqs. (40)–(43)]. The output of
these diagnostics is discussed in the Appendix.
The evolution of nonaxisymmetric density modes is

tracked in two ways. Using 3D grids of the rest-mass
density ρ0 output every 80M during the simulation, we

FIG. 2. Cross sections of the baryon rest-mass density in both
accretion disks at the time of field insertion, superimposed with a
plot of half the vertical MRI wavelength (λMRI) at the midplane.
In both cases, the MRI modes fit within the disks on the
overdense side, while the MRI wavelength on the rarified side
is too large for modes to grow there. For SMag

↑ the yz cross section

is used, while for SMag
0 the xz cross section is used, with the x axis

flipped to align the high-density sides of the disks.

FIG. 3. Ratio of the magnetic energy density (b2=2) to the gas
internal energy (ϵ) in the midplane of the disks at the moment of
field insertion, on a log scale. Nowhere is the ratio greater than
10−4, so the fields are extremely weak and do not disrupt the gas
or introduce non-negligible constraint violations.
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define a simple nonaxisymmetric mode amplitude diag-
nostic,

Cm ¼
Z

d3xρ0eimϕ; ð12Þ

where ϕ is the azimuthal coordinate of a polar coordinate
system centered on the BH centroid. Because the BH
dominates the mass of the system, the center of mass is
always near the origin of this coordinate system, so this
diagnostic compensates for the slow secular drifting of our
coordinates described in Sec. II B, which would otherwise
induce mode mixing between different m and undermine
the interpretation of our results.
The definition of mode amplitudes used here is slightly

different from that used in prior studies [25,57–59],

Cold
m ¼

Z ffiffiffiffiffiffi
−g

p
d3xu0ρ0eimϕ; ð13Þ

where g is the determinant of the full spacetime metric and
u0 is the time component of the fluid four-velocity.
Unfortunately, while we did extract Eq. (13) every 10M,
the routine that computed it was not set up to evaluate the
integral in a BH-tracking coordinate system, so at late times
when the center of mass is far from the coordinate origin
the quality of this diagnostic suffers noticeably. In practice,
Eq. (12) agrees closely with Eq. (13) during the times when
the system center of mass has not yet drifted too far from
the origin (despite the difference in integration measure),
and although the frequency of sampling is lower, Eq. (12) is
still computed multiple times per orbit, capturing dynamics
down to the orbital frequency.
While our mode amplitudes can be informative, they

do not exactly match the diagnostics used by [30], who
instead extract the mode power, normalized with respect to
the m ¼ 0 mode,

Pm

P0

¼
R
rout
rin

R
π
0 jR 2π

0 ρ0eimϕdϕj2 ffiffiffi
γ

p
r2 cos θdθdrR

rout
rin

R
π
0 jR 2π

0 ρ0dϕj2 ffiffiffi
γ

p
r2 cos θdθdr

; ð14Þ

where r; θ;ϕ are polar coordinates with their origin at the
BH centroid (in [30] this coincides with the COM), and γ
is the determinant of the spatial metric in Cartesian
coordinates. To compute this measure of the m-mode
strengths for our own evolutions we do a linear interpo-
lation of our Cartesian 3D grid data onto a set of grid points
in a polar coordinate system centered on the BH. The
polar grid has points at 150 evenly spaced radial coordinate
values spanning M ≤ r ≤ 100M, 100 evenly spaced θ
values between −π=2 and π=2, and 200 evenly spaced
ϕ values between 0 and 2π. Once the quantities have be
interpolated onto this grid we evaluate the integrals via the
trapezoidal method.

The spatial metric determinant γ was not regularly saved
in our evolutions; however, it was recorded at a few key
times, allowing us to determine that by the time of field
insertion γ has settled to a static state. Figure 4 shows the
difference between

ffiffiffi
γ

p
and 1 along a line through the BH at

the time of field insertion, for both configurations. The
initial inner edge of the disks is at r ¼ 9M in both cases,
and we found that the integrals are dominated by material
further than 9M from the BHs throughout the evolutions as
well. Outside this distance, it can be seen that

ffiffiffi
γ

p
differs

from 1 (the flat-space Cartesian value) at the ∼10% level.
Therefore, even though we lack the true values of

ffiffiffi
γ

p
at

all times, we are able to approximate
ffiffiffi
γ

p ≈ 1 when
computing Eq. (14) and still make rough comparisons
with the results of [30], since our values are not likely to be
more than a few percent different on account of the
approximation.
To keep track of the magnetic state of the disk, we output

3D grids of Bi every 80M as well. From these data, we can
calculate many useful diagnostics. As in [51,60], we also
compute the ρ0-weighted average B-field square magnitude
in the i ¼ ϕ̂; R; z directions as

hB2
i i≡

R
B2
i ρ0d

3xR
ρ0d3x

; ð15Þ

where R is the radial component of the cylindrical
coordinate basis (rather than the r component, which points
in the spherical radial direction). The index ϕ̂ is meant to
indicate the orthonormal ϕ basis component. Therefore Bϕ̂

FIG. 4. The difference between the square root of the spatial
metric determinant (

ffiffiffi
γ

p
) and the Cartesian flat-space value (1), on

a log scale, for both configurations at the time of field insertion.
The dashed black lines show the r ¼ 9M coordinate radius.
Because most disk material lies outside of 9M in our evolutions,
approximating

ffiffiffi
γ

p ≈ 1 is appropriate when evaluating diagnostic
integrals for these simulations.
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will have units of 1=M just like Bz and BR. This convention
is used by [51,60].
Gravitational waveforms were extracted using the Ψ4

Weyl scalar of the Newman-Penrose formalism on the
surfaces of concentric coordinate spherical shells centered
on the origin. The extraction radii were chosen to be distant
enough from the source to be safely in the far field, while
being near enough that the grids still resolved the GW
wavelengths well. This was achieved by choosing extrac-
tion radii at which the signals fall off as 1=r, a behavior
from which the signals deviate if r is too close to or too far
from the BH (and hence in an under-resolved region). The
complex value of Ψ4 over each extraction sphere was
decomposed into s ¼ −2 spin-weighted spherical harmon-
ics for all modes with l ≤ 3. The strain h is the double time
integral of Ψ4, and was computed via the fixed frequency
integration technique of [61], with the real and complex
parts providing theþ and × GW polarizations in the natural
basis: h ¼ hþ þ ih×.

G. Resolution dependence

We lacked the computational resources to conduct a
formal resolution study as a part of this work. In addition to
the OðΔ−4Þ scaling of resource requirements typical of 3D

time evolutions, the resources needed to perform a reso-
lution study in our case were further inflated by the
requirement that we re-evolve the hydrodynamic PPI to
the point of saturation before inserting magnetic fields.
Therefore, assessing the impact of resolution on the
turbulent magnetic field state would have been especially
expensive.
Nonetheless, we can indirectly assess the impact reso-

lution is likely to have given what is known of our code’s
properties as well as the results of prior studies evolving
similar systems.
The Illinois GRMHD AMR code is designed to be second-

order convergent for hydrodynamic quantities, and tests
have shown it to be successful [38–40,43]. In prior work it
has performed as expected in similar situations, both for
pure relativistic hydrodynamics and magnetohydrodynam-
ics [53,54,62].
The resolution of our grids, as detailed in Sec. II B, easily

matches or exceeds that of prior numerical evolutions of the
hydrodynamic PPI in general relativity [20,21]. In addition,
as reported in [25], we performed a set of incomplete runs
with a different grid structure, where a refinement boundary
crossed into the dense regions of the disk, and most of the
disk evolved with only half the resolution. In these runs the

FIG. 5. Perspective renders of both disks at different times after magnetic field insertion. The left column shows SMag
↑ , the right shows

SMag
0 ; the top panels show the disks shortly after magnetic field insertion, the bottom panels show the disks later on. Volumetric shading

indicates baryon number density, and the surfaces within the disks are isodensity contours to further emphasize the disk structure.
Magnetic field lines are traced by the shaded white filaments, the black hole apparent horizon is black, and in all panels the disks are
viewed from a coordinate distance of 70M from the BH centroid at an angle of 35° above the xy plane. The difference in size of the
apparent horizons is a known effect of the chosen coordinates around spinning black holes. While the m ¼ 1 nonaxisymmetries are
present with a large amplitude shortly after magnetic field insertion, at later times the action of the MRI has significantly reduced their
amplitudes, while the field configuration has become much more turbulent and toroidal, as expected from the MRI, and even features
some magnetic field lines radiating from the BH pols in a manner reminiscent of jets (although we do not study jets here, and these
features are seen in both the spinning and nonspinning cases).
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early hydrodynamic evolution of the PPI was nearly
identical to our production runs with the higher resolution
grid, so we are confident that the spacetime and hydro-
dynamic evolutions are adequately resolved.
For magnetized accretion tori, capturing the turbulent

state induced by the MRI is crucial for sustaining the disk
dynamo [29,63]. This turbulence is challenging to resolve,
requiring many decades of length scales to be captured in
order to reach full convergence. What level of resolution is
adequate to obtain realistic bulk behavior for MRI-driven
accretion disks in GRMHD has been the subject of
numerous studies [51,60,64]. While there is reason to
question whether any global accretion disk simulations
are yet fully convergent [64], simulations where λMRI=Δ ≈
10 in the vertical direction and ≈20 in the azimuthal
direction in the high-density regions of the disk are
thought to capture MRI-driven turbulence decently
[60]. As mentioned previously in Sec. II D, our disks
meet this criteria upon field insertion, and for a period of
time after. Therefore, while the qualitative behavior of our
results is on solid footing, making quantitative error
estimates requires a resolution study which goes beyond
the scope of the current work.

III. RESULTS

The two BH-disk systems we studied, the spinning BH
case S↑ (χ ¼ 0.7) and the nonspinning case S0, were
previously simulated in full GR without magnetic fields
[25]. Of the three configurations in our previous study,
these were the two that produced the most powerful and
sustained GW signals. In this study we do not evolve the
configurations from their initial axisymmetric states, but
instead we resume the evolutions near the PPI saturation
time, when the m ¼ 1 mode is at its maximum, and insert a
seed poloidal magnetic field to study its effect on the
subsequent dynamics. As can be seen from the 3D renders
in Fig. 5, the m ¼ 1 nonaxisymmetries are reduced
significantly by the introduction of magnetic fields and
the growth of the MRI. In the following sections, we make
this assessment more quantitative, and determine what it
implies for potential detectability.

A. MRI growth and saturation

We can track the MRI growth and saturation through
averages of the magnetic field components. Figure 6
shows time series of the average squared values of B-field
components, weighted by rest-mass density ρ0 [Eq. (15)].
The dynamics in both the S↑ and S0 are similar. Initially, the
R and z components of the field have a finite value, while
the toroidal component is near zero. Subsequently differ-
ential rotation rotates nontoroidal components into the
toroidal direction, reducing the former and increasing the
latter. Quickly the decline of the nontoroidal components
halts and reverses, consistent with the expected behavior of

the MRI where backreaction of the increasing field line
tension on the orbiting fluid leads to runaway growth of
the field strength (see Sec. IV B of [29] for an intuitive
treatment). Within two orbits (as measured by the orbital
period of the maximum density material in the initial data)
the MRI appears to have saturated, with both the S↑ and S0
simulations reaching their maximum magnetic strengths.
After this initial growth plateaus, the magnitudes of the

magnetic field averages begin to decay. This is commonly
seen in accretion disk simulations, see for example
Fig. 1(b) of [60] (although note our initial field configu-
ration is different), and is associated with a general decline
in magnetic energy [51,60]. This decline could be due to
the depletion of the disk. We can look at diagnostics
insensitive to the overall flux: the bottom panel of Fig. 6
shows the ratio of the R and ϕ̂ B-field components. The
value this ratio relaxes to, about 0.05, is typical of slightly
under-resolved MRI turbulence seen in previous studies
(Fig. 4 of [51] and Fig. 5 of [60]).

FIG. 6. The density-weighted square averages of magnetic field
components [as defined by Eq. (15)]. Top: sum of the non-
azimuthal field components R and z. Middle: azimuthal field
component ϕ̂. Bottom: ratio of the square averages of the R and ϕ̂
components, on a log scale.
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B. Accretion rate

The ultimate source of power for BH-disk systems is the
release of gravitational binding energy as material is
accreted onto the central black hole. The accretion rate
therefore determines the maximum power that such systems
can emit in any form, including EM and GW emission. In
combination with the total mass of the tori, the rate of
accretion also determines the lifetime of these objects, and
therefore bounds the lifetimes of any potential observable
signatures. The conservation of net angular momentum
means that accretion can only be enabled by transport of
angular momentum from inner to outer disk regions, and the
PPI and MRI instabilities have long been known to produce
conditions that can make this transport efficient in astro-
physical disks [29]. In Fig. 7, the accretion rate is tracked as a
function of time for the original hydrodynamic evolutions—
subject only to the PPI—and the new MHD evolutions,
where both the PPI and MRI are present. We see that the
magnetized disks accrete faster than their nonmagnetized
counterparts. The main impact of the increased accretion
rate for this study will be the resulting shortening of the disk
lifetime, which we will account for when placing an upper
bound on the GW detectability.

C. Decay of low-m density modes

We can directly track the mode amplitudes via the
diagnostic described in II F [Eq. (12)]. As shown in
Figs. 8 and 9, the introduction of the seed magnetic field

significantly reduces the amplitude of the dominant m ¼ 1
modewithin the first four orbits.After this decline, them ¼ 1
mode amplitude of the magnetized cases has an average
amplitude of roughly ∼1=5 of their original value. Our prior
results for nonmagnetized disks show that the saturation
amplitudes ofm ¼ 1modes remain constant after saturation,
and therefore at late times (specifically, at times more than
four orbits after field insertion) the magnetized disks have
lost ∼1=5 of their amplitudes compared to the nonmagne-
tized cases. Table III lists the exact average amplitudes
compared to their initial values for both cases.

D. Comparison to prior fixed-spacetime study

To make closer contact with the fixed-spacetime
(Cowling approximation) results of [30], we use the
normalized mode power diagnostic [Eq. (14)].

FIG. 7. Comparison of accretion rates between the nonmagne-
tized BH-disk systems (dashed lines) and same simulations rerun
with magnetic fields seeded at the indicated times (solid lines).
The dotted vertical lines indicate the time of magnetic field
insertion.

FIG. 8. Amplitude of the normalized m ¼ 1 density mode after
magnetic field insertion for the spin-up case. Note that the
components of the m ¼ 1 nonaxisymmetric mode take on a
slightly nonzero average value at late times in this case. This
seems to be due to slight eccentricity that develops due to the
nonaxisymmetric variations in accretion that occur intermittently
as a result of both the disk nonaxisymmetry and the non-
axisymmetry of the seed magnetic field. Our diagnostic measures
just the angular m ¼ 1 mode, it does not account for radial
distribution of matter and bears no relation to the disk center of
mass moment. There is therefore no reason to expect it to always
oscillate around zero, and this detail can be ignored as irrelevant
to the dynamics of interest.

FIG. 9. Amplitude of the normalized m ¼ 1 density mode after
magnetic field insertion for the nonspinning case.
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A key point of comparison is Fig. 11 of [30], which
shows the m ¼ 1 mode power over time for a purely
hydrodynamic disk and a magnetized disk with the m ¼ 1
mode perturbed (jump starting its early growth), as well
as initially axisymmetric magnetized disks. Both the
hydrodynamic disks and the perturbed magnetized disks
reach P1=P0 ≈ 4 − 7 × 10−2, but for the latter this is only a
transient feature, and the m ¼ 1 power quickly settles to
match that of the initially axisymmetric magnetized disks.
This is one of the most consequential findings of [30]: the
presence of weak magnetic fields, through amplification by
the MRI and subsequent effect on disk dynamics, does not
merely suppress growth of the PPI-unstable m ¼ 1 modes;
they also quickly erase all traces of any powerful m ¼ 1
modes that once existed. By comparing these results to our
own, we can begin to address one of the outstanding
questions raised in the conclusion of [30]: whether this is
also true for self-gravitating disks.
Figures 10 and 11 show the mode powers for the

first four modes for each of our disks. Our self-gravitating
disks share the preference for lower-m modes seen in,
e.g., Fig. 6 of [30]. We start out with slightly stronger
P1=P0 ≈ 2 × 10−1, and yet within a few orbits P1=P0 has
been reduced by nearly an order of magnitude in both our
evolutions. Self-gravity and BH-disk interactions in our
dynamic spacetime simulations do not seem to have
protected the m ¼ 1 modes from being weakened, nor
have they resulted in any significant increases to the
m ¼ 2; 3; 4 modes that might preserve GW detectability.

Are all traces of the initially powerful m ¼ 1 modes
completely erased? This question is more challenging to
answer completely in the absence of a resolution study.
Our simulations show a persistent m ¼ 1 mode in the
MRI-saturated steady state of our disks, and this mode
has about 10 times the power of those seen at late times
in the magnetized disks of [30], and is much more
coherent as well. However, while our azimuthal resolution
is roughly comparable to that of [30] in the region of
the disk, our vertical and radial resolution is just ∼1=3 of
theirs, notwithstanding the differences in convergence
between the different numerical methods. These dif-
ferences could be important in light of the well-known
difficulties of adequately resolving steady-state MRI tur-
bulence [51,60,63–65]. To understand what might be
supporting the m ¼ 1 mode at late times, we can look at
the specific angular momentum profile. Figure 12 shows
that the profile has steepened substantially toward the PPI-
stable limit over the evolution, however in the region within
about 20M where most of the disk material is the disks
remain marginally PPI unstable, suggesting that the PPI
might be responsible for the persistence of these modes.

TABLE III. Average amplitudes of the m ¼ 1 mode
(hC1=C0ilate) compared to their values shortly after PPI saturation
and MRI seed-field insertion (initial C1=C0). The last column
shows the ratio between the late time average for the magnetized
disks and the initial values. Late times are those four or more
orbits after magnetic field insertion in both cases.

Model Initial C1=C0 hC1=C0ilate Ratio

SMag
↑

0.29 5.9 × 10−2 0.21

SMag
0

0.40 9.3 × 10−2 0.23

FIG. 10. The normalized density mode powers for m ¼
1; 2; 3; 4 after magnetic field insertion for the spin-up case.

FIG. 11. The normalized density mode powers for m ¼
1; 2; 3; 4 after magnetic field insertion for the nonspinning case.

FIG. 12. Comparison of the equatorial radial profile of the
specific angular momentum (j) between the initial configurations
(solid lines) and magnetized configurations at late times (dashed
lines). The black dotted line shows the steepest specific angular
momentum profile that is PPI unstable, configurations with
steeper profiles will be stable to the PPI.
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Therefore, it is not straightforward for us to conclude
with certainty whether the relatively strongm ¼ 1mode we
observe even with magnetic fields is attributable to self-
gravity, and/or other differences with the disk models used
in [30]. Yet another important difference between our
evolutions and those of [30] is that our disks are seeded
with a poloidal magnetic field configuration while in [30]
disks with initially toroidal fields are evolved.
What is clear is that self-gravity is not a panacea for

the ills the MRI causes to PPI-supported m ¼ 1 modes:
even disks with significant self-gravity, starting from a
highly asymmetric, m ¼ 1 dominated state can be quickly
smoothed out by the presence of a weak poloidal mag-
netic field.

E. Gravitational wave signal

Figures 13 and 14 show the strain of the (2, 2) mode
extracted for each configuration. The solid lines indicate
the case where magnetic fields are inserted, the dashed lines
show the strain from the original, nonmagnetized evolu-
tions. In both cases it can be seen that the reduced m ¼ 1
amplitude caused by the magnetization of the disks trans-
lates into a reduced GW amplitude.
To gain better insight to the effect this will have on

detection, we look instead at the frequency-domain quan-
tity of characteristic strain. This quantity is useful for
assessing detectability, as the area under a characteristic
strain curve and above a given noise floor roughly
corresponds to the signal-to-noise ratio (SNR) for the
given optimal matched filtering (see [66] for details).
Characteristic strain is defined for positive frequencies
only and can be computed as

hc ¼ 2fjh̃resj; ð16Þ

where h̃res is the Fourier transform of the interferometer
response. Here we will assume the response to be

h̃res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃þj2 þ jh̃×j2

2

s
: ð17Þ

This averages the detector response over polarizations,
which is appropriate for assessing average SNR of sources
whose arrival time and sky location are unknown. We will
therefore take hc computed from (17) and (16) to be the
polarization-averaged characteristic strain. Figures 15 and
16 show this quantity for the portion of the signals after the

FIG. 13. Strain for the spinning BH case. The solid line is the
magnetized case; the dashed line is the nonmagnetized case. The
top time axis shows orbits since magnetization; the bottom uses
geometrized units and measures time from peak signal amplitude.

FIG. 14. Strain for the nonspinning BH case. The solid line is
the magnetized case; the dashed line is the nonmagnetized case.
The top time axis shows orbits since magnetization; the bottom
uses geometrized units and measures time from peak signal
amplitude.

FIG. 15. Characteristic strain for the nonspinning BH case, for
the GW signal emitted after the magnetic field insertion. The
solid line is the magnetized case; the dashed shows the signal for
the same times in the nonmagnetized case.
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magnetic field insertion. In both cases, the peak amplitude
of the signal is reduced by a factor of about 2 from the
nonmagnetized case (which will generally imply a similar
reduction to expected SNR). While the amplitude is
reduced, the frequency of the m ¼ 1 modes remains
roughly double the orbital frequency, strongly suggesting
that the PPI is still responsible for the maintenance of these
modes, rather than them being the result of unrelated
random fluctuations and turbulence in the disk.
The time-series plots show that the loudest portions of

the gravitational wave signals for the magnetized disks
occur early on, as the amplitude of the m ¼ 1 mode is still
in the process of being reduced. This early time is a period
of transition, and transient dynamics tend to depend
sensitively on the initial conditions. Since we mean for
our disks to act as stand-ins for the potential end states of a
wide range astrophysical events, it is wise to avoid paying
too much attention to the transient dynamics, and instead
focus on the late time steady state, which we can hope to
be more generic. We define the settled, late-time part of
the signal to start 2500M (roughly six orbits) after the
maximum GW amplitude for the magnetized disks. The
magnetized disks have their seed fields inserted shortly
after PPI saturation, so this cutoff time also ensures that the
signal starts nearly two orbits after MRI saturation and does
not capture any transients of MRI growth in addition to
avoiding transients of PPI saturation. These signals are
obviously shorter than the full duration GW signals, with
durations of 2000M and 2500M for SMag

0 and SMag
↑ ,

respectively, so they are compared with the last 2000M
of S0 and the last 2500M of S↑, to ensure a meaningful
comparison of the polarization-averaged characteristic
strains in Figs. 17 and 18. As is apparent from these
figures, the effect of magnetization is even more extreme

for this part of the GW signal, with the amplitudes reduced
by factors closer to (∼4–5).

F. Detectability estimates

Finally, we assess what the results of our numerical
evolutions mean for the prospects of detecting gravitational
waves from real astrophysical disks with similar configu-
rations. To do this we take the GW signals from the
configurations we simulated, scale them to a range of
different masses, and then compute their amplitude and
redshift for a range of source distances in order to estimate
the SNR that can be expected from next-generation GW

FIG. 16. Characteristic strain for the spinning BH case, for the
GW signal emitted after the magnetic field insertion. The solid
line is the magnetized case; the dashed shows the signal for the
same times in the nonmagnetized case.

FIG. 17. Characteristic strain for the nonspinning BH case, for
the GW signal emitted during the period when the disk has
entered a settled steady state. The solid line is the magnetized
case; the dashed shows the signal for an equivalent period in the
nonmagnetized case.

FIG. 18. Characteristic strain for the spinning BH case, for the
GW signal emitted during the period when the disk has entered a
settled steady state. The solid line is the magnetized case; the
dashed shows the signal for an equivalent period in the non-
magnetized case.
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observatories. Because our simulations do not extend for
the full lifetime of the disks, we also construct a model that
extrapolates the signal to its estimated full duration, and
perform the same analysis with the extended waveforms.
We did this previously in [25] for the nonmagnetized disks,
here we follow the exact same procedure for both mag-
netized and nonmagnetized disks in order to determine the
impact magnetization might have on detectability.
Given that we do not perform a resolution study,

we regard the estimates provided here as a rough upper
bound on detectability for real BH-disk systems of com-
parable configurations, in accordance with the discussion
in Sec. II G.

1. Computing rescaled signals at detector

Because we modeled disk material as a perfect fluid
with a Γ-law EOS (Sec. II C), the magnetohydrodynamic
and GR equations are invariant under uniform rescaling
of mass, which serves as the unit of length and time in
geometrized units. Thus, by simply adjusting the mass
scales of the relevant observables, we are able to use each of
our simulations to represent an entire family of BH-disk
systems that share the same dimensionless properties of BH
spin magnitude, orientation, and BH-to-disk mass ratio. For
GWs, the strain amplitude is proportional to system mass,
while the frequency is inversely proportional, so applying
these rescalings to our GW model for rhðt=M; θ;ϕÞ is
straightforward. To go from rhðt; θ;ϕÞ in the source frame
to the observed strain at a detector, we first choose a value r
that will be the luminosity distance to the source in the
detector frame. Then the ratio of M=r controls the overall
amplitude of the strain.
For example, if we choseM ¼ 10M⊙ and r ¼ 300 Mpc,

then we would plugM½s� ¼ 10M⊙ ½kg� · Gc3, andM½Mpc� ¼
10M⊙ ½kg� · Gc2 · Mpc

3×1022 m, into the below formula to
compute h,

hðt½s�; θ;ϕÞ ¼ rhðt½s�=M½s�; θ;ϕÞ M½Mpc�
300 Mpc

: ð18Þ

The above procedure accounts for the mass scale and
luminosity distance only. To accommodate large cosmo-
logical distances, we also shift the observed frequencies
by an amount determined by the redshift z, which we
calculate from the luminosity distance in a standard ΛCDM
cosmology with H0 ¼ 67.7 km=s=Mpc and Ωm ¼ 0.3089,
ΩΛ ¼ 0.6911. The dominant mode of the GW signal is the
ð2;�2Þ mode, so we will only consider it in this analysis.
To get a sense of average detectability, we compute
the strain for observers viewing the source from an angle
of θ ¼ π=2.34 relative to the disk orbital plane,
for which the amplitude of the (2,2) mode equals its
θ-averaged value. From this we compute the polarization-
averaged response at the detector h̃res via (17), and then the

characteristic strain hc via (16), for which we may then
compute the sky-averaged SNR (assuming an optimal
matched filter) given detector parameters for Advanced
LIGO [5], Cosmic Explorer [6], DECIGO [8], and LISA
[7]. The sky-averaged sensitivity factor for a 90° interfer-
ometer [Eq. (51) of [66]] along with the sensitivity curves
provided by [67] were used for LIGO and CE, while the
approximate analytic sky-averaged sensitivities4 in [68,69]
were used for DECIGO and LISA, respectively.

2. Masses and distances of potential sources

We motivate the choice of mass scale in our detectability
analysis by considering three potential formation channels
for BH-disk systems similar to those we simulated. At
the low end, BH-disk systems of 3 − 20M⊙ could result
following NSNS and BH-NS mergers [70], and are
expected to be reasonably common in the nearby universe.
Systems massing 25 − 14M⊙ and 250M⊙ or greater could
be the end results of population III stars ending their lives as
collapsars [71–74]. These stars are expected to have peak
formation rates in the z ∼ 5–8 range [75,76], and there is
observational evidence for them at z ≈ 6 [77]. The highest-
mass systems of 103M⊙–10

6M⊙ could conceivably result
from the collapse of supermassive stars (SMSs), simula-
tions of which have been shown to produce BHs sur-
rounded by disks of about 10% the BH mass [2,78–81].
These events have been proposed to occur in the early
Universe and provide the seeds for the formation of
supermassive BHs that emerge at z ≈ 7 [82–88] (see
reviews [89–91]).
In addition to considering a range of masses that

encompasses all the scales listed above, we also choose
a set of three distinct masses to act as representatives for
each of the three channels above. These scales, as labeled in
Figs. 19 and 20 in the subsequent subsections, are
(a) M ¼ 10M⊙, representing the possible aftermath of a

BH-NS merger.
(b) M ¼ 1000M⊙, representing the possible aftermath of

a low-mass SMS collapse.
(c) M ¼ 2 × 105M⊙, representing the possible aftermath

of an high-mass SMS collapse.

3. Detectability horizons of settled GW signals

Since we aim to gain insight into the GW detectability of
a wide class of phenomena that may lead to nonaxisym-
metric disks, including the early time transient GW signals

4When comparing ground and space-based detectors, a clash
of conventions is encountered. For ground-based detectors,
averaging over polarization is assumed to be part of the definition
of characteristic strain hc; for space-based detectors, it is included
as part of the sky-averaged response. Here we compromise by
multiplying the space-based sensitivities by a factor of

ffiffiffi
2

p
to

account for the 1=
ffiffiffi
2

p
in hc, effectively removing the contribution

of polarization averaging. This rescues the relationship between
SNR and the area between the hc and sensitivity curves.
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is inappropriate. Therefore, we only assess the detectability
of the settled late-time dynamics, defined as the portion of
the signal 2500M after the maximum GWamplitude for the
magnetized cases, as in Sec. III E. To enable a meaningful
comparison between all signals, here they are all truncated
to the same end time, which is set to be 4500M by our
shortest simulation, and therefore all the settled late-time
signals in this section have a 2000M duration. This is
notably shorter than the duration of the signals analyzed in
[25], and results in lower maximum detection distances.
However, since our simulations do not capture the full
signal duration anyway, the absolute detectability distances
are less important than relative differences between the
configurations.
In Fig. 19 we show the maximum detectability distances

for these signals across a range of masses and propagated
from a range of distances. That is, for each simulated BH-
disk system we choose a set of mass scales, and for each of
those masses we compute the GW strain in the detector

frame for a range of luminosity distances (following the
methods of Sec. III F 1). We then use the detector-frame
strain to compute the SNR for each observatory, assuming
an optimal matched filter. The lines in the top panel of the
figure show the maximum distances systems at each mass
were found to be detectable, where we have chosen an SNR
of 8 as the threshold of detectability for this analysis. We
see that the spinning cases S↑ and SMag

↑ are more detectable

than their nonspinning counterparts S0 and S
Mag
0 . In [25] we

showed this was accounted for by the increased orbital
frequency of the disk in the S↑ case, due to the smaller
ISCO radius of the cospinning BH, so it is not surprising
that this carries over to SMag

↑ . The difference between the
nonmagnetized and magnetized configurations is stark:
across all masses the detectability horizon has been reduced
by factors of ∼3–5 for the magnetized disks. While the
accretion rate is somewhat larger in the magnetized cases,
for the times represented here little accretion has had time

FIG. 19. Comparison of the detectability by GWobservatories LIGO, CE, DECIGO, and LISA, for optimally oriented BH disks that
are purely hydrodynamic (S↑, S0) versus those that were seeded with magnetic fields (SMag

↑ , SMag
0 ), for spinning and nonspinning central

BHs, respectively. Labels indicate features corresponding to three mass scales of astrophysical interest: (a) 10M⊙, (b) 1000M⊙,
(c) 2 × 105M⊙. Top: horizons of maximum detectable distance for each system mass for each observatory. The threshold for a system at
a given mass and distance on the chart being considered detectable is that its GW signal achieves a sky and polarization averaged
SNR ≥ 8 (given an optimal matched filter). Line styles denote observatories, while colors indicate which of the four BH-disk
configurations studied the GW signal originates from. The þ (×) labels show the furthest detectable distance of nonmagnetized
(magnetized) configurations for each of the labeled mass scales: (a) 50 Mpc (10 Mpc) by CE, (b) 19000 Mpc (7000 Mpc) by DECIGO,
(c) 2600 Mpc (1000 Mpc) by LISA. Bottom: characteristic strain curves for signals at the labeled mass scales and distances marked by
the þ symbols on the top plot. These strain curves are overlaid on top of noise curves for each of the detectors, and the area between
curves is a proxy for the SNR.
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to occur and the disks are nearly the same masses. The
difference in detectability is therefore predominantly due to
the suppression of the m ¼ 1 modes that occurs during the
growth of the MRI in the magnetized disks.

4. Detectability horizons of extrapolated
GW models

The actual detectability of GW signals depends on
both their amplitude and duration. Therefore, we need to
extrapolate beyond the short duration we simulated to get a
model of the full signal for each case. To do this, we use
the same simple signal model as [25]: motivated by the
quadrupole formula, the signal at late times is assumed to
be of the form

rh ¼ B expððiω0 − γÞtþ iϕ0Þ: ð19Þ

The amplitude, B, of the waveform is set by the amplitude
of the extracted GWs, but the exponent of amplitude falloff,
γ, is extracted by fitting the disk mass at late times to a
decaying exponential. The frequency ω0 and initial phase
ϕ0 are set by matching to the unrolled phase profile of the
GW signal, and extrapolating it past the final time with
a linear best fit. The model fitting is shown in Fig. 21.

We cannot know for certain how long the GW-producing
m ¼ 1modes will persist after the end of our evolutions, so
we conservatively estimate that the GW signal terminates
when only 10% of the original disk mass remains, once
again using a smooth falloff to avoid artifacts from the
imposed cutoff.
We now take the settled late-time GW signals (after the

cutoff of 2500M), and instead of truncating them at 4500M
as we did in the previous section, we use their full duration.
In the last 500M, we smoothly match onto the model
waveform fitted for that case, which then extends the signal
past the end of our simulations.
We perform the same analysis as in the previous section

to these extended model waveforms, and the results are
shown in Fig. 20. Here, the differences in detectability are
even more noticeable: the maximum detection distances
are reduced by factors of ∼3.1–6.6 for the magnetized
disks. This can at least partially be attributed to the
increased accretion rate caused by the magnetic shear,
which dramatically shortens the lifetime of the disk
extrapolated by the model. However, although the change
in signal lifetime is significant, its impact on detectability is
not that large because most of the GW signal power comes
from the early-time emission, so the reduction of them ¼ 1
amplitude is the dominant effect.

FIG. 20. The same quantities as in Fig. 19, but this time for the model waveforms produced by extrapolating our simulated GWs to
their expected full duration. Three mass scales of astrophysical interest are again labeled: (a) 10M⊙ (b) 1000M⊙ (c) 2 × 105M⊙. In the
top panel, sources with these masses are marked by þ (×) to denote the maximum distances nonmagnetized (magnetized) BH-disk
configurations of each mass could be detected: (a) 300 Mpc (45 Mpc) by CE, (b) 60,000 Mpc (19,000 Mpc) by DECIGO,
(c) 11,500 Mpc (2700 Mpc) by LISA.
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Now that the GW signals are not cut off prematurely by
the end of the simulation, the estimates of maximum
detectability distances are more realistic. In all cases the
spinning BH configurations are most detectable, and in
Table IV we list the estimated maximum detection dis-
tances for each of the mass scales of interest introduced in
Sec. III F 2.

IV. DISCUSSION

In this study, we conducted magnetohydrodynamic
simulations in dynamical spacetime comparing the dynam-
ics of self-gravitating accretion tori around spinning and
nonspinning BHs for both magnetized and unmagnetized
configurations. Our goal was to estimate a rough upper
bound on the resilience of the nonlinear saturated state of
the PPI in self-gravitating disks to the effects of the MRI on
the disk dynamics, so MRI-susceptible field configurations
were only seeded once PPI modes reached their maximum
amplitude, giving the PPI its best chance of survival.
Despite this, these disks, which were previously shown
to be powerful sources of gravitational radiation [21,25]
due to their persistent m ¼ 1 nonaxisymmetries, reacted to
the introduction of magnetic fields by exhibiting quick MRI
growth and strong suppression of the m ¼ 1 mode and the
associated gravitational radiation. Witnessing such strong
and sudden suppression of these modes, even in the fully
nonlinear self-gravitating saturation state, suggests that
suppression of the m ¼ 1 mode will generally occur for
a wide range of conceivable configurations with less
developed PPI modes, whenever weak magnetic fields of
similar magnitude are present.
These results are similar to the findings of [30] for disks

without self-gravity around nonspinning black holes. By
constructing a mode-power diagnostic, we are able to
approximately compare the power of the low-m nonaxisym-
metric modes in our disks to those reported by [30]. We find
that the PPI supported m ¼ 1 mode is quickly reduced in
amplitude, dropping nearly an order of magnitude in four
orbits in both SMag

↑ and SMag
0 configurations. Tracking the

components of magnetic field flux, we see fast increases in
the azimuthal and radial components for the first two orbits,
characteristic of MRI growth [29]. After this, the fields
saturate, then decay. It is notable (but not surprising) that the
majority of the m ¼ 1 amplitude reduction happens during
the first few orbits, when themagnetic fields are strongest. At
late times, the strength of the fields is determined by the
equilibrium between dissipation (purely numerical in our
simulations) and MRI-driven turbulence [29,63]. In our
simulations, the field strength peaks before it relaxes to
weakermagnitudes not high above those at initialization, and
this seems to allow the PPI to support the m ¼ 1 modes
against further disruption, resulting inm ¼ 1modes of about
10 times the power of those seen at late times by [30].
When interpreting this result, it is important to consider

the known difficulties in adequately resolving steady-state
MRI turbulence [51,60,64]. As detailed in Sec. III D, our
simulations are slightly lower in resolution in some
directions than those of [30], so a careful resolution study
would need to be carried out for error estimates in our
results. However, the lack of a resolution study does not
prevent the results reported here from providing a correct
qualitative description of the ability of saturated m ¼ 1 PPI
modes in massive, self-gravitating disks to survive the

TABLE IV. Maximum detection luminosity distances for the S↑
and SMag

↑ BH-disk configurations for a set of masses motivated by
plausible formation channels (see Sec. III F 2). In each case, we
consider only the detector that achieves its greatest detection
distance for the given source. In all cases the signal is not
powerful enough for detection by Advanced LIGO, so it is not
included here.

Label

BH mass Maximum distance (Mpc)

Observatory(M⊙) S↑ SMag
↑ S↑=S

Mag
↑

(a) 10 300 45 6.67 CE
(b) 1000 60000 19000 3.16 DECIGO
(c) 2 × 105 11500 2700 4.26 LISA

FIG. 21. Comparison of analytic model to quantities extracted
from simulations for both magnetized and nonmagnetized ac-
cretion disks (indicated by line colors). The dashed curves show
analytic model fit to the magnetized disks, the dotted curves show
model fit to the nonmagnetized disks, and the solid lines show the
quantities being fit: strain amplitude in the top row, disk rest mass
in the bottom row. Analytic models are fit using only data after
the time marked by the vertical dash-dotted lines, to avoid
influence of early-time transients on the extrapolated late-time
signal model.
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transient growth of the MRI. This is because greater
resolution is expected to make the average magnetic field
stronger, and the dynamical influence of the MRI and
associated turbulence should be even more pronounced
[60,64], while the PPI is already well resolved.
Our key finding is therefore that the MRI’s ability to

reduce the amplitude of large nonaxisymmetric features is
robust even in the nonlinear self-gravitating case, and even
when starting from extremely nonaxisymmetric disks.
Because high-amplitude orbiting nonaxisymmetric patterns
are necessary to produce powerful GWs, this result reduces
our expectation that such systems will act as detectable GW
sources at the large distances determined by unmagnetized
models.
To assess detectability, we fit a simple GW model to the

extracted gravitational waveforms, and used our study of
the observed disk dynamics to extrapolate an optimistic
case where the MRI reduces but does not eliminate the
disk’s m ¼ 1 mode, allowing GW production at a reduced
amplitude, and for a duration shortened by the more rapid
accretion of the magnetized configurations. This optimistic
case predicts reductions of the maximum luminosity dis-
tances of detection by factors ranging from 3.16 to 6.67.
For nonmagnetized disks, the spinning BH configuration
S↑ was detectable by DECIGO out to redshifts of z ≈ 5 for
systems of mass 1000M⊙, however the most detectable
magnetized configuration SMag

↑ produces a signal too weak
to be detected by DECIGO beyond z ≈ 2, a 76% reduction
in luminosity distance.
Finally, we caution that our study does not rule out the

potential of accretion disks as engines of detectable gravi-
tational waves. We have shown that a particular nonaxisym-
metric disk configuration, which acts as a powerful GW
source when not magnetized, quickly becomes significantly
more axisymmetric when the MRI is allowed to develop,
greatly reducingGWemission. This does not prove that there
are no other magnetized disk configurations that could be
sustained sources of GW production. The task of finding
such configurations, or ruling out their existence, remains to
be done.
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APPENDIX: EVOLUTION OF CONSTRAINT
VIOLATIONS

Throughout the evolutions we track the constraint
violations to ensure the physical validity. In terms of the
BSSN variables, the Hamiltonian constraint is

H ¼ γ̃ijD̃iD̃jeϕ −
eϕ

8
R̃þ e5ϕ

8
ÃijÃ

ij −
e5ϕ

12
K2 þ 2πe5ϕρ:

ðA1Þ
We monitor the L2 norm of H, defined as the square root
of the integral of jHj2 over the volume, which we here

FIG. 22. Evolution of the L2 norm of the Hamiltonian con-
straint violations for both configurations, with the magnetized
disk evolutions overlayed on the nonmagnetized evolutions.
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denote jjHjj. Figure 22 shows the values of this constraint
for the purely hydrodynamic and magnetized runs.
The momentum constraint is

Mi ¼ D̃jðe6ϕÃjiÞ − 2

3
e6ϕD̃iK − 8πe6ϕSi: ðA2Þ

In this case, we monitor the same L2 norm as above for
each of the three components ofMi. We then take the norm
of this vector: kMk≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kMxk2 þ kMyk2 þ kMzk2
p

.
This is plotted in Fig. 23.
As can be seen, the constraint values are nearly identical

after field insertion, indicating that the initial field has a
small enough energy density to avoid introducing any
noticeable constraint violations. It is also clear that the
differing dynamics between the two simulations have little
impact on the constraint evolution. To verify that the
near-indistinguishability of the two constraint evolutions
between the magnetized and unmagnetized cases is not a
mistake in our plot, Figs. 24 and 25 show the differences
between the two sets of constraint violations for each
configuration.

FIG. 23. Evolution of the L2 norm of the momentum constraint
violations for both configurations, with the magnetized disk
evolutions overlayed on the nonmagnetized evolutions.

FIG. 24. Evolution of the differences between the L2 norms of
the Hamiltonian constraint violations between the magnetized
and nonmagnetized evolutions, for both configurations.

FIG. 25. Evolution of the differences between the L2 norms of
the momentum constraint violations between the magnetized and
nonmagnetized evolutions, for both configurations.
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