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We consider a dense neutrino gas in the “fast-flavor limit” (vanishing neutrino masses). For the first time,
we identify exact solutions of the nonlinear wave equation in the form of solitons. They can propagate with
both subluminal or superluminal speed, the latter not violating causality. The soliton with infinite speed is a
homogeneous solution and coincides with the usual fast-flavor pendulum except that it swings only once
instead of being periodic. The subluminal soliton in the static limit corresponds to a one-swing “spatial
pendulum.” A necessary condition for such solutions to exist is a “crossed” neutrino angle distribution.
Based on the Nyquist criterion, we derive a new sufficient condition without solving the dispersion relation.
The solitons are very fragile; they are as unstable as the homogeneous neutrino gas alone. Moreover, in the
presence of matter, only the solution survives that is homogeneous in a frame comoving with the matter
current. Generally, the matter effect cannot be eliminated by transformations in flavor space, but has real
physical impact.
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I. INTRODUCTION

The daring idea to explain the missing solar neutrino flux
by flavor evolution over astronomical distances [1] was
eventually correct, but initially met fierce resistance from
the belief that neutrinos should be massless. Today,
determining the exact neutrino mass and mixing parameters
has become a vast international effort of dedicated experi-
ments and theoretical studies [2]. Ironically, recent theo-
retical studies of flavor evolution in neutrino-dense
environments focus on massless neutrinos, the so-called
fast-flavor limit [3–9]. In this terminology, the usual mass-
driven flavor conversion is called “slow.” It remains to be
seen if fast-flavor conversion (FFC) indeed strongly
impacts core-collapse supernovae or binary neutron-star
mergers and concomitant nucleosynthesis [10–31].
Meanwhile, collective flavor waves in dense neutrino
environments are a fascinating theoretical topic in their
own right [32–61]. New and surprising insights seem to
emerge whenever one takes a fresh look.
One topic of considerable recent activity is the very

question if the usual mean-field equations truly capture the
flavor evolution of a dense neutrino gas, or conversely, if

quantum entanglement of the many “flavor spins” is a
dominant effect [62–73]. An early discussion [74,75] was
apparently resolved in favor of the mean-field approach
[76–78]. Whatever the final outcome of this debate, we here
work on the purely refractive level of the mean-field
approach, without heed for possible quantum limitations,
but also without heed for the effect of collisions.
Arguably, FFC is the purest form of collective flavor

evolution in that it does not require masses and mixing, and
yet, in the mean-field approach, a dense neutrino gas
supports a rich class of fast modes. In a recent paper
[79] we have shown a certain reciprocity between slow and
fast modes so that much of our present discussion can be
ported to the slow case as well. If fast-flavor waves actually
occur in nature and how exactly they would be excited are
actively studied questions. However, in line with our
previous paper, we do not worry about phenomenological
issues and continue to look at the subject from a math-
ematical perspective.
Our main result is to identify a new class of solutions of

the flavor wave equation in the form of solitons. These are
exact nonlinear solutions that can exist with both sub-
luminal or superluminal speed. Limiting cases are the
traditional homogeneous flavor pendulum [37,50] and its
static counterpart, a “spatial pendulum” [37]. Actually, the
notion of a (temporal) soliton in this context was introduced
in the parallel development concerning the Bardeen-
Cooper-Schrieffer (BCS) Hamiltonian in condensed-matter
physics [80–86].
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Another exact solution of the nonlinear flavor wave
equation in the form of a uniformly moving flavor
wave was recently discovered by Duan, Martin, and
Omanakuttan [87]. We believe that this solution corre-
sponds to the homogeneous pure-precession solution found
in Ref. [88] as seen from a boosted frame in the same way
as our superluminal soliton corresponds to the homo-
geneous flavor pendulum as seen from a boosted frame.
We assume that the reader is generally familiar with the

subject of neutrino fast flavor oscillations and therefore
limit our brief introduction to the essentials needed to
establish the basic equations and notation.
The chosen environment is a homogeneous neutrino gas

with an axisymmetric angle distribution. The coordinate
along the symmetry direction is r and the zenith-angle
distribution is expressed through the velocity v ¼ cos θ of a
given neutrino mode along r. In the fast-flavor limit,
neutrino energy does not appear and the mean-field
equations of motion (EOMs) are the same for neutrinos
and antineutrinos. All relevant information is encoded in
the lepton-number density matrix in flavor space
Dvðr; tÞ ¼ ϱvðr; tÞ − ϱ̄vðr; tÞ, where D is a mnemonic for
“difference.”We represent this matrix in the usual way by a
Bloch vector Dvðr; tÞ through Dv − 1

2
TrDv ¼ 1

2
Dv · σ with

σ a vector of Pauli matrices. After phase-space integration,
we finally seek solutions of the EOM

ð∂t þ v∂rÞDv ¼ μ

Z þ1

−1
dv0ð1 − vv0ÞDv0 ×Dv; ð1Þ

where a dependence on ðr; tÞ is implied for Dv. The scale
μ ¼ ffiffiffi

2
p

GFðnν þ nν̄Þ is a measure of the neutrino-neutrino
refractive effect. The equivalent EOM in matrix form
is ið∂t þ v∂rÞDv ¼ μ

R
dv0ð1 − vv0Þ½Dv0 ;Dv�.

This equation is more intuitive in linearized form where
we assume that the off-diagonal elements of the density
matrix (the x and y components of the Bloch vectors) are
small. The z-component (the weak-interaction direction in
flavor space) is represented by what has been called the
ELN (for electron-lepton number carried by neutrinos)
angle distribution or angular spectrum

Gv ¼ Dz
v ¼

Z
p2dpdϕ
ð2πÞ3

ðfνe − fν̄eÞ − ðfνμ − fν̄μÞ
nν þ nν̄

; ð2Þ

where the occupation numbers depend on p expressed in
polar coordinates through p ¼ jpj and v ¼ cos θ and ϕ. We
have assumed that our two flavors are e and μ.
We denote the small off-diagonal element in the form

Dxy
v ¼ 1

2
ðDx

v − iDy
vÞ ¼ GvDv so that the complex number

Dv is a measure of flavor coherence and we assume
jDvj ≪ 1. The linear EOM is consequently [33]

ið∂t þ v∂rÞDv ¼ μ

Z þ1

−1
dv0Gv0 ð1 − vv0ÞðDv −Dv0 Þ: ð3Þ

This EOM is similar to the Vlasov equation of plasma
physics.
In the absence of neutrino-neutrino refraction (μ ¼ 0),

the Vlasov operator on the left-hand side simply causes a
drift of any perturbationDv (or wave packet) that may have
been set up. The eigenfunctions are proportional to δ
functions. For nonvanishing μ, these so-called Case-Van
Kampen modes [89] (or noncollective modes [39]) persist,
although with modified singular eigenfunctions. Their
dispersion relation is ω=k ¼ v ≤ 1, i.e., their phase velocity
is subluminal, explaining their role in Landau damping of
perturbations [90].
In addition, new collective modes appear that do not

exist without μ and, together with the noncollective modes,
form a complete set. These collective modes can be stable
or unstable, the latter being the modes that would engender
FFC. Stable collective modes have a superluminal phase
velocity. It was Sawyer who first recognized that a non-
trivial angle distribution Gv can support unstable modes
without neutrino masses [3,4]. It was quickly understood
that a “crossing” of Gv is needed for an instability [33] and
recently Morinaga proved that this is indeed a necessary
and sufficient condition [45].
In the following we identify exact solutions of the

nonlinear EOM that are connected to unstable solutions
of the linear EOMs. In Sec. II we first recall the homo-
geneous pendulum solution and extend it to the nonperiodic
limit of a soliton. As a next step, we transform it to a
superluminally moving solution. In Sec. III, instead we
consider a “spatial pendulum” and the nonperiodic limit of
a static soliton. This in turn can be transformed to a
subluminally moving solution. In Sec. IV we turn to the
stability question of these solutions. In Sec. V we show that
in the presence of homogeneous matter, only the temporal
soliton survives that is homogeneous in the Lorentz frame
where the matter current is absent. A summary and
conclusions are provided in Sec. VI. Some technical points
are relegated to appendices. In particular, in Appendix Awe
derive the conditions on Gv required for a homogeneous
instability (a pendulum solution) without solving the
dispersion relation.

II. TEMPORAL SOLITONS

Despite the nonlinear nature of flavor evolution in a dense
neutrino gas, under special conditions the evolution of the
flavor composition may be surprisingly regular. In homo-
geneous settings, this behavior is equivalent to a pendular
oscillation for single-crossed spectra [37,50]; the regularity
of the solution is here connected with the existence of non-
trivial integrals of motion [79]. However, the introduction of
inhomogeneous disturbances disrupts this regular behavior.
Nevertheless, we demonstrate that there exist exact spatio-
temporal solutions in which the flavor evolution is regular,
taking the form of flavor solitons that propagate at a
constant speed.
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In this section, we first review the properties of the
homogeneous evolution for single-crossed spectra and
the analogy with pendular motion. We then show that
the existence of homogeneous solutions implies, by
Lorentz invariance, a special class of flavor solitons
propagating with superluminal speed.

A. Homogeneous equations of motion

Our starting point is the EOM (1) in a homogeneous and
axisymmetric neutrino gas. We write it in the more compact
form

ð∂t þ v∂rÞDv ¼ ðD0 − vD1Þ ×Dv; ð4Þ

where here and henceforth we absorb the interaction energy
μ in the definition of dimensionless space and time
coordinates. Moreover, following the previous literature
[37,79,80,91], we define the moments of the distribution
through

Dn ¼
X
v

vnDv: ð5Þ

While this notation is slightly ambiguous because, for
example, D0 is the zeroth moment and not the mode Dv
with v ¼ 0, in practice there will be no confusion.
Here and henceforth we usually consider a discrete set of

velocities fvg instead of a continuous distribution. This
approach simplifies our discussion without changing the
overall conclusions. The “thermodynamic limit” of a
continuous distribution involves some subtleties that we
have discussed in our earlier study [79].
We assume that the system is initially homogeneous,

including possible perturbations, and we are only seeking
homogeneous solutions. With these assumptions, we first
consider the EOMs

_Dv ¼ ðD0 − vD1Þ ×Dv: ð6Þ

We assume the initial conditions are chosen with all Dv
nearly aligned to the flavor direction, taken as the z axis.
Summing on both sides over

P
v and

P
v v reveals that

_D0 ¼ 0 and _D1 ¼ ðD0 þ D2Þ ×D1. Therefore, the Bloch
vector of total lepton numberD0 is conserved, whereas that
of lepton-number flux D1 follows a precession equation,
implying that its length is conserved.

B. Pendulum solutions

In the unstable case, it isD1ðtÞ that moves in analogy to a
mechanical gyroscopic pendulum [37,50,79]. The func-
tions DvðtÞ are then strongly correlated. Actually all of
them are linear superpositions of precisely three indepen-
dent functions, which can be taken as D0ðtÞ ¼ constant,
D1ðtÞ, and a third function JðtÞ that plays the role of the
total angular momentum in the pendulum analogy.

Alternatively, the three vector functions can be taken as
three “carrier modes” [32] or “auxiliary spins” [81], which
are special cases of the “Lax vectors” of this system as we
have recently explained [79].
In polar coordinates, the motion of D1ðtÞ is fully

represented by its zenith angle ϑðtÞ and azimuth angle
φðtÞ in the x-y plane.1 So eventually the dynamics of the
full system DvðtÞ is encapsulated in two scalar functions
ϑðtÞ and φðtÞ, which in turn are universal and depend on
only two parameters; the natural frequency and spin of the
equivalent pendulum. The explicit analytic expressions for
these functions are derived in Appendix B.
For a given initial configuration Dv aligned with the

z-direction and with the spectrum Gv ¼ Dz
vð0Þ, the first

step toward a pendulum solution is stability analysis. In a
normal-mode expansion, one seeks solutions that initially
behave as e−iΩt. The eigenfrequency Ω must obey the
dispersion relation obtained by linearization [33,50]

X
v

v2Gv

vG1 −G0 þ Ω
¼ 1; ð7Þ

where the nth moments of the spectrum are

Gn ¼
X
v

Gvvn: ð8Þ

Recall that D0 and jD1j are conserved. An alternative
form is

X
v

vGv

vG1 −G0 þ Ω
¼ 0; ð9Þ

which is equivalent to the presence of a Lax vector with
vanishing z-component [79].
An instability requires a spectral crossing, i.e., Gv must

change sign for some −1 < vc < þ1. At present, we are
only examining spectra that have a single crossing. This
necessary condition would also be sufficient if we were to
include inhomogeneous normal modes, i.e., those with a
nonvanishing wave number [45]. For the homogeneous
case, a sufficient condition based on the Nyquist criterion is
(Appendix A)

G1

G0vc
< 0 and

Z
dv

vGv

G0ðv − vcÞ
< 0: ð10Þ

This criterion is directly related to the Penrose criterion for
the instability of a single-humped electron distribution in a
collisionless plasma [92] (see, e.g., Ref. [93]); the math-
ematical connection between collisionless plasma and fast
flavor conversions in the linear regime was already noted in

1For polar coordinates in the space of Bloch vectors, we use ϑ
and φ, whereas in coordinate space, we use θ and ϕ so that
v ¼ cos θ.
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Ref. [79]. Therefore, one can assess the presence of an
instability without solving the dispersion relation.
A system fDv; vg consisting of a set of Bloch vectors on

a discrete set of velocities can be degenerate in that for
given initial conditions, the solution fills a smaller-
dimensional phase space. For our standard case of all
Dv initially aligned and a single instability, one can
construct a system with the same D1ðtÞ consisting of
any number of beams N ≥ 3 that could be smaller or
larger than the original system. Starting from a supernova-
inspired continuous (or finely binned quasicontinuous)
spectrum Gv, we can construct an infinity of three-beam
representations to achieve the same D1ðtÞ, or directly a
pendulum representation. This enormous degeneracy is
attributed to the large number of invariants as explained,
e.g., in our previous paper [79]. In Appendix C we show
explicitly how to construct a three-beam representation
from a given Gv and conversely, how to construct a larger-
dimensional system starting from a three-beam one or
directly from a chosen pendulum.
As a matter of convenience, we will frequently use a few

explicit three-beam examples with properties defined in
Table I. For three beams with velocities vi and lengths Gvi ,
the dispersion relation is quadratic in Ω and thus easily
solved. It yields the real and imaginary components of the
eigenfrequency Ω −D0 ¼ ωP þ iΓ

ωP ¼
J
2
; ð11aÞ

Γ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G0G1v1v2v3 − J2

q
; ð11bÞ

where we introduce the total angular momentum of the
pendulum J ¼ G2 −G1

P
i vi. Notice that initially, when

all Dv are aligned, J ¼ S, the pendulum spin. Following
Eq. (B21), the natural pendulum frequency and spin
parameter are

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
P þ Γ2

q
and σ ¼ ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P þ Γ2

p : ð12Þ

In terms of the three-beam parameters, they are

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0G1v1v2v3

p
; ð13aÞ

σ ¼ G2 −G1ðv1 þ v2 þ v3Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0G1v1v2v3

p : ð13bÞ

We show the numerical values for our examples in Table I.
Figure 1 shows the trajectories for these examples in

terms of the vertical component Dz
1; the in-plane compo-

nent jDxy
1 j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDx

1Þ2 þ ðDy
1Þ2

p
; and the azimuth precession

velocity _φ, expressing D1 in polar coordinates as
D1 ¼ D1ðsin ϑ cosφ; sinϑ sinφ; cos ϑÞ. If initially all Dv
were perfectly aligned, the system would be stuck in an
unstable fixed point, so we have provided a small disturb-
ance as a seed. The component Dz

1 shows a periodic
behavior, describing the periodic swing of the pendulum
from the upright position back to it. Likewise, the trans-
verse component (the modulus of the x-y component) is
periodic, where the long waiting periods of Dz

1 are
accompanied by exponential growth of Dxy

1 , or exponential
decline on the approach back to the upward position.
On the other hand, the pendulum trajectory is not

periodic in general, as one can see in Fig. 2, where we

FIG. 1. Components of D1ðtÞ for our two benchmark cases of
three-beam systems defined in Table I.

TABLE I. Three-mode reference cases.

Case Spectrum Moments Instability Pendulum

v1 v2 v3 G0 ωP λ

Gv1 Gv2 Gv3 G1 Γ σ

A −1 þ0.5 þ1 −0.4 −0.5 þ0.6
−1 −0.4 þ1 þ1.8 þ0.332 −0.833

B −1 þ0.5 þ1 −0.9 −0.563 þ0.9
−1.125 −0.9 þ1.125 þ1.8 þ0.703 −0.625
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show the projection of the pendulum trajectory in the
Dx

1–D
y
1 plane for two periods of D

z
1. The motion is actually

conditionally periodic; ϑðtÞ and φðtÞ are separately peri-
odic, however with noncommensurate periods unless the
seed was fine-tuned. We still refer to the pendular motion as
periodic, with the implication that it is only periodic in the
zenith and azimuth angle separately. The azimuth motion
φðtÞ does not vanish even in the upright position except for
vanishing spin (plane pendulum). The motion φðtÞ is never
retrograde (Appendix B), the overall direction being
determined by the initial spin orientation.

C. Homogeneous temporal soliton

The full motion of the pendulum then consists of a
periodic swing of the zenith angle. The separation between
two full swings, the waiting period, is determined by the
amplitude of the initial small perturbation. If the latter is
sufficiently small, we may regard the swings as nearly
separate motions. We can then construct an exact solution
in which the perturbation is infinitely small at infinitely
remote times, such that the motion is effectively a single
pendulum swing.
To acquaint the reader with our later terminology, we call

this motion a “temporal soliton,” although this is not a
soliton in the usual sense—it does not involve any spatial
variation. Our definition matches the one used in Ref. [85]
to describe the time evolution of the order parameter in a
BCS superconductor, a system which we have shown to
follow the same equation as the fast-flavor conversions in a
homogeneous setting [79].
A more fitting notion might be that of an “instanton”; a

singular event on the infinite time axis. However, we avoid
this terminology because its quantum-field theory connota-
tions could be misleading. The temporal soliton, a pendulum
that swings only once, approaches its classical unstable fixed
point at t → �∞, without ever reaching it, of course.
We construct the soliton analytically in Appendix B,

based on the pendulum equations of motion, and fixing
time t ¼ 0 when the zenith angle is at its lowest point.

While this approach avoids the need for a seed (an initial
perturbation), instead one needs to fix the time when this
event happens. Besides the choice of this instant, the
pendulum motion ϑðtÞ and φðtÞ is fixed by only two
parameters, the natural pendulum frequency λ (in units of μ,
the neutrino-neutrino interaction energy, that we usually
absorb in the definition of time) and the spin expressed as
S ¼ 2λσ. The spin parameter σ is defined such that
0 ≤ σ2 ≤ 1 for an instability to exist. For larger σ2, the
pendulum is stuck in the “sleeping top” upright position.
Expressing D1 in terms of polar coordinates as discussed

earlier, and using cðtÞ¼ cosϑðtÞ, the soliton is (AppendixB)

φðtÞ ¼ σλtþ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

σ
tanh ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
λtÞ

�
;

cðtÞ ¼ −1þ 2½σ2 þ ð1 − σ2Þtanh2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
λtÞ�: ð14Þ

We may regard the soliton as the elementary object which is
periodically repeated in the solutions of Figs. 1 and 2. For a
soliton, we show in Figs. 3 and 4 the componentsDz

1, jDxy
1 j,

and _φ, aswell as the trajectories projected in theDx
1-D

y
1 plane.

In summary, for a spectrum Gv with an instability in the
linearized system, there exists a temporal soliton. Except
for the instant when it happens, its properties are all fixed
by the linear eigenfrequency Ω ¼ ωP þ iΓ.

D. Multiple solitons

The above discussion relates only to angular distribu-
tions with a single unstable mode. If more than one unstable
mode exists, that can happen for a multicrossed spectrum,
each instability defines a different soliton, that can happen
at an arbitrary instant. If they happen at very different times,
they are essentially two different solitons. If they happen
more closely to each other, the common solution includes
complicated interference effects in the time period of
overlap. Explicit examples have been worked out in the
BCS context in Ref. [85].
Such multiple soliton solutions, based on multiple

instabilities, are to be distinguished from the periodic
pendulum motion. The latter is not a sequence of events
but rather a single periodic solution.

E. Uniformly moving soliton

An exact solution that depends both on space and time
can now be found by identifying solutions that are
homogeneous in a boosted frame, which we identify as
primed. These solutions therefore obey ∂Dv=∂r0 ¼ 0. We
call V the speed of the frame in which the solution is
homogeneous, and γ ¼ ð1 − V2Þ−1=2 is the corresponding
Lorentz factor. Notice that the original neutrino gas, having
a nonisotropic angle distribution, does not define a natural
laboratory frame. In any moving frame, it is once more a

FIG. 2. Pendulum trajectories in the Dx
1–D

y
1 plane for the two

benchmark cases defined in Table I. Shown are two zenith-angle
periods. The azimuth-angle period is generally not commensu-
rate, causing the trajectory to fill the plane after many zenith
periods.
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homogeneous and nonnisotropic gas, but with a trans-
formed single-crossed spectrum Gv.
However, instead of transforming Gv explicitly, the

EOM can be directly mapped to the EOM of the original
system, where the soliton was homogeneous. The simplest
way to do so is to use the covariant form of the EOMs

kμ∂μDv ¼ Dμ × Dvkμ; ð15Þ

with k0 ¼ 1 and k1 ¼ v in the laboratory frame and
Dμ ¼ P

v Dvkμ. In the primed (moving) frame, k0 ¼ ω0 ¼
γð1 − vVÞ and k1 ¼ k0 ¼ γðv − VÞ. Since ∂Dv=∂r0 ¼ 0, the
EOMs in the primed frame read

∂Dv

∂t0
¼

�
D0

0 −
k0

ω0D
0
1

�
× Dv; ð16Þ

after dividing everywhere by ω0.
We further redefine v0 ¼ k0=ω0 ¼ ðv − VÞ=ð1 − vVÞ as

the velocity in the new frame. The range −1 ≤ v ≤ 1 of
course maps on −1 ≤ v0 ≤ 1 as behooves a Lorentz
transformation, and conversely v ¼ ðv0 þ VÞ=ð1þ v0VÞ.
Moreover, we redefine the Bloch vectors in the new frame

Sv0 ¼ ½ω0Dv�v0¼k0=ω0 ¼ ½γð1 − vVÞDv�v¼ v0þV
1þv0V

ð17Þ

so as to match the definitions of the moments
D0

n ¼
P

ξ0 ξ
0nSξ0 . Thus, we finally reach the form

∂Sv0

∂t0
¼ ðD0

0 − v0D0
1Þ × Sv0 ; ð18Þ

which is identical to Eq. (6).
We can now perform a linear stability analysis around the

asymptotic state with polarization vectors closely aligned to
the z-axis. Since the EOMs are identical to Eq. (6), we may
simply perform the appropriate replacements in Eq. (9).
Assuming a solution behaving as e−iΩ

0t0 , we obtain

X
v

ð1 − vVÞðv − VÞGv

vG1 −G0 þ γð1 − vVÞΩ0 ¼ 0; ð19Þ

where Gv is the original spectrum and G0 and G1 its
moments in the original frame. Whenever this dispersion
relation admits a complex solution for some jVj < 1, the
solution in the corresponding reference frame will behave
as the homogeneous swing of the pendulum, and, in the
limit of infinitely small initial perturbation, approaches the
temporal soliton. In this comoving frame, the vector D0

1ðt0Þ
in all space performs a single pendulum swing.
In the laboratory frame, the solution depends then only

on the combination t0 ¼ γðt − VrÞ, or, equivalently on the
combination r − t=V. We recognize this as a uniformly
moving wavefront with the velocity vsoliton ¼ 1=V. Since
jVj < 1, it follows that the corresponding soliton is super-
luminal. The homogeneous temporal soliton is obtained
from here in the limit V ¼ 0, which formally corresponds
to a soliton moving with infinite speed.
Figure 5 shows the spatial structure of D1 and D0 for the

superluminal soliton for both cases A and B defined in
Table I for the example V ¼ 0.35, corresponding to
vsoliton ¼ V−1 ¼ 2.857. Notice that, while D0

0 and the
pendulum length jD0

1j are spatially and temporally constant,

FIG. 3. Components of D1ðtÞ for a temporal soliton for our
benchmark cases with parameters given in Table I. The Dz

1

component stays flat for t → �∞, whereas the transverse
components continue to shrink exponentially for t → �∞ to-
wards the unstable fixed point.

FIG. 4. Soliton trajectories in the Dx
1-D

y
1 plane for the two

benchmark cases defined in Table I.
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the lab-frame moments D0 ¼ γðD0
0 þ VD0

1Þ and D1 ¼
γðD0

1 þ VD0
0Þ depend both on space and time, and their

length is not constant.
At each instant, the flavor composition is close to the

asymptotic one far from the soliton, while it develops off-
diagonal coherence in the soliton region which moves with
superluminal speed vsoliton. The spatial width of the soliton
is directly connected with the duration of a swing of the
flavor pendulum in the comoving frame in which it is
homogeneous. Assuming this duration to be of the order of
T 0, the lab-frame spatial width is of the order of
Δ ¼ T 0=γV ¼ T 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2soliton − 1
p

, and therefore becomes arbi-
trarily large as vsoliton → ∞. This of course corresponds to
our previous statement that the limit of vsoliton → ∞ leads to
the homogeneous, temporal soliton.

F. Violation of causality?

The superluminal motion raises of course questions on
the validity of this solution, in view of causality require-
ments. However, causality is broken already by the initial
conditions which spawn this solution. This is most easily
seen in the limit V ¼ 0, which corresponds to the homo-
geneous temporal soliton: the homogeneity of the initial
flavor configuration over arbitrarily large distances requires
a correlation which cannot have been set up by a causal
physical process.
In the same way, the superluminal soliton corresponding

to a nonzero V does not involve any superluminal propa-
gation of information. Indeed, the information on the
soliton existence at a certain position r does not originate

from the motion of the soliton at previous times, but is
rather already contained in the initial conditions in the past
light cone of the point r. Therefore, if we chose an initial
condition at t ¼ 0 which is identical to the soliton for r > 0
and with an arbitrary shape for r < 0, at a later time t we
would still see the exact soliton solution for any r > t, even
though the soliton itself was valid only over half the space
at the initial time.
This situation is analogous to what happens in dielectric

materialswith a superluminal group velocity, where an initial
wave packet can propagate with a superluminal group
velocity. This is examined in detail, e.g., in Ref. [94], where
it is shown explicitly that this superluminal propagation does
not correspond to a real transmission of information.

G. Dispersion relation

Anecessary condition for a neutrinogas to support a soliton
is for the spectrum Gv to be crossed, and this property is
invariant against Lorentz boosts along the symmetry axis. On
the other hand, the sufficient condition stated in Eq. (10) must
be evaluated in the new frame andmay not have a solution. In
other words, not every chosen V provides a soliton, it
may rather provide a stable “sleeping top” configuration.
The boosted conditions for an instability are provided in
Appendix A for the case of a continuous spectrum Gv.
For our discrete three-mode examples, one may simply

evaluate the dispersion relation of Eq. (19) directly. In
analogy to the lab-frame case, it is a quadratic equation for
Ω0. For our example A, one finds a nonvanishing imaginary
part for −0.099 < V < 0.40, for B the range is
−0.43 < V < 0.43. Even though the two extreme neutrino
beams have v ¼ �1, the allowed range for V does not
exhaust this full range.
Conversely, only a certain range of speeds vsoliton ¼ V−1

is supported. We display ImΩ0 as a function of vsoliton for
both of our reference cases in Fig. 6. The soliton is
supported only for sufficiently large speeds, corresponding
to the range in which ImðΩ0Þ ≠ 0.
Finally, the eigenfrequency of the linear system corre-

sponding to the soliton is Ω ¼ γΩ0 in the laboratory frame,
and the corresponding wave vector is K ¼ γΩ0V, implying

Ω
K

¼ 1

V
with − 1 <

1

V
< 1: ð20Þ

Therefore, the superluminal soliton corresponds to linear
eigenmodes with complex Ω and complex K such that

Im

�
Ω
K

�
¼ 0 and

Ω
K

> 1 or
Ω
K

< −1: ð21Þ

In other words, starting from the inhomogeneous dispersion
relation [33], one needs to find solutions ðΩ; KÞ that have the
same complex phase and their ratio corresponds to a super-
luminal phase velocity.

FIG. 5. Structure of the superluminal soliton as a function of the
comoving coordinate r − vsolitont for a superluminal soliton
velocity vsoliton ¼ V−1 ¼ 2.857, for the two reference cases
defined in Table I. Here V ¼ 0.35 is the speed of the frame in
which the soliton is homogeneous. In the original frame, D0 and
jD1j are no longer conserved.
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This is different from the usual normal-mode analysis
where one looks for a complex Ω, assuming a perturbation
with a real wave number. Instead, we are here looking for a
complex Ω as a function of the velocity V, a real parameter.

III. SPATIAL SOLITONS

The original flavor pendulum (of slow oscillations), like
so many other neutrino oscillation phenomena, was
actually meant to represent a spatial phenomenon, an
evolution along a direction in space [95–97]. On the other
hand, our earlier fast temporal instability and concomitant
soliton was a purely temporal event until it emerged, under
a boost, as a superluminal form of nonlinear wave propa-
gation. Conversely, one can contemplate a purely spatial
fast-flavor pendulum, an instability along a direction in
space [37]. We here show that in similar manner such a
“spatial instability” can be seen as a static flavor soliton,
now using this terminology in a more proper sense. Later
we continue with the now-familiar boost that turns up yet
new nonlinear solutions, the class of subluminally moving
solitons.

A. Static soliton

To get started, we search for exact solutions of the static
EOMs

v
∂Dv

∂r
¼ ðD0 − vD1Þ ×Dv: ð22Þ

By dividing everywhere by v, this becomes

∂Dv

∂r
¼ ðv−1D0 −D1Þ ×Dv: ð23Þ

We now introduce the modified definitions

Mv ¼ Dvv and Mn ¼
X
v

Mvv−n; ð24Þ

so that M0 ¼ D1 and M1 ¼ D0. The EOMs then take the
form

∂Mv

∂r
¼ ðv−1M1 −M0Þ ×Mv; ð25Þ

which, except for a change in sign, has the same form as
Eq. (6), an observation first made by Johns et al. [37].
Compared to the temporal case, in which the variable v runs
in the compact interval from −1 to 1, in this EOM the role
of the variable v is played by v−1, which lies in the
noncompact interval jv−1j > 1. However, this modification
does not lead to significant differences in the physics and
the nature of the solutions.
Assuming that asymptotically the polarization vectors

are all aligned with the z-axis, just as in the temporal case
we can determine the instabilities of the system using the
linear dispersion relation. Assuming solutions behaving in
space as eiKr, we can deduce the dispersion relation directly
by the analogy with Eq. (9). After the appropriate sub-
stitutions are made, we findX

v

vGv

G0 − vG1 þ Kv
¼ 0: ð26Þ

As we show in Appendix A, if a system admits an unstable
frequency from Eq. (9), it also admits an unstable wave
vector in Eq. (26).
Linear stability analysis in the spatial case deserves some

clarification. In the temporal case, causality automatically
determines that frequencies with a positive imaginary part
lead to a temporal instability. In the spatial case, causality
does not provide such a guide, and solutions with a
complex K may lead both to a growth of the solution or
to a damping. Which of these conditions is realized from a
given boundary conditions set at an initial time depends on
the dispersion relation at Ω ≠ 0 [98]. However, here we are
not interested in the topic of whether growth can arise from
a given boundary condition. Rather, we simply show the
existence of exact soliton solutions of Eq. (22) if the
dispersion relation provides a complex solution for K.
Therefore, we do not pursue the topic of boundary con-
ditions for a neutrino gas any further.
Since Eq. (22) has been mapped to the same form as

Eq. (6), we conclude that the solutions we found in the
previous sections are also solutions of Eq. (22),with a change
of interpretation. The temporal solution, with a single swing
of the pendulum D1, corresponds here to a static, localized
region in which the “spatial” flavor pendulum M1 ¼ D0

swings away from the z axis.We dub this a spatial soliton and
corresponds to the intuitive picture of some sort of localized
wave packet. In this region, the neutrino flavor densitymatrix

FIG. 6. Imaginary part of the comoving-frame frequency Ω0 as
a function of the soliton speed vsoliton ¼ V−1 for the two bench-
mark cases defined in Table I.
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has large off-diagonal coherence, whereas outside, it returns
to the asymptotic flavor composition. Notice that here it is
M0 ¼ D1 that remains constant throughout space.
We stress that the solution is static even though indi-

vidual neutrinos are still moving with their own velocities v
in the direction of the symmetry axis. Neutrinos passing
through the soliton region develop off-diagonal coherence
under the influence of the mean field of all the other
neutrinos in the same region, and return to their original
flavor structure after they pass through the soliton.
In the temporal case, a given initial condition generally

leads to a periodic swing of the polar angle of the
pendulum, as we discussed above. In the spatial case,
the analogous structure is a periodic lattice of solitons; we
remind the reader that we use periodicity here with the
caveat that only the polar angle is periodic, while the
azimuthal angle periodicity is not in general commensurate
with the polar angle one.
The soliton existence relies on a delicate balance

between the advection of neutrinos and their non-linear
interaction. Furthermore, as we have seen, a diagnostic of
the static soliton existence is the presence of a complex K
solution to the dispersion relation. Indeed, the static soliton
is the nonlinear evolution of the eigenmodes with Ω ¼ 0
and complex K in the dispersion relation, in the same sense
that the temporal soliton is the nonlinear evolution of the
eigenmodes with complex Ω and K ¼ 0.

B. Uniformly moving soliton

In similar manner to the temporal case, we can identify a
new class of solutions which correspond to the static soliton
in a boosted frame. Our procedure mirrors the one to obtain
the superluminal solitons in Sec. II E. We start from the
covariant form of the EOMs, Eq. (15), and write them
explicitly in the frame in which the solution is static

v0
∂Dv

∂r0
¼ ðD0

0 − v0D0
1Þ ×Dv: ð27Þ

As we did in Sec. II E, we redefine the Bloch vectors in the
new frame with Eq. (17), obtaining

v0
∂Sv0

∂r0
¼ ðD0

0 − v0D0
1Þ × Sv0 : ð28Þ

This is now identical to Eq. (22), with the variable v0 still
defined in the range between −1 and 1. Therefore, it admits
solutions which behave as a static soliton in the boosted
reference frame. Such solutions depend only on the variable
r0 ¼ γðr − VtÞ. Therefore, in the laboratory frame, they are
solutions depending both on space and time, corresponding
to a soliton moving with the subluminal velocity V.
Linearization around the asymptotic state with all vectors

closely aligned with the z axis provides the dispersion
relation for K0, the wave vector in the soliton rest frame,

assuming a solution ∝ eiK
0r0 . After replacing the correct

mapping in Eq. (9) we find

X
v

ð1 − vVÞðv − VÞGv

Dz
0 − vDz

1 þ γðv − VÞK0 ¼ 0: ð29Þ

Whenever this equation admits complex solutions for some
value of V, then a uniformly moving soliton exists as a
solution of the general EOMs. Notice that the wave number
as seen from the laboratory frame is K ¼ γK0. Furthermore,
the frequency in the laboratory frame is Ω ¼ γK0V.
Therefore, in analogy to Eq. (21) we may characterize
the moving solitons as the nonlinear evolution of excita-
tions with complex K and

Im

�
Ω
K

�
¼ 0 and − 1 <

Ω
K

< 1: ð30Þ

So once more, these are solutions of the dispersion relation
with equal complex phase for Ω and K, this time with
subluminal phase velocity that here plays the role of the
soliton speed.

IV. SOLITON STABILITY

The soliton solutions are exact, in the sense that if the
initial conditions are precisely set, their evolution follows a
uniform motion in the laboratory frame. A natural question
is then whether they are also stable, namely if they will
survive tiny deviations from the exact initial conditions.
The instability of the single-soliton solution can be

grasped by noting that the asymptotic state of the soliton
is already by itself unstable. For a subluminal soliton, we
can always choose a frame in which the solution is a static
soliton; in this frame, the asymptotic state is certainly
unstable against homogeneous perturbations, as we show in
Appendix A. Thus, the soliton carries within itself the seed
of its own destruction, since its own existence requires an
instability of its own asymptotic state.
A full stability analysis of the soliton is, however,

difficult to carry out analytically, since the unperturbed
state, consisting in a single soliton, is not translationally
invariant. Therefore, even in the linearized regime, elemen-
tary perturbations cannot be looked for in the form of plane
waves, making impossible a spatial Fourier analysis in this
context. For this reason, we limit ourselves to a numerical
study of the soliton stability.
Our procedure is therefore to solve the full spatiotem-

poral EOMs (4), assuming as an initial condition the
structure of a soliton moving with velocity V ¼ 0.1,
evaluated at time t ¼ 0. Since the initial condition is set
on a numerical grid, the discreteness of the grid acts as a
natural source of perturbation for the subsequent evolution,
and therefore we do not insert any additional seed.
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Figure 7 shows the evolution of the soliton for the three-
beam cases A and B introduced in Table I. In both cases, up
to about t ≃ 3, the soliton moves indeed with a uniform
speed V ¼ 0.1. We emphasize that this is not a byproduct
of our approach, since the only information introduced in
the solution of the equations is the initial snapshot of the
soliton at t ¼ 0. The uniform motion comes here because
the analytical soliton profile derived in Secs. II and III is an
exact solution to the EOMs.
At t≳ 3, we see the soliton breaking down at multiple

points. Because of the coarseness of the numerical grid, the
tail of the soliton acts as a small perturbation to the
homogeneous background, which therefore develops per-
turbation growth; and in turn the center of the soliton,
which is also not precisely reproduced by the numerical
grid, also rapidly break under perturbation growth. Notice
that how coarse the numerical grid is plays little role in how
fast the soliton breaks down; the timescale is set mostly by
the unstable frequencies of the soliton itself. These are
entirely determined by linear stability analysis around the
soliton, which however we do not attempt as mentioned
earlier. The step of the numerical grid acts here mostly as an
effective amplitude of the initial perturbation, and in view
of the exponential perturbation growth, it affects the time-
scale for soliton destruction only logarithmically.

V. EFFECT OF MATTER

In our entire discussion we have ignored the presence of
matter that would produce an external refractive effect on
neutrinos. There exists a certain perception that the matter

effect can be removed by coordinate transformations in
flavor or coordinate space, but we will presently see that
this perception is deceiving.
We assume that the matter background is homogeneous

and that in the laboratory frame, there is a current in the
same direction as the symmetry axis of the neutrino gas. In
a supernova, the laboratory frame would be the one of a
distant observer (Euler coordinates), whereas the frame
comoving with the medium are represented by the hydro-
dynamical Lagrange coordinates. One could use these or
any other coordinate frames to study neutrino flavor
evolution. In the presence of matter, the EOMs (4) be-
come [33]

ð∂t þ v∂rÞDv ¼ ½ðD0 þ Λ0Þ − vðD1 þ Λ1Þ� ×Dv; ð31Þ

where Λ0 is the Bloch vector in the z-direction that
represents the usual refractive effect of homogeneous
matter, and normalized in the same way as the neutrino
refractive effect represented by D0. If the homogeneous
mediummoves with velocity Vmat along the symmetry axis,
it contributes a flux term Λ1 ¼ VmatΛ0 analogous to the
neutrino flux term D1.
We can certainly study the matter effect in a frame

comoving with matter, in which Λ1 ¼ 0. If, in this frame,
the initial perturbation of the neutrino gas is chosen
homogeneous, the EOMs become

_Dv ¼ ðΛ0 þ D0Þ × Dv − vD1 ×Dv: ð32Þ

Since Λ0 is homogeneous in all frames, we may remove it,
in analogy toD0, by a corotation in flavor space. Therefore,
the effect of matter can be entirely eliminated, and the
homogeneous temporal solitons are still an exact solution
of the EOMs, provided that perturbations are homogeneous
in the frame comoving with matter.
This remark applies in general; the exact pendulum

solutions for a homogeneous neutrino gas, which have been
thoroughly studied in the literature, are only valid if
homogeneity holds in a frame comoving with matter.
Remarkably, in the laboratory frame, such solutions are
not homogeneous, but actually correspond to our super-
luminal soliton, moving with a speed V−1

mat. If the motion of
matter is nonrelativistic, with Vmat ≪ 1, the subluminal
soliton of course becomes closer and closer to the homo-
geneous pendulum swing, since the width of the soliton is
of order ðΓVmatÞ−1, where Γ is the imaginary part of the
unstable frequency.
Finally, let us comment on the impact of matter on the

static solitons. Due to reciprocity between space and time,
here it is Λ1 which can be easily eliminated by going to a
frame (in flavor space) that corotates in space rather than in
time. However, differently from the temporal case, the
effect of Λ0 can never be eliminated, since there is no

FIG. 7. Evolution of an initial soliton with velocity V ¼ 0.1.
The color intensity denotes time.
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reference frame in which Λ0 ¼ 0 if Λ1 ≠ 0. After removing
the effect of Λ1, the EOMs take the form

v∂rDv ¼ ðΛ0 þD0Þ ×Dv − vD1 ×Dv: ð33Þ

This EOM implies that

∂rD1 ¼ Λ0 ×D0; ð34Þ

which means that, differently from the case where matter is
absent, D1 is not conserved. Therefore, the integrability of
the model is lost and there is no reason to expect regular
solutions.
To illustrate the effect of matter, we perform a numerical

experiment on a homogeneous pendulum, assuming a
continuous set of beamswith the spectrumGv corresponding
to Case D of Ref. [50]. We show Gv as a thick solid line in
Fig. 8 and, for the undisturbed pendulum, the maximum
excursion which can be expressed analytically as discussed
in Appendix C in Eq. (C13). For this example, the first
moments of the distribution are G0 ¼ þ4.7334 and G1 ¼
−5.2665, whereas the pendulum parameters are Ω ¼
1.0743� 1.1121i, corresponding to the natural frequency
λ ¼ jΩj ¼ 1.5462 and spin parameter σ ¼ ReΩ=jΩj ¼
0.6948.
Next we include a matter fluxΛ1 ¼ 2, which is moderate

compared with the moments of the spectrum which
measure the refractive effect caused by the neutrinos
themselves. To evaluate the integrability of the model,
we determine the effective number of degrees of freedom

which describe the motion by computing the nonvanishing
eigenvalues of the Gram matrix [32]

Gij ¼
Z

dtDviðtÞ · DvjðtÞ; ð35Þ

where the integral is taken over an arbitrary but numerically
suitable period, in our case explicitly the interval [0, 10].
Our numerical realization uses N ¼ 100 equidistant beams,
and therefore i; j ¼ 1;…; N. For vanishing Λ1 we find
three large eigenvalues and all the others much smaller,
corresponding to the reduced three-beam nature of the
pendulum motion.
For Λ1 ¼ 2, instead, there is no sharp transition between

large and small eigenvalues, but roughly there are 20–25
significant large eigenvalues. This result does not depend on
our chosen numerical resolution and means that the number
of independent modes is much smaller than the number of
beams. In other words, the systemwill not ergodically fill the
entire phase space, but rather stay on a lower-dimensional
surface than defined by the number of degrees of freedom.
The spectrum of flavor conversion, represented byDz

vðtÞ,
is no longer periodic but shows a much more involuted
structure at later times as seen in the snapshots shown in
Fig. 8. It develops a finer-grained structure, which highlight
the larger number of degrees of freedom involved in the
motion. On the other hand, even after a long time, the
spectrum looks qualitatively similar in that large structures
persist as well as large oscillations. The angular structure
does not decohere into an ever more fine-grained one. In
this sense, the motion retains strong collective character-
istics as suggested by the Gram-matrix test. The system no
longer moves like a pendulum, but still collectively, in this
case corresponding to roughly 20–25 independent degrees
of freedom instead of the number N of discrete bins. A
systematic study of matter effects and its impact on
collective motion is beyond our present ambition.
Similar conclusions hold of course for subluminal

solitons, since in their comoving frame the term Λ0 never
vanishes. We conclude that in the presence of matter, static
and subluminal solitons no longer exist as exact solutions
and would not survive had they been set up as an initial
condition. On the other hand, to which degree collective
motion persists or decoherence to ever smaller angular
scales takes place remains to be studied.
On the level of a linear normal-mode analysis, one can

always eliminate the effect of matter by redefining the
meaning of the frequency and wave number of a given
perturbation [33]. In the nonlinear regime, this is not
generally possible so that matter cannot be ignored for
the nonlinear evolution of flavor waves.

VI. CONCLUSION

Starting from the fast-flavor pendulum, we have intro-
duced the notion of a soliton, corresponding to the limiting
case of a pendulum with a vanishing seed. This solution

FIG. 8. Evolution of Dz
v for the spectrum Gv (thick solid line)

corresponding to Case D of Ref. [50]. The undisturbed pendulum
motion oscillates between the two solid blue lines, sweeping the
shaded region. The time to reach maximum excursion in this case
is t ¼ 5.66, and depends on the chosen initial seed. With matter
(Λ1 ¼ 2), the motion is no longer periodic and we show a
few snapshots at the indicated t. The numerical resolution has
N ¼ 100 angular modes.
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corresponds to a one-swing pendulum that approaches its
unstable fixed point at t → �∞. The existence of such a
solution follows from a complex eigenfrequency of the
linearized EOMs that fully determines the soliton, for
which we have provided an explicit analytical expression.
For the formal soliton solution, one does not need to worry
about initial conditions. On the other hand, the time when it
happens on the infinite time axis is an arbitrary parameter.
A crossed angle spectrum of the neutrino modes is a

well-known necessary condition for an instability (or now
we would say: for the existence of a soliton). Inspired by
the Nyquist criterion, we have derived an additional
sufficient condition that can be evaluated without solving
the dispersion relation.
Whenever these conditions are satisfied, there also exists

a spatial soliton in which the flavor configuration is static
and evolves through space similar to the temporal soliton,
or like a one-swing “spatial pendulum” that approaches its
asymptotic state at spatial infinity.
However, our main result is that the temporal and spatial

solitons are only limiting cases of more general classes of
solutions that can be obtained with the help of Lorentz
transformations. One class is that of superluminal solitons,
i.e., localized regions in which the neutrino density matrix
has off-diagonal coherence, which move with superluminal
speed. At infinite speed, the width of this region becomes
infinite, and this solution represents the temporal soliton.
Likewise, the class of subluminal solitons connects to the
spatial soliton in analogous ways.
The seeming violation of causality in the superluminal

motion actually derives from the initial conditions, which
require correlations to be set up over large scales. In this
sense, superluminal solitons highlight in the clearest way
the limitations of the homogeneous neutrino gas, which is
not truly representative of a realistic setting, since it
requires perturbations to be correlated on all scales.
The static soliton, and its subluminal siblings, come

closest to the usual picture of a soliton wave, such as the
traditional Korteweg-de Vries soliton. However, spatial
flavor solitons are extremely fragile in that they break
up under small-scale perturbations that are always present
and unavoidable in a numerical representation. We have not
attempted a full analytical study of their stability, since even
simple arguments based on the asymptotic state reveal that
they must be as unstable as dictated by the imaginary part
of the original linear eigenfrequency that is needed for the
soliton to exist in the first place. Therefore, subluminal
flavor solitons carry in them their own seed of destruction.
Finally, we clarify the impact of matter effects on all of

these solutions. It has become a folk wisdom that in a
linearized normal-mode analysis, matter effects can be
“rotated away” by going to a suitable frame in flavor
space. However, the option of eliminating the matter term is
much more restricted in the nonlinear regime.
The homogeneous neutrino gas is indeed unaffected by

matter, meaning that it still exhibits the temporal soliton

(or the fast-flavor pendulum). However, this is only true if
the matter flux vanishes. This means that there is only one
Lorentz frame in which pendular oscillations can be a valid
solution, the frame comoving with matter. Therefore, if
matter moves in the laboratory frame with a speed Vmat, the
only surviving solution among the class of superluminal
solitons is the one moving with a speed V−1

mat. Of course,
such a solution requires fine-tuned initial conditions which
are homogeneous in the frame comoving with matter. This
requirement shows yet another face of the limitations of the
homogeneity assumption.
On the other hand, we find that the static and subluminal

solitons are always affected by matter, irrespective what
frame is chosen, showing that the formal symmetry between
space and time is broken by the matter background. In the
presence of matter, there is no spatial flavor pendulum or
soliton.
The origin of this difference is that even our nominally

one-dimensional system involves neutrinos flowing in all
zenith-angle directions. Therefore, as a function of spatial
coordinate r, the phase accrued over some distance dr
depends on the actual distance travelled and thus on the
zenith angle. Even in the most symmetric configuration, the
transverse directions still show up in subtle ways. In this
sense, the very existence of soliton solutions once more
carries their own cause of destruction, in the case of
subluminal solitons in the form of their sensitivity to matter
effects. One take-home insight could be to pay more careful
attention to matter effects in the context of fast-flavor
conversion studies.
Ultimately, it seems that these soliton solutions may not

correspond to viable forms of flavor propagation in a real
neutrinogas in a real supernova.Theyareof amore ephemeral,
purely mathematical nature, yet they possess a captivating
charm that is difficult to resist. In addition, they reveal a lot of
unexpected structure in the underlying equations.
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APPENDIX A: INSTABILITIES FOR
SINGLE-CROSSED SPECTRA

1. Nyquist criterion for homogeneous case

The existence of the temporal soliton is guaranteed by
the existence of an unstable eigenmode, namely of a
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complex solution to the dispersion relation Eq. (9). Here we
investigate the conditions under which a continuous dis-
tribution Gv of velocities v may support an unstable
homogeneous eigenmode. We focus on single-crossed
distributions and show that at most one unstable eigenmode
may appear, and identify a simple condition for its
appearance based on the Nyquist criterion [99].
By absorbing G0 in Ω, we may schematically write the

dispersion relation as

ϕ̃ðΩÞ ¼
Z

vGv

vG1 þ Ω
dv ¼ 0; ðA1Þ

where G1 ¼
R
dvvGv as in the main text. In our previous

paper [79], we have discussed how to deal with the pole
v ¼ −Ω=G1 when Ω is real. Since we are interested in
unstable frequencies only, we choose to define the function
on the real axis as

ϕðΩÞ ¼
Z

vGv

vG1 þ Ωþ iϵ
dv

¼
Z
PV

vGv

vG1 þ Ω
dvþ i

πΩ
G2

1

G−Ω=G1
: ðA2Þ

As we have shown in Ref. [79], this dispersion relation
admits the same unstable frequencies. In other words the
zeros of ϕðΩÞ and ϕ̃ðΩÞ in the upper half of the complex
plane defined by ImðΩÞ > 0 are the same.
The number of unstable frequencies corresponds to the

number of zeros ofϕðΩÞ in the upper-half plane. This can be
counted by the Nyquist criterion [99], which connects the
number of zeros to the number of times that the function
ϕðΩÞ wraps around the origin in the complex plane as Ω
moves along the real axis. Indeed, we have shown in
Ref. [79] that the dispersion relation for fast modes is
analogous in form to the dispersion relation for unstable
modes in a collisionless plasma; the function ϕðΩÞ plays
here the role of the longitudinal dielectric function, whose
zeros correspond to the plasmon modes. The Nyquist
criterion must be slightly modified in our context, because
the function ϕðΩÞ vanishes as jΩj → ∞ only asΩ−1, which
precludes a naive application of the zero-counting theorem.
Therefore, we here derive the result from scratch.
To count the number of unstable frequencies, we con-

sider the integral

I ¼
Z þ∞

−∞

d logϕðΩÞ
dΩ

dΩ ðA3Þ

taken over the real axis. The integral can be closed by a
semicircle in the upper-half complex plane. The integral on
the semicircle does not vanish, because the function

ϕðΩÞ → −G1=Ω, and therefore the integral on the semi-
circle is

J ¼ −
Z

dΩ
Ω

¼ −iπ: ðA4Þ

The integral over the entire closed contour is equal to the
number of poles of the integrand function in the upper-
half plane.
Assuming that ϕðΩÞ does not have poles itself in this

region, these poles are simply the zeros of ϕðΩÞ. From each
of these zeros, the integral draws a contribution 2πi.
Therefore, it follows that

I þ J ¼ 2πiN; ðA5Þ
where N is the number of complex unstable frequencies.
From here it follows:

ϕðΩ → þ∞Þ ¼ ϕðΩ → −∞Þeiπe2iπN: ðA6Þ
Therefore, as Ω grows from −∞ to þ∞, the function ϕðΩÞ
starts from 0 and returns to 0 after having changed its sign
and wrapped itself around the origin N times.
We first confirm the validity of the criterion empirically

in two simple cases, the angular distributions for cases A
and D of Ref. [50]. For both cases, we adjust the sign of the
distribution such that G1 > 0. Figure 9 shows the trajecto-
ries drawn by ϕðΩÞ in the complex plane as Ω runs from
−∞ to þ∞. At Ω → −∞, ϕðΩÞ → G1=Ω, so that ϕ starts
from 0 and moves along the negative real axis. At
Ω → þ∞, ϕðΩÞ returns again to the origin from the
positive real axis, therefore confirming our result in
Eq. (A6) that it acquires a phase of π.
In addition, for case D (right panel), the function ϕðΩÞ

wraps completely around the origin once, corresponding to
one unstablemode. Indeed,Ref. [50] finds this distribution to
be unstable. On the other hand, for case A (left panel) the
trajectory of ϕðΩÞ does not wrap around the origin, corre-
sponding to no unstable mode, as also found in Ref. [50].

FIG. 9. Nyquist diagrams for the angular distribution of case A
(left) and case D (right) of Ref. [50]. We show the trajectory of the
function ϕðΩÞ in the complex plane, as Ω evolves from −∞ to
þ∞ along the real axis. Since the angular distribution has non-
analytical discontinuities at v ¼ −1 and v ¼ þ1, we smooth
them out introducing a rapid cutoff at these positions.
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We can now derive a simple criterion to determine
whether a single-crossed spectrum Gv admits an instability
without explicitly solving the dispersion relation. The key
idea is that the function ϕðΩÞ can only cross the real axis,
for realΩ, either atΩ ¼ 0 or atΩ ¼ −vcG1, where vc is the
position of the crossingGvc ¼ 0. Without loss of generality,
we choose G1 > 0. Therefore, at Ω → −∞, the function
ϕðΩÞ → G1=Ω starts from 0 tangent to the negative real
axis. At Ω → þ∞, ϕðΩÞ returns to 0 tangent to the positive
real axis. The number of times that it wraps around the
origin in between corresponds to the number of unstable
frequencies. In order to wrap around the origin once, ϕðΩÞ
must cross the real axis first on the positive side, as
in both panels of Fig. 9. Afterwards, to surround the origin,
it should cross it again on the negative side, as in the right
panel of Fig. 9, so that it can finally return to the
positive side and asymptotically reach zero. It is easy to
see that with one crossing, ϕðΩÞ can wrap around the
origin at most once, so there is at most one unstable
frequency.
Therefore, the criterion for the existence of an instability

is the following: starting from the negative real axis, the
function ϕðΩÞ should cross first the positive real semiaxis,
and then the negative one. We can now state our criterion
more plainly. If vc > 0, we have an instability if
ϕð−vcG1Þ > 0 and ϕð0Þ ¼ G0=G1 < 0. If vc < 0, we have
an instability if ϕð0Þ > 0 and ϕð−vcG1Þ < 0. This criterion
allows us to identify the presence of an instability for
single-crossed spectra without explicitly solving the
dispersion relations themselves. Notice that, while in the
derivation we assumed G1 > 0, the final result is indepen-
dent of this assumption.

2. Superluminal soliton

The criterion for the existence of a homogeneous insta-
bility can be immediately extended to a criterion for the
existence of superluminal solitons with speed vsoliton ¼ V−1.
In Sec. II E, we have shown that the EOMs for the super-
luminal solitons are identical to the EOMs of the homo-
geneous system in a boosted frame. The dispersion relation
can therefore still be written as

ϕðΩ0Þ ¼
Z

v0Sz;0v0
v0G0

1 þ Ω0 dξ
0 ¼ 0: ðA7Þ

Notice that Sz;0v0 dv
0 ¼ ½ω0Gvdv�v0¼k0=ω0 by definition, evalu-

ated at the asymptotic condition in terms of Gv, and ω0 ¼
ð1 − vVÞ=ð1 − V2Þ1=2. Here, as in the main text, G0

0 ¼
γðG0 − VG1Þ ¼

P
v0 S

z;0
v0 , G0

1¼ γðG1−VG0Þ¼
P

v0 S
z;0
v0 v

0,
evaluated at the asymptotic condition.
To extend our previous criterion, the crossing point in the

new frame is v0c ¼ ðvc − VÞ=ð1 − vcVÞ. If v0c > 0, an
instability is present if ϕð0Þ < 0 and ϕð−v0D0

1Þ > 0,
and vice versa if v0c < 0. Performing the appropriate

replacements, we find that the instability is present if

vc>V;
G0−VG1

G1−VG0

<0;
Z ðv−VÞð1−vVÞGv

ðG1−VG0Þðv−vcÞ
dv>0

ðA8Þ

or

vc<V;
G0−VG1

G1−VG0

>0;
Z ðv−VÞð1−vVÞGv

ðG1−VG0Þðv−vcÞ
dv<0:

ðA9Þ

The two criteria may be more compactly combined as

ðvc − VÞðG0 − VG1Þ
G1 − VG0

< 0; ðA10aÞ
Z ðv − VÞð1 − vVÞGv

ðG0 − VG1Þðv − vcÞ
dv < 0; ðA10bÞ

which both need to be satisfied for an instability to exist.
Notice that, for V ¼ vc, the trajectory of ϕðΩ0Þ in the

Nyquist diagram can touch the real axis only at one point
(except the trivial tangent behavior at Ω → �∞), since the
two crossings at v ¼ vc and v ¼ V merge into a single
point of tangency to the real axis, which does not allow the
trajectory to wrap around the origin. Therefore, super-
luminal solitons with V ¼ vc are not supported.

3. Static and subluminal soliton

For the subluminal and static soliton, the existence of an
unstable frequency needs not be studied separately. In fact,
the dispersion relation for a superluminal soliton can be
written in terms of the primed quantity asZ

k0

v0G0
1 −G0

0 þΩ0 ½Gvdv�k0¼γðv−VÞ;v0¼ v−V
1−vV

¼ 0: ðA11Þ

The corresponding dispersion relation isZ
k0

v0G0
1 −G0

0 þ v0K0 ½Gvdv�k0¼γðv−VÞ;v0¼ v−V
1−vV

¼ 0: ðA12Þ

From here, we deduce that if a superluminal soliton is
supported with speed vsoliton ¼ V−1 and frequency Ω0,
there is also a corresponding solution for a subluminal
soliton with speed V, whose wave number K0 is obtained
from

G0
0 −Ω0

G0
1

¼ G0
0

G0
1 þ K0 : ðA13Þ

This establishes a dual relation among superluminal and
subluminal solitons. The relation may be directly expressed
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in terms of the moments of the original spectrumGv, giving

G0 − VG1 −Ω
G1 − VG0

¼ G0 − VG1

G1 − VG0 þ K
; ðA14Þ

where K ¼ K0=γ and Ω ¼ Ω0=γ. In particular, this means
that if a single-crossed spectrum Gv permits a homo-
geneous temporal soliton, characterized by the linear
eigenfrequency Ω, then there also exists a static spatial
soliton corresponding to the linear wave number

K ¼ G1Ω
G0 −Ω

ðA15Þ

in the limit V ¼ 0 of Eq. (A14).
Notice that, while we have used the integral notation in

Eqs. (A11) and (A12), the final results Eqs. (A13) and (A14)
are valid for a discrete number of beams as well, since they
only involve the redefinition in the denominators of
Eqs. (A11) and (A12). In other words, any single-crossed
spectrum, discrete or continuous, that permits a homo-
geneous temporal soliton also permits a static spatial one.

APPENDIX B: GYROSCOPIC PENDULUM

1. Equations of motion

We briefly review the gyroscopic pendulum, following
Appendix B of Ref. [32]. This contraption, also known as
symmetric heavy top, Lagrangian top, or spherical pendu-
lum with spin, is an axially symmetric body, spinning
around its symmetry axis (moment of inertia Is) with
support on this axis [100]. Its moment of inertia relative to
that point is I, mass M, gravitational acceleration g along
the z-direction, distance l between support and center of
mass, and angle ϑ relative to the z-direction, i.e., this angle
is counted relative to the upward direction. The potential
energy is V ¼ Mgl cosϑ. If the top were essentially point
like, one would have I ¼ Ml2, but in general one considers
an extended body, where the center of mass and the “center
of oscillation” are different.
The angular momentum S along the symmetry axis

(spin) has kinetic energy Tspin ¼ S2=2Is. The point of
support is on the symmetry axis, preventing a torque to
change S ¼ jSj, and so both S and Tspin are conserved. We
are only interested in the gyroscope’s orbital motion, not
the internal spin motion, so that Tspin is an additive constant
to the Hamiltonian. For given S, the orbital motion will be
the same, irrespective of Tspin, so that we may assume
Is ¼ I for simplicity. The entire kinetic energy can then be
expressed in terms of the single I as T ¼ J2=2I, where J is
the total angular momentum.
We may further use the radius vectorR from the point of

support to the center of mass as a spatial coordinate. The
potential energy provided by gravity is gMG ·R with
jRj ¼ l and the gravitational unit vector G is defined to

point upward. The Hamiltonian of this overall mechanical
system is

H ¼ gMG ·Rþ J2

2I
: ðB1Þ

The equations of motion derive from this Hamiltonian
through the Poisson brackets _R ¼ fR; Hg and _J ¼ fJ; Hg.
Notice that fJi; Jjg ¼ ϵijkJk, fJi; Rjg ¼ ϵijkRk, and
fRi; Rjg ¼ 0. Explicitly one finds

_R ¼ J ×R
I

and _J ¼ gMG ×R: ðB2Þ

The physical content is that J spawns a differential rotation
as behooves the total angular momentum, whereas the
vertical force of gravity exerts a torque, proportional to
G ×R, that changes the total angular momentum. This
form allows one to port the gyroscope EOMs directly to
those of the Bloch vectors of the FFC system.
However, to solve the EOMs explicitly, we continue with

the mechanical system in the spirit of the textbook
literature. The orbital angular momentum is L ¼ Ir × _r,
where r is a unit vector along the symmetry axis. It marks
the top’s orientation with zenith angle ϑ and azimuth angle
φ. The orbital kinetic energy is

Torb ¼
L2

2I
¼ 1

2
I _r2 ¼ 1

2
Ið _ϑ2 þ _φ2sin2ϑÞ: ðB3Þ

The total angular momentum J ¼ Lþ S has conserved z-
component, where Sz ¼ S cosϑ and Lz ¼ I _φ sin2 ϑ. Here
one factor of sinϑ comes from the projection of r on the
transverse plane and the velocity is _φ sin ϑ. Therefore, Jz ¼
I _φ sin2 ϑþ S cosϑ is conserved and

_φ ¼ Jz − S cosϑ
I sin2 ϑ

: ðB4Þ

Therefore,

Torb ¼
1

2
I _ϑ2 þ ðJz − S cosϑÞ2

2I sin2 ϑ
ðB5Þ

and the total energy E ¼ T þ V is

E ¼ I
2
_ϑ2 þ ðJz − S cosϑÞ2

2I sin2 ϑ
þMgl cos ϑ: ðB6Þ

This has the form E ¼ I _ϑ2=2þ VðϑÞ, where VðϑÞ is a
potential given in terms of conserved quantities fixed by
initial conditions.
Next we introduce c ¼ cosϑ as independent variable so

that _ϑ2 ¼ _c2= sin2 ϑ and find the third-order polynomial
that is characteristic for the gyroscopic pendulum

_c2 ¼ 2
E −Mglc

I
ð1 − c2Þ −

�
Jz − Sc

I

�
2

: ðB7Þ
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When Jz ¼ S ¼ 0 we have a plane pendulum, where

λ2 ¼ Mgl=I ðB8Þ
provides the natural frequency λ. Moreover, we express
Jz ¼ jzS and use the dimensionless spin parameter [50]

σ ¼ S
2λI

: ðB9Þ

With these parameters, the EOMs are

_φ ¼ 2λσ
jz − c
1 − c2

; ðB10aÞ

_c2 ¼ 4λ2
�
1

2
ðε − cÞð1 − c2Þ − σ2ðjz − cÞ2

�
; ðB10bÞ

where ε ¼ E=Iλ2 is the dimensionless total energy.

2. Soliton solution

In the context of the flavor pendulum, we are interested
in motions that consist of a precession and a nutation
between two limiting zenith angles 0 ≤ ϑ1 ≤ ϑ ≤ ϑ2 ≤ π,
corresponding to 1 ≥ c1 ≥ c ≥ c2 ≥ −1. In particular, if
the highest position is c1 ¼ 1, the upright orientation, then
Jz ¼ S and jz ¼ 1 as well as ε ¼ 1. Moreover, we may
absorb λ in the definition of time, implying

_φ ¼ 2σ

1þ c
; ðB11aÞ

_c2 ¼ 4ð1 − cÞ2
�
1þ c
2

− σ2
�
: ðB11bÞ

If σ > 1, the second equation is true only for c ¼ 1 and the
pendulum is stuck in the upright “sleeping top” position.
Otherwise its lowest point c2 requires _c2 ¼ 0 and thus

the bracket in Eq. (B11) must vanish. One thus finds

c2 ¼ cosϑmin ¼ −1þ 2σ2; ðB12Þ
which indeed varies between −1 ≤ c ≤ þ1 for 0 ≤ σ ≤ 1.
If this lowest point occurs at t ¼ 0, the solution is

φðtÞ ¼ σλtþ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

σ
τ

�
; ðB13aÞ

cðtÞ ¼ −1þ 2½σ2 þ ð1 − σ2Þτ2�

¼ 1 −
8ð1 − σ2Þ�

e
ffiffiffiffiffiffiffiffi
1−σ2

p
λt þ e−

ffiffiffiffiffiffiffiffi
1−σ2

p
λt
�
2
; ðB13bÞ

where we have restored the natural pendulum frequency λ.
Moreover, we have introduced the time coordinate

τ ¼ tanh ½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
λt�; ðB14Þ

which varies as −1 < τ < þ1 for −∞ < t < ∞.

The solution is a pendulum that swings only once
(a temporal soliton) and at t → �∞ approaches the upright
position, the latter being an unstable fixed point. The
azimuthal variation includes an overall precession with
frequency ωP ¼ σλ that can be removed by going to a
corotating frame.
The complete orbital motion of the gyroscope is encoded

in the polar angles given in Eq. (B13). We may write the
solution for the unit vector providing the orientation of the
gyroscope in the form

rðtÞ ¼

0
B@

sðtÞ cosφðtÞ
sðtÞ sinφðtÞ

cðtÞ

1
CA; ðB15Þ

where sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cðtÞ2

p
.

In addition, we will later need an explicit solution for
JðtÞ that also follows from these results. The total angular
momentum is a sum of the spin and orbital part, J ¼ SþL.
The former is S ¼ Sr, where S ¼ 2σλ is the conserved spin.
As discussed earlier, in units where the moment of inertia is
taken to be unity, L ¼ r × _r, so that

J ¼ Srþ r × _r: ðB16Þ

The derivatives can now be obtained by explicit differ-
entiation of the solutions in Eq. (B13).

3. Connection to linear normal modes

Near the upright position, at very early or very late times,
the solution can be linearized. However, this makes only
sense for the zenith angle ϑ or s ¼ sin ϑ, not for c ¼ cos ϑ,
which to lowest order is c ¼ 1 at early and late times. So we
rather look at the x-y components of the pendulum vector r.
For very early times (t → −∞) the linearized solution is
explicitly

φðtÞ ¼ σλt − φσ; ðB17aÞ

sðtÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
e

ffiffiffiffiffiffiffiffi
1−σ2

p
λt; ðB17bÞ

where

φσ ¼ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p

σ

�
: ðB18Þ

If we express the pendulum vector r in a spherical basis
through r0 ¼ z and r� ¼ x� iy, we may express the
linearized solution as r0 ¼ 1 and

r� ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
e�iφσeð

ffiffiffiffiffiffiffiffi
1−σ2

p ∓iσÞλt: ðB19Þ
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The physical content is the same: The pendulum precesses
around the z-direction with a frequency ωP and its x-y
component grows exponentially with a rate Γ where

ωP ¼ σλ and Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
λ: ðB20Þ

Conversely, the pendulum parameters are [50]

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
P þ Γ2

q
and σ ¼ ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P þ Γ2

p ðB21Þ

in terms of the linearized eigenfrequency Ω ¼ ωP � iΓ.
This complex frequency fully determines the soliton and
sometimes we call it the “soliton frequency.”

APPENDIX C: FLAVOR PENDULUM

A single-crossed spectrum admits at most one unstable
mode, as we discussed in Appendix A. With a single
unstable mode, the most general motion that the system can
perform is a pendular one. The simplest system that can
perform a pendular motion is on consisting of three Bloch
vectors. Therefore, we first recall how a three-beam system
dynamics is equivalent to a pendulum [50]. We later
connect the three-beam system with a generic single-
crossed, unstable spectrum.

1. From three beams to pendulum and soliton

The FFC system does not involve any external vector,
unlike the slow system, where the mass direction is singled
out. Therefore, to mimic a gyroscopic pendulum, a FFC
system fv;Dvg requires at least three beams so that
different linear combinations can play the role of G, R,
and J. Any FFC system fulfilling the homogeneous EOMs
of Eq. (6) has the conserved vector D0 and the vector D1

with conserved length. Moreover, for a three-mode system
one can define [50]

J ¼ D2 − vsD1 ¼
X3
i¼1

ðvi − vsÞviDvi ; ðC1Þ

where vs ¼ v1 þ v2 þ v3. These Bloch vectors obey

_D0 ¼ 0; ðC2aÞ

_D1 ¼ J ×D1; ðC2bÞ

_J ¼ v1v2v3D0 × D1: ðC2cÞ

For any three-mode system with D0 ≠ 0, D1 ≠ 0,
and v1v2v3 ≠ 0, these EOMs are equivalent to Eq. (B2)
of a gyroscope. Here we have already absorbed the
neutrino-neutrino interaction energy μ in the definition
of dimensionless time, but otherwise we recognize from

Eq. (C2b) that μ is equivalent to I−1, the inverse moment of
inertia of the gyroscope.
The conserved vector D0 defines the z-axis, although not

necessarily its sign. To obtain a soliton we turn to a more
restricted system, where all three DvðtÞ become asymp-
totically collinear at t → �∞, i.e., the system asymptoti-
cally approaches the “sleeping top” unstable fixed
point. This system is characterized by fv;Gvg with three
discrete velocities and the spectrum Gv conditional
on v1v2v3G0G1 ≠ 0. Because Jz is conserved and is
identical with the spin S in the upright pendulum position,
one finds

S ¼ G2 − ðv1 þ v2 þ v3ÞG1: ðC3Þ
The dispersion relation Eq. (9), after absorbing G0 in Ω,
then implies the eigenfrequency

Ω ¼ S
2
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1v2v3G0G1 −

�
S
2

�
2

s
ðC4Þ

as stated in Eq. (11) of the main text. This eigenfrequency
represents two complex conjugate solutions (and thus a true
“soliton frequency”) only if the argument of the square root
is positive, which also implies that the first term under the
square root must be positive. In this case follows the
identification of the pendulum natural frequency λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1v2v3G0G1

p
and spin parameter σ ¼ S=2λ stated in

Eq. (12) of the main text.

2. From soliton to three beams

We may reverse this problem and ask for a three-
beam realization of a soliton with given frequency Ω ¼
ωP � iΓ. For example, a given supernova-inspired single-
crossed continuous spectrum Gv such as those used in
Ref. [50] may provide us with the corresponding Ω and
we may wish to construct an equivalent three-beam
system. As a first step, one derives the equivalent natural
pendulum frequency and spin parameter according
to Eq. (B21).
One immediately identifies S ¼ Jz ¼ 2ωP ¼ 2ReΩ.

Moreover, from Eq. (13) we recall that λ2 ¼ ω2
P þ Γ2 ¼

v1v2v3G0G1 so that overall the connections are

2ReΩ ¼ G2 − ðv1 þ v2 þ v3ÞG1 ðC5aÞ

jΩj2 ¼ v1v2v3G0G1: ðC5bÞ

Therefore, the remaining five three-mode parameters are
very degenerate. We may pick −1 ≤ v1 < v2 < v3 ≤ þ1
and G0 and G1 anyway we like such that their product
provides the desired jΩj2.
After these choices have been made, the spectrum

Gvi is provided explicitly by Eq. (S16) of Ref. [50], which
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can be written as

Gvi ¼
viSþ v2i G1 þ v1v2v3G0

vi
Q

j≠iðvi − vjÞ
ðC6Þ

for each i ¼ 1; 2, and 3.
One may wonder if this construction indeed yields a

single-crossed spectrum as it must, i.e., threeGvi that do not
all have the same sign. We observe that this equation may
be rewritten as

Gvi ¼
Γ2 þ ðG0

Q
j≠ivj þ ωPÞ2

G0

Q
j≠ivj

Q
j≠iðvj − viÞ

: ðC7Þ

Without loss of generality, we can choose G0 > 0. The
signs then depend on the two products in the denominator.
The

Q
j≠iðvj − viÞ is positive for Gv1 and Gv3 and negative

for Gv2. If we want no crossing, we would need v1v3 < 0,
v1v2 > 0, and v2v3 > 0. This is not possible for any three
numbers, so at least one crossing will appear.
If the original starting point was a continuous spectrum,

we may wish to use the same moments G0 and G1 for the
three-mode realization. Notice, however, that it is not
necessarily assured that this is possible. Given jΩj2 and
after choosing G1 and noticing that jv1v2v3j < 1, it is not
necessarily assured that we can find three velocities such
that Eq. (C5b) can be satisfied. Or turning this around, for a
given continuous unstable Gv, it is not obvious that
always jΩj2 < jG0G1j.
For the moment we do not have a mathematical proof

that this will always be the case, but extensive empirical
searches have not turned up a counter example. It appears
that this condition can be saturated in a limiting sense by
three-mode examples with all beams having v ¼ �1 in a
limiting sense. So we conjecture that this condition applies
for any continuous or discrete fv;Gvg, implying that the
three-beam realization never requires a superluminal beam.

3. Explicit solution for the entire spectrum

Given a discrete or continuous system fv;Dvg that
supports a temporal soliton implies that D1 moves like a
pendulum, but also means that all individual Dv move in
collective ways and each of them returns to its asymptotic
position at t → þ∞. Each individual Dv follows _Dv ¼
ðD0 − vD1Þ × Dv with D0 a conserved vector and D1

following the pendulum motion. The behavior of Dv is
not caused by it being a member of a larger collective
ensemble—it only feels D0 and D1. It would follow a
periodic motion even if D0 and D1 were externally
prescribed Bloch vectors as long as D1 is prescribed to
follow a gyroscope motion. With our tools it is now
straightforward to write the motion of a given Dv explicitly
in terms of the pendulum motion without having to solve
the differential equation for Dv.

To this end we assume a three-mode system fvi;Dvig
with i ¼ 1; 2, and 3 that supports a soliton. This three-mode
system could be a set of carrier modes (auxiliary spins) of a
larger system. We may then express D0, D1, and J in terms
of the threeDvi as in Eq. (C1), and then conversely the three
Dvi in terms ofD0,D1, and J. We further know that any Lax
vector

Lu ¼
X3
i¼1

viDvi

u − vi
ðC8Þ

fulfills the original precession equation in the form
_Lu ¼ ðD0 − uD1Þ ×Lu. Inserting the explicit expressions
for the three Dvi in Eq. (C8) reveals

Lu ¼
v1v2v3D0 þ u2D1 þ uJ
ðu − v1Þðu − v2Þðu − v3Þ

: ðC9Þ

The denominator is just an arbitrary factor—we are only
interested in the orientation of Lu, whereas its conserved
length can be arbitrarily chosen. Moreover, we observe
that the natural pendulum frequency is given by λ2 ¼
v1v2v3G0G1 where we use the spectrum Gv ¼ Dz

vð�∞Þ.
Therefore, v1v2v3D0 ¼ λ2ẑ=G1. The pendulum motion is
D1ðtÞ ¼ G1rðtÞ,where rðtÞ is the explicit solutionEq. (B15),
whereas JðtÞ was explicitly provided in Eq. (B16).
Therefore, with modified normalization, Eq. (C8) can be
expressed as

LuðtÞ ¼ λ2ẑþ w2rðtÞ þ wJðtÞ; ðC10Þ

where w ¼ uG1 is the precession frequency of Lu around
D1. The asymptotic state is r ¼ ẑ and J ¼ Sẑ and so the
conserved length is jLuj ¼ jλ2 þ w2 þ wSj thatwe coulduse
to normalize it to unity.
It may seem somewhat surprising that the construction of

Eq. (C10) is a vector of conserved length for any w. As an
explicit confirmation, we consider L2

u, a fourth-order
polynomial in w, where all five coefficients must be
separately conserved. (w0) The lowest-order term is λ4

and thus trivially conserved. (w1) The linear term is
proportional to Jz which is conserved. (w2) The quadratic
term is 2λ2rz þ J2 and thus proportional to the conserved
total pendulum energy. (w3) The cubic term is proportional
to S ¼ J · r, the conserved pendulum spin. (w4) The quartic
term is r2 ¼ 1, completing the proof.
If the starting point is a continuous spectrum fv;Gvg

with a complex linear eigenfrequency Ω, this information
alone is enough to write explicitly the soliton solution for
D1 and for each individual Dv in the form

DvðtÞ ¼ Gv
λ2ẑþ wJðtÞ þ w2rðtÞ

λ2 þ wSþ w2
; ðC11Þ
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where w ¼ vG1. Notice that the fraction is a unit vector that
initially points in the positive z direction.
The explicit x-y components of this expression are fairly

complicated, whereas the z component, encoding the
instantaneous amount of flavor conversion, is simply

Dz
vðtÞ ¼ Gv

λ2 þ wSþ w2cðtÞ
λ2 þ wSþ w2

; ðC12Þ

where cðtÞ was provided in Eq. (B13b) in terms of the
pendulum natural frequency λ and spin parameter σ. The
asymptotic value is cð�∞Þ ¼ 1 and Dvð�∞Þ ¼ Gv. By
construction, the lowest soliton point occurs at t ¼ 0 and is
cð0Þ ¼ 2σ2 − 1. Therefore, the largest excursion of Dv
from its asymptotic state is

Dz
vð0Þ ¼ Gv

λ2 þ 2λσwþ ð2σ2 − 1Þw2

λ2 þ 2λσwþ w2
; ðC13Þ

where we have used S ¼ 2λσ and w ¼ vG1.
In Fig. 8 we have shown the numerical evolution of a

certain example, where the spectrumGv is a thick solid line.
The numerical maximum pendulum excursion of the no-
matter case, delimiting the shaded region, is equivalent to
Eq. (C13), aswe have explicitly verified.Note that the shown
example, Case D of Ref. [50], has Ω ¼ 1.0743� 1.1121i,
which is equivalent to λ ¼ jΩj ¼ 1.5462 and spin param-
eter σ ¼ ReΩ=jΩj ¼ 0.6948.

4. Corollary for spin precession

Spin precession in an external B-field is a general topic,
for example in Nuclear Magnetic Resonance (NMR)
techniques. In neutrino flavor evolution, the propagation
through a density profile is equivalent to spin precession in
a time varying B-field and the MSW effect is the adiabatic
version of this effect. Considering the general precession
equation _P ¼ wB × P, the adiabatic case corresponds to w
being large compared with the rate-of-change of the unit
vector BðtÞ. In this case, the spin follows the B field. If it
was not initially aligned with B, this means that its
precession cone follows B with fixed opening angle.
The results of the previous section imply another special

case. If the motion of BðtÞ is equivalent to rðtÞ of a soliton
defined by λ and σ, then the motion of P is once more
simple for any value of w. Of course, if w is large, Eq. (C11)
reveals explicitly that P remains aligned with B. However,
for any w, it returns to the asymptotic position, a property of
the soliton solution that has nothing directly to do with
collective effects. Here we think ofBðtÞ as being externally
prescribed as in NMR.
Moreover, even if P was not initially aligned with B, its

precession cone returns to its original opening angle. So ifB
initially points up and P in some arbitrary direction, after B
returning to its asymptotic upright orientation, the precession
cone ofP has also returned to its initial opening angle.P itself

has no asymptotic position because it alwaysmoves if it is not
asymptotically aligned with B. The opening angle of the
precession cone changes during the pendulum motion, in
contrast to the adiabatic case, but returns back to its value at
early times.

APPENDIX D: SYSTEMS OF REDUCED
DIMENSIONALITY

Whenever we begin with discrete or continuous system
fv;Dvg that is single crossed and provides a single soliton,
the true dimensionality of the system is smaller than
indicated by its total degrees of freedom. Whenever the
linear normal mode analysis produces a complex eigen-
frequency Ω, there will be an unstable solution, connecting
in the nonlinear regime to a pendulum. We here review
several cases of this reduction of dimensionality and arrive
at a pendulum that is described by three in dependent Bloch
vectors. The aim here is to arrive at a practical way of doing
this, which can often be confusing.

1. From three beams to pendulum and back:
Systematic Lax vector approach

We consider a three beam representation of a bigger
system and we imagine them to be Lax vectors of the
original system and therefore denote them by Li, i.e., the
system is fui;Lig with i ¼ 1; 2, and 3. The EOMs of
the three-beam system are

_Li ¼ −uiM1 ×Li; ðD1Þ

where we denote the moments by Mn ¼
P

3
i¼1 u

n
iLi. The

moments of the distribution obey the EOMs

_Mn ¼ −M1 ×Mnþ1: ðD2Þ

For three-beams, only three of these moments are inde-
pendent, which we take as M0, M1, and M2. The third
moment satisfies

M3 ¼ pM0 − ðu1u2 þ u1u3 þ u2u3ÞM1 þ sM2: ðD3Þ

For brevity, we use p ¼ u1u2u3 and s ¼ u1 þ u2 þ u3.
Therefore, the first three moments obey the EOMs

_M0 ¼ 0; ðD4aÞ

_M1 ¼ −M1 ×M2; ðD4bÞ

_M2 ¼ −pM1 ×M0 − sM1 ×M2: ðD4cÞ

The length of the vector M1 is conserved, so we may write
M1 ¼ jM1jr, with r a unit vector, which will be our
pendulum direction. We also introduce the definition
J ¼ M2 − sM1. Finally, wewriteM0 ¼ jM0jẑ, fixed along
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the z-axis. Therefore, the relevant EOMs become

_r ¼ J × r; and _J ¼ pjM1jjM0jẑ × r: ðD5Þ

The vector J is the total angular momentum of the
pendulum, which we can split into a spin and a orbital part

J ¼ Lþ S: ðD6Þ

The orbital angular momentum L, not to be confused with
any of the Lax vectors, is the component of J transverse to r
and is determined by the EOMs as

L ¼ r × _r: ðD7Þ

On the other hand, the spin S ¼ Sr has a length S
conserved by the EOMs which can therefore be determined
by the initial conditions

S ¼ ðM2 − sM1Þ · r: ðD8Þ

At this point, the only remaining EOM is

_L − Sr ×Lþ pjM1jjM0jr × ẑ ¼ 0: ðD9Þ

In place of this EOM, one may easily check the existence of
two additional integrals of motion, whose conserva-
tion completely determines the dynamics; these are the
z-component of the total angular momentum

Jz ¼ ẑ ·Lþ Sẑ · r; ðD10Þ

and the energy

E ¼ jLj2
2

þ S2

2
þ pjM1jjM0jẑ · r: ðD11Þ

Comparing with Eqs. (B3) and (B6), we now find that the
dynamics of the three-beam system is indeed identical
to the pendulum, with the identification I ¼ 1 and
Mgl ¼ pjM1jjM0j. In particular, it follows that the single
swing of the pendulum introduced in Appendix B exactly
corresponds to the single soliton in the three-beam system.
To complete the discussion, we finally express the

original three beams Li in terms of the pendulum vectors
M0, M1 ¼ jM1jr, and J as

Li ¼
JþM1ui þM0

Q
j≠iujQ

j≠iðui − ujÞ
: ðD12Þ

Completing our transformations that mapped our three
beams on the pendulum vectors and back.

2. From continuous spectrum to three beams:
Systematic matching conditions

As shown in Refs. [50,79], from a three-beam system
one can realize a continuous system of polarization vectors
with a pendular motion

Dv ¼ αv
X3
i¼1

uiLi

v − ui
; ðD13Þ

where αv is a set of v-dependent constants. This form was
motivated in Ref. [79], where we showed that Dv evolve as
the Lax vectors of the fictitious three-beam systems. As
suggested in Ref. [50], a practical way of realizing the
mapping is: given a continuous spectrum, we identify from
linear stability analysis the pendulum parameters, which
are determined by the real and imaginary part of the
unstable frequency; determine a possible three-beam set
which possesses the same pendulum parameters—or equiv-
alently the same unstable frequency—and in addition
has the same initial value of D1 ¼

P
i uiLi ¼

P
v vDv

and D0 ¼
P

iLi ¼
P

v Dv; realize the mapping via
Eq. (D13).
A complementary strategy, historically used in the context

of slow flavor oscillations [32], is to start directly from
Eq. (D13). SinceDv are theLaxvectors of the fictitious three-
beam systems, they will automatically follow the EOM

_Dv ¼ −vM1 × Dv: ðD14Þ

For this subsection, we callMn ¼
P

i u
n
iLi the moments of

the three-beam system and Dn ¼
P

v v
nDv the moments of

the continuous system. Therefore, in order for the vectorDv
to obey the correct EOMs, one needs only require the
matching of the first moment

D1 ¼ M1 ðD15Þ

at all times.
We notice that, since the dynamics is only regulated by

D1, it is not strictly necessary to require the matching of the
zero moment. Our three-beam system may have a
M0 ≠ D0; both M0 and D0 are conserved by their respec-
tive dynamics. In reality, we always have enough freedom
to choose our three-beam system such that also the
matching M0 ¼ D0 is realized. However, for clarity, we
will first proceed without this requirement, and only later
comment on how it can be enforced. We now show that the
two strategies—namely matching of the pendulum param-
eters, as suggested in Ref. [50], and matching of the first
moments of the distribution, as suggested in Ref. [32]—are
completely equivalent.
The matching of the first moment D1 requires some

algebra, since we need to express the individual vectors Li
in terms of the pendulum vectors. Using Eqs. (D13) and
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(D12), we write

Dv ¼ αv
pM0 þ vJþ v2M1Q

iðv − uiÞ
: ðD16Þ

Therefore, introducing the family of quantities

In ¼
X
v

αvvnQ
iðv − uiÞ

; ðD17Þ

the matching condition on M1 ¼ D1 reads

pI1M0 þ I2Jþ I3M1 ¼ M1: ðD18Þ

Since M0 is constant, while the other vectors are not,
requiring these conditions to be valid at all times immedi-
ately leads to the vanishing of the coefficients of M0.
Furthermore, since J contains an orbital part L which is
orthogonal to M1, it also follows that its coefficients must
separately vanish. Finally, it follows that the coefficients of
M1 must vanish as well. Therefore, we may write the
conditions as

I1 ¼ 0; I2 ¼ 0; I3 ¼ 1: ðD19Þ

To proceed further, we assume that initially both the three
beams and the continuous polarization vectors are closely
aligned to the z-axis, and we write the constants αv at the
initial time as

αv ¼
Dz

vP
i
Lz
i ui

v−ui

: ðD20Þ

The integrals In therefore become

In ¼
X
v

Dz
vP

i½Lz
iui

Q
j≠iðuj − vÞ� v

n: ðD21Þ

The denominator of this expression is a second-order
polynomial, which corresponds up to a constant to the
initial Lax vector of the three-beam system

X
i

�
Lz
iui

Y
j≠i

ðuj − vÞ
�
¼

Y
j

ðv − ujÞ
X
i

Lz
iui

v − ui
: ðD22Þ

The vanishing of the Lax vector coincides in form with the
dispersion relation, see Eq. (9). Therefore, it follows that
the zeros of the denominator of In coincide with the
eigenfrequencies of the three-beam system divided by
Mz

1, namely ū ¼ Ω=Mz
1. Since the three-beam system is

by construction unstable, there are two such frequencies
complex conjugate to one another. Therefore, we may

rewrite the definition of In as

In ¼
X
v

Dz
v

Mz
1ðvþ ūÞðvþ ū�Þ v

n: ðD23Þ

If we now write the two conditions I1 ¼ 0 and I2 ¼ 0 as

X
v

vDz
v

jvþ ūj2 ¼ 0; ðD24aÞ

X
v

vDz
v

jvþ ūj2 ðv − ReðuÞÞ ¼ 0; ðD24bÞ

we see that they are equivalent to requiring that the complex
eigenfrequency of the continuous beam system coincides
with the eigenfrequency of the three-beam system. In turn,
the condition I3 ¼ 1 can be rewritten as

X
v

Dz
vv3

Mz
1ðv2 þ jūj2 þ 2vReðūÞÞ ¼

X
v

Dz
vv

Mz
1

¼ 1; ðD25Þ

and therefore is just the matching of the initial values ofDz
1

and Mz
1. This confirms that the procedures of Refs. [32,50]

are equivalent.
Therefore, the mapping conditions on D1 can be written

in the form

X
v

vDz
v ¼

X
i

uiL
z
i ; ðD26aÞ

X
v

vDz
v½v −ReðūÞ�

v2 þ jūj2 þ 2ReðūÞv ¼
X
i

uiL
z
i ½ui −ReðūÞ�

u2i þ jūj2 þ 2ReðūÞui
¼ 0;

ðD26bÞ

X
v

vDz
vImðūÞ

v2 þ jūj2 þ 2ReðūÞv ¼
X
i

uiL
z
i ImðūÞ

u2i þ jūj2 þ 2ReðūÞui
¼ 0:

ðD26cÞ

Incidentally, these conditions can be given a simple
physical interpretation using an electrostatic analogy (see
also Ref. [80]). If we interpret vDz

v as a continuous linear
charge density, the quantity appearing in the second and
third Eq. (D26) is the x and y component of the electrostatic
field generated at the point ðReðūÞ; ImðūÞÞ. The charge
distribution vDz

v vanishes at two points, namely at v ¼ 0
and v ¼ vc, the crossing point of Dz

v. Therefore, the three-
beam mapping corresponds to replacing the continuous
distribution, split into three intervalswith alternating charges,
by three effective charges uiL

z
i placed at the positions ui

giving the same total charge, and with an electrostatic field
vanishing at the same off-axis point. These effective charges
can of course be chosen in the interval −1 < ui < 1, since
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they represent some kind of average properties of the
continuous distribution in the same interval.
In addition to these three conditions, we may add the

condition on the matching of D0 at the initial instant, which
reads X

v

Dz
v ¼

X
i

Lz
i : ðD27Þ

In this form, the electrostatic analogy breaks down, since
we cannot attribute a direct physical meaning to Dz

v.
We notice that the matching condition on D0 could also
be found by equating the sum over v of Eq. (D16) to M0,
which leads to the equality

pI0 ¼ 1: ðD28Þ

After multiplying both sides by jūj2, and using I1 ¼ I2 ¼ 0,
this equation can be rewritten as

p
Dz

0

Dz
1

¼ jūj2; ðD29Þ

as also found in Ref. [50]. This is a relation between the
unstable frequency, the moments of the distribution, and
the three-beam parameters. In particular, it follows that the
existence of a three-beam system with all juij < 1 requires
the inequality

jūj2 <
				Dz

0

Dz
1

				 ðD30Þ

to be satisfied. We emphasize that this property is only
required if we want to impose the matching both of D0 ¼
M0 and D1 ¼ M1; as we have proven earlier, the less
restrictive condition D1 ¼ M1 does not require this prop-
erty, so that a representative three-beam system can
certainly always be found with this relaxed requirement.
Finally, the full set of conditions may be written more

compactly as

X
v

Dz
v

jvþ ūj2

0
BBB@

1

v

v2

v3

1
CCCA ¼

X
i

Lz
i

jui þ ūj2

0
BBB@

1

ui
u2i
u3i

1
CCCA: ðD31Þ

If we regard now ρv ¼ Dz
v=jvþ ūj2 as a distribution over

the interval ½−1; 1�, this form shows that the three beams are
effectively replacing the continuous distribution with a
discrete distribution whose moments of order up to 3 are
identical.

3. A practical example

Here we provide the reader with a worked-out example
of how to construct a three-beam system representative of a
continuous distribution with a single unstable frequency.
Our example is based on the continuous spectrum of case D
of Ref. [50]; the angular distribution is

Dz
v ¼ 0.11 − 0.5e−12.5ð1−vÞ2 : ðD32Þ

We may first check that our criterion for the existence of an
instability, Eq. (10), is satisfied for this distribution; the
crossing is at vc ¼ 0.652, and both conditions in Eq. (10)
are verified. The unstable frequency that solves the
dispersion relation Eq. (9) is

ū ¼ Ω
Mz

1

¼ −0.203994 − 0.211175i: ðD33Þ

We can now enforce the conditions Eq. (D30). These are
four equations for the six unknowns ui and Li. The simplest
way to proceed is to notice that the first condition in
Eq. (D30) can be traded for Eq. (D29), which provides a
definite connection between the velocities of the three
beams. As in Ref. [50], we may choose u1 ¼ −1 and
u3 ¼ 1, so that

u2 ¼ −
Dz

1jūj2
Dz

0

: ðD34Þ

For the special Case D as an example, we find

u2 ¼ 0.096: ðD35Þ

At this point, our only unknowns are the Lz
i , or, equiv-

alently, the combinations

Φi ¼
Lz
i

jui þ ūj2 : ðD36Þ

The three remaining conditions in Eq. (D30) form a set of
three linear equations in the three unknowns Φi, which are
therefore easily inverted. Finally, since we know the
velocities ui, we can obtain the numerical values for Lz

i

Lz
1 ¼ 0.072; Lz

2 ¼ 0.062; Lz
3 ¼ −0.040: ðD37Þ

Notice that with the choice u1 ¼ −1 and u3 ¼ 1, the
procedure leads to a definite prescription for the three-
beam system.
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