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We carefully examine the shear and interface modes, which are excited due to the presence of crust
elasticity, in neutron stars with pasta structures, adopting the relativistic Cowling approximation. We find that
the shear modes are independent of the presence of the cylindrical-hole and spherical-hole nuclei at least up to
a few kilohertz, while the interface modes strongly depend on the presence of the cylindrical-hole and
spherical-hole nuclei. In addition, we find empirical relations for the interface mode frequencies multiplied by
the stellar mass and for the shear mode frequencies multiplied by the stellar radius. These relations are
expressed as a function of the stellar compactness almost independently of the stiffness in a higher-density
region inside the neutron star, once one selects the crust equation of state. Thus, if one would simultaneously
observe the shear and interface modes from a neutron star, one might extract the neutron star mass and radius
with the help of the constraint on the crust stiffness obtained from terrestrial experiments.
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I. INTRODUCTION

Neutron stars are one of the most suitable natural
laboratories for probing physics under extreme states.
This object is provided as a massive remnant remaining
after the supernova explosion, which happens at the last
moment of the star’s life [1]. It is considered that the density
inside the neutron stars easily exceeds the standard nuclear
density, while the gravitational and magnetic fields inside/
around the neutron stars become much stronger than those
observed in our Solar system. Thus, one could inversely see
the aspect of such extreme conditions by carefully observ-
ing the neutron stars and their phenomena.
One of the most important observational pieces of

evidence is the discovery of the 2M⊙ neutron stars [2–5].
It is theoretically known that the neutron star has a
maximum mass, which depends on the equation of state
(EOS) for neutron star matter. Owing to the discovery of
the 2M⊙ neutron stars, now one can exclude the EOSs,
with which the expected maximum mass does not reach
the observations. Meanwhile, through careful observa-
tions of the pulsar light curve, one may extract the neutron
star properties, especially the stellar compactness. This is
because the light emitted from the neutron star’s surface
can bend due to the strong gravitational field induced by
the neutron star, which is one of the relativistic effects
(e.g., Refs. [6–11] ). In fact, the observations with the
Neutron Star Interior Composition ExploreR (NICER),
which is a NASA telescope on the International Space

Station, give us the constraints on the neutron star mass
and radius, i.e., PSR J0030þ 0451 [12,13] and PSR
J0740þ 6620 [14,15]. Moreover, the observations of
gravitational waves from the binary neutron star merger,
GW170817 [16], enables us to constrain the tidal deform-
ability of the neutron stars, which leads to the constraint
on the 1.4M⊙ neutron star radius [17]. In addition to these
astronomical observations, the neutron star properties in a
lower-density region can be gradually constrained through
terrestrial nuclear experiments. It may be reasonable that
one discusses both constraints simultaneously in the
neutron star mass and radius plane [18–20].
The oscillation frequencies of the neutron stars must be

another important piece of information for extracting the
neutron star properties. Since the oscillation frequencies
strongly depend on the interior properties of the object,
one may be able to know the interior properties as an
inverse problem by observing the oscillation frequencies.
This technique is known as asteroseismology, which is
similar to seismology on Earth and helioseismology on
Sun. In practice, by identifying the quasiperiodic oscilla-
tions observed in the afterglow following the magnetar
giant flares [21,22] with the crustal torsional oscillations,
one can constrain the crust properties (e.g., Refs. [23–28] ).
This is a good example of how asteroseismology works
well. Furthermore, using the gravitational waves from
neutron stars, one could get information on neutron star
mass, radius, and EOS (e.g., Refs. [29–39] ).
In the observation of the neutron star oscillations,

several eigenfrequencies may be simultaneously excited,
where each eigenfrequency corresponds to a different*sotani@yukawa.kyoto-u.ac.jp
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physical process. By identifying an observed frequency
with a specific eigenfrequency one by one, one can see the
physics corresponding to the eigenmode. For example, if
one would observe the fundamental oscillations of a
neutron star, one may extract the average density of the
neutron star [29,30]. In a similar way, if one would detect
the stellar oscillations associated with the crust elasticity,
such as torsional, shear, or interface modes, one may
glimpse crust properties. Up to now, there are a few studies
about the nonradial oscillations of neutron stars with an
elastic crust, e.g., Refs. [36,40–42]. However, in these
previous studies, the shear and interface modes, which are
polar-type oscillations exited due to the crust elasticity,
have been discussed only on a specific stellar model, where
the systematical study has never been done. So, in this
study, we will systematically examine the shear and inter-
face modes, adopting the realistic neutron star model with
the crust elasticity, where not only the phase composed of
spherical nuclei but also the phase composed of nonspheri-
cal nuclei, the so-called pasta phase, are considered as crust
equilibrium models. As the density increases, the shape of
the nuclei changes from spherical (SP) to cylindrical (C),
slablike (S), cylindrical-hole (CH), and spherical-hole (SH)
before the matter becomes uniform (U).
This manuscript is organized as follows. In Sec. II, we

mention the equilibrium models together with the EOS
adopted in this study and also the shear modulus in the
pasta phase. In Sec. III, we briefly mention the perturbation
equations governing the nonradial oscillations in neutron
stars with elastic crust. Then, we discuss the eigenfrequen-
cies in Sec. IV and systematically examine their depend-
ence on the neutron star properties in Sec. V. Finally,
we conclude this study in Sec. VI. Unless otherwise
mentioned, we adopt geometric units in the following,
c ¼ G ¼ 1, where c andG denote the speed of light and the
gravitational constant, respectively.

II. EOS AND EQUILIBRIUM MODELS

In this study, we simply consider a nonrotating, strain-
free, and spherically symmetric neutron star as an equi-
librium model. The metric describing such an object is
given by

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where Φ and Λ are the metric functions depending on
only r. In particular, Λ is directly connected to the enclosed
gravitational mass, m, inside the radial position, r, through
e−2Λ ¼ 1–2m=r. The stellar models are constructed by
integrating the Tolman-Oppenheimer-Volkoff equation
together with an appropriate EOS for neutron star matter.
Since the Fermi temperature of a neutron star is generally
much higher than the real temperature of a neutron star, one
can neglect the thermal effect on the neutron star structure.
But, one may have to carefully handle the surface envelope,

where the density becomes low enough for appearing the
thermal effect [43]. Nevertheless, in this study, we simply
consider the neutron star models, assuming that the surface
density is 106 g=cm3 and the density of the surface of the
outer crust is 1010 g=cm3. In addition, in this study, we will
consider the shear oscillations, which can be excited due to
the nonzero crustal elasticity. Since the shear oscillations are
a kind of polar-type oscillations, we have to consider not
only the crustal region but also the core region, even though
the shear oscillations are confined only inside the crust
region. This is a completely different situation from the study
of the torsional oscillations (axial-type oscillations), which
can be discussed only inside the neutron star crust, e.g.,
Refs. [25,26], separately from the neutron star core.
The bulk energy per nucleon for the zero temperature

uniform nuclear matter expected for any EOS models is
expressed as a function of the baryon number density, nb,
and an asymmetry parameter, α,

E
A
¼ wsðnbÞ þ α2SðnbÞ þOðα3Þ; ð2Þ

where nb and α are given by nb ¼ nn þ np and
α ¼ ðnn − npÞ=nb with the neutron number density, nn,
and the proton number density, np. In this expression,
ws corresponds to the energy per nucleon of symmetric
nuclear matter (α ¼ 0), while S denotes the density-
dependent symmetry energy. In addition, ws and S can
be expanded in the vicinity of the saturation density,
n0, for the symmetric nuclear matter as a function of
u ¼ ðnb − n0Þ=ð3n0Þ:

wsðnbÞ ¼ w0 þ
K0

2
u2 þOðu3Þ; ð3Þ

SðnbÞ ¼ S0 þ LuþOðu2Þ: ð4Þ

The coefficients in these expansions are the nuclear
saturation parameters, which characterize each EOS.
That is, each EOS has its own set of nuclear saturation
parameters. In this study, to examine the dependence on the
symmetry energy, we adopt the phenomenological EOSs
constructed by Oyamatsu and Iida [44,45] (hereafter
referred to as OI-EOSs). The OI-EOSs are specially
constructed for the given values of K0 and L so that the
other saturation parameters are tuned in such a way as to
reproduce the empirical nuclear data for stable nuclei,
adopting a simplified version of the extended Thomas-
Fermi theory [44,45]. This is because n0, w0, and S0 are
well-constrained from the terrestrial experiments, while
the other parameters, i.e., K0 and L (and the additional
saturation parameters associated with the higher terms), are
relatively more difficult to be constrained experimentally.
Nevertheless, the constraint on K0 is gradually becoming
more severe, i.e.,K0 ¼ 240� 20 MeV [46], while L is still
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less constrained [18,47]. So, in this study, we especially
adopt the EOS models with K0 ¼ 230 MeV. In Table I,
we list the EOS parameters adopted in this study, where
we also show the transition density from a specific pasta
phase to the next pasta phase. We note that the crust
thickness strongly depends on L and stellar compactness,
M=R, [45,48], i.e., the thickness decreases as L and M=R
increase, and the pasta structures almost disappear, using
the EOS model with L≳ 100 MeV [45].
The shear modulus, μ, is an additional integrant to

discuss the shear oscillations. The shear modulus, μsp,
in the body-centered cubic (bcc) lattice composed of the
spherical nuclei has been formulated as a function of the ion
number density, ni, the charge number of the ion, Z, and a
Wigner-Seitz cell radius, a, i.e., 4πa3=3 ¼ 1=ni [49],

μsp ¼ 0.1194
niðZeÞ2

a
: ð5Þ

This expression of the shear modulus should be modified a
little due to the phonon contribution [50], the electron
screening effect [51], the polycrystalline effect [52], and
the effect of finite-sizes of atomic nuclei [53], but in this
study, we simply adopt the standard expression given as
Eq. (5). On the other hand, the shear modulus, μcy, in the
phase composed of the cylindrical nuclei is expressed as a
function of the Coulomb energy per volume of a Wigner-
Seitz cell, ECoul, and the volume fraction of cylindrical
nuclei, w2, as

μcy ¼
2

3
ECoul × 102.1ðw2−0.3Þ; ð6Þ

and the shear modulus, μsl, in the phase composed of the
slablike nuclei can be considered as

μsl ¼ 0 ð7Þ
against the linear perturbations, i.e., the deformation
energy due to the distortion becomes of higher order
contribution [54]. We note that the elastic properties of
phases with nonspherical nuclei, i.e., pasta phase, in a
neutron star have been also discussed in Refs. [55,56],
which suggested the possibility that the tiny but nonzero
elastic constant may appear in the polycrystalline lasagna
(slablike nuclei). By taking into account this feature, the
results shown in this study may be changed. Additionally,

the shear modulus, μch (μsh), in the phase composed of the
cylindrical-hole (spherical-hole) nuclei can be derived in
the same way as μcy (μsp) because the liquid crystalline
structure of cylindrical-hole (spherical-hole) nuclei is the
same as that of cylindrical (spherical) nuclei (see Ref. [27]
for details). In Figs. 1 and 2, as an example, we show the
radial profile of energy density and shear modulus for the
stellar model with 1.4M⊙ and 12.4 km constructed using
the OI-EOS with K0 ¼ 230 and L ¼ 73.4 MeV.
Finally, we should mention the effect of superfluidity,

although we simply neglect such an effect in this study. In
general, the enthalpy density effectively decreases because
of the fact that the superfluid neutron does not contribute to
the oscillations, which leads to an increase in the frequen-
cies (at least for the torsional oscillations) [25,57]. We will
see how the superfluidity can change the frequencies of the
shear and interface modes in the future.

TABLE I. The EOS parameters adopted in this study. SP-C, C-S, S-CH, CH-SH, and SH-U denote the transition densities for the
OI-EOSs characterized by K0 and L. In addition, for the 1.4M⊙ neutron star model constructed with each EOS, the ratio of the thickness
of the elastic region composed of spherical and cylindrical nuclei, ΔRSpCy, and that composed of cylindrical-hole and spherical-hole
nuclei, ΔRCHSH, to the stellar radius, R, is also listed.

K0 (MeV) L (MeV) SP-C (fm−3) C-S (fm−3) S-CH (fm−3) CH-SH (fm−3) SH-U (fm−3) ΔRSpCy=R ΔRCHSH=R

230 42.6 0.06238 0.07671 0.08411 0.08604 0.08637 0.0007731 0.05406
230 73.4 0.06421 0.07099 0.07284 0.07344 0.07345 0.0003773 0.06740
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FIG. 1. Radial profile of energy density for the neutron star
model with 1.4M⊙ and 12.4 km, using the EOS with
L ¼ 73.4 MeV. In the top panel, the vertical dashed lines from
left to right denote the boundary between the core and crust, the
boundary between the inner and outer crust, and the boundary
between the crust and envelope.
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III. PERTURBATION EQUATIONS

In this study, we simply adopt the relativistic Cowling
approximation, i.e., the metric is fixed during the fluid
oscillations. Even with this approximation, one can quali-
tatively discuss the behavior of eigenfrequencies [58].
The Lagrangian displacement, ξi, for the polar-type oscil-
lations is generally given with the spherical harmonics,
Ylmðθ;ϕÞ, by

ξi ¼
�
rW; V

∂

∂θ
; V

1

sin2θ
∂

∂ϕ

�
Ylmðθ;ϕÞeiσt; ð8Þ

whereW and V are the functions of r and σ is the eigenvalue,
while the pressure perturbation, δp, is expressed with the
energy density, ϵ, and pressure, p, for the equilibrium
models as

δp ¼ ðϵþ pÞHðrÞYlmðθ;ϕÞeiσt: ð9Þ

We note that the polar-type oscillations can be discussed
completely apart from the axial-type oscillations, because of

the nature of the spherically symmetric background. In this
study, we also consider the adiabatic oscillations, i.e.,

Δp ¼ pΓ
ϵþ p

Δϵ; ð10Þ

where Γ is the adiabatic index and ΔQ denotes the
Lagrangian perturbation of a quantityQ, which is associated
with the Eulerian perturbation, δQ, through

ΔQ ¼ δQþ ξr
dQ
dr

: ð11Þ

So, one can derive the relation between δp and δϵ as

δp ¼ c2sδϵþ pΓξrAr; ð12Þ

where cs is the sound velocity and Ar is the relativistic
Schwarzschild discriminant given by

c2s ≡
�
∂p
∂ϵ

�
s
¼ Δp

Δϵ
¼ pΓ

ϵþ p
; ð13Þ

Ar ¼
1

ϵþ p
dϵ
dr

−
1

pΓ
dp
dr

: ð14Þ

On the other hand, the shear strain tensor, Σμν, is
described through the relation of

LuΣμν ¼
2

3
Σμν∇αuα þ σμν; ð15Þ

where Lu is the Lie derivative along the direction of fluid
four-velocity, uμ, and σμν is the rate of shear tenor [59],
which are respectively expressed as

LuΣμν ¼ uα∇αΣμν þ Σαν∇μuα þ Σμα∇νuα; ð16Þ

σμν ¼
1

2
ðPα

ν∇αuμ þ Pα
μ∇αuνÞ −

1

3
Pμν∇αuα: ð17Þ

Here, Pμν is the projection tensor given by

Pμν ¼ gμν þ uμuν: ð18Þ

Using these quantities, the contribution from the shear
strain in perturbation of the energy-momentum tensor
is given by

δTðsÞ
μν ¼ −2μδΣμν; ð19Þ

assuming a Hookean relationship [60], where μ is the shear
modulus discussed in the previous section.
With the relativistic Cowling approximation, the

perturbation equations are derived from the linearized
energy-momentum conservation laws, i.e., ∇μδTμν ¼ 0.
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FIG. 2. The effective shear modulus for various phases in
neutron star curst. The bottom panel is an enlarged view of the
shaded region shown in the top panel, where Sp, Cy, CH, and SH
denote the phases composed of spherical, cylindrical, cylindrical-
hole, and spherical-hole nuclei, respectively. We note that the
shear modulus in the phase of slablike nuclei becomes zero
against the linear response [54]. For reference, we show the
boundary between the core and crust and the boundary between
the crust and envelope in the top panel, and the boundary between
the core and SH, the boundary between CH and the phase of
slablike nuclei, and the boundary between the phase of slablike
nuclei and Cy in the bottom panel with the dashed lines.
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The concrete system of equation is shown in Appendix A
for the elastic region and in Appendix B for the fluid region
(μ ¼ 0), while the boundary and junction conditions, which
should be imposed, are shown in Appendix C [41]. In
practice, the perturbation equations are integrated outward
from the center and inward from the stellar surface with the
appropriate boundary conditions, where the corresponding
solutions are named as ðyin1 ; yin2 Þ and ðyout1 ; yout2 Þ, respec-
tively. Then, the eigenfrequencies are determined via the
condition of

Δ≡ yin1 y
out
2 − yout1 yin2 ¼ 0 ð20Þ

at some position inside the star, e.g., the boundary at the
crust and envelope. In this study, we especially focus on the
l ¼ 2 modes.

IV. EIGENFREQUENCIES

In order to understand the dependence of eigenfrequen-
cies excited in the neutron stars on the presence of
elasticity, first we consider (i) the neutron star composed
of fully zero-elastic “fluid”; (ii) the stellar model with
elastic phase composed of spherical nuclei, “Sp”; (iii) the
stellar model with elastic phase composed of spherical and
cylindrical nuclei, “Sp+Cy“; and (iv) the “realistic” stellar
model with elastic phase composed of spherical, cylindri-
cal, cylindrical-hole, and spherical-hole nuclei as shown in
Fig. 2. That is, we focus on a specific neutron star model
with 1.4M⊙ and 12.4 km constructed with the EOS with
L ¼ 73.4 MeV, but the shear moduli in some elastic phases
are artificially put to zero except for the realistic stellar
model. In Fig. 3, one can see how the eigenfrequencies
depend on the elastic phases, where the absolute value of
Δ at the boundary between the crust and envelope is shown
as a function of the frequency, i.e., the eigenfrequencies

correspond to the frequency where absðΔÞ ¼ 0. The
resultant eigenfrequencies excited in the stellar models
shown in Fig. 3 are listed in Table II.
In the left panel of Fig. 3, we show the results for the

“fluid” model with the solid line and for the “Sp” model
with the dotted line. From this figure, one can observe the
excitation of the shear (si-) and interface (ii-) modes
together with the fundamental (f-) and pressure (pi-)
modes in the “Sp” model (see also the right panel), where
f- and p1-mode frequencies excited in the “Sp” model are
almost the same as those excited in the “fluid” model. That
is, the presence of the elasticity hardly affects the acoustic
oscillations. In the middle panel, we show the results for the
“Sp” model with the dotted line and for the “Spþ Cy”
model with the solid line. From this result, one can observe
that the si-mode frequencies in the “Spþ Cy” model
become smaller than those in the “Sp” model. In the right
panel, we show an enlarged view of the middle panel,
where we also show the results for the “realistic” model
(SpCyþ CHSH). From the right panel, one can observe
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FIG. 3. The absolute values of Δ given by Eq. (20) are shown as a function of the frequencies. The eigenfrequencies correspond to the
specific frequencies, with which the absolute value of Δ at some position inside the star becomes zero. In the left pane, we show the
results for the stellar model composed of only the fluid with the solid line and that including a nonzero elastic region composed of
spherical nuclei with the dotted line. In the middle panel, we show the results for the stellar model including a nonzero elastic region
composed of spherical nuclei with the dotted line and that including a nonzero elastic region composed of spherical and cylindrical
nuclei with the solid line. The right panel is just an enlarged view of the middle panel, where we also show the result for the “realistic”
stellar model with the dashed line. The neutron star model is the same as in Fig. 2.

TABLE II. Eigenfrequencies excited in the stellar models
shown in Fig. 3 in the unit of kHz.

Fluid Sp SpCy SpCy+CHSH

f 2.237 2.237 2.237 2.237
p1 6.075 6.074 6.074 6.074
i1 � � � 0.039 0.036 0.036
i2 � � � 0.030 0.030 0.030
i3 � � � � � � � � � 0.027
s1 � � � 0.730 0.668 0.668
s2 � � � 1.201 1.111 1.111
s3 � � � 1.552 1.477 1.477
s4 � � � 1.877 1.752 1.752
s5 � � � 2.316 2.139 2.139
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that the i2-mode frequency in the “Spþ Cy” model is the
same as that in the “Sp” model, while the i1-mode
frequency strongly depends on the presence of the phase
composed of cylindrical nuclei. In addition, for the “real-
istic” model one can observe an additional mode, i.e., the
i3-mode, together with the i1- and i2-modes excited in the
“Spþ Cy” model. In particular, except for the excitation of
the i3-mode, we find that the eigenfrequencies excited in
the “realistic”model are the same as those in the “Spþ Cy”
model at least in the frequency domain shown in Fig. 3.
This may be because the phase composed of cylindrical-
hole and spherical-hole nuclei is quite narrow and the effect
can not appear in the frequency domain considered here,
as discussed below.
The ii-modes are the eigenmodes excited due to the

presence of the interface between the phases with zero and
nonzero elasticity [42]. In this paper, we simply assign the
ii-modes in order from the highest to the lowest frequen-
cies. That is, we have only two i-modes in the “Spþ Cy”
model as shown in the right panel of Fig. 3, because
there are two interfaces, i.e., the interface between the
envelope and crust and the interface between the phases
composed of cylindrical and slablike nuclei. In Fig. 4
we show the amplitude of eigenfunctions, W and V,
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for i2-mode (i1-mode) in the top (bottom) panel excited
in the “realistic” model, where the vertical dotted lines
denote the boundary between the envelope and crust
(Sp=envelope), the boundary between the phases of
cylindrical and slablike nuclei (Slab=Cy), the boundary
between the phases of slablike and cylindrical-hole nuclei
(CH=Slab), and the boundary between the phase of
spherical-hole nuclei and core (core=SH). From this figure,
one can see that the i2-mode is associated with the interface
between the envelope and crust, while the i1-mode is with
the interface between the phases composed of cylindrical
and slablike nuclei. This may be a reason why the i2-mode
frequency in the “Sp” model is the same as that in the
“Spþ Cy” model, as shown in the right panel of Fig. 3.
Anyway, in the “realistic”model, one can see the tiny effect
of the nonzero elasticity in the phase composed of
cylindrical-hole and spherical-hole nuclei in the amplitude

of eigenfunctions, even for the i1- and i2-modes (e.g., see
the inset in the top panel of Fig. 4). Moreover, in Fig. 5, we
show the amplitude of the i3-mode in the top panel, while
an enlarged view of the top panel is shown in the bottom
panel. One can observe that the amplitude of the i3-mode
becomes dominant inside the region composed of the
cylindrical-hole and spherical-hole nuclei. We also find
that only three interface modes are excited in the “realistic”
model, even though four interfaces exist in the “realistic”
model, i.e., Sp=envelope, Slab=Cy, CH=Slab, and
core=SH. This may come from the fact that the region
composed of cylindrical-hole and spherical-hole nuclei is
too narrow. In fact, if the elastic region becomes too narrow,
the number of excited interface modes can become less
than the number of interfaces, as shown in Appendix D.
Furthermore, if one considers the neutron star model
using the EOS with L ¼ 42.6 MeV, where the ratio of the
thickness of the elastic region composed of cylindrical-
hole and spherical-hole nuclei to the stellar radius is
relatively larger than that considered in Fig. 3 as shown in
Table I, one can observe the i4-mode together with the
i3-mode by introducing the elastic region composed of
cylindrical-hole and spherical-hole nuclei (see Sec. V for
details).
The si-modes are also the eigenmodes excited due to the

presence of elasticity. Unlike the ii-modes, the si-modes
are basically confined inside the elastic region. In Fig. 6,
we show the amplitude of the eigenfunction, W and V, for
the s1-mode (s2-mode) in the top (bottom) panel. From this
figure, one can see that W is continuous even at the
boundaries between the anelastic and elastic regions owing
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to the junction condition (see in Appendix C), while V is
discontinuous at the boundaries. In addition, one can
observe that the nodal number in the eigenfunction of
the si-modes is equivalent to the subscript i. This behavior
is easily observed in the amplitude of V, as shown in Fig. 7,
where we show the amplitude of V for the si-modes with
i ¼ 1–5. So, the wavelength of the si-mode, λi, is roughly
estimated as

λi ≃ 2ΔR=i; ð21Þ

where ΔR denotes the thickness of the elastic region, in
which the shear modes are confined. Then, the correspond-
ing frequencies are also estimated as

fi ≈ vs=λi; ð22Þ

where vs ≈ ðμ=ϵÞ1=2 denotes the shear velocity [36].
With this simple estimation, one may understand why
the si-mode frequencies excited in the “realistic” model
are the same as those in the “Spþ Cy”model as discussed
in Fig. 3. That is, the si-mode frequencies excited in
the phase of cylindrical-hole and spherical-hole nuclei
must be much higher (maybe more than 100 times higher)
than the si-mode frequencies excited in the phase of
spherical and cylindrical nuclei, because ΔR for the phase
of cylindrical-hole and spherical-hole nuclei, ΔRCHSH,
is much thinner than ΔR for the phase of spherical
and cylindrical nuclei, ΔRSpCy, as shown in Table I,
i.e., ΔRSpCy=ΔRCHSH ¼ 179.

V. DEPENDENCE ON THE NEUTRON
STAR PROPERTIES

First, in Fig. 8, we show the eigenfrequencies of the i-,
s-, and f-modes as a function of the stellar compactness for
the neutron star models constructed using the EOSs with
L ¼ 42.6 MeV and 73.4 MeV. From this figure, one can
observe that the i-mode frequencies weakly depend on the
stellar compactness, while the s-mode frequencies mono-
tonically increase with the stellar compactness. This is
because the ratio of the thickness of the elastic region to
the stellar radius decreases as the stellar compactness
increases [48], which leads to the increase of the s-mode
frequencies as discussed with Eqs. (21) and (22).
In addition, as mentioned before, since the thickness of
the elastic region composed of the cylindrical-hole and
spherical-hole nuclei for the neutron star model constructed
with L ¼ 42.6 MeV is relatively larger than that with
L ¼ 73.4 MeV, one can observe the i4-mode together
with i1-, i2-, and i3-modes in the stellar model with
L ¼ 42.6 MeV.
Next, we examine how the frequencies of the i- and

s-modes depend on the neutron star properties. In particu-
lar, since the nuclear properties in the core region (or in a
higher-density region) are quite uncertain, we examine the

frequencies of the i- and s-modes by changing the stiffness
of the EOS in a higher-density region. For this purpose, in
addition to the original OI-EOSs listed in Table I, we
simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter
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EOS characterized by α for a higher density region of
ε ≥ εt, i.e.,

p ¼ αðε − εtÞ þ pt; ð23Þ

where pt is given from the EOS for a lower-density region
with ε ¼ εt and α is associated with the sound velocity, cs,
as c2s ¼ α [61]. In this study, we especially adopt that ϵt is
equivalent to twice the saturation density, focusing on the
value of α in the range of 1=3 ≤ α ≤ 1.
In practice, if one calculates the frequencies of i- and

s-mode with this type of EOS, the frequencies depend on

the value of α. However, we find that the i-mode
frequencies multiplied by the stellar mass, fM, can be
expressed as a function of the stellar compactness almost
independently of the value of α (or the stiffness in a
higher-density region inside the neutron stars), only
depending on the stiffness of the curst EOS, as shown
in Fig. 9. In this figure, the solid lines are the fitting lines
given by the functional form as

fM ðkHz=M⊙Þ ¼ a0 þ a1ðx=0.1Þ þ a2ðx=0.1Þ2; ð24Þ

where x denotes the stellar compactness,M=R, and a0, a1,
and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies

multiplied by the stellar radius, fR, can be expressed as a
function of the stellar compactness almost independently of
the value of α, which depends only on the crust stiffness, as
shown in Fig. 10. In this figure, the solid lines are fitting
lines given by the functional form as

fR ðkHz kmÞ ¼ b0 þ b1ðx=0.1Þ; ð25Þ

where x denotes the stellar compactness, M=R, and b0 and
b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies.
Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with
the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface
and shear oscillations, which are excited due to the
presence of the elasticity, by considering the neutron star
models with the pasta structures, i.e., cylindrical, slablike,
cylindrical-hole, and spherical-hole nuclei at the basis of
the crust. We find that the shear mode frequencies excited
in a realistic stellar model are basically the same as those in
the neutron star model composed of only spherical and
cylindrical nuclei, if we focus only on the frequency range
up to a few kHz. This is because the shear modes are only
excited inside the elastic region, which leads to the feature
that the frequencies are inversely proportional to the
thickness of the elastic region, and the thickness of the
elastic region composed of cylindrical-hole and spherical-
hole nuclei is extremely thin. On the other hand, the
interface mode frequencies strongly depend on the elastic
region composed of cylindrical-hole and spherical-hole
nuclei. We find that the number of the interface mode
frequencies depends on the thickness of the elastic region
composed of cylindrical-hole and spherical-hole nuclei (or
the value of the slop parameter L). In addition, we find the
empirical relations for the interface mode frequencies
multiplied by the stellar mass and for the shear mode
frequencies multiplied by the stellar radius as a function of
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the stellar compactness, which is almost independent of
the stiffness in a higher-density region inside the neutron
stars, once one selects the crust equation of state. Via our
empirical relations, if one would simultaneously observe
the interface and shear mode oscillations from a neutron
star, one might extract the stellar mass and radius with the
help of the constraint on the crust stiffness obtained from
the terrestrial experiments.
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APPENDIX A: PERTURBATION EQUATIONS
INSIDE THE ELASTIC REGION

The perturbation equations are derived from the linear-
ized energy-momentum conservation laws:

r
dz1
dr

¼ −
�
1þ 2α2

α3
þ U2

�
z1 þ

1

α3
z2 þ

α2
α3

lðlþ 1Þz3;

ðA1Þ

r
dz2
dr

¼
�
ð−3−U2þU1−e2Λc1σ̄2ÞU3þ

4α1
α3

ð3α2þ2α1Þ
�
z1

þ
�
U4−

4α1
α3

�
z2þ

�
U3−2α1

�
1þ2α2

α3

��
lðlþ1Þz3

þe2Λlðlþ1Þz4; ðA2Þ

r
dz3
dr

¼ −e2Λz1 þ
1

α1
e2Λz4; ðA3Þ

r
dz4
dr

¼
�
U3 − 6Γ

α1
α3

�
z1 −

α2
α3

z2

−
�
c1σ̄2U3 þ 2α1 −

2α1
α3

ðα2 þ α3Þlðlþ 1Þ
�
z3

− ð3þ U2 −U4Þz4; ðA4Þ

where the variables, zi for i ¼ 1–4, are defined as

z1 ¼ W; ðA5Þ

z2 ¼ 2α1e−Λ
d
dr

ðreΛWÞ þ
�
Γ −

2α1
3

�

×

�
1

r2
e−Λ

d
dr

ðr3eΛWÞ − lðlþ 1ÞV
�
; ðA6Þ

z3 ¼ V; ðA7Þ

z4 ¼ α1

�
e−2Λr

dV
dr

þW

�
: ðA8Þ

We note that the variables z2 and z4 are proportional to the
radial and transverse tractions [62]. The various quantities
in the coefficients are defined as

α1 ¼
μ

p
; ðA9Þ

α2 ¼ Γ −
2α1
3

; ðA10Þ

α3 ¼ Γþ 4α1
3

; ðA11Þ

U1 ¼
�
dΦ
dr

�
−1 d

dr

�
r
dΦ
dr

�
; ðA12Þ

U2 ¼ r
dΛ
dr

; ðA13Þ

U3 ¼
�
1þ ϵ

p

�
r
dΦ
dr

; ðA14Þ

U4 ¼
rϵ
p
dΦ
dr

; ðA15Þ

c1 ¼
M
R3

re−2Φ
�
dΦ
dr

�
−1
; ðA16Þ

and M, R, and σ̄ are the stellar mass, radius, and
σ̄ ≡ σðR3=MÞ1=2.

APPENDIX B: PERTURBATION EQUATIONS
IN THE FLUID REGION

One can derive the perturbation equations in the fluid
region, where μ ¼ 0,

r
dy1
dr

¼−
�
3−

U3

Γ
þU2

�
y1−

�
U3

Γ
−
lðlþ1Þ
c1σ̄2

�
y2; ðB1Þ

r
dy2
dr

¼ ðe2Λc1σ̄2 þ rArÞy1 − ðU1 þ rArÞy2; ðB2Þ

where the variables, y1 and y2, are defined as

y1 ¼ W; ðB3Þ

y2 ¼
�
r
dΦ
dr

�
−1
H ¼ c1σ̄2V: ðB4Þ
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APPENDIX C: BOUNDARY AND JUNCTION
CONDITIONS

The boundary condition at the stellar surface is that the
Lagrangian perturbation of pressure should be zero, i.e.,
Δp ¼ 0, which is expressed as

y1 − y2 ¼ 0; ðC1Þ

while the boundary condition at the center is the regularity
condition, such as

c1σ̄2y1 − ly2 ¼ 0: ðC2Þ

On the other hand, the junction conditions at the interface
are the continuity of the radial displacement, the radial and
transverse tractions, and the Lagrangian perturbation of
pressure. In practice, the junction conditions at the interface
between the elastic and fluid regions [40,41] are given as

z1 ¼ y1; ðC3Þ

z2 ¼ U3ðy1 − y2Þ; ðC4Þ

z4 ¼ 0: ðC5Þ

In a similar way, the junction conditions at the interface,
where the nonzero shear modulus becomes discontinuity,
e.g., the interface between the phases composed of spheri-
cal and cylindrical nuclei, are the continuity of the variables
zi for i ¼ 1–4. Finally, one can set that y1 ¼ 1 at the stellar
surface (or at the stellar center), as a normalization
condition in the linear perturbation system.

APPENDIX D: DEPENDENCE ON THE
THICKNESS OF ELASTIC REGION

In this appendix we show how the frequencies of the
interface modes depend on the thickness of an elastic

region. To see this behavior, we especially consider the
“Spþ Cy” model as discussed in Sec. IV by artificially
increasing the density between the phase composed of
spherical nuclei and envelope from 1012 g=cm3 up to
1014 g=cm3. As this transition density (ρSp=En) increases,
the thickness of the elastic region, ΔR, decreases from
ΔR ¼ 0.503 to 0.075 km. In Fig. 11, the i-mode frequen-
cies are shown as a function of ΔR, where the i1- and
i2-modes are the same meaning as discussed in Sec. IV.
From this figure, one can observe that the frequency of the
i1-mode is almost independent of ΔR (or ρSp=En) with a
lower value of ΔR, while that of the i2-mode strongly
depends on ΔR (or ρSp=En). That is, as ΔR decreases (or as
ρSp=En increases), the frequency of the i2-mode decreases
and eventually disappears (or at least too small to be
determined numerically). That is, even if two interfaces
exist, only one interface mode can be excited in the stellar
model with a much narrower elastic region.
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