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The observation and distinction of two compact stars with an identical mass but a different radius would
be a clear sign of hadron-quark phase transition in nuclear matter. Motivated by studies searching for
significant deviations in the observables of twin stars, we investigate the differences that manifest in their
r-mode instability windows and spin-down evolution. Firstly, we obtain a set of hybrid equations of state
(which predict the existence of a third stable branch of compact objects) by employing the well-known
Maxwell construction within the phenomenological framework of constant speed of sound parametrization.
Then, we systematically study the influence of certain parameters, such as the energy density jump (in the
resulting hybrid equation of state) and the crust elasticity, on the deviations appearing in the r-mode
instability windows and spin-down evolution of twin stars. We conclude that two stars with an identical
mass and fairly similar spin frequency and temperature, may behave differently with respect to r-modes.
Thus, the future possible detection of gravitational waves (due to unstable r-modes) from a star laying in
the stable region of the frequency-temperature plane would be a strong indication for the existence of twin
stars. Furthermore, we consider current data for the spin frequencies and temperatures of observed pulsars
and compare them to the predictions made from equations of state employed in this study. We find that,
depending on the transition density and the rigidness of the crust, hybrid equations of state may be a viable
solution for the explanation of existing data.
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I. INTRODUCTION

Compact stars serve as excellent astrophysical labora-
tories for the study of dense nuclear matter [1–5]. The
systematic study of pulsars and the detection of gravita-
tional waves (GW) have already yielded significant con-
straints on the nuclear equation of state (EOS) [6–14].
A question that still remains unanswered concerns the
relevant degrees of freedom up to densities appearing in
neutron star cores [15,16]. Compact stars could be purely
hadronic, but the very dense environment indicates the
possible existence of exotic forms of matter such as
deconfined quarks. The latter opens up new scenarios that
predict strange quark stars, composed purely of strange
quark matter, or hybrid stars where a quark core is
surrounded by a mantle of hadronic matter. In practice,
the distinction between neutron, strange, and hybrid stars is
not an easy task as their radius around the observed mass
region of 1.4M⊙ is rather similar. Alternative approaches
that may assist identifying the phases of nuclear matter
within compact stars include the study of their thermal
evolution [17,18], binary neutron star mergers [19–21], and
phenomena related to vibration or rotation [22–29].

The construction of hybrid EOSs often requires us to
describe the hadronic and quark phases separately.
Depending on the dynamics of the phase transition,
and mainly on the speed of sound structure in quark
matter, a third family of compact objects may appear in
the mass-radius plane [5]. The aforementioned family of
compact stars gives rise to the existence of twin stars, i.e.,
stars with an identical mass but a fairly different radius
[30–34]. Recently, the scenario of twin stars drew a lot
attention, mainly because of the discovery of GW and
thus, the possibility of detecting them [35–39]. Note that
identifying twins would be the smoking gun evidence of
hadron-quark phase transition in compact stars. In a
recent study, Lyra et al. [18] investigated the impact of
compactness on the cooling of twin pairs, finding that
only stars with a significantly different radius exhibit
considerable deviations in their thermal evolution. In
addition, Tan et al. [40] examined imprints that manifest
in binary Love universal relations due to the existence of a
third family. Furthermore, Landry and Chakravarti [41]
argued on the possibility of distinguishing twins, through
their tidal deformabilities, with next-generation GW
detectors. In the present work, we study for the first
time the deviations in the r-mode instability windows of
twin stars and hence, the differences that appear in their
rotational limits.
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It is well-established that relativistic stars may suffer a
number of different instabilities [42,43]. Among them, the
r-mode instability (rotational mode) has been proposed as
an explanation for the fact that neutron stars do not spin up
to the theoretically allowed limit known as the Kepler
frequency [43–50]. The r-modes are oscillations appearing
in rotating stars, and their restoring force is the Coriolis
force. In principle, the r-mode instability can only take
place if the gravitational-radiation driving timescale is
shorter compared to the timescales of the various dissipa-
tion mechanisms that may occur in the neutron star interior.
By equating the driving and damping timescales, one
obtains the so-called r-mode instability window, which
defines a critical frequency (maximum spin frequency for
stable r-modes) as a function of temperature [44].
In the past decades, there has been an extensive study of

the r-modes (and numerous other types of oscillation) due
to the possible detection of their GW [43–57]. There are
several studies predicting that accreting stars in low mass
x-ray binaries (LMXBs) may be subject to long-lasting
r-modes [58,59]. In particular, compact stars containing
exotic matter, such as deconfined quarks or hyperons,
may be persistent sources of GW emission [60,61]. In
addition, some authors [62] argue for the existence of a
large unobserved population of quiescent (postaccretion)
LMXBs characterized by long-lived (∼109 yr) r-mode
emission. Specifically, Chugunov et al. [62] suggested
the existence of a new class of neutron stars, the so-called
HOFNARS (hot and fast nonaccreting rotators). Such stars
retain a high temperature due to heating associated with
unstable r-modes. Following the discovery of gravitational
radiation from binary neutron star mergers, the search for
GW signals associated with r-modes has started [63–65]. It
is notable that the absence of a detection so far has provided
the opportunity to set upper limits on the GWemission and
the r-mode saturation amplitude [64,65].
It has been shown that the r-mode instability window of

purely neutron stars is very wide to be compatible with
current LMXBs data (assuming that all observed stars are
stable with respect to r-modes; e.g., there are no
HOFNARS) [66,67]. Specifically, a very strong dissipation
mechanism, such as a perfectly rigid crust, is essential for
the stabilization of r-modes. Numerous studies have
attempted to treat this problem by considering the presence
of exotic degrees of freedom in compact star cores [67–72].
In particular, it has been shown that the bulk viscosity of
hyperon or deconfined quark matter may be sufficient to
stabilize r-modes for the frequencies and temperatures of
the observed pulsars [67,68]. However, it is important to
comment that hyperons are expected to appear in densities
of 2–3 n0 (where n0 ¼ 0.16 fm−3, is the nuclear saturation
density). Thus, the fraction of the core where hyperons are
present, and hence, the effective damping due to their
viscosity, is limited in low mass neutron stars. Similarly, the
width of the r-mode instability window of hybrid stars is

determined mainly by the amount of quark matter in their
core [26,73]. Subsequently, the fastest rotating pulsars can
only be explained if they are massive enough [68,69].
In Ref. [74], the authors employed a set of analytical

solutions of the Tolman-Oppenheimer-Volkov (TOV) equa-
tions in order to study the influence of neutron star bulk
properties on the r-modes. They found that the instability
window is quite sensitive to the radius of a star [74]. The
latter leads to the conclusion that if twin stars do exist, their
instability windows would deviate due to their radius
difference. In addition, taking into account that the relevant
degrees of freedom are different in the center of the two
twins, the damping mechanisms that suppress the growth of
the r-mode instability (bulk and shear viscosities) are going
to be different as well [22]. This opens up a new intriguing
scenario where two stars with an identical mass, and similar
rotational frequency and temperature profiles, may behave
differently with respect to r-modes. In particular, if we
assume that a star having angular velocity Ωi and temper-
ature Ti is stable with respect to the r-modes, then any other
(same mass) star with similar temperature and Ω ≤ Ωi
should be stable as well. However, this is not necessarily
the case if the two stars are twins since their instability
windows are expected to be different. Thus, the future
detection of GW due to unstable r-modes, from multiple
sources, may allow us to identify a third family of compact
objects.
The motivation of the present study is twofold. Firstly,

we wish to systematically study the parameters (energy
density gap, crust elasticity, transition density) that affect
the deviation between the r-mode instability windows of
twin stars. In addition, we wish to clarify how these
parameters affect the differences that appear in the spin-
down evolution (due to unstable r-modes) of twins.
Secondly, we wish to examine if EOSs that predict a third
family of compact objects are a viable solution for the
explanation of current LMXBs data.
This paper is organized as it follows. Section II is

devoted to the presentation of the hadronic models
employed in this work and the construction of hybrid
EOSs that predict twin star configurations. In Sec. III, we
discuss in detail the r-mode instability formalism, while in
Sec. IV, we present a simplified model for the spin-down of
compact stars (due to unstable r-modes). In Sec. V, we
present our results and discuss their implications.
Section VI contains a summary of our findings.

II. HADRON-QUARK PHASE TRANSITION

A hybrid EOS often results from the combination of a
low density hadronic model and a high density quark EOS.
The key ingredient for the construction is the matching
process between the two phases. In particular, there are
two widely employed methods in order to obtain
hybrid EOSs: a) the Maxwell construction and b) the
Gibbs construction [75]. The main difference of the
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aforementioned approaches is the number of charges that
are globally conserved in the system [76]. In the former
case, the phase transition is abrupt (i.e., the two phases are
separate), while in the latter scenario a mixed phase is
present.
In the present work, we adopt the Maxwell construction

for the description of the phase transition. According to
lattice QCD calculations, this particular approach is the
favored one in the scenario where the surface tension σs in
the hadron-quark crossover is larger than the critical value
of ∼40 MeV fm−2 and lower than the highest allowed one
of ∼100 MeV fm−2 [77]. In this case, the phase transition is
sharp, resulting in a discontinuity in the energy density.
Specifically, the energy density reads [35–38]

EðPÞ ¼
(
EHADRONðPÞ; P ≤ Ptr

EðPtrÞ þ ΔE þ ðcs=cÞ−2ðP − PtrÞ; P > Ptr:

ð1Þ

where P stands for the pressure, cs is the speed of sound,
and c is the speed of light. Furthermore, Ptr and ΔE denote
the transition pressure and the energy density jump,
respectively. It is important to comment that the first line
of Eq. (1) refers to the hadronic phase, while the second one
to the quark model. We treat the quark phase using a
phenomenological approach known as the constant speed
of sound (CSS) parametrization [78]. More precisely, the
second line of Eq. (1) can be though as a first order Taylor
expansion of the energy density around the transition
pressure. Even though such a treatment lacks a rigorous
theoretical basis, it is widely employed as it is mimics the
dynamics of the phase transition, and it also allows an
easy construction of EOSs predicting twin star configura-
tions [78–88].
Following the assumption of recent works [79–88], the

speed of sound is set equal to the speed of light in order to
obtainEOSs consistentwith the 2M⊙ constraint.However, it
is important to comment that, according to perturbative
QCD (pQCD) calculations, cs in quarkmatter tends to c=

ffiffiffi
3

p
from below at large densities (conformal limit) [89–91].
Nevertheless, the applicability of the conformal limit is
reliable for the density range beyond 40 n0, which is
considered to be well-below the central density of compact
stars [92]. Therefore, the speed of sound in strange quark
matter could possibly be larger than c=

ffiffiffi
3

p
and then

decrease, with increasing baryon density, in order to satisfy
the constraints from pQCD. For a detailed picture concern-
ing the speed of sound structure of hybrid EOSs, the reader is
referred to Refs. [92,93].
A first order phase transition, between hadronic and

quark matter, is not sufficient by itself for the appearance of
a third family of compact objects. In particular, the
appearance of twin stars requires the existence of an
unstable region in the M-R diagram, where the mass

decreases with increasing central pressure. The condition
that needs to be satisfied in order to obtain a third family
was first studied by Seidov [94], and it is formulated as
follows:

3Ptr þ 3E1 − 2E2 < 0; ð2Þ

where E1 ≡ EðPtrÞ and E2 ≡ EðPtrÞ þ ΔE. Thus, by reor-
ganizing Eq. (2), one obtains the minimum energy density
jump for the existence of twin star configurations, which is
written as

ΔEcr ¼
1

2
Etr þ

3

2
Ptr: ð3Þ

For EOSs that predict ΔE ≥ ΔEcr, two distinct stable
branches may appear on the M-R plane.
The resulting hybrid EOSs ought to be consistent with

neutron star observations. For example, if one assumes that
the ∼1.4M⊙ compact stars involved in GW170817 [12] or
in PSR J0030þ 0451 [95] are purely hadronic, then the
low density sector of the EOS has to satisfy tight constraints
(Λ1.4 ¼ 190þ390

−120 and R1.4 ≤ 14 km, where Λ denotes the
dimensionless tidal deformability) [41]. On the other hand,
if these compact objects are hybrid stars, the afore-
mentioned constraints are lifted from the hadronic part
of the EOS. In the present work, we adopt the GRDF-DD2
(simply DD2 from now on for practical purposes) [96] and
the NL3 [97] EOSs for the description of the low density
phase. It is worth commenting that, both of these EOSs
have been previously employed in the study of twin stars
[39,98]. Finally, for the description of the outer crust (in the
case of the NL3 model), the well-known EOS of Baym
et al. [99] is employed.

III. r-MODE INSTABILITY FORMALISM

Hydrodynamics and the influence of various dissipative
processes define the time evolution of the r-modes accord-
ing to the law eiωt−t=τ, where ω is the real part of the
frequency, given by [51]

ω ¼ −
ðl − 1Þðlþ 2Þ

lþ 1
Ω: ð4Þ

In Eq. (4), Ω is the angular velocity of the unperturbed star,
and l defines the kind of mode [51]. In the present study, we
will consider the case l ¼ 2. The imaginary part 1=τ is
related to the effects of gravitational radiation and the
various kinds of viscosity (shear, bulk, etc.) [51–54]. We
consider the case of a small-amplitude limit, where a mode
is a driven, damped harmonic oscillator, and the exponen-
tial damping timescale is given by
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1

τðΩ; TÞ ¼
1

τGRðΩÞ
þ 1

τELðΩ; TÞ
þ 1

τBVðΩ; TÞ
þ 1

τSVðΩ; TÞ
;

ð5Þ

where τGR is the gravitational radiation timescale, τEL is the
damping timescale due to viscous dissipation at the
boundary layer of the rigid crust and fluid core and
τBV ,τSV are the bulk and shear viscosity dissipation time-
scales, respectively [51–54]. It is notable that there is a
battle between the gravitational radiation, which tends to
drive the r-mode unstable, and the various dissipation
mechanisms that induce stabilization. The critical angular
velocity Ωc (or critical spin frequency fc ¼ Ωc=2π) cor-
responds to the velocity at which the two mechanisms
(amplification and damping) are balanced and it is found
through the equation 1=τðΩcÞ ¼ 0 [51–54].
The contribution of gravitational radiation to the imagi-

nary part of the frequency is given by the following
expression [51,53]:

1

τGR
¼ −

32πGΩ2lþ2

c2lþ3

ðl − 1Þ2l
½ð2lþ 1Þ!!�2

�
lþ 2

lþ 1

�
2lþ2

×
Z

R

0

ρðrÞr2lþ2dr ðs−1Þ; ð6Þ

where ρðrÞ is the mass density profile of a star.
The bulk viscosity ξBV is the dominant damping mecha-

nism at high temperatures [51]. It originates from the varia-
tions of pressure and density due to the pulsation modes
and in nucleonic matter it is given by the formula [51],

ξHBV ¼ 6.0 × 10−59
�
lþ 1

2

�
2
�
Hz
Ω

�
2

×

�
ρ

gr cm−3

�
2
�
T
K

�
6

ðgr cm−1 s−1Þ: ð7Þ

For quark matter, the bulk viscosity is mainly determined
by the weak process dþ s ↔ uþ s [22]. Following the
discussion of Refs. [22,26], we will use an approximate
expression, which is appropriate for small oscillations of
the fluid and when 2πT ≫ δμ ¼ μs − μd. Specifically,

ξQBV ¼ αT2

ðκΩÞ2 þ βT4
ðg cm−1 s−1Þ; ð8Þ

where

αT2 ¼ 6.66 × 1020
�

μd
MeV

�
3
�

ms

MeV

�
4

T2
9 ðg cm−1 s−3Þ;

βT4 ¼ 3.57 × 10−8
�

μd
MeV

�
6
�
1þ m2

s

4μ2d

�
2

T4
9 ðs−2Þ;

where T9 ¼ T=ð109 KÞ, μd and μs are the chemical
potential of the down and strange quarks, respectively,
ms ¼ 100 MeV is the mass of the strange quark and
κ ¼ 2=3. Since our model for quark matter does not provide
information about the chemical potential profiles, we will
rely on the approximate expression μd ¼ 235 MeV
ðρ=ρ0Þ1=3 [22], which has been employed in numerous
r-mode studies [22,24,52,60,71]. In the previous formula,
ρ0 denotes the nuclear density, and it is equal to
2.8 × 1014 g cm−3. Finally, the bulk viscosity timescale
is given by [51,56]

1

τBV
¼ 4π

690

�
Ω
Ω0

�
4

R2l−2
�Z

R

0

ρðrÞr2lþ2dr

�
−1

×
Z

R

0

ξBV

�
r
R

�
6
�
1þ 0.86

�
r
R

�
2
�
r2dr; ð9Þ

where Ω0 ¼
ffiffiffiffiffiffiffiffiffi
πGρ̄

p
and ρ̄ ¼ 3M=4πR3 is the mean density

of the star.
The shear viscosity ηSV is the dominant mechanism at

low temperature. This mechanism is due to the momentum
transport when particle-particle scattering processes take
place. In particular, the viscosities associated with the
neutron-neutron and electron-electron scattering are given
respectively by [53]

ηnn ¼ 347

�
ρ

gr cm−3

�
9=4

�
T
K

�
−2

ðg cm−1 s−1Þ; ð10Þ

ηee ¼ 6.0 × 106
�

ρ

gr cm−3

�
2
�
T
K

�
−2

ðg cm−1 s−1Þ: ð11Þ

For quark matter, the shear viscosity is dominated by
quark-quark scattering in QCD. Following Ref. [26], we
have

ηq ¼ 5 × 1015
�
0.1
αs

�
3=2

�
ρ

ρ0

�
14=9

T−5=3
9 ðg cm−1 s−1Þ; ð12Þ

where as is the coupling constant for the strong interaction.
In the present work, we will use a typical value of as ¼ 0.1.
The dissipation timescale due to the shear viscosity is given
by [51]

1

τSV
¼ ðl − 1Þð2lþ 1Þ

�Z
R

0

ρðrÞr2lþ2dr

�
−1

×
Z

R

0

ηSVr2ldr; ðs−1Þ: ð13Þ

In the special case where the dissipation effect due to the
crust has been included, the corresponding timescale is
given by [53]
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τEL ¼ 1

2Ω
2lþ3=2ðlþ 1Þ!
lð2lþ 1Þ!!Cl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩR2

cρcr
ηcr

s

×
Z

Rc

0

ρðrÞ
ρcr

�
r
Rc

�
2lþ2 dr

Rc
ðsÞ: ð14Þ

In Eq. (14), Rc is the core’s radius, while ηcr and ρcr are the
viscosity and density of the fluid at the crust-core interface,
respectively. The factor Cl, for l ¼ 2, takes the value
C2 ¼ 0.080411. The expression of Eq. (14) refers to the
case where the crust is rigid and consequently, static in
the rotating frame. However, in a more realistic scenario,
the motion of the crust (due to the mechanical coupling
with the core) induces an increase of the timescale τEL by a
factor of 1=S2, where S is the slippage factor defined as
S ¼ Δv=v [100]. In particular, v denotes the velocity of the
core, and Δv is the difference between the velocities in the
inner edge of the crust and the outer edge of the core [100].
Even though the r-mode instability manifests in rotating

objects, the presented formalism treats stars as if they were
spherically symmetric. In principle, the rotational effects on
a compact star’s shape are of ∼Ω2, and they are typically
ignored in most calculations of inertial modes (as in the
present study). At the moment, there are not very detailed
calculations, but in the few cases where the r-mode
spectrum was studied in fast rotation, there were no reports
for any significant effect [101–104]. More specifically,
earlier nonlinear [101] and linear simulations [102] for fast
rotating stars did not report considerable variations.
However, it should be pointed out that these calculations
were performed in the Cowling approximation [105].
More recent simulations, based on a fully general relativ-
istic code [103,104], did not demonstrate significant
influence in the spectrum from the presence of higher
order Ω terms both in the equilibrium configuration and in
the perturbation equations [106].
It has been shown that the critical frequency Ωc is quite

sensitive to the radius of a star [74]. More precisely, it has
been found that for relatively low and high values of
temperature, Ωc scales with the radius as Ωc ∼ R−3=2 and
Ωc ∼ R−3=4, respectively [74]. The latter leads to the
conclusion that the r-mode instability windows (the areas
above ΩcðTÞ curves) of twin stars are going to be different.
Furthermore, if one takes into account that the damping
mechanisms in quark matter are, in principal, stronger
than those in hadronic matter (for moderate temperature
values [26]), then the instability window of a hybrid star is
expected to be shifted to larger Ωc compared to the one of
its hadronic twin. Thus, there are two mechanisms which
act additively and may drastically affect the instability
windows of the two different branches. The above findings
are essentially a strong motivation for investigating the
possible identification of twin stars due to the implications
of their different instability windows.

Another crucial issue is the limitation of the instability
window, at high frequencies, from the corresponding
Kepler angular velocity ΩK (the maximum rotation fre-
quency of the star). Following Ref. [51], the latter quantity
is approximately given by ΩK ¼ 2

3
Ω0. It is worth mention-

ing that several studies, which investigated possible uni-
versal relations for the Kepler frequency, have verified the
existence of a correlation between the angular velocity
of a maximally rotating neutron star and the mean density
of the corresponding (equal mass) spherical configuration
ρ̄ [107–110]. It is interesting that in the case of twin stars,
the Kepler frequency of the hybrid branch may be even
20% higher compared to the hadronic branch, due to the
different radius values. This apparent differentiation at the
upper limit of the instability window can by itself be a
criterion for separating the two branches. Connecting the
analysis presented above with the fact that newly
born compact stars may rotate close to their mass shedding
limit [111], we conclude that the spin-down evolution paths
of twin stars are going to exhibit distinct deviations.

IV. SPIN-DOWN AND COOLING

We are now going to present a simplified model to
describe the spin-down (due to unstable r-modes) of a
hadronic or hybrid star simultaneously with its cooling.
During the phase that the angular momentum is radiated
away to infinity by gravitational waves, the angular
velocity of a star evolves as follows [54]:

dΩ
dt

¼ 2Ω
τGR

α2Q
1 − α2Q

; ð15Þ

where α is the dimensionless r-mode amplitude parameter.
This parameter strongly affects the r-mode evolution and
usually takes values in the large interval α ¼ 1 − 10−8.
Moreover, α in general depends both on the viscosity (and
consequently on the temperature T and cooling process)
and on time. However, following Refs. [54,112], we
consider that dα=dt ¼ 0. In addition, the quantity Q is
related to the bulk properties of a star and it is defined as
Q ¼ 3J̃=2Ĩ, where

J̃ ¼ 1

MR4

Z
R

0

ρðrÞr6dr; Ĩ ¼ 8π

2MR2

Z
R

0

ρðrÞr4dr: ð16Þ

Under the aforementioned assumptions, on can solve
Eq. (15) analytically and obtain [55,112]

ΩðtÞ ¼
�

1

Ω−6
in − 6Dt

�
1=6

; ð17Þ

where
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D ¼ 2α2Q
τ̃GRð1 − α2QÞ

1

Ω6
0

; τ̃GR ¼
�
Ω
Ω0

�
6

τGR: ð18Þ

Ωin is a free parameter that corresponds to the initial
angular velocity and τ̃GR is the fiducial gravitational-
radiation timescale.
In order to combine the concurrent processes of spin-

down and thermal evolution of twin stars, we adopt, as a
first approximation, the standard cooling scenario [113].
Standard cooling is the simplest thermal evolution
model, since it only accounts for the energy loss due to
neutrino emission via the modified Urca process [113].
Such an approach has been previously employed by Owen
et al. [54], and the temperature drops according to the law,

TðtÞ ¼
�
t
tc
þ
�
109 K
Ti

�
6
�−1=6

109 K; ð19Þ

where Ti is the initial temperature of the star (a typical
value is Ti ≃ 1011 K) and tc is the cooling rate parameter
(tc ≃ 1 year [54]). We need to highlight that the present
model is more suited for the case of young isolated neutron
stars, as only neutrino and no photon emission is consid-
ered, and it may fail to provide an accurate description for
the cooling of LMXBs. In particular, the thermal evolution
of LMXBs is a far more complicated problem, as there may
be additional mechanisms in action, such as heating due to
accretion. For more details concerning the use of the
present model in the r-mode evolution, the reader is
referred to the discussion of Ref. [54].
One may argue that the two twins may cool down in a

different way, considering the different cooling mecha-
nisms in hadronic and quark matter. Obviously, a more

elaborate study is necessary if one is interested in an
accurate quantitative description of the cooling process.
However, according to the findings of Lyra et al. [18], the
thermal evolution of twin stars is only distinct when there is
a large difference in their compactness. More precisely, in
the case where there is a 10% compactness difference
(which is the case for the configurations constructed in the
present study), the thermal evolution of the two twins is
nearly identical [18]. From that perspective, we expect that
the selected model will allow a qualitative comparison for
the evolution of twin stars on the f-T∞ plane.

V. RESULTS AND DISCUSSION

A. Mass-radius diagrams

In order to study the differences that manifest in the
r-mode instability windows and spin evolution of twin
stars, we constructed a set of hybrid EOSs, using the
analysis presented in Sec. II. In particular, the low density
phase is described by the DD2 and NL3 EOSs, where for
the quark matter, a phenomenological constant speed of
sound model is employed. The values of the energy jump
are selected in order to obtain EOSs that are consistent with
the constraints from astrophysical observations. For both
hadronic models, the resulting EOSs predict twin stars with
mass of 1.2 or 1.4M⊙.
Figure 1 depicts the mass-radius dependence for the

EOSs employed in this study. In the left panel, the hadronic
phase is described using the DD2 EOS, while for the results
of the right panel the NL3 model was employed. The solid
black curves stand for the case where no phase transition
occurs (i.e., the M-R diagrams for the purely hadronic
EOSs). In addition, the shaded areas correspond to
constraints based on the analysis of the GW170817

FIG. 1. Mass-radius diagrams for the DD2 (left panel) and NL3 (right panel) EOSs. The black solid curves indicate the original EOSs.
The solid (dashed) horizontal line is set to 1.4 (1.2) M⊙. The shaded areas correspond to the constraints from the analysis of the
GW170817 event [12,13]. Each hybrid EOS is identified from the baryon density ntr, where the phase transition occurs and by the
energy density jump. The energy density gap is given in units of MeV fm−3, which are omitted in the legend for simplicity.
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event [12,13]. Finally, the horizontal lines are drawn to
indicate the twin configurations with 1.2 and 1.4M⊙.
As it is evident from Fig. 1, increasing the energy density

jump results into a softening of the EOS. Thus, the largest
values for ΔE are selected so that EOSs remain consistent
with the 2M⊙ constraint. Furthermore, we need to highlight
that as ΔE increases, the radius difference of the two twins
becomes larger. The latter is expected to play a critical role
concerning the deviation of the r-mode instability windows
(see Sec. III) [74]. It is important to note that our analysis
does not include the limiting case where ΔE ¼ ΔEcr, as in
such a scenario the separation of the two twins is almost
negligible. In particular, if the phase transition occurs in
relatively low baryon density, a third family may not even
appear [39].

B. Qualitative analysis

Figure 2 presents the r-mode instability windows of
1.4M⊙ twin stars for the case where ΔE ¼ ΔEcrþ
100 MeV fm−3. The damping mechanism due to the
presence of a solid crust is not included. The results for
the hadronic and hybrid stars are indicated using dashed
and solid curves, respectively. Additionally, the horizontal
lines stand for the corresponding Kepler frequencies. Note
that in the x axis of the plot, one would not find the
temperature T, appearing in the formalism of Sec. III, but
the so-called redshifted temperature, which is given by
T∞ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
, where C ¼ GM=Rc2 is the compactness

of a star.
Firstly, we need to underline the sensitivity of the

instability window to the employed EOS. Specifically,

by comparing the instability windows of the purely
hadronic configurations one finds that the predicted critical
frequency is lower (in the low temperature region) when the
NL3 EOS is employed. This results from the fact that the
radius of a 1.4M⊙ compact star is smaller when the DD2
model is used [74]. Incidentally, the radius of the hybrid star
constructed using the NL3 EOS coincides with the radius of
the hadronic configuration using the DD2 EOS. The latter
results into an overlap of their instability windows in the low
temperature regime. However, the existence of a quark core,
in the hybrid star, leads to significant differences in the
critical frequencies for T∞ ≥ 108 K, where the bulk vis-
cosity plays a crucial role [26].
For a qualitative comparison of the r-mode instability

windows of twin pairs, one can divide Fig. 2 into three
representative regions. In particular, for T∞ ≤ 108 K
(where the shear viscosity is the dominant dissipation
mechanism [26]), the radius difference plays a crucial role
for the apparent critical frequency deviations. For 108 K ≤
T∞ ≤ 1010 K, the bulk viscosity (of quark matter [26]) is
the major damping mechanism, and the trend of the fcðT∞Þ
curve is altered for the hybrid twin. More precisely, the
critical frequency increases and then decreases with tem-
perature, leading to a local maxima. This topological
difference derives from the fact that the bulk viscosity of
quark matter is not a monotononic function of temperature.
Finally, for T∞ ≥ 1010 K, the bulk viscosity of hadronic
matter dominates in both twins, and their instability
windows essentially coincide. From an observational per-
spective, the differences that appear in the low temperature
regime will lead to different limits on the spin up of
accreting pulsars in LMXBs, depending on whether they
are hybrid or purely hadronic. Apart from the deviations
appearing in the critical spin frequencies of twin stars, we
need to comment that there is a ∼17% difference in their
Kepler velocities as well. Subsequently, a young hybrid star
can rotate much faster than its hadronic twin.

C. Energy density jump and crust effects

At this point, we wish to systematically study the
influence of certain parameters on the instability window
deviations of twin stars. In particular, we are going to vary
the value of the energy density gap and examine its effects.
Furthermore, up to this point, the only dissipative mech-
anisms considered in our calculations were the bulk and
shear viscosities. Now, we are also going to include the
damping mechanism due to the presence of a viscous
boundary layer. It is interesting that, as the aforementioned
mechanism is strong and common for both twins, the
critical frequency deviations due to different viscosities are
expected to be less pronounced.
Firstly, we are going to investigate the importance of the

energy density jump. As we mentioned, ΔE is the regulator
of the radius difference between twin configurations.
Figure 3(a) depicts the dependence of ΔR on ΔE for

FIG. 2. Critical spin frequency fc as a function of the redshifted
temperature T∞ (r-mode instability windows) for 1.4M⊙ twin
stars for the DD2 (blue) and NL3 (red) EOSs. The dashed lines
and solid lines correspond to the hadronic and hybrid twins,
respectively. The horizontal lines denoted the Kepler frequency
for its star. The value for the energy density gap is ΔEcr þ
100 MeV fm−3 for both EOSs.
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1.4M⊙ twin stars. Surprisingly, we find that the aforemen-
tioned quantities are connected through a linear formula.
Even though the exact ΔR − ΔE relation is sensitive to the
low density model, the slopes of the resulting fitted lines
appear to be very similar. It is worth pointing out that, from
the analysis presented in the previous sections, an incre-
ment of ΔE will result into larger deviations in the
instability windows due to an increase of ΔR. However,
as it is evident from Fig. 3(b), a larger value of ΔE also
results into a hybrid twin with a larger quark core fraction
xq ¼ Rq=R (where Rq is the quark core radius). Hence, the
damping due to quark matter’s bulk viscosity is going to be
even more effective. It is noteworthy thatΔE and xq are also
linearly dependent, and that the slopes of the lines are, once
again, not strongly sensitive to employed hadronic model.
The relations presented in Fig. 3 can be added to the other
correlations found in the detailed analysis of Ref. [98].
Finally, we need to underline that, through the relations
found above, the knowledge of the radius difference of twin
stars may provide important information concerning the
phase transition and the interior of hybrid stars.
Figure 4 depicts the dependence of the critical frequency

on temperature, for 1.4M⊙ twin stars constructed using
different ΔE values. In addition, the crust elasticity S is
varied from 0 to 1 in order to investigate the effects of a
viscous boundary layer. Furthermore, Fig. 4 contains
observational data inferred from LMXBs and millisecond
pulsars, where the temperature uncertainties derive from
different assumptions concerning the star’s envelope com-
position [114]. In particular, the small filled circles

demonstrate the internal temperature when a partially
accreted envelope is considered (Tfid in Table 1 of
Ref. [114]), while the error bars stand for the cases of a
fully accreted and a pure iron envelope (Tacc and TFe
columns in Table 1 of Ref. [114]).
It is worth pointing out that, the instability window

differences are more pronounced in the case where the NL3
model is employed. This results from the fact that as the
NL3 model is stiffer, it allows the construction of EOSs that
satisfy observational constraints even for large ΔE values.
Furthermore, Fig. 4 illustrates the strong impact of ΔE on
the resulting r-mode instability window of the hybrid twin.
In particular, in the case of ΔEcr þ 200, the spin frequency
difference for the two twins may reach values of ∼400 Hz
(see Fig. 4(d) and Table I). In accordance to the results
present by Lyra et al. [18], we conclude that the role of the
compactness is not only critical concerning the thermal
evolution of twin pairs, but it also significantly affects the
r-mode instability window of the hybrid configuration.
The most important effect when the damping due to a

solid crust is included, is that the peak appearing in the
instability window of the hybrid star (in a temperature
region around ∼3 × 108 K) drops down. However, depend-
ing on the selected ΔE value, large fc differences for the
two twins may remain (see Fig. 4 and Table II).

D. Comparison with observational data

As previously mentioned, it is rather difficult to explain
the observational data in the context of a purely hadronic
star. In particular, the not realistic assumption of a perfectly
rigid crust is essential [67]. For that matter, several studies
have investigated the r-mode instability window of com-
pact stars containing exotic forms of matter [67–72]. In a
recent work, Ofengeim et al. [68,69] examined if the
existence of hyperons in the core of compact stars can
lead to results compatible with current LMXBs data. What
they found is that for neutron stars with M ≤ 1.9M⊙, the
bulk viscosity of hyperonic matter leads to r-mode stabi-
lization in the f-T∞ regime where the observed neutron
stars appear [68,69].
At this point, we wish to examine if the hybrid EOSs

constructed in this study are in accordance to the observed
spin frequencies and temperatures in LMXBs. As it is
evident from Fig. 4, the r-mode instability window of the
hybrid twin is always narrower. In addition, in a minimal
scenario where the effects of the crust are not included the
explanation of the observational data is not possible.
However, depending on the energy density jump, a mod-
erate crust elasticity value would suffice for the construc-
tion of instability windows compatible with observations.
Specifically, for the NL3 model (ΔEcr þ 200) and a
relatively small crust elasticity of 0.2, most of the observed
stars lay in the stable region of the f-T∞ plane. Another
critical point is that, in all cases, there are stars (from the
dataset) that lay in the region between the fcðT∞Þ curves

(a)

(b)

FIG. 3. Panel a: Radius difference between 1.4M⊙ twin stars as
a function of the energy density gap, Panel b: The quark core
fraction of a 1.4M⊙ hybrid star as a function of the energy density
jump.
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for the two twins. Hence, while such stars can be consid-
ered stable with respect to r-modes in the framework of the
hybrid twin, they would be unstable if they were purely
hadronic. The latter comment is of most importance, as the

detection of GW emission, from stars laying in a f-T∞

region where r-modes are considered to be stable, would be
a strong indication of hadron-quark phase transition.
In Fig. 5, we present the r-mode instability windows for

compact stars in the mass range 1.2–1.9M⊙ and a relatively
low crust elasticity value S ¼ 0.1. In panels a and c, the
twin configurations have a mass of 1.2M⊙, while in panels
b and d, their mass is 1.4M⊙. In the first case, we find that,
the bulk viscosity of quark matter is sufficient to stabilize
r-modes for moderately massive compacts stars
(M ≤ 1.6M⊙) in the whole f-T∞ range occupied by the
observed stars in LMXBs. In latter case, where the phase
transition occurs at higher baryon density, more massive
compact star configurations (1.8 or 1.9M⊙ depending on
the hadronic EOS) are essential for the explanation of
current LMXBs data.
Another observation that can be made from Fig. 5 is that

right after the phase transition occurs a narrowing of the
instability window is evident. Then, as the mass further
increases the instability window becomes wider for low
temperature values (T∞ ≤ 108 K). The fact that higher

(a) (b)

(c) (d)

FIG. 4. The effect of energy density gap in the deviation of the r-mode instability windows of 1.4M⊙ twin stars for increasing crust
elasticity values. Panel (a) DD2 EOS and ΔE ¼ ΔEcr þ 75 MeV fm−3, (b) DD2 EOS and ΔE ¼ ΔEcr þ 100 MeV fm−3, (c) NL3 EOS
and ΔE ¼ ΔEcr þ 100 MeV fm−3, (d) NL3 EOS and ΔE ¼ ΔEcr þ 100 MeV fm−3. Dashed (solid) lines indicate the hadronic (hybrid)
twin. The dotted points correspond to observational data taken from Ref. [114]. The no crust indication in the legend corresponds to the
case where the damping due to a viscous boundary layer has not been included.

TABLE I. The difference in the critical frequencies for 1.4M⊙
twin stars using the NL3 model for different values of temper-
ature and energy density jump. The damping due to a viscous
boundary layer (rigid crust) is not considered for the results
presented in this table.

ΔE (MeV fm−3) ΔR (km) T∞ (108 K) Δfc (Hz)

ΔEcr þ 100 1.75 1 78.98
5 179.66

10 75.14
ΔEcr þ 150 2.40 1 132.58

5 288.95
10 137.42

ΔEcr þ 200 2.99 1 181.99
5 381.43

10 192.05
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mass configurations have wider instability windows is a
known result from previous studies [115]. It is interesting
that while a higher mass is necessary for the stabilization
of r-modes in observed stars with T∞ ≥ 108 K, it fails to
provide an explanation for the stars appearing in a lower
temperature regime. However, the low temperature region

can be covered by hybrid star configurations of lower mass.
In principle, if a star slightly surpasses a critical mass, after
which a phase transition occurs, then its instability window
will be also slightly different from the one of the most
massive purely hadronic configuration. In contrast, if the
structure of the phase transition predicts the existence of a
third family, then stars with mass equal or slightly larger
than the aforementioned critical mass are going to exhibit
considerable deviations in their r-mode instability win-
dows. The nontrivial behavior of stars having narrower
instability windows compared to those of lower mass stars
(for low T∞), is characteristic of an EOS predicting twin
configurations.

E. Spin down and thermal evolution

In Fig. 6, we display the time evolution for the frequency
and the corresponding spin-down rate of 1.4M⊙ twin stars.
The upper and lower panels contain results for the DD2
and NL3 EOSs, respectively. For comparison reasons, we
consider the same initial frequency of 650 Hz for
both twins. Furthermore, in accordance to previous

TABLE II. The difference in the critical frequencies for 1.4M⊙
twin stars for different values of temperature and crust elasticity.
The results were obtained using the NL3 model with
ΔE ¼ ΔEcr þ 200 MeV fm−3. The results for this EOS, in the
case where the crust damping mechanism is not considered, can
be found in Table I.

S T∞ (108 K) Δfc (Hz)

0.2 1 102.279
5 199.014

10 103.426
1 1 165.56

5 169.475
10 129.472

(a) (b)

(c) (d)

FIG. 5. The r-mode instability windows of compact stars in the mass range 1.2–1.9M⊙. The EOSs used are: (a) DD2, ntr ¼ 0.32 fm−3,
ΔEcr þ 150, (b) DD2, ntr ¼ 0.35 fm−3, ΔEcr þ 100, (c) NL3, ntr ¼ 0.25 fm−3, ΔEcr þ 150, (d) NL3, ntr ¼ 0.27 fm−3, ΔEcr þ 150.
The dotted points correspond to observational data, and they are taken from Ref. [114]. The (h) appearing in the legend stands for the
most massive purely hadronic configuration. The value for the crust elasticity is considered to be S ¼ 0.1.
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studies [55,115], the selected value for the r-mode satu-
ration amplitude is a ¼ 2 × 10−7. As it is evident from
Fig. 6, the spin-down rate is slower in hybrid stars, right
after their birth. Specifically, the higher the energy density
gap the lower the rate. However, after a certain amount of
time the spin-down rates of twin stars converge to the same
value. The latter is reflected on the distinct time evolution
of the frequency for the two cases. In particular, a hybrid
star retains its initial rotational frequency for a longer
period of time compared to its hadronic twin.
Usually, it is more convenient to study the spin down

evolution of a compact star on the f-T∞ plane [112].
The latter demands the simultaneous knowledge of the spin
and thermal evolution for a star. By employing the toy
model for the fall of temperature, presented in Sec. IV, we
intend to obtain the different evolution paths of twin stars
on the f-T∞ plane. In addition, instead of considering the
same initial frequency for the two twins, we set as initial
condition the corresponding Kepler frequencies. The
results presented in Fig. 7 were constructed using the

NL3 EOS with ntr ¼ 0.27 fm−3 (hence, 1.4M⊙ twins) and
ΔE ¼ ΔEcr þ 100 MeV fm−3. The latter EOS predicts
twins with a ∼13% difference in compactness, and there-
fore, a similar thermal evolution is not an unreasonable
assumption [18]. For the crust elasticity, a low value of
S ¼ 0.1 was chosen. Moreover, we consider three different
values of the amplitude α since the results are very sensitive
to it. From Fig. 7, it is obvious that there are three main
reasons which differentiate the time evolution of the two
branches. The first one is the different Kepler velocities.
The second one is connected to the spin down rates of the
two twins, even though this effect is less pronounced. The
third one is the deviation of the instability windows. In
particular, the unstable region is more extended in the case
of the hadronic branch. The latter is of most importance, as
the r-mode instability window essentially sets the resulting
frequency of a star as it comes out of the unstable region. Of
course, we need to stress out that, the paths presented in
Fig. 7 can be improved if one considers a more realistic
cooling process for the two branches. However, the general

(a) (b)

(c) (d)

FIG. 6. Panel: (a) Spin frequency as a function of time for 1.4M⊙ twin stars constructed with the DD2 EOS, (b) Spin-down rate as a
function of time for 1.4M⊙ twin stars constructed with the DD2 EOS, (c) Spin frequency as a function of time for 1.4M⊙ twin stars
constructed with the DD2 EOS, (d) Spin-down rate as a function of time for 1.4M⊙ twin stars constructed with the NL3 EOS. In all
panels, two different values for ΔE were used (see legends).
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picture will not change noticeably and the main conclusions
of the present study are not expected to be significantly
altered.

VI. CONCLUSION

The present work was dedicated to the study of twin stars
and their r-mode instability windows. In particular, we
have conducted a detailed investigation of the parameters
that affect the deviation between the instability windows of
twin stars. This is of most importance as two stars with
identical mass may have different rotational limits. More
precisely, two stars in the same region of the frequency-
temperature diagram may behave differently with respect to
r-modes. Subsequently, the future detection of (r-mode)
GW emission, from stars that are considered to be stable
with respect to r-modes (due to existing observations),
would be a clear sign for the existence of a third family and
hence of hadron-quark phase transition.
Firstly, we studied the influence of the energy density

jump ΔE on the deviation between the instability windows
of twin stars. We found that ΔE regulates the radius
difference between twin configurations. In addition, hybrid
stars predicted from EOSs with higher ΔE exhibit larger
quark core fractions. Thus, the differences in the critical
spin frequencies of twins become more pronounced as the
energy density jump increases. Secondly, we took into
consideration the strong and common (for both twins)
dissipation mechanism due to the presence of a viscous
boundary layer. What we found is that, the characteristic

peak appearing in the r-mode instability windows of hybrid
stars (around T∞ ∼ 3 × 108 K) flattens as the crust elas-
ticity increases. However, depending on the selected value
of ΔE, considerable differences in the limiting frequency of
the two twins may remain.
Furthermore, we examined if the EOSs constructed in

this study (i.e., EOSs predicting a third family of compact
objects) are a viable option for the explanation of current
LMXBs data. We found that depending on the phase
transition onset (transition density) and also the masses
of stars in LMXBs, our EOSs may be compatible with the
existing observational data. In particular, for EOSs that
predict twin stars with 1.2M⊙, the bulk viscosity of quark
matter is adequate to stabilize r-modes for moderately
massive stars (M ≤ 1.6M⊙) in the whole f-T∞ region
occupied by the observed stars in LMXBs. As the critical
compact star mass for the phase transition to occur
increases, more massive configurations are needed for
the stabilization of r-modes.
Finally, we studied the differences that manifest in the

spin-down evolution of twin pairs. We found that the hybrid
star retains its initial spin frequency for a larger period
of time, and this is because its spin-down rate is lower
compared to its hadronic twin. Furthermore, we noticed
that larger ΔE values result into lower spin-down rates for
hybrid stars. In addition, by employing a simplified cooling
model, we evaluated the evolution paths of twins stars on
the f-T∞ plane. The resulting path differences derive from:
a) the fact that the Kepler frequencies (initial conditions) of
twin stars are different, b) the different spin evolution,
which is dependent on the bulk properties of a star, c) the
different instability windows of twin stars, which essen-
tially control when and with what frequency a star is going
to pass in the r-mode stable region.
There are some other issues that a more elaborate study

should take into account, such as additional damping
mechanisms or a more rigorous treatment of the thermal
evolution. In addition, it would be interesting to explore the
effects of a mixed phase (EOSs constructed with the Gibbs
method). Even though such a study (already in progress)
would be more complete from a quantitative point of view,
we do not expect that our main conclusions will be
significantly altered. Finally, we need to highlight that
even though there are a few studies focusing on the r-mode
instability and hybrid stars [26,27,70–72], this is the first
work dealing with the possible existence of two stars with
an identical mass and different r-mode instability windows.
The future detection of GW associated with unstable
r-modes may finally allow us to distinguish twin stars.
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FIG. 7. The spin-down evolution of 1.4M⊙ twin stars (NL3
EOS, ntr ¼ 0.27 fm−3 and ΔE ¼ ΔEcr þ 100 MeV fm−3) in the
frequency-temperature plane for different values of the saturation
amplitude. The initial frequencies for the twins are their corre-
sponding Kepler frequencies. The blue (red) solid lines indicate
the evolution for the hybrid (hadronic) twin. The blue and red
dashed lines denote the r-mode instability window of the hybrid
and hadronic star, respectively. The dotted points stand for
observational data taken from Ref. [114].
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