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In this work, we consider polar perturbations, and we calculate the frequency and damping time of the
quadrupolar fundamental f-mode of compact objects, constructed using a wide range of model-
independent hybrid equations of state that include quark matter. We give special attention to the impact
of the hadron-quark conversion speed that, in the slow case, gives rise to a branch of slow stable hybrid
stars. Moreover, we study the validity of universal relationships proposed in the literature and find out that
none of them remains valid when slow stable hybrid stars are taken into account. This fact could constrain
the applicability of asteroseismology methods with fundamental modes designed to estimate the properties
of pulsating compact objects. We hope that this result could be tested with the start up of the third-
generation gravitational wave observatories, which might shed some light on the f-mode emission from
compact objects.
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I. INTRODUCTION

Our understanding of compact stars has undergone a
major boost during the last fifteen years with a series of
several key observations: the detection of the pulsars PSR
J0348þ 0432 [1] and PSR J0740þ 6620 [2,3] (whose
radius has recently been estimated using NICER and
XMM-Newton data [4,5]) established the 2M⊙ constraint,
an alternative constraint obtained only with NICER data
can be found in Ref. [6], the analysis of the gravitational
waves (GWs) emitted during the binary neutron star (NS)
merger event GW170817 [7] and its electromagnetic
counterpart (see, for example, Ref. [8]) constrained the
dimensionless tidal deformability Λ and the radius of a
∼1.4M⊙ NS (see, for example, Refs. [9,10]), and finally,
using NICER data, two independent estimations of the
mass and radius of the isolated pulsar PSR J0030þ 0451
became available [11,12].
So far, GWs have only been directly observed from

compact object mergers (see the modern reviews in
Refs. [13,14]), but isolated compact objects are also
expected to emit GWs in several astronomical scenarios;
one of the most promising situations is the emission of GWs
of a proto-NS during a core-collapse supernova [15–18].

The GW emission of isolated NSs is produced by their
nonradial oscillations (see, for example, Ref. [19] and the
references therein). These oscillation modes, known as
quasinormal modes (QNMs), have complex frequencies,
ω ¼ 2πνþ i=τ, whose real part characterizes the oscillation
frequency, ν, and the inverse of its imaginary part, the
damping time, τ. In particular, various theoretical works
indicate that most of the energy emitted in GWs should be
channeled through the (quadrupolar) fundamental f-mode
[15–17,20]. With a network of third-generation GW detec-
tors, errors in the determination of the frequency of QNMs in
the kHz band are expected to be of a few tenths of Hz [21].
Thus, it is expected that both frequency and damping time of
the f-mode might be measured by these third-generation
detectors [22–24]; for this reason, we focus this work on this
particular QNM.
TheQNMs are sensitive to the equation of state (EoS) used

to describe matter inside the NSs. For this reason, under-
standing the spectrum of QNMs might be a useful tool to
extract information about the internal compositionof compact
objects, unveiling the behavior of matter subject to extreme
conditions. Besides this intimate EoS-QNMs relationship,
there has been proposed a different approach that considers
functions, called universal relationships (URs), that relate
QNMs and macroscopic quantities in an EoS-independent
manner. This method, known as asteroseismology of NSs is a*iranea@fcaglp.unlp.edu.ar
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promising tool expected to be capable of helping estimate
macroscopic quantities of pulsating objects, such as themass,
M, or the radius,R, after a measurement of the frequency and
damping time of a detected mode. Since the seminal paper of
Andersson and Kokkotas [25], many alternative URs have
been proposed for the f-mode. Such URs include not only
versions that containmass,M, and radius,R (see, for example,
Refs. [26–28]) but alsomoment of inertia, I (see, for example,
Refs. [28,29]) and dimensionless tidal deformability, Λ [30].
In addition, URs for other nonradial QNMs have been
proposed: p-modes [25,26], g-modes associated with sharp
hadron-quark phase transitions [31,32], axial and polar
wI-modes [26,27,33,34].
However, as has been shown in [35], within certain

scenarios, the proposed URs could break and dismantle the
application of the asteroseismology method. In particular,
in [35], the authors proved that, in the slow stable hybrid
stars (SSHS) scenario, the URs previously proposed for the
wI-modes [26,27,33] break for certain combinations of
parameters of the phase transition. In particular, this
becomes more prominent when the hadron-quark transition
pressure is high and close to the respective maximum mass
star of the hadronic branch. The SSHSs are a type of
hadron-quark hybrid stars (HSs) that arise when the
hadron-quark conversion timescale is slow compared to
the timescale associated with the fundamental radial mode,
whose nature marks the (un)stable nature of the compact
object (see, for example, Refs. [36,37] and references
therein). Such a theoretical possible scenario has been
already explored in other works using a parametric EoS for
the quark sector [32,34,35,38,39], the Field Correlator
Method EoS [40–42] and different versions of the
Nambu-Jona-Lasino model [43,44]. In each work, a
common feature is the appearance of long branches of
SSHS after the maximum mass of a given family of
compact stars. In some of these SSHS, the central energy
density can reach values up to a few tens of times the
nuclear saturation one. Thus, in this work, we will study if
the previously proposed URs for the quadrupolar f-mode
remain valid when long branches of SSHS that arise when
certain conditions are taken into account (see, Ref. [39] for
more details). In Ref. [45], considering a different scenario,
in the context of sharp hadron-quark phase transitions and
low-mass fully stable HSs,1 some of these relationships are
revised, and, in Figs. 9 and 10 of this work, deviations from
universality have been shown to occur.
Throughout this paper, the radius, R, is expressed in km,

the mass, M, also in km (unless specifically said the
contrary), the moment of inertia, I, in km3, the frequency,
νf, in kHz and the damping time, τf, in seconds.

The work is structured in the following manner.
Section II describes aspects of hadron-quark phase tran-
sitions and presents the hybrid EoS model used in this
paper. Moreover, we introduce some concepts related to the
dynamical stability of HSs and SSHS, and present initial
results for some HSs attributes, such as the mass, the radius,
the moment of inertia and the dimensionless tidal deform-
ability, that would become relevant to explore the validity
of f-mode URs. In Sec. III, we present the basic equations
that describe polar modes and explain the numerical
scheme used to calculate them, in particular, the f-mode.
In Sec. IV, we show our results for the oscillation
frequencies and damping times of the quadrupolar f-mode
and the comparison with the existing URs. A summary of
the work, a discussion about the astrophysical implications
of our results, and our main conclusions are provided in
Sec. V. In the Appendix, we present the coefficients of
every relationship analyzed in this work.

II. HYBRID EQUATION OF STATE AND SSHS

In order to obtain results that are independent of any
specific hybrid EoS model, we consider parametric models
for both hadron and quark phases, as we have already
proposed in previous works [34,35,39]. The crust is
described using the GPP Fit to the SLy4 crust given in
Ref. [46] (also see Ref. [47]). To describe the hadron sector,
we use a couple of piecewise polytropic EoSs [46]; these
two models (a soft and a stiff EoS) act as enveloping EoSs
to known, microphysically involved, EoS that are consis-
tent with modern astronomical observations. The specific
parameters of these two representative polytropic hadronic
EoS are given in Table I. To describe the quark sector in the
inner core of HSs, we use the constant speed of sound
parametrization (CSS) EoS model [48]; this model has
three free parameters that characterize the hadron-quark
transition: pressure, Pt, the energy density jump, Δε, and
speed of sound, cs. In order to consider a wide range of
existing quark EoS, we select 15 combinations of the CSS
parameters, that cover different qualitative behaviors for the
quark matter and, along with the soft and stiff hadron EoSs,
give rise to different kind of mass-radius relationships and
(long) branches of SSHS. For each hadron EoS, we have

TABLE I. Parameters of the selected hadronic EoSs constructed
with the prescription of Ref. [46]. The values of the parameters
are selected so that the mass-radius relationships obtained with
the resulting EoS act as possible (but not unique) limiting families
compatible with the modern astronomical data shown in Fig. 2.
Moreover, the two EoSs are also consistent with the borders of
the region allowed by chiral EFT presented in Refs. [52,53].

log10 ρ0 log10 ρ1 log10 ρ2 Γ1 Γ2 Γ3 log10 K1

soft 13.902 14.45 14.58 2.752 4.5 3.5 −27.22
stiff 13.902 14.45 14.58 2.764 8.5 3.2 −27.22

1We refer as fully stable to the stellar configurations that are
stable both in the slow and rapid hadron-quark conversion
scenarios, i.e., the stellar configurations up to the maximum
mass configuration in the mass mass-radius relationships that
have ∂M=∂εc > 0.
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fixed the value of Pt; we have selected Pt ¼ 250 MeV=fm3

for the soft case and Pt ¼ 110 MeV=fm3 for the stiff case.
We do not study the effect of varying this parameter since if
we select low values and demand consistency with the
astronomical constraints, there appear long fully stable
hybrid branches and/or hybrid twin branches (as can be
seen in Refs. [38,49,50]). Hence, we are not interested in
these scenarios, since they do not particularly produce
(long) branches of SSHS that allow us to explore the URs
rupture hypothesis. On the other hand, taking a larger value
for Pt gives rise to maximum mass configurations above
2.3M⊙, which are discarded [51]. For Δε and cs param-
eters, we have considered, for both soft and stiff cases,

Δε ¼ 100; 200; 500; 1000; 3000 MeV=fm3;

c2s ¼ 0.33; 0.5; 0.7:

In total, this selection allows us to obtain thirty hybrid
EoSs, constructed to qualitatively represent a vast number
of existing hybrid EoS in literature and to study, in a model-
independent manner, the validity of the URs.
Once selected the parameter sets for the hadron and

quark phases of the hybrid EoS, we should model the
hadron-quark interface. The nature and main characteristics
of the hadron-quark phase transition are essentially deter-
mined by the value of the surface tension between the
hadronic and quark states of matter, σhq. There is still no
agreement on the numerical value of this physical quantity
and a large range of model-dependent values for σhq can be
found in the literature (see the recent review on this subject,
Ref. [37] and references therein). Despite this uncertainty,
there is a general consensus that for low values of
σhq ∼ 5–30 MeV=fm2, the appearance of a mixed phase,
in which hadrons and quarks coexist, is energetically
favored (see, for example, Ref. [54]) and that for larger
values of σhq ∼ 50–300 MeV=fm2 a sharp hadron-quark
phase transition would take place (see, for exam-
ple, Ref. [37]).
In the latter case, each phase is constrained to a particular

region of the star (quarks confined to the inner core
surrounded by an outer core of hadronic matter). This
situation leads to EoSs in which the energy density presents
a discontinuity at the pressure at which the phase transition
occurs. In this scenario, an important aspect that has deep
astronomical implications is related to the conversion
speed—compared to the characteristic time of radial
modes—between hadrons and quarks that are in contact
at the interface [36]. Although uncertain, there are theo-
retical arguments indicating that the conversion timescale
of the reverse reaction should be slow. It is important to
recall that, generically speaking, phase transitions are
highly collective, nonlinear phenomena. This favors the
idea that the conversion timescale of the hadron-quark
phase transition might not be determined by the process of

particles confining or deconfining independently. The
general consensus is that a first-order hadron-quark phase
transition can take place via nucleation [55–58]. A direct
hadronic matter conversion into quark matter in β equilib-
rium is strongly suppressed as it is a high-order weak
process. For this reason, nucleation is expected to proceed
through an intermediate (flavor-conserving) state (for
details, see Refs. [37,59]).
Despite the fact that the slow conversion regime is a

possible physical scenario, recent results presented in
Ref. [60] demonstrated that the branches of SSHS appear
even if the hadron-quark phase conversion speed is
intermediate. This fact shows that the existence of SSHS
occurs in a broader spectrum of possible theoretical
scenarios.
To sum up, given that both the surface tension σhq and

the hadron-quark conversion time are not yet fully known,
in our work, the hadron-quark phase transition is assumed
to be sharp, and to focus on the appearance of SSHS, we
considered that the conversion speed between phases is
slow, compared to the typical timescale of radial oscilla-
tions. As we already introduced, these assumptions produce
branches of SSHS, i.e., possible theoretical compact
objects which are stable against linear radial perturbations
for which ∂M=∂εc < 0. In this scenario, the mass-radius
diagram extends until the terminal mass configuration,
which is the first stellar configuration for which the
fundamental radial mode becomes unstable. To determine
such configurations, the equations that govern linearized
radial pulsations of compact stars with the corresponding
boundary conditions at the hadron-quark interphase need to
be solved (see, Ref. [36] for a more detailed discussion on
this subject). Such equations (and the corresponding
boundary conditions) constitute a Sturm-Liouville prob-
lem; for this reason, the first stellar configuration for which
the fundamental eigenfrequency becomes imaginary deter-
mines the position of the terminal mass in which the SSHS
branch ends. We must emphasize that this configuration
might not coincide with the turning points of such curves,
in opposition with the rapid conversion case, where the
terminal mass coincides with the maximum mass configu-
ration. As the SSHS branch is indeed a twin branch, it is
important to remark that an evolutionary channel in which
it might get populated is during the proto-NS stage, as has
been discussed in Refs. [35,37].
We present the P − ε relationship for the selected hybrid

EoSs in the upper panels of Fig. 1. In addition, as can be
seen in these panels, the low-density part of the soft (stiff)
limiting EoS is selected to be consistent with the lower
(upper) border of the region allowed by chiral EFT
presented in Refs. [52,53]. In the lower part of each panel,
we present the squared speed of sound, c2s , as a function of
the energy density for each of the hybrid EoS constructed
for this work. After the hadron-quark phase transition, we
see the constant value corresponding to the CSS para-
metrization EoS used to describe quark matter.
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After constructing the hybrid EoS we solved the Tolman-
Oppenheimer-Volkoff equations to calculate the different
families of compact stars. In addition to the gravitational
mass,M, and the radius, R, of each stellar configuration, we
have calculated both the moment of inertia, I, and the
dimensionless tidal deformability, Λ. The stability criteria
developed in Ref. [36] is implemented to characterize
stable and unstable stellar configurations. In Fig. 2, we
present the mass-radius relationship for each EoS, together
with modern astronomical constraints. Every stellar con-
figuration shown in this plot corresponds to a stable one
when a slow hadron-quark phase transition is considered.
Since for the purpose of our work it is necessary to analyze
the global behavior of the EoSs and not to look at them
separately, we have not labeled them individually. In black,

we present the pure hadronic configurations, soft and stiff,
and the different color branches correspond to the hybrid
configurations with different values ofΔε and c2s . Although
we have not identified the different EoSs in detail and it is
not crucial in order to follow the main results of our work, it
is possible to analyze qualitatively the effect of the
parameter variation: the colors change from red to blue,
corresponding to the variation from small to big values of
Δε, respectively; i.e., short branches with bigger masses
correspond to smaller values of Δε, and longer branches
with smaller masses correspond to bigger values of Δε.
Given the same value of Pt, the variation of cs produces less
dramatic effects, obtaining three grouped together branches
for c2s ¼ 0.33, 0.5, 0.7, with a bigger mass value for the
larger value of cs, e.g., for Pt ¼ 110 MeV=fm3; it varies

FIG. 1. Pressure-ε (upper panels) and c2s − ε (lower panels) relationships for the soft (left panels) and stiff (right panels) cases of the
selected hybrid EoS. In black curves, the pure hadron sector; the different colors indicate the hybrid branches for different values for Δε
and c2s (see the main text for details). The orange-colored region in the low-density region of the pressure-ε plane indicates the constraint
given by chiral EFT up to 1.1n0 [52,53]; as can be seen, the soft and stiff hadronic parametrizations act as limiting cases for this
constraint.

FIG. 2. Mass-radius relationships for the selected hybrid EoS. In black curves, the pure hadron branches for soft and stiff cases; the
different colors indicate the hybrid branches for different values for Δε and c2s (see the main text for details). With colored bars and
clouds, we include modern astronomical constraints for compact objects.
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from light red (c2s ¼ 0.7) to dark red (c2s ¼ 0.33). In Fig. 3,
we show the dimensionless tidal deformability, Λ, as a
function of the mass, together with the restriction obtained
after the analysis of the observational data from GW170817
and its electromagnetic counterpart [61]. In Fig. 4, we
present the moment of inertia, I, as a function of the
gravitational mass. It is important to remark that the general
behavior for the mass-radius (and Λ-mass) curve is con-
sistent with those previously reported in Refs. [34,35,39],
showing that stiff EoS, that have been disfavored after the
GW170817 merger event, when considering the appear-
ance of long SSHS extended branches, should not be totally
discarded yet, and that the merging objects might be
SSHSs. In particular, for the stiff case, the families with

smaller Δε values that do not have long enough extended
branches do not satisfy the GW170817 constraint; since we
are only interested in the study of URs, we do not discard
them and keep them in our global model-independent
analysis. On the other hand, if we had considered the rapid
conversion scenario, the configurations would be stable only
up to the maximum mass configuration. The appearance of
the quark core would destabilize the stellar configurations
almost immediately and there would be strong arguments to
discard the stiff EoS family.

III. NONRADIAL POLAR PERTURBATIONS

Nonradial oscillations due to polar perturbations can be
studied following the seminal works of Lindblom and
Detweiler [62,63], where the main equations needed to be
solved are presented. Introducing nonradial perturbations
into a spherically symmetric space-time gives rise to a line
element that reads

ds2 ¼ −eκð1þ rlH0lmYlmeiωtÞdt2
− 2iωrlþ1H1lmYlmeiωtdtdr

þ eλð1 − rlH0lmYlmeiωtÞdr2
þ r2ð1 − rlKlmYlmeiωtÞdΩ2:

Moreover, the components of the Lagrangian perturbation
to the fluid are described by

ξr ¼ e−λ=2rl−1WðrÞYlmeiωt;

ξθ ¼ −rl−2VðrÞ∂θYlmeiωt;

ξϕ ¼ −
rl−2VðrÞ
sin2 θ

∂ϕYlmeiωt;

where ω ¼ 2πνþ i=τ is the (complex) frequency (being ν
the oscillation frequency and τ the damping time) of the
perturbation, κ and λ are the functions that describe the
background metric, Ylm is the spherical harmonics, and Ω
is the solid angle.
In cases where HSs with discontinuous EoS are consid-

ered, it is useful to define a variable XðrÞ (see Ref. [64] for a
more detailed discussion), using the following algebraic
relationship:

XðrÞ ¼ ω2ðεþ PÞe−κ
2VðrÞ − e

κ−λ
2

r
P0WðrÞ þ εþ P

2
e
κ
2H0ðrÞ;

where the prime denotes a radial derivative.
Using this approach, inside the star perturbations are

fully characterized by a system of fourth-order differential
equations for the unknowns XðrÞ, WðrÞ, KðrÞ, and K1ðrÞ
(for simplicity in the presentation, we have eliminated,
from the unknowns, the lm dependence). These equations
are given by

FIG. 3. Dimensionless tidal deformability, Λ, as a function of
the mass. In black curves, the pure hadron branches for soft and
stiff cases; the colors used are the same as in Fig. 2. In gray, we
show the observational constraint obtained from the analysis of
GW170817 and its electromagnetic counterpart [61].

FIG. 4. Moment of inertia, I, as a function of the mass. In black
curves, the pure hadronic branches for soft and stiff cases; the
colors used are the same as in Fig. 2.
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X0 ¼ −lr−1X þ ðεþ PÞeκ=2
�
1

2
ðr−1 − κ0=2ÞH0 þ

1

2

�
rω2e−κ þ 1

2
lðlþ 1Þ=r

�
H1 þ

1

2
ð3κ0=2 − r−1ÞK

− lðlþ 1Þðκ0=2Þr−2V − r−1½4πðεþ PÞeλ=2 þ ω2eλ=2−κ − r2ðr−2e−λ=2κ0=2Þ0�W
�
;

W0 ¼ −ðlþ 1Þr−1W þ reλ=2
�
ðγPÞ−1e−κ=2X − lðlþ 1Þr−2V þ 1

2
H0 þ K

�
;

K0 ¼ H0=rþ
1

2
lðlþ 1Þr−1H1 − ½ðlþ 1Þ=r − κ0=2�K − 8πðεþ PÞeλ=2r−1W;

H0
1 ¼ −r−1½lþ 1þ 2Meλ=rþ 4πr2eλðP − εÞ�H1 þ r−1eλ½H0 þ K − 16πðεþ PÞV�; ð1Þ

where γ is the adiabatic index,

γ ¼ εþ P
P

ΔP
Δε

����
s
;

where the variations are performed at a fixed entropy per
baryon, s.2

To deduce the unknown functions VðrÞ and H0ðrÞ
algebraic expressions can be used. We focus on the quad-
rupolar perturbations (l ¼ 2) because they are expected to
dominate the emission of GWs.
Outside the star, the perturbation equations reduce to the

Zerilli second-order differential equation [65–67]. The
numerical values of the complex quasinormal modes,
ω ¼ 2πνþ i=τ, are obtained by imposing, to the Zerilli
function, a purely outgoing wave behavior at infinity (for
details related to the numerical method, see, for example,
Ref. [68], and references therein).
We have calculated the quadrupolar f-mode for all stable

compact objects constructed using the thirty hybrid EoSs
presented in Sec. II. In Figs. 5 and 6, we present, as a function
of the mass, the frequency, νf, and the damping time of this
mode, respectively. We can see that, independently of the
hybridEoS, in the cases inwhich twinSSHSexist, theyhave a
monotonic increase with the central density and always have
larger frequencies compared to their hadronic siblings. In
particular, for the cases for which the discontinuity of the
energy density isΔε ¼ 3000 MeV=fm3, the frequency of the
fundamental mode might be larger than 3 kHz for stellar
configurations near the terminal one.On theother hand, as can
be seen fromFig. 6, when τf is analyzed, the situation has not
always amonotonic behaviorwith the central density, and it is
strongly model dependent; SSHSs have in general shorter
damping times, with τSSHSf ∼ 0.1–0.2 sec, compared to the
hadronic twin configuration, but for some particular cases,
Δε ¼ 1000 MeV=fm3, thereexist configurationswith largely
greater damping times. FIG. 6. Damping time of the quadrupolar fundamental f-mode,

τf , as a function of the mass. In black curves, the pure hadron
branches for soft and stiff cases; the colors used are the same
as in Fig. 2.

FIG. 5. Oscillation frequency of the quadrupolar fundamental
f-mode, νf as a function of the mass. In black curves, the pure
hadron branches for soft and stiff cases; the colors used are the
same as in Fig. 2.

2We are working with cold HSs, so this condition is auto-
matically satisfied.

IGNACIO F. RANEA-SANDOVAL et al. PHYS. REV. D 107, 123028 (2023)

123028-6



In Fig. 7, we present the perturbing functions for
four particular stellar configurations constructed using
the soft, Δϵ ¼ 3000 MeV=fm3, c2s ¼ 0.70 EoS—panels
(a) and (b)—and the stiff, Δϵ ¼ 100 MeV=fm3, c2s ¼
0.70 EoS—panels (c) and (d). These two EoSs were
selected since one, the soft one, presents a long extended
stability branch with low mass SSHS, and the other, the stiff
one, presents a short extended stability branch but a high
population of fully stable HSs before the maximum mass
configuration. For both EoS, we present the results for a
high mass HS at the beginning of the hybrid branch—
panels (a) and (b)—and the results for the terminal SSHS—
panels (b) and (d). As can be seen from this figure, the
perturbing functions of the f-mode of the SSHSs shown
present 1-node as described in Ref. [45]. Despite this, the
behavior of the perturbation functions can not be classified
as either the 1-node I or the 1-node II families of such work.

In panel (a), for the soft high mass SSHS case, only the H1

and X functions have a node. For the same EoS, the
situation changes for the low-mass terminal SSHS, panel
(b), where we can see that also theW function gains a node.
The case presented in panel (c) of Fig. 7 shows the stiff fully
stable HS case in which the f-mode eigenfunctions do not
have any nodes (see the bottom panels of Fig. 11 in
Ref. [45]). The situation changes for the stiff terminal mass
SSHS, as the X function gains a node.

IV. BREAKING OF UNIVERSAL RELATIONSHIPS
FOR THE FUNDAMENTAL MODE

As stated in Sec. I, several URs have been proposed for
different nonradial oscillation modes of compact objects.
Some of these relationships have been argued to be useful,
after a measurement of the frequency and damping time of

FIG. 7. Normalized eigenfunctions for different compact objects constructed using the soft, Δϵ ¼ 3000 MeV=fm3, c2s ¼ 0.70 EoS—
panels (a) and (b), and the stiff, Δϵ ¼ 100 MeV=fm3, c2s ¼ 0.70 EoS—panels (c) and (d). The gray vertical line represents the radial
coordinate in which the hadron-quark phase transition occurs. Left panels present high mass HSs, corresponding to configurations near
to the beginning of the hybrid branch; for the soft case—panel (a)—this configuration corresponds to a high mass SSHS, while for the
stiff case—panel (c)—this configuration corresponds to a fully stable HS, since for this EoS the hybrid branch begins before the
maximum mass configuration. The right panels present the terminal SSHS configurations for each EoS. For clarity in the node
identification, the ordinate axis is presented in an inverse hyperbolic sine scale, that is approximately linear near the origin and becomes
logarithmic for larger positive or negative values. The 1-node family of fundamental modes is seen to appear as some of the fluid and
metric eigenfunctions gain a node.
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a mode, to determine macroscopic quantities of the
vibrating stellar configuration. We focus our attention on
those related to the quadrupolar (l ¼ 2) f-mode,
ωf ¼ 2πνf þ i=τf, with νf the frequency and τf the
damping time of this particular mode.
The first UR for f-modes was proposed in Ref. [25],

where the idea of NS asteroseismology was coined. The
Andersson Kokkotas (AK) fits, which involve the mass and
radius of the objects, were revised with modern EoSs in the
works by Benhar, Ferrari and Gualtieri (BFG) [26] and by
Chirenti et al. (CSK) [28], among others. These URs read

νf ¼ aν þ bν

�
M
R3

�1
2

; ð2Þ

R4

M3τf
¼ aτ þ bτ

M
R
; ð3Þ

whereM and R are the mass and radius, the coefficients aν,
bν from those previous works are shown in Table II, and aτ
and bτ, in Table III of the Appendix. We present, in Fig. 8,
the results related to νf for the UR of Eq. (2). There it can
be noticed that the hadronic branches have the same
universal behavior studied in previous works but can be
also noticed a clear deviation from universality that the
presence of the extreme SSHSs produced. Despite the large
spread of the results, the loss of universality is more evident
for cases in which Δε≳ 2000 MeV=fm3. A similar sit-
uation is presented in Fig. 9 for the damping time; the
traditional stable branches follow the proposed URs, while
the extended stability branch clearly break these relation-
ships. Both in these figures and in all the following ones, it

is important to remind that, although we separate the mass-
radius curves in two segments, one black and one in color,
according to the absence (or presence) of quark matter in
the inner core, not all of the color configurations are
SSHSs. Only the color configurations after the maximum
mass one corresponds to SSHSs, and so, it is not expected
that the curves corresponding to smaller values of Δε—the
reddish and orange ones—that have most of its hybrid
(colored) branches populated by fully stable configurations,
deviate much from the URs.
More recently, URs including the mass and the moment

of inertia, I, have been found in the work by Lau et al.
(LLL) [29] (and revised, for example, in the work by CSK
[28]). The proposed URs read

Mνf ¼ aIν þ bIνηþ cIνη2; ð4Þ

I2

M5τf
¼ aIτ þ bIτη2; ð5Þ

where η ¼
ffiffiffiffiffiffiffiffiffiffiffi
M3=I

p
is the effective compactness.

Coefficients for the fits from these previous works are
presented in Table IV and V3 of the Appendix. In Fig. 10,
we present the URs of Refs. [28,29], that involve I and M,
for the frequency νf and show the clear deviation from
universality that the appearance of the SSHSs generate. As
this relationship has been shown to be tighter, deviation
from universality is less dramatic and only occurs for really
high values of Δε ≳ 1000 MeV=fm3. A similar situation is

FIG. 8. Breaking of URs for the frequency of the quadrupolar
fundamental f-mode presented in Refs. [25,26,28]. In black
curves, the pure hadron branches for soft and stiff cases; the colors
used are the same as in Fig. 2. We show the relationships
proposed in the literature and the clear deviation from universality
produced by SSHSs presence.

FIG. 9. Breaking of URs for the damping time of the quad-
rupolar fundamental f-mode presented in Refs. [25,26,28]. In
black curves, the pure hadron branches for soft and stiff cases; the
colors used are the same as in Fig. 2. We show the relationships
proposed in the literature and the clear deviation from universality
produced by SSHSs presence.

3In Refs. [28,29], note the factor 2π relating ωR and the
frequency νf that we use in this paper.
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presented in Fig. 11 for the damping time, but in this case,
universality is more notoriously lost, from values
of Δε≳ 500 MeV=fm3.
Finally, the last URs that we analyze are those proposed

by Sotani and Kumar (SK) that include M and Λ and are
proposed in Ref. [30],

Mνf ¼ aΛν þ bΛν xþ cΛν x2 þ dΛν x3 þ eΛν x4 þ fΛν x5; ð6Þ

M=τf ¼ 10f
Λ
τ ðxÞ; ð7Þ

where

fΛτ ðxÞ ¼ aΛτ þ bΛτ xþ cΛτ x2 þ dΛτ x3 þ eΛτ x4 þ fΛτ x5; ð8Þ

with x ¼ logðΛÞ. The coefficients for the best fits obtained
in Ref. [30] are presented in Table VI for Eq. (6), and in

FIG. 10. Breaking of URs that include the moment of inertia I
for the frequency of the quadrupolar fundamental f-mode
presented in Refs. [28,29]. In black curves, the pure hadron
branches for soft and stiff cases; the colors used are the same as in
Fig. 2. We show the relationships proposed in the literature in
colored wide curves and the clear deviation from universality
produced by SSHSs presence.

FIG. 11. Breaking of URs that include the moment of inertia I
for the damping time of the quadrupolar fundamental f-mode
presented in Refs. [28,29]. In black curves, the pure hadron
branches for soft and stiff cases; the colors used are the same as in
Fig. 2. We show the relationships proposed in the literature
and the clear deviation from universality produced by SSHSs
presence.

FIG. 12. Breaking of URs that include the dimensionless tidal
deformabilityΛ for the frequency of the quadrupolar fundamental
mode presented in Ref. [30]. In black curves, the pure hadron
branches for soft and stiff cases; the colors used are the same as in
Fig. 2. We show the relationship proposed in the literature and the
clear deviation from universality produced by SSHSs presence.

FIG. 13. Breaking of URs that include the dimensionless tidal
deformability Λ for the damping time of the quadrupolar
fundamental mode presented in Ref. [30]. In black curves, the
pure hadron branches for soft and stiff cases; the colors used are
the same as in Fig. 2. We show the relationship proposed in the
literature and the clear deviation from universality produced by
SSHSs presence.
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Table VII for Eq. (12). In Fig. 12, we show that the results
for νf corresponding to SSHSs, constructed with hybrid
EoS with Δε≳ 1000 MeV=fm3 do not present universal
behavior. As in the previous cases, the same occurs for
the damping time, but again the deviation is already
visible for smaller values of Δε. We present these results
in Fig. 13. The previously mentioned and anomalous Δε ¼
1000 MeV=fm3 case show, in this particular UR, a remark-
able deviation. In general, as in all the previous URs
figures, the effects of deviation are more notorious—and
began to occur for smaller Δε values—for the τf relation-
ships, than for the νf ones.

V. SUMMARY AND DISCUSSION

In this work, we have calculated the quadrupolar
fundamental f-mode of compact objects constructed with
hybrid EoSs that possess a sharp hadron-quark phase
transition. In order to obtain results of great generality
that can be interpreted to be model independent, we have
used a soft and a stiff generalized piecewise polytropic
hadronic EoS and a wide range of values for the three
parameters of the CSS parametrization for quark matter. We
analyzed the impact of assuming that the hadron-quark
conversion speed at the interface is slow compared to the
characteristic timescale of radial oscillation modes. This
situation dramatically alters the dynamic stability of com-
pact objects and gives rise to branches of SSHS.
We have tested all existing proposed URs for both the

frequency and the damping time of the f-mode and found
that SSHS systematically deviate from universality. Besides
this global behavior, we found that the deviations from URs
are more notorious for greater values of the hadron-quark
energy jump Δε; in particular, most of the deviations come
from the EoSs with Δε≳ 1000 MeV=fm3. Generally
speaking, the existence of long SSHS branches spanning
to low values of masses is key to the breaking of every UR.
This is related to the value of Δε as larger values of this
CSS parameter lead to longer SSHS branches of stellar
objects. This association between large values of Δε and
the length of the SSHS branch of objects has recently been
studied in [44].
Moreover, we have seen that the variation of the speed of

sound cs also induces noticeable changes, both in the macro-
scopic quantities—such as mass, radius, length of the SSHS
branch, tidal deformability, andmomentof inertia—and in the
QNM quantities; nevertheless, there exist a bigger depend-
ence of all these quantities to the energy jump Δε, and this
behavior also applies to the URs breaking. On the other hand,
the breaking is more noticeable for the τf URs than for the νf
cases; in particular for theΛ and I URs, and even for smaller
values of Δε ∼ 500 MeV=fm3.
With a broader perspective, within the SSHS hypothesis,

still to be elucidated, these results pose some concerns
related to the astronomical applicability of these known

asteroseismology tools. These results are in concordance
with those obtained for wI-modes in Ref. [35], where it has
been shown that for SSHS, both frequency and damping
time also shows a clear deviation from universal behavior.
Regarding these wI-modes, in Ref. [34], URs for wI-modes
that include SSHSs have been presented, and some of their
astronomical applications were shown. Although it would
represent a key development, the construction of such
new URs for the f mode is beyond the scope of the
present work.
It should be pointed out that SSHS also exist for the case

when the phase transition takes place in stellar configura-
tions of lower mass (see, e.g., Ref. [69]); however, in this
case, the deviation from the URs presented in this work is
much smaller. The strong deviations occur due to a
combination of transition pressure and energy density jump
that render possible the existence of extreme low-mass
objects in the stable extended branch. Although we might
expect some effect on the URs due to the inclusion of these
extreme objects, our objective here is to highlight that the
standard URs do not take into account the possibility of
SSHS, which may still exist.
The 1-node behavior of the f-mode shown in Ref. [45]

seems to be general in the case of the SSHS studied in this
work. Despite this fact, in these cases, the perturbation
functions can not be classified either as 1-node I or 1-node
II, according to the definition of the mentioned work.
Moreover, the relationship between this novel behavior of
the f-mode and the violation of URs that was pointed out in
Ref. [45] can not be confirmed nor discarded from our
results. In this sense, our results would suggest that while
the studied SSHSs present the 1-node behavior, only the
low-mass SSHS configurations belonging to long enough
extended stability branches contribute to the violation. A
deeper analysis that lies out of the scope of this work is
needed to draw more conclusive statements regarding
this fact.
As we had introduced, the f-modes modes might be

detected by the next-generation gravitational-wave
observatories, like the Einstein Telescope (see, for example,
Refs. [22,23] and references therein) or the Cosmic
Explorer (see, for example, Ref. [24], and references
therein). Moreover, a kilohertz-band gravitational-wave
detector, the Neutron star Extreme Matter Observatory
(NEMO) has been proposed [70]. If it is ever built, joint
observations of this detector and the LIGO-Virgo
Collaboration are expected to be key to shedding some
light on the nature of the matter in the inner core of
extremely compact stars and on the existence of the SSHS.
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APPENDIX: URs COEFFIENCENT VALUES

In this appendix, we present the coefficient values for all
of the URs from the literature that we study in this work. In
order to obtain these numerical values, the mass M and
radius R should be in km, the moment of inertia I, in km3,
the frequency νf in kHz and the damping time τf, in
seconds. We have convert the values for every coefficient in
order that they become consistent with our selection
of units.
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