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We investigate the effect of Δ baryons on the radial oscillations of neutron and hyperon stars, employing
a density-dependent relativistic mean-field model. The spin-3=2 baryons are described by the Rarita-
Schwinger Lagrangian density. The baryon-meson coupling constants for the spin-3=2 decuplet and the
spin-1=2 baryonic octet are calculated using a unified approach relying on the fact that the Yukawa
couplings present in the Lagrangian density of the mean-field models must be invariant under the SU(3)
and SU(6) group transformations. We calculate the 20 lowest eigenfrequencies and corresponding
oscillation functions of Δ-inclusive nuclear (Nþ Δ) and hyperonic matter (Nþ Hþ Δ) by solving the
Sturm-Liouville boundary value problem and also verifying its validity. We see that the lowest mode
frequencies for Nþ Δ and Nþ H EoSs are higher as compared to the pure nucleonic matter because of the
deltas and hyperons present. Furthermore, the separation between consecutive modes increases with the
addition of hyperons and Δs.
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I. INTRODUCTION

The densest observed stars in the universe, neutron stars
(NSs), serve as natural laboratories for the investigation of
cold dense nuclear matter. The equation of state (EoS) of
nuclear matter is the decisive factor that, theoretically,
governs the structure and properties of NSs. To ensure
the stability of nuclear matter inside NSs, they contain some
amount of protons as well, apart from the neutrons. Because
of the strong interaction’s nonperturbative nature, we still
know relatively little about the EoS of dense nuclear matter,
especially at densities considerably higher than the nuclear
saturation density (ρ0), where exotic degrees of freedom are
likely to exist. Nearly all theoretical descriptions of these
objects encompass the entire spin-1=2 baryon octet i.e.,
nucleons and hyperons [1]. These investigations gave rise to
the widely discussed “hyperon puzzle.” Hyperons soften the
EoS, leading to a lower maximum mass on the mass-radius
curve of stars [2].
Within the relativistic mean-field approach, Glendenning

[3] considered several exotic degrees of freedom such as
hyperons, kaons, and delta baryons (Δ) in the NS matter.
With the coupling parameters chosen, he found that the Δ

baryons could be present only at densities ≈10 ρ0 inside the
NSs. However, recent studies have shown that with the
proper couplings between Δ baryons and nucleons con-
strained by several experiment measurements, they might be
present inside the NSs [4–9] and that they could in fact
make up a large fraction of the baryons in NS matter and
have a significant effect on the properties of NSs. Also,
since Δ baryons are approximately 30% heavier than the
nucleons (mΔ ¼ 1232 MeV) and even lighter than the
heaviest spin-1=2 baryons of the octet (Ξ hyperons), it is
reasonable to expect the Δ baryons to exist inside NSs at
almost the same density range as the hyperons (≈2–3ρ0).
We have so far been capable of investigating the proper-

ties of dense matter under extremely difficult circumstances
thanks to the recent accomplishment of gravitational wave
(GW) detection by LIGO and Virgo Collaborations (LVC)
of a binary neutron star (BNS) merger GW170817 event
[10,11]. GWs produced by the coexistence of BNS merger
events provide enough information to significantly constrain
the EoS and the internal composition of NSs [10–14]. The
oscillating NSs also emit GWs with several frequency
modes that can be used to investigate the internal constitu-
ents and hence various properties of the star [15,16].
Following their formation in the supernovae, oscillating

NSs emit a range of frequencies depending on the restoring
force and there are numerous mechanisms that could be the
diverse causes of these oscillations [17–19]. Overall,
oscillations can be divided into two categories: radial
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and non-radial. In a pioneeringwork, Chandrasekhar [20,21]
investigated the radial oscillations of stellar models.
Importantly, radial oscillation characteristics can reveal
details regarding the stability and EoS of compact stars.
As radial oscillations cannot produceGWson their own, their
detection is rather difficult. They are linked to nonradial
oscillations, which amplify GWs and improve the likelihood
of detecting them [22,23]. However, Chirenti et al. [24]
observed that in the post-merger event of BNS, a hyper-
massive NS is created along with the emission of a short
gamma-ray burst (SGRB), which could be influenced by
radial oscillations. The high-frequency oscillations of the
hypermassive NS in the range of 1–4 kHz could be observed.
Similar to different families ofmodes arising fromdifferent

physical origins as described in Ref. [25], the radial oscil-
lationmodes can also be categorized into two families that are
largely independent of one another. One family resides
mostly in the neutron star’s high-density core, whereas the
other resides primarily in its low-density envelope [26]. The
significant shift in the matter’s stiffness at the neutron drip
point causes a “wall” in the adiabatic index that separates the
two regions. Given that it is related to the neutron drip point,
which is a part of the low-pressure regime and is the same for
all EoSs, this wall effect is present for any realistic EoS.
We investigate various radial oscillations of NSs with

different matter compositions in this work. Several studies
on the investigation of various radial oscillations of NSs
with different exotic phases such as dark matter and
deconfined quark matter have already been carried out
[25,27–31]. But the radial oscillation of NSs with Δ
baryons (Δ-inclusive nucleonic stars) and hyperon stars
with Δ baryons (Δ-inclusive hyperonic stars) is being
studied for the first time.
The neutron star EoS at supra-nuclear densities has been

constructed using a variety of models with a range of
parameterizations. The saturation properties of highly
dense nuclear matter have been extensively studied using
density functional theories (DFT), in which the nucleon-
nucleon interaction is effectively defined by fitting ground
state properties of finite nuclei [32–37]. From many-body
theories, the nuclear matter EoS at saturation density is well
constrained. The properties of neutron stars are interpreted
by extrapolating these EoSs to densities several times the
nuclear saturation density.
The density-dependent relativistic mean-field (DD-RMF)

model [38] is a widely used and successful model with the

advantage that the self- and cross-coupling of various
mesons in the RMF model are replaced by the density-
dependent nucleon-meson coupling constants. The results
produced by the density-dependent coupling constants are
comparable to those of other models and allow for con-
sistent measurement of NS properties. It takes into account
the Dirac-Brueckner model’s characteristics and uses micro-
scopic interactions at varying densities as an input. DD-
RMF parameter sets such as DD-ME1 [39], DD-ME2 [40],
and DD-MEX [41] generate a very stiff EoS and hence
predict a massive NS with a maximum mass in the range of
2.3–2.5M⊙ [42,43].
Our work is organized as follows: in Sec. II A, the EoS

for the DD-RMF model along with the addition of Δ
baryons and the couplings used is discussed. The Sturm-
Liouville eigenvalue equations for the internal structure and
radial oscillations of NSs are introduced in Sec. II B. In
Sec. III, the EoS and the mass-radius profile for different
compositions of the matter are discussed in Sec. III A.
Section III B describes the numerical results obtained for
NSs and hyperon stars with Δ baryons. The summary and
concluding remarks are finally given in Sec. IV.

II. THEORETICAL FRAMEWORK
AND FORMALISM

A. Equation-of-state

In this study, the hadronic matter composing the neutron
stars is described within a relativistic mean-field approach
with density-dependent couplings (DD-RMF). This type of
model is shown to be very consistent in the description of
nuclear matter experimental properties and also holds when
astrophysical constraints are imposed [44–46]. The inter-
action is described considering nucleons (and other
hadrons) interacting through the exchange of virtual mes-
ons, and the DD-RMF model adopted here considers the
scalar meson σ, the vector mesons ω and ϕ (that carries
hidden strangeness), isoscalars, and the isovector-vector
meson ρ⃗. The Lagrangian density is the basic ansatz of any
RMF theory and contains the contributions from free
baryons and mesons together with the terms describing
the interaction between them.
The Lagrangian of the relativistic model in the mean

field approximation used to describe the hadronic inter-
actions here is given by

LRMF ¼
X
b∈H

ψ̄b

�
iγμ∂μ − γ0ðgωbω0 þ gϕbϕ0 þ gρbI3bρ03Þ − ðmb − gσbσ0Þ

�
ψb

−
i
2

X
b∈Δ

ψ̄bμ

�
εμνρλγ5γν∂ρ − γ0ðgωbω0 þ gρbI3bρ03Þ − ðmb − gσbσ0Þςμλ
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ψbν

þ
X
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1

2
m2

σσ
2
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where the first sum represents the Dirac-type interacting
Lagrangian for the spin-1=2 baryon octet (H ¼ fn; p;Λ;
Σ−;Σ0;Σþ;Ξ−;Ξ0g) and the second sum represents the
Rarita-Schwinger–type interacting Lagrangian for the par-
ticles of the spin-3=2 baryon decuplet (Δ ¼ fΔ−;Δ0;
Δþ;Δþþg), where εμνρλ is the Levi-Cicita symbol, γ5 ¼
iγ0γ1γ2γ3 and ςμλ ¼ i

2
½γμ; γλ�. We point to the fact that spin-

3=2 baryons are described by the Rarita-Schwinger La-
grangian density and that their vector-valued spinor has
additional components when compared to the four com-
ponents in the spin-1=2 Dirac spinors, but, as shown in
[47], spin-3=2 equations of motion can be written com-
pactly as the spin-1=2 ones in the RMF regime. The last
sum describes the leptons admixed in the hadronic matter
as a free noninteracting fermion gas (λ ¼ fe; μg), as their
inclusion is necessary in order to ensure the β-equilibrium
and charge neutrality essential to stellar matter. The
remaining terms account for the purely mesonic part of
the Lagrangian.
In DD-RMF models, the coupling constants can be

either dependent on the scalar density ns or the vector
density nB, but usually, the vector density parametrizations
are considered which influences only the self-energy
instead of the total energy [38]. In this study, we use
the DD-RMF parametrization known as DDME2 [48],
where the meson couplings are scaled with the baryonic
density factor η ¼ nB=n0 obeying the function

gibðnBÞ ¼ gibðn0Þ
ai þ biðηþ diÞ2
ai þ ciðηþ diÞ2

ð2Þ

for i ¼ σ;ω;ϕ and

gρbðnBÞ ¼ gibðn0Þ exp ½−aρðη − 1Þ�; ð3Þ

for i ¼ ρ. The model parameters are fitted from exper-
imental constraints of nuclear matter at or around the
saturation density n0, namely the binding energy B=A,
compressibility modulus K0, symmetry energy S0, and its
slope L0, shown in Table I [44,48].

The model-free parameters are fitted considering pure
nucleonic (protons and neutrons only) matter. In order to
determine the meson couplings to other hadronic species we
define the ratio of the baryon coupling to the nucleon one as
χib ¼ gib=giN , with i ¼ fσ;ω;ϕ; ρg. In this work, we
consider hyperons and/or deltas inclusive in the nucleonic
matter and follow the proposal of [50] to determine their
respective χib ratios. It is made through a unified approach
relying on symmetry arguments such as the fact that the
Yukawa couplings terms present in the Lagrangian density
of the DD-RMF models must be invariant under SU(3) and
SU(6) group transformations. Hence, the couplings can
be fixed to reproduce the potentials UΛ ¼ −28 MeV,
UΣ ¼ 30 MeV, UΞ ¼ −4 MeV and UΔ ≈ −98 MeV in
terms of a single free parameter αv. Our choice of αv ¼
1.0 for the baryon-meson coupling scheme corresponds to
an unbroken SU(6) symmetry, and the values of χib are
shown in Table II taking into account the isospin projections
in the Lagrangian terms [51].
From the Lagrangian, thermodynamic quantities can be

calculated in the standard way for RMF models. The
baryonic and scalar densities of a baryon of the species
b are given, respectively, by

nb ¼
λb
2π2

Z
kFb

0

dk k2 ¼ λb
6π2

kF3b; ð4Þ

and

TABLE I. DDME2 parameters (top) and its predictions to the nuclear matter at saturation density (bottom).

i mi (MeV) ai bi ci di giNðn0Þ
σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 � � � � � � � � � 7.3672

Quantity Constraints [44,49] This model

n0 (fm−3) 0.148–0.170 0.152
−B=A (MeV) 15.8–16.5 16.4
K0 (MeV) 220–260 252
S0 (MeV) 31.2–35.0 32.3
L0 (MeV) 38–67 51

TABLE II. Baryon-meson coupling constants χib [50].

b χωb χσb I3bχρb χϕb

Λ 2=3 0.611 0 0.471
Σ−,Σ0, Σþ 2=3 0.467 −1, 0, 1 −0.471
Ξ−, Ξ0 1=3 0.284 −1=2, 1=2 −0.314
Δ−, Δ0 1 1.053 −3=2, −1=2 0
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nsb ¼
λb
2π2

Z
kFb

0

dk
k2m�

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�

b
2

q ; ð5Þ

with kF denoting the Fermi momentum, since we assume
the stellar matter to be at zero temperature, and λb is the
spin degeneracy factor (2 for the baryon octet and 4 for the
deltas). The effective masses are

m�
b ¼ mb − gσbσ0: ð6Þ

The energy density is given by

εB ¼
X
b

γb
2π2

Z
kFb

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�

b
2

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
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þm2
ω
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ω2
0 þ

m2
ϕ

2
ϕ2
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m2
ρ

2
ρ203: ð7Þ

The effective chemical potentials read

μ�b ¼ μb − gωbω0 − gρbI3bρ03 − gϕbϕ0 − Σr; ð8Þ

where Σr is the rearrangement term due to the density-
dependent couplings

Σr ¼
X
b

�
∂gωb
∂nb

ω0nb þ
∂gρb
∂nb

ρ03I3bnb þ
∂gϕb
∂nb

ϕ0nb

−
∂gσb
∂nb

σ0nsb

�
; ð9Þ

and the μb are determined by the chemical equilibrium
condition

μb ¼ μn − qbμe; ð10Þ

in terms of the chemical potential of the neutron and the
electron, with μμ ¼ μe. The particle populations of each
individual species are determined by Eq. (10) together with
the charge neutrality condition

P
i niqi ¼ 0, where qi is the

charge of the baryon or lepton i. The pressure, finally, is
given by

P ¼
X
i

μini − ϵþ nBΣr; ð11Þ

which receives a correction from the rearrangement term
to guarantee thermodynamic consistency and energy-
momentum conservation [52,53].

B. Radial oscillations

Einstein’s equations of general relativity govern the
structure and dynamical evolution of NSs because of their
intense gravitational field. Moreover, the static equilibrium
structure-based Einstein field equation can be used to
calculate the radial oscillation properties [54]. Consider a
spherically symmetric system with only radial motion,
where the metric is now time-dependent. For radial
displacement Δr with ΔP as the perturbation of the
pressure, the small perturbation of the equations governing
the dimensionless quantities ξ ¼ Δr=r and η ¼ ΔP=P are
defined as [26,55]

ξ0ðrÞ ¼ −
1

r

�
3ξþ η

γ

�
−

P0ðrÞ
Pþ E

ξðrÞ; ð12Þ

η0ðrÞ ¼ ξ

�
ω2rð1þ E=PÞeλ−ν − 4P0ðrÞ

P
− 8πðPþ EÞreλ

þ rðP0ðrÞÞ2
PðPþ EÞ

�
þ η

�
−

EP0ðrÞ
PðPþ EÞ − 4πðPþ EÞreλ

�
;

ð13Þ

where ω is the frequency oscillation mode and γ is the
adiabatic relativistic index defined as

γ ¼
�
1þ E

P

�
c2s ; ð14Þ

where c2s is the speed of sound squared

c2s ¼
�
dP
dE

�
c2: ð15Þ

The two coupled differential equations Eqs. (12) and (13)
are supplemented with two additional boundary conditions,
one at the center where r ¼ 0, and another at the surface
where r ¼ R. The boundary condition at the center requires
that

η ¼ −3γξ ð16Þ

must be satisfied. The equation Eq. (13) must be finite at the
surface and hence

η ¼ ξ

�
−4þ ð1 − 2M=RÞ−1

�
−
M
R

−
ω2R3

M

��
ð17Þ

must be satisfied whereM andR correspond to the mass and
radius of the star, respectively. The frequencies are com-
puted by

ν ¼ ω̄

2π
ðkHzÞ; ð18Þ
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where ω̄ ¼ ωt0 is the dimensionless quantity computed
at t0 ¼ 1 ms.
These equations represent the Sturm-Liouville eigen-

value equations for ω. The solutions provide the discrete
eigenvalues ω2

n and can be ordered as

ω2
0 < ω2

1 < … < ω2
n;

where n is the number of nodes for a given NS. For a real
value of ω, the star will be stable and for an imaginary
frequency, it will become unstable. Also, since the eigen-
values are arranged in above defined manner, it is important
to know the fundamental f-mode frequency (n ¼ 0) to
determine the stability of the star.

III. NUMERICAL RESULTS AND DISCUSSION

A. EoS and MR profile

Figure 1 shows the variation of pressure with energy
density (EoS) for an NS in beta-equilibrium and charge-
neutral conditions. The pure nucleonic matter produces stiff
EoS in the high-density region. The EoS softens when Δs
are added to the nuclear matter. This is because the presence
of more degrees of freedom distributes the Fermi pressure
among the many particles as a result of the inclusion of new
particles, softening the EoS. However, we must point out
the fact that only Δ0 and Δ− baryons are considered in the
Δ-inclusive nuclear and Δ-inclusive hyperonic matter
because the inclusion of Δþ and Δþþ baryons allows the
nucleon effective mass to drop to zero for very low densities

and hence precluding the neutron stars from achieving
densities high enough to describe the maximummass star. A
more detailed explanation of such behavior of Δ baryons is
explained in Ref. [7], where the authors show that the
increase of the exotic particle abundance adds to the
negatively contributing term of the effective nucleon mass,
through the scalar density dependence of the σ field. This
issue was already known for some hyperon matter models,
but the fact that the SU(6) coupling scheme enhances very
strongly the abundance of resonances makes this behavior
very sensible when Δ baryons are present. As Δþ and Δþþ
baryons ought to be unfavored in the low and intermediate
densities due to the charge neutrality condition, excluding
them altogether is a possible workaround to that problem.
While the hyperons further soften the EoS, the addition of
Δs in the hyperonic matter, Nþ Hþ Δ, is more complex.
As seen from Fig. 1, at lower densities, the Nþ Hþ Δ is
softer than the Nþ H composition. With the increase in the
density, the EoS with the Nþ Hþ Δ composition becomes
stiffer than the Nþ H composition. The explanation for this
is that the appearance of Δ− baryon replaces a neutron-
electron pair at the top of their Fermi seas which are favored
over the light baryons because of the attractive potential.
The electric charge-neutral particles, Λ0 and Δ0, appear
later. The inset in Fig. 1 shows the number density vs
pressure variation for different matter compositions. The
joint constraints from the heavy-ion collision (HIC) experi-
ments and multimessenger astrophysics (Astro), orange
(68%), and green (95%) credible ranges are also shown
[56]. As we can see, the EoSs nearly satisfy the joint
constraints at a lower density. The appearance of delta
baryons ensures that all the EoSs satisfy these constraints.
For the unified EoS, the Baym-Pethick-Sutherland (BPS)
EoS [57] is used for the outer crust part. For the inner crust,
the EoS in the non-uniform matter is generated by using the
DD-ME2 parameter set in Thomas-Fermi approximation
[58–60].
Figure 2 displays the adiabatic index γ vs. the energy

density for different matter compositions. For pure nucleonic
matter, the γ curve increases to a peak value at low energy
density and then drops smoothly. The presence of hyperons,
especially Λ0, softens the EoS and the value of γ drops at
around ≈350 MeV=fm3, and each following peak can be
associated with the onset of a new particle species. For
nuclear and hyperonic matter with Δ baryons, the value of γ
drops sharply at around ≈250 MeV=fm3 due to the onset of
Δ− baryons. But as the density increases, the γ also increases
and becomes larger than the pure nucleonic matter. This
large increase in the behavior of γ is not seen in the
hyperonic matter. For Δ-inclusive hyperonic matter, we
see a huge drop in the value γ due to the Δ− threshold
followed by a quick increase and then a new drop due to the
onset of Λ0 hyperon.
Figure 3 depicts the behavior of the speed of sound

squared as a function of energy density for different
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FIG. 1. Energy density and pressure variation for the given DD-
ME2 parameter set. The solid line represents the pure nucleonic
matter (N) while dotted, dashed, and dash-dotted lines represent
the EoS for Δ-inclusive nuclear matter (Nþ Δ), hyperons
(Nþ H), and Δ-inclusive hyperonic matter (Nþ Hþ Δ), re-
spectively, for αv ¼ 1.0. The inset plot shows the number density
vs pressure variation for different matter compositions. The
orange (68%) and green (95%) shaded regions show the joint
constraints from the heavy-ion collision (HIC) experiments and
multimessenger astrophysics (Astro) [56].

RADIAL OSCILLATIONS IN NEUTRON STARS WITH DELTA … PHYS. REV. D 107, 123022 (2023)

123022-5



compositions of the matter studied in this work. The speed
of sound is an important quantity that conveys information
about shear viscosity, tidal deformability, and gravita-
tional wave signatures [61,62]. It is defined as the
derivative of pressure with respect to energy density with
its square defined by Eq. (15). It can also be interpreted as
a measurement of the stiffness of the EoS, with a higher
speed yielding a higher pressure at a given energy density
and allowing a larger star mass for a given radius.
Thermodynamic stability ensures that c2s > 0 and causal-
ity implies an absolute bound c2s ≤ 1. For very high
densities, perturbative QCD findings anticipate an upper
limit of c2s ¼ 1=3 [63]. The two solar mass requirements,
according to several studies [63–65], necessitates a speed

of sound squared that exceeds the conformal limit
(c2s ¼ 1=3), revealing that the matter inside of NS is a
highly interacting system. From Fig. 3, we can see a very
large value of the c2s for the pure nucleonic matter. When
different particle compositions are considered, one can see
the kinks corresponding to the onset of a new particle
species at the same point as the ones in the adiabatic index
curves. The conformal limit is violated in the case of pure
nucleonic and Δ-inclusive nuclear matter. Also, the curve
for Nþ Hþ Δ composition predicts a higher value of the
speed of sound squared at intermediate densities because
of the early appearance of Δ− particles, as explained
earlier.
With the solutions from the Tolman-Oppenheimer-

Volkoff equations for different EoSs, Fig. 4 displays the
mass-radius profile for different compositions of the matter.
For pure nucleonic matter, a maximum mass of 2.46M⊙ is
achieved at a radius of 12.05 km.With theΔ baryons present
in the star, the maximummass and the corresponding radius
decrease to a value of 2.24M⊙ and 11.87 km, respectively.
The decrease in the mass and the radius of Δ-inclusive
nuclear matter depends upon the value of αv. The higher the
value of αv, the lower the maximum mass, corresponding
radius, and the radius at the canonical mass. In our case with
αv ¼ 1.0, the radius at the canonical mass decrease from
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FIG. 2. Adiabatic index as a function of energy density for the
DD-ME2 parameter set with the pure nuclear matter, Δ-inclusive
nuclear matter, hyperonic matter, and Δ-inclusive hyperonic
matter.
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FIG. 4. Mass-radius profile for DD-ME2 parameter set with
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while the cyan dotted region is for 95% credibility [68]. The gray
upper (brown lower) shaded region corresponds to the higher
(smaller) component of the GW170817 event [69]. The joint
constraints from HIC experiments and multimessenger astro-
physics with 68% (orange) and 95% (green) credible ranges are
also shown [56].
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13.29 km for the pure nucleonic matter to 12.82 km for
Δ-inclusive nuclear matter. The presence of hyperons soft-
ens the EoS and hence the maximum mass decrease to a
value of 1.87M⊙ with the corresponding radius of 12.09 km.
For the Δ-inclusive hyperonic matter at αv ¼ 1.0, The
stiffness of the EoS predicts a maximum mass of 1.90M⊙
with a radius of 11.90 km. The constraints on the mass and
the radius from various measurements [66–69] are very well
satisfied by the N and Nþ Δ profile, while the Nþ H and
Nþ Hþ Δ profiles nearly satisfy the description of the PSR
J0740þ 6620 for mass and radius [66,67]. The joint
constraints from heavy-ion collision (HIC) experiments
and multimessenger astrophysics are very well satisfied
by all the mass-radius profiles. Since the maximummass for
Nþ H and Nþ Hþ Δ EoSs is lower than the mass of the
super heavy pulsar PSR J0740þ 6620, these EoSs can be
ruled out. However, for the comparison, we keep the results
and calculate the radial profiles with Nþ H and Nþ Hþ Δ
EoSs also to see the effect of delta baryons on the hyperonic
matter.

B. Radial profiles

The radial displacement perturbation profile ξðrÞ
and pressure perturbation profile ηðrÞ as a function of
dimensionless radius distance r=R is plotted in Figs. 5
and 6, respectively. These profiles are plotted for diffe-
rent particle compositions, pure nucleonic (upper left),
Δ-inclusive nucleonic (upper right), hyperonic (lower
left), and Δ-inclusive hyperonic (lower right) matter at
the corresponding maximum masses (with different

central densities). Only the f-mode (n ¼ 0), lower order
p-modes (n ¼ 1, 2, 3), intermediate (n ¼ 9, 10, 11), and
high excited modes (n ¼ 17, 18, 19) are shown. In the
region 0 < r < R, exactly n nodes are obtained for the nth
mode both for ξ and η profiles, thereby following the Sturm-
Liouville system. From Fig. 5, one can see that the
amplitude of ξnðrÞ for each frequency mode νn is larger
near the center and small at the surface. The lower modes
show a smooth drop in their profiles while the higher modes
depict small oscillations which would become large for
higher modes. For Δ-inclusive nucleonic matter, we see a
small kink at around r=R ¼ 0.8 for n ¼ 0 mode. For
hyperonic matter, the kink at the same node is large and
present at around r=R ¼ 0.3. These kinks in ξðrÞ represent
the emergence of new exotic particles which provides a
discontinuity in the adiabatic index, that appears in Eq. (12)
explicitly. One can see a rapid sign change near the center of
the star which along with the amplitude decrease as one
moves toward the surface of the star. From Fig. 6, it’s
observed that the amplitude of ηnðrÞ is larger near the center
and also at the surface of the star. Although the η oscillations
are directly proportional to the Lagrangian pressure varia-
tionΔP, the amplitude of ηnðrÞ for consecutive n have large
amplitudes near the surface, and hence the contribution
from ηnþ1 − ηn cancels out because of the opposite signs,
thereby satisfying the condition that Pðr ¼ RÞ ¼ 0. This
implies that ηnþ1 − ηn and also ξnþ1 − ξn are more sensitive
to the star’s core. As a result, the measurement of Δνn ¼
νnþ1 − νn is an observational imprint of this star’s innermost
layers.
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FIG. 5. The radial displacement perturbation ξðrÞ ¼ Δr=r as a function of dimensionless radius distance r=R for lower f-mode
(n ¼ 0), lower order p-modes (n ¼ 1, 2, 3), intermediate p-modes (n ¼ 9, 10, 11), and high excited modes (n ¼ 17, 18, 19). The upper
left (right) panel represents the result for pure nucleonic (Δ-inclusive nucleonic) matter, while the lower left (right) panel represents the
result for hyperonic (Δ-inclusive hyperonic) matter.
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Table III displays the frequencies, ν in kHz, of the first
20 nodes for pure nucleonic matter, Δ-inclusive nucleonic
matter, hyperonic matter, and Δ-inclusive hyperonic
matter, respectively. All these frequencies are obtained

at the corresponding maximum masses of the EoSs. The
node n ¼ 0 corresponds to the f-mode frequency while
the others correspond to the lower and highly excited
p-modes. The frequency of the f-mode for pure nucleonic
EoS is lower as compared to the other EoSs with deltas
and hyperons.
Fig. 7 shows the frequencies of radially oscillating NS

with different matter compositions, as a function of central
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 (
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FIG. 6. The radial pressure perturbation ηðrÞ ¼ Δr=r as a function of dimensionless radius distance r=R for lower f-mode (n ¼ 0),
lower order p-modes (n ¼ 1, 2, 3), intermediate p-modes (n ¼ 9, 10, 11), and high excited modes (n ¼ 17, 18, 19). The upper left
(right) panel represents the result for pure nucleonic (Δ-inclusive nucleonic) matter, while the lower left (right) panel represents the
result for hyperonic (Δ-inclusive hyperonic) matter.

TABLE III. 20 lowest order radial oscillation frequencies, ν in
(kHz) for different EoSs considered. For each EoS, the frequen-
cies are calculated at the maximummass of the corresponding star.

EoS

Nodes N Nþ Δ Nþ H Nþ Hþ Δ

0 0.571 1.578 1.977 1.865
1 5.173 5.891 6.582 6.241
2 8.163 9.118 10.497 9.656
3 11.060 12.379 14.231 13.390
4 13.960 15.674 17.907 16.652
5 16.878 18.984 21.527 19.986
6 19.812 22.316 25.064 23.422
7 22.758 25.649 28.758 27.116
8 25.713 29.011 32.317 30.754
9 28.674 32.358 35.633 34.492
10 31.639 35.732 39.177 38.135
11 34.609 39.089 42.800 41.779
12 37.580 42.457 46.347 45.505
13 40.556 45.822 50.016 49.174
14 43.535 49.189 53.464 52.622
15 46.518 52.556 57.117 56.275
16 49.500 55.933 60.527 59.685
17 52.483 59.308 64.180 63.380
18 55.469 62.688 67.796 67.054
19 58.457 66.061 71.603 70.618
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FIG. 7. Frequencies of radially oscillating NS as a function
of central energy density for (a) pure nucleonic matter (N),
(b) Δ-inclusive nucleonic matter (Nþ Δ), (c) hyperonic matter
(Nþ H), and (d) Δ-inclusive hyperonic matter (Nþ Hþ Δ). The
frequencies for lower radial modes (n ¼ 0, 1, 2, 3) are shown.
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energy density for lower radial modes, n ¼ 0, 1, 2, and 3. It
is clear from the figure that for the same core density, stellar
models with softer EoSs exhibit higher f-mode frequencies
than those of stiffer EoSs. The stellar models of softer EoSs
are typically linked to larger average densities and more
centrally compressed stars. The star is getting closer to its
stability limit as the center density rises and the f-mode
frequency (n ¼ 0) begins to shift toward zero at the same
moment. An eigenmode with zero frequency is a character-
istic of the stability limit itself. The f-mode frequency of
Nþ Δ and Nþ H EoSs is higher as compared to the pure
nucleonic matter because of the delta and hyperonic that
make the EoS softer. Since the Nþ Hþ Δ is stiffer than the
Nþ H EoS, the corresponding f-mode frequency is lower.
Higher modes oscillate more frequently than lower stable

modes do, and for all modes, this frequency appears to
decrease as the center energy density approaches the
minimum value of the specific star model. The explanation
for this comes from the fact that the NSs at very high
densities can be approximated as being homogeneous and
thus the angular frequency ω2

0 follows the relation ω2
0 ¼

ρð4γ − 3Þ [27,70]. From Fig. 7, it is observed that with Δs
in the pure nucleonic and hyperonic matter, the higher
modes show small kinks. This illustrates an essential
observation that leads to a series of “avoided crossings”
between the various modes: the frequencies of two sub-
sequent modes from different families reject each other as
they approach one another [25,26]. This “avoided crossing”
is a characteristic of a realistic EoS [25] and is present in all
four cases at lower densities.
Figure 8 displays the frequency difference Δνn ¼

νnþ1 − νn vs νn in kHz for pure nucleonic (N), Δ-inclusive
nucleonic (Nþ Δ), hyperonic (Nþ H), and Δ-inclusive
hyperonic matter (Nþ Hþ Δ) matter. For pure nucleonic
EoS, the separation between the modes is almost the same
and there are no fluctuations at lower modes (n ¼ 0). While

the frequencies in the Δ-inclusive nucleonic matter are
higher than pure nucleonic one, as one would expect because
of the soft Nþ Δ EoS than N, the difference between
consecutive modes is also the same with minor fluctuations.
With the hyperonic and Δ-inclusive hyperonic matter, they
oscillate with higher frequencies, and the magnitude of Δνn
is higher. This shows that the decrease in the central baryon
density of the star, and, hence, of its mass leads to a large
separation Δνn. We also observe the erratic fluctuations
present in Δνn for Nþ H and Nþ Hþ Δ cases. These
fluctuations arise from the significant variation of the speed
of sound squared c2s or the relativistic adiabatic index γ on
the transition layer separating the inner and outer core of the
NS, which has an amplitude proportionate to the magnitude
of the discontinuity. This is also due to the fact that we have
considered a unified EoS in the present study. Although the
radial oscillation for the lowest order mode (n ¼ 0) is not
highly impacted by the crust because it typically accounts for
less than 10% of the stellar radius and the oscillation nodes
are situated far inside the NS core. But other high oscillation
modes are present in the crust of the star and hence the
eigenfrequencies are modified (characterized by the peaks in
theΔνn) [28]. For a given EoS without crust, the variation in
the frequency, Δνn, is smooth as discussed in Refs. [29,30].

IV. SUMMARY AND CONCLUSION

In this work, we studied the radial oscillations of
Δ-inclusive neutron and hyperon stars employing the
DD-RMF model with the DD-ME2 parameter set. The
spin-3=2 baryons (Δs) are described using the Rarita-
Schwinger Lagrangian density. For the spin-3=2 decuplet
and the spin-1=2 baryonic octet, the baryon-meson cou-
pling constants are calculated using the Clebsch-Gordan
coefficients of the SU(3) group. The coupling constants of
the scalar meson are fixed to replicate the known potential
depth using a QHD model that essentially satisfies all
requirements at the saturation density, thus allowing a
unified approach to the coupling constants of hyperons and
delta resonances. We studied the 20 lowest eigenfrequen-
cies and corresponding oscillation functions of Δ-inclusive
nuclear (Nþ Δ) and hyperonic matter (Nþ Hþ Δ) by
solving the Sturm-Liouville boundary value problem and
also verifying its validity. For the hydrostatic equilibrium,
we numerically solved the structural equations to obtain
the mass-radius relationship of Δ-inclusive neutron and
hyperon stars. The Sturm-Liouville equations were then
solved for the perturbations imposing the necessary
boundary conditions in order to examine radial oscillations
of pulsating stars. This allowed us to calculate the
frequencies of the modes as well as the related wave
functions. 19 excited p-modes and the fundamental
f-mode have been calculated. The addition of hyperons
softens the EoS, decreasing the maximum mass and hence
increasing the corresponding frequencies of the pulsating
star. While the addition of Δ baryons to nucleonic matter
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FIG. 8. Frequency difference Δνn ¼ νnþ1 − νn vs νn in kHz for
pure nucleonic (N), Δ-inclusive nucleonic (Nþ Δ), hyperonic
(Nþ H), and Δ-inclusive hyperonic matter (Nþ Hþ Δ) matter.
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softens the EoS, it gets stiffer for the hyperonic matter.
Compared to hyperonic matter, the adiabatic index γ for
the Δ-inclusive matter exhibits far more complex behavior.
Due to the onset of the Δ−, we observe a significant
decrease in the value of the parameter followed by a rapid
increase. This increases even more at intermediate den-
sities than it does for the pure nucleonic case, a behavior
not seen in the hyperonic case.
We investigated the radial displacement perturbation

profile ξðrÞ and pressure perturbation profile ηðrÞ with
Δ-inclusive matter and found that they oscillate with exactly
n nodes for the nth mode for all cases. The lowest modes
show a smooth drop in their profiles while the higher modes
depict lower oscillations which become large for higher
modes. For Δ-inclusive nucleonic matter, small kinks are
present for n ¼ 0 mode. For hyperonic matter, the kink at
the same node is found to be large and present at a small
radius. These kinks in ξðrÞ correspond to the emergence of
new exotic particles which provides a discontinuity in the
adiabatic index γ. We see that the lowest mode frequencies
for Nþ Δ and Nþ H EoSs are higher as compared to the
pure nucleonic matter because of the deltas and hyperons.
Furthermore, the separation between consecutive modes
increases with the addition of hyperons and Δs.
One of the main reasons for an abrupt change in the

oscillatory property of the star as one undertakes a small
variation in the star’s stellar configuration is the precisely
defined division of the star’s inner core and outer crust.
These two regions have different EoS and hence different
oscillation properties. The stellar configurations such as the
star’s mass or central energy density essentially determine
the oscillation frequencies of the crust and core pulsations.
For the crust part, while the oscillation functions are
expanding pretty steeply, they either decline or essentially
remain constant for the NS core.
The oscillatory properties of the star could be due to

pulsations in the core or crust of the NS. The mass of the
star affects the frequency spectrum. For moderately mas-
sive NSs, the oscillatory properties of the lower-order radial
modes are determined by the core pulsations. If the stellar
mass is low enough or the frequency is high enough, the
star may be affected by the crust pulsations. The avoided
crossing phenomena are closely related to the changes in

matter’s compressibility all across the star, which are
modeled by the adiabatic index γ. The maximum of γ
occurs close to the boundary between the core and crust as
the stiffness of the matter increases outward.
Unlike non-radial oscillations, radial oscillations do not

possess a gravitational wave counterpart, making them a
distinctive means to directly discern the influence of the
EoS on the structure of the neutron star. This allows for a
more straightforward analysis without the added complex-
ities associated with gravitational wave measurements.
Observing multiple radial modes, including the funda-

mental mode (f-mode) and pressure modes (p-modes),
offers a precise means of measuring the radius of compact
stars. This methodology has proven successful in other
branches of asteroseismology, demonstrating its reliability
and applicability.
The future observation of multiple radial oscillation

modes, particularly through the computation of the large
separation, holds the potential to identify the presence of
delta baryons or hyperons within neutron stars. This would
contribute to validating the existence or absence of these
species in different regions of the NS.
As a result, it is possible to probe the exotic degrees of

freedom existing inside the NS using the high sensitivity of
the enormous separation to the interior structure of the star.
The properties of more realistic environments, such as
temperature, rotation, and magnetic field, should also be
incorporated in order to study radial oscillations in newborn
NSs following supernova explosions or the merger of NSs.
We leave these studies for future work.
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