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The question of what ingredients characterize the quasisteady state of fast neutrino-flavor conversion
(FFC) is one of the longstanding riddles in neutrino oscillation. Addressing this issue is necessary for
accurate modeling of neutrino transport in core-collapse supernova and binary neutron star merger.
Recent numerical simulations of FFC have shown, however, that the quasisteady state is sensitively
dependent on boundary conditions in space, and the physical reason for the dependence is not clear at
present. In this study, we provide a physical interpretation of this issue based on arguments with stability
and conservation laws. The stability can be determined by the disappearance of electron neutrino-lepton
number–heavy-leptonic one (ELN-XLN) angular crossings, and we also highlight two conserved quantities
characterizing the quasisteady state of FFC: (1) lepton number conservation along each neutrino trajectory
and (2) conservation law associated with angular moments, depending on boundary conditions, for each
flavor of neutrinos. We present an analytic prescription that matches the results of the nonlinear simulations
presented in this work. This study represents a major step forward to a unified picture determining
asymptotic states of FFCs.
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I. INTRODUCTION

Neutrinos are copiously produced in the dense core of
compact objects such as core-collapse supernovae (CCSNe)
and binary neutron star mergers (BNSMs). They have key
roles on the astrophysical environments through weak
interactionswithmatters. Proper descriptions of the neutrino
transports, matter interactions, and flavor conversions,
are crucial to understand the physical processes in these
astrophysical phenomena.
Flavors of neutrinos can change during their propagation

and affect the dynamics and nucleosynthesis in CCSNe and
BNSMs. In dense neutrino media, their self-interactions are
potentially dominant, leading to collective neutrino oscil-
lations [1–6]. In particular, fast neutrino-flavor conversion
(FFC), which is dictated only by the self-interactions, is
prominent on scales by ∼ðGFnνÞ−1 [7–9]. The necessary
and sufficient conditions for FFC are equivalent to the
presence of angular crossings in ðfνe − fν̄eÞ − ðfνX − fν̄XÞ
(hereafter called ELN-XLN angular crossings), which is in
line with linear stability analysis [10–12]. Occurrences
of ELN (electron neutrino-lepton number) crossings have
been surveyed for realistic models on CCSNe and BNSMs
[13–27]. Very recently, it has been suggested that FFC
can substantially alter the energy flux of electron-type

neutrinos, which reduces the neutrino heating in the gain
region of CCSN core [28,29]. This exhibits that the
accurate modeling of FFC is necessary to understand the
explosion mechanism of CCSN.
Recently, the asymptotic states of FFC have attracted

significant attention. In a homogeneous and collisionless
system, FFC occurs quasiperiodically, which is an analogy
to the pendulum motion [30]. On the other hand, if
advection (or inhomogeneity) and collisions are included
in FFCs, the periodicity disappears; instead, the system
evolves toward a quasisteady (or asymptotic) state. It has
been suggested that collisions with matter affect the flavor
evolution through collisional decoherence and bring out its
damping or enhancement on the flavor contents [31–45].
Neutrino advection also triggers the flavor coherence
cascade into smaller scales, and the entire system even-
tually reaches a nonlinear saturation [46–56]. One notable
feature appearing in the nonlinear saturation is that a flavor
equipartition on one side of ELN angular distributions has
been commonly observed. Understanding such a generic
feature in the nonlinear phase is key information to
incorporate the effects of FFC into global radiation-
hydrodynamic simulations of CCSNe [29] and BNSMs
[57,58] by phenomenological approaches.
Growing attention has also been paid to develop ana-

lytical models to better incorporate the angular structure of
the FFC [49,53,56]. In a series of our studies [53–56],*zaizen@heap.phys.waseda.ac.jp

PHYSICAL REVIEW D 107, 123021 (2023)

2470-0010=2023=107(12)=123021(10) 123021-1 © 2023 American Physical Society

https://orcid.org/0000-0001-7305-1683
https://orcid.org/0000-0002-7205-6367
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.123021&domain=pdf&date_stamp=2023-06-16
https://doi.org/10.1103/PhysRevD.107.123021
https://doi.org/10.1103/PhysRevD.107.123021
https://doi.org/10.1103/PhysRevD.107.123021
https://doi.org/10.1103/PhysRevD.107.123021


we suggested that there are hints in ELN-XLN angular
distributions to characterize the quasisteady state of FFC.
For instance, the disappearance of ELN-XLN angular
crossing is a generic feature. This argument is in line
with the stability analysis. In Ref. [53], we provided a
simple and analytic scheme to determine a neutrino
distribution in a quasisteady state under the periodic
boundary condition, which is in agreement with the results
of numerical simulations.
On the other hand, it has been reported that different

quasisteady state is achieved under the Dirichlet boundary
condition [54–56]. The disappearance of ELN-XLN angu-
lar crossings is commonly observed even in the Dirichlet
case, but angular directions in which a flavor equipartition
occurs are qualitatively different from in the periodic one,
even if the initial neutrino distributions are set to be the
same. It indicates that the frameworks driving the asymp-
totic behaviors vary due to the boundary conditions, but the
dependence remains obscure. It should also be mentioned
that the Dirichlet boundary condition, from which neutrinos
with pure flavor states are injected into the simulation box,
would represent the case in the transition layer from no
flavor conversion to FFC. Understanding the physical
reason for how the boundary condition affects the quasis-
teady state of FFCs motivates this study. We also genera-
lize our analytic scheme to be applied in both boundary
conditions.
This paper is organized as follows. In Sec. II, we argue

the quasisteady state of FFC analytically, and then explain
why and how the quasisteady state of FFC depends on
the boundary condition. Based on the consideration, we
provide a simple analytic scheme, which corresponds to a
generalization of our previous one in [53,56]. In Sec. III,
we perform one-dimensional FFC simulations to strengthen
our arguments. Finally, we summarize our conclusions
in Sec. IV.

II. ANALYTIC DESCRIPTION OF
QUASISTEADY STATE OF FFC

A. Basic equation

Neutrino flavor conversion can be described by a
quantum kinetic equation (QKE) for neutrino density
matrix ρ [3]:

ð∂t þ v ·∇Þρ ¼ −i½H; ρ� þ C; ð1Þ

where C denotes the collisions with matters, and H
represents the Hamiltonian of neutrino oscillations includ-
ing vacuum, matter, and neutrino self-interaction term. The
Hamiltonian is

H ¼ U
Δm2

2E
U† þ

ffiffiffi
2

p
GFvμΛμ þ

ffiffiffi
2

p
GF

Z
dΓ0vμv0μρ0; ð2Þ

where Γ specifies the neutrino energy E and the velo-
city direction v, and the phase space integration is

R
dΓ ¼R∞

0 E2dE
R
dv=ð2πÞ3 in the flavor-isospin convention

where ρ̄ðEÞ≡ −ρð−EÞ. Here, in the first term, U is the
Pontecorvo-Maki-Nakagawa-Sakata matrix composed of a
mixing angle θmix and Δm2 is a squared neutrino mass
difference. The second term represents the matter oscil-
lation, where vμ ¼ ð1; vÞ and Λμ ¼ diag½fjlμg� with being
the lepton number current for charged leptons l. And the
last term corresponds to neutrino self-interactions inducing
collective neutrino oscillation. Throughout this work, we
consider a one-dimensional problem in flat-space time,
which guarantees no neutrino advection in momentum
space, and the collision term is neglected just for simplicity.
It is worth to note that our arguments can be applied to
more general cases by relaxing these simplifications. The
study is currently underway, and the result will be pub-
lished in the forthcoming paper.

B. Stability and conservation laws

The stability of flavor conversion in the quasisteady state
after the nonlinear saturation can be evaluated on the
analogy from linear analysis on the off-diagonal term of
the neutrino density matrix [10–12]. In the nonlinear
regime, we need to consider the mode couplings between
the diagonal and the off-diagonal components, but we
here focus on the overall trends. Then, the stability of
FFC can be attributed to the disappearance of ELN-XLN
angular crossings in the spatially- or temporal-averaged
domain [53,55]. FFC works to eliminate the angular
crossings in which flavor equipartition (equilibrium) occurs
in some angular regions [46–51,53]. Note that this trend is
generic regardless of boundary conditions (see Ref. [28]).
Below, we make a statement that two conservation laws

are the other key ingredients to characterize the quasisteady
state of FFC, and they also account for the difference
between periodic and Dirichlet boundary conditions. The
first conserved quantity is the lepton number along each
neutrino trajectory. This can be seen by taking the trace of
Eq. (1). Since the trace part of the oscillation term in the
right-hand side of Eq. (1) is zero, the net neutrino distribu-
tion, fνe þ fνx , is conserved along each neutrino trajectory
unless the collision term is included. This indicates that the
neutrino distribution in the asymptotic state, faðvÞ, can be
given using a linear combination of initial distributions,
f0αðvÞ for α flavor, by

faELNðvÞ ¼ PELNðvÞf0ELNðvÞ þ ½1 − PELNðvÞ�f0XLNðvÞ ð3Þ

faXLNðvÞ ¼
1

2
½1 − PELNðvÞ�f0ELNðvÞ

þ 1

2
½1þ PELNðvÞ�f0XLNðvÞ; ð4Þ

MASAMICHI ZAIZEN and HIROKI NAGAKURA PHYS. REV. D 107, 123021 (2023)

123021-2



where PELN represents a survival probability of ELN. In the
fast limit, Δm2 → 0, the survival probability is the same for
neutrinos (Pee) and anti-neutrinos (P̄ee). In the above
expression,we also assumef0XLN ¼ f0MuLN ¼ f0TauLN,which
is a reasonable condition in CCSNs and BNSMs, within the
three-flavor framework. In the two-flavor framework, faXLN
is rewritten as

faXLNðvÞ ¼ ½1 − PELNðvÞ�f0ELNðvÞ þ PELNðvÞf0XLNðvÞ: ð5Þ

The second conserved quantity is associated with the
zeroth and first angular moments. To capture the essence,
we assume one-dimensional space in the following dis-
cussion, while the generalization to multidimensional case
is straightforward. Integrating the QKE over the momen-
tum space of neutrinos, we can obtain the following
conservative form of moment equation in the fast limit,

∂tHE þ ∂zHF ¼ 0; ð6Þ

where HE and HF represent number density and flux of
neutrinos for each flavor, respectively:

HE ¼
ffiffiffi
2

p
GF

Z
dΓρ; ð7Þ

HF ¼
ffiffiffi
2

p
GF

Z
dΓvzρ: ð8Þ

In the periodic boundary condition, the flux term is
canceled with each other on the boundary surfaces when we
integrate Eq. (6) over the real space. More specifically, it
can be written as,

∂thHEi ¼ HFjouter −HFjinner ¼ 0; ð9Þ

while hi represents the spatially integrated quantity. This
provides strong constraints on each neutrino distribution
for ELN and XLN during the flavor evolution. In fact, the
lepton number for each flavor of neutrinos in the simulation
box is constant in time, even when the system has not yet
reached a quasisteady state. The lepton number conserva-
tion constraints the behaviors of flavor conversion and
leads to the asymptotic states with less flavor conversion on
the other side of angular crossings under the periodic
boundary condition [47–51,59]. This is the rationale behind
the fact that the ELN-XLN angular crossing disappears in
the quasisteady state while keeping the lepton number of
each flavor of neutrinos constant [53].
One thing we do notice here is that the periodic boundary

condition does not guarantee that the flux is constant in
time. In general, HF does not need to be homogeneous,
and, more importantly, it can change in time while FFC
evolves toward the asymptotic state. This indicates that HF
in the initial condition is different from that in the

quasisteady state. On the other hand, when the quasisteady
state achieves, the flux needs to be almost constant in space,

∂zHF ∼ 0; ð10Þ

otherwise the zeroth angular moment evolves with time
[see Eq. (6)]. This condition should be satisfied in any
quasisteady state regardless of boundary conditions. This
argument provides the key to understanding the difference
in quasisteady states between periodic- and Dirichlet
boundaries, as discussed below.
Different from periodic boundary condition, neutrino

fluxes on the Dirichlet boundaries are not identical between
inner and outer ones, HFjinner ≠ HFjouter, indicating that
hHEi is no longer constant in time. This indicates that the
quasisteady state cannot be determined from the hHEi
conservation. As discussed above, however, the flux needs
to be spatially constant in any quasisteady state. This
condition can be directly used in the case of the Dirichlet
boundary condition.
To highlight the key point, we consider the following

situation. The neutrino in pure flavor eigenstate (but having
an ELN-XLN angular crossing in momentum space) is
injected constantly in time from one of the boundaries
(which corresponds to a Dirichlet boundary condition), and
we also impose a free boundary condition in the other one.
This corresponds to a similar situation in Refs. [54–56]. In
this case,HF at the boundary with the Dirichlet condition is
fixed in time, indicating that it should be the same in the
quasisteady state. By using Eq. (10) that should be satisfied
in any quasisteady states, we can obtain the following
condition

Ha
FðzÞ ¼ HFðt ¼ 0; z ¼ 0Þ; ð11Þ

where z ¼ 0 corresponds to the boundary where the
Dirichlet condition is imposed, and Ha

FðzÞ represents the
neutrino flux in the quasisteady state. This argument leads
to an important conclusion. The quasisteady state in this
situation is characterized by the flux conservation, instead
of the number conservation in the periodic case.

C. Analytic determination of quasisteady state

Following the above argument, we provide an analytic
scheme to determine the quasisteady state of FFC, which
corresponds to the extended one from Refs. [53,56]. It
should be mentioned that what we need to do is only to
determine angular distribution of PELN, which is by virtue
of the lepton number conservation along each neutrino
trajectory. By using the initial neutrino distributions, we
first quantify the negative part of ELN-XLN angular
moment Am and positive one Bm as

Am≡
����
Z
vmz Gex

v <0
dΓvmz Gex

v

���� ð12Þ
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Bm≡
����
Z
vmz Gex

v >0
dΓvmz Gex

v

����; ð13Þ

where Gex
v denotes ELN-XLN angular distribution.

The zeroth moment, m ¼ 0, is associated with the
neutrino-lepton number and the first moment, m ¼ 1, is
for the flux. It is necessary to eliminate ELN-XLN angular
crossings to achieve the stability while satisfying the
conservation laws on the number or the flux, depending
on boundary conditions.
Because of the constraint of either ELN-XLN number or

flux conservation, its sign, which can be estimated in the
initial condition, determines the angular directions in which
a flavor equipartition is achieved. For the negative case,
Bm − Am < 0, the survival probability of electron-type
neutrinos can be approximately estimated as the following
boxlike function:

PELN¼ P
ð−Þ

ee¼
�peq for vmz Gex

v > 0

1− ð1−peqÞBm
Am

for vmz Gex
v < 0;

ð14Þ

where peq is a survival probability for a flavor equipartition.
In the angular region with Pee ¼ peq, the flavor equiparti-
tion is achieved, i.e., ELN-XLN being zero. For the positive
case, Bm − Am > 0, we obtain

PELN ¼ P
ð−Þ

ee ¼
�peq for vmz Gex

v < 0

1 − ð1 − peqÞ Am
Bm

for vmz Gex
v > 0:

ð15Þ

This analytical scheme for m ¼ 0 becomes identical to our
previous one under the periodic boundary condition (see
Eqs. (22) and (23) in Ref. [53]). Meanwhile, the case with
m ¼ 1 represents the extended version of our scheme for
the Dirichlet boundary.
It is interesting to note that, if the sign of B1 − A1 is

opposite to that of B0 − A0, the angular direction where the
flavor equipartition occurs becomes the opposite between
periodic and Dirichlet boundaries. Also, Eqs. (14) and (15)
suggest full flavor equilibrium in the entire angular
directions for the symmetric flavor case, Bm ¼ Am. This
indicates that the flavor equipartition in the entire angular
domain can be achieved even in the Dirichlet boundary
condition, which has not been observed in previous
studies [50]. In the following section, we provide evidence
by numerical simulations that these intriguing features
actually emerge in the quasisteady state, as predicted by
our analytic scheme.

III. NUMERICAL SIMULATIONS

A. Setups

In the following, our assertion that neutrino distribu-
tions in quasisteady state can be determined analytically
is tested through numerical simulations. In this work,

we ignore the matter term for simplicity and set a small
mixing angle in the vacuum term mimicking the matter
suppression instead. Also, the entire system becomes
almost energy-independent because FFC is driven only
by the self-interaction potential, and so the vacuum term
is considered only to trigger FFC as a perturbation.
Thereby, we set Δm2 ¼ 2.5 × 10−6 eV2, θmix ¼ 10−6, and
E ¼ 12 MeV as a monochromatic assumption.
We carry out FFC simulations for both periodic and

Dirichlet boundary conditions. In the periodic case, the
numerical setup is the same as that used in our previous
paper [53]. In the Dirichlet case, we consider incident
neutrinos from the boundary (z ¼ 0) to be Dirichlet and
outgoing ones to be free streaming. We also note that the
neutrinos are dominated by vz > 0; more specifically, we
set dilute neutrinos in inward directions, which is the same
setup used in Refs. [55,56]. Angular distributions for νe and
ν̄e are given by

fνeðvzÞ ¼
�
1 for vz ≥ 0

η for vz < 0;
ð16Þ

fν̄eðvzÞ ¼
�
αðvz þ 0.5Þ for vz ≥ 0

αη for vz < 0;
ð17Þ

where η and α represent the diluteness of inward-going
neutrinos and an asymmetry parameter, respectively. We set
η ¼ 10−6, which is small enough that these neutrinos have
negligible contributions to angular moments and neutrino
self-interactions. In our initial models, we parametrize the
location of angular crossing (vc) and its depth through α.
We here employ two angular distribution models with vc ¼
11=18 for α ¼ 0.9 and vc ¼ 2=3 for α ¼ 6=7. We also
assume no heavy-leptonic neutrinos in the initial condition.
The setup with α ¼ 6=7 corresponds to the flux symmetric
case. According to our consideration presented in Sec. II B,
this corresponds to the case with B1 ¼ A1, in Eq. (13),
indicating that FFC leads to a full flavor equilibrium in the
entire angular region. This emerges, indeed, in our simu-
lation. For all simulations, we assume the number density
nνe ¼ 6 × 1032 cm−3 in the initial condition. We set the
spatial domain of 0 ≤ z ≤ 10 m with a resolution Nz ¼
49152 on the equal bins and angular binning Nvz ¼ 128.

B. Results

Before comparing to our analytic description of the
quasisteady state, we discuss some time-dependent features
in the case of the Dirichlet boundary condition, which
helps to deepen our understanding of how the asymptotic
state is established. Figure 1 shows color maps of transition
probability Pex for α ¼ 0.9 (top) and α ¼ 6=7 (bottom) as
functions of z-axis and velocity direction vz at different
time snapshots (t ¼ 20, 60, and 100 ns). The white dashed
line in each panel draws the location of a crossing in the

MASAMICHI ZAIZEN and HIROKI NAGAKURA PHYS. REV. D 107, 123021 (2023)

123021-4



initial ELN angular distribution. In the early epoch, flavor
instabilities grow everywhere from perturbations via the
vacuum term. As shown in the left panels of Fig. 1, they
occur mainly on the shallower side (in more forward
directions) of the ELN angular distribution. One thing
we do notice here is that the flavor conversions temporarily
establish a pseudo-asymptotic state in the region far away
from the Dirichlet boundary (see the left panels in
Figure 1). This is due to the fact that the flavor conversion
is so rapid to reach a nonlinear saturation by interacting
with nearby flavor waves. The resultant angular distribution
is very similar to that in the case of the periodic boundary
condition. This makes sense because the flavor conversion
occurs locally and the surrounding environment is also
similar. However, the flavor waves from the inner Dirichlet
boundary propagate, break the periodiclike asymptotic
state, and transit to another quasisteady state. The transition
of quasisteady state can be clearly seen in the middle and
right panels in Fig. 1.
Another intriguing feature displayed in Fig. 1 is

that flavorwaves from theDirichlet boundary havewavelike
coherent structures, particularly in 0 ≤ vz < vc. Small-scale
structures, which appear in vc ≤ vz at the early epochs, are
formed due to the interference among flavor waves in the
nonlinear regime [50]. Conversely, coherent patterns as
appearing in 0 ≤ vz < vc imply that the flavor waves do not
interact with the other components to just propagate toward
the positive-z direction. In other words, the coherent flavor
waves indicate that flavor conversion occurs in the angular
directions opposite to the pseudoasymptotic state in the

periodiclike domain. Note that in vc ≤ vz for α ¼ 6=7 and
around vc for α ¼ 0.9, the interactions between flavorwaves
from the Dirichlet boundary and the periodic-like parts
similarly generate small-scale structures.
We now move on to the in-depth analysis of the differ-

ence in the quasisteady state between periodic and Dirichlet
boundary conditions. To this end, we focus on the time-
averaged quantities during the quasisteady state. Figure 2
shows transition probability averaged in the window of
40 ns ≤ t ≤ 100 ns, in which the inner region z ≤ 2 m has
already achieved the quasisteady state. The top and middle
panels correspond to the cases in periodic and Dirichlet
boundary conditions for α ¼ 0.9, respectively. We note that
the blue-colored region in the vicinity of the Dirichlet
boundary (z ¼ 0) corresponds to the region where flavor
instabilities grow, and the asymptotic state in the Dirichlet
case corresponds to the neutrino distribution around
z ¼ 2 m in the figure. By comparing between the top
and middle panels, we find that the angular direction where
the system achieves a flavor equipartition is opposite of
each other across ∼vc. For the case of α ¼ 6=7 with
Dirichlet boundary condition, displayed in the bottom
panel of Fig. 2, one can find that nearly flavor equilibrium
in all angular directions is achieved at z ¼ 2 m. This is
exactly what we expected from our analytic argument.
Figure 3 shows the spatial distributions of number

density HE and neutrino flux HF averaged during the
quasisteady state in the periodic (top) and the Dirichlet
cases (middle) for α ¼ 0.9, and in the Dirichlet case for
α ¼ 6=7 (bottom). As mentioned in Sec. II, the flux for

FIG. 1. Transition probability Pex for α ¼ 0.9 (top) and for α ¼ 6=7 (bottom) at different time snapshots (t ¼ 20, 60, and 100 ns). The
white dashed line in each panel draws the location of a crossing in initial ELN angular distribution.
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each flavor is almost constant in space irrespective of
imposed boundary conditions. However, comparing
between the periodic and the Dirichlet cases for α ¼ 0.9
(see top and middle panels in Fig. 3), there are some notable
differences. As shown in the top panel, HE is almost
constant (∼0.1) in the entire computational domain for the
periodic case, while it decreases substantially at z ∼ 0.3 m
in the case with Dirichlet one. This is due to the fact thatHE
is not a conserved quantity in the latter case. Another
important difference is that neutrino fluxes are spatially
constant regardless of boundary conditions but the values
depend on the boundary. In the Dirichlet boundary con-
dition, they are the same as those set at z ¼ 0 (which are
also the same as in the initial condition). For instance, the
flux for XLN (solid red line in the middle panel of Fig. 3) is
zero, despite the fact that heavy leptonic neutrinos appear
due to FFC. On the other hand, the XLN flux in the periodic
case (top panel) clearly deviates from zero, exhibiting that
the neutrino fluxes are different from those in the initial

condition. In the case of α ¼ 6=7 with Dirichlet boundary
(bottom panel), we find that the neutrino fluxes are almost
zero regardless of flavors, which is consistent with our
Dirichlet boundary condition.
Figure 4 displays ELN-XLN angular distributions

(left panels) and ones weighted by velocity directions
vz (right panels) at z ¼ 2 m, in which we take a time

FIG. 2. Transition probability Pex averaged in the window of
40 ns ≤ t ≤ 100 ns during the quasisteady state for α ¼ 0.9 (top
and middle) and α ¼ 6=7 (bottom). Only top panel is for periodic
case and the others for Dirichlet case. The white dashed line in
each panel draws the location of a crossing in initial ELN angular
distribution.

FIG. 3. Spatial distributions of neutrino number density HE
and number flux HF averaged during the quasisteady state,
40 ns ≤ t ≤ 100 ns, in the periodic (top) and the Dirichlet cases
(middle) for α ¼ 0.9, and in the Dirichlet case for α ¼ 6=7
(bottom).
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average during the quasisteady state, in both periodic and
Dirichlet cases for α ¼ 0.9 (top) and α ¼ 6=7 (bottom).
We note that the angular integration of each quantity
corresponds to the number and the flux for ELN-XLN,
respectively, which can highlight the different properties
between the periodic and Dirichlet cases. As mentioned
already, the ELN-XLN number conservation is one of the
key properties to determine the quasisteady state in the
periodic case. As shown in the orange line in the left
panels of Fig. 4, the ELN-XLN crossing disappears in the
quasisteady state while keeping the angular-integrated
ELN-XLN distribution (i.e., ELN-XLN number) to be
the same as the initial one (dotted line). Indeed, the
ELN-XLN in the angular region of vz < vc in the
asymptotic state needs to be smaller than the initial one
because ELN-XLN in vz > vc needs to be increased so as
to erase the ELN-XLN crossing. On the other hand, we
observe that the angular-integrated ELN-XLN distri-
butions in the Dirichlet boundary become negative and
nearly zero for α ¼ 0.9 and 6=7, respectively, in the
quasisteady state, exhibiting that it is different from the
initial one (which is positive).

On the other hand, vz-weighted ELN-XLN angular
distribution has the opposite trend from the above argu-
ment. In the case of the Dirichlet boundary (green line in
the right panel of Fig. 4), its angular-integrated value (i.e.,
flux) is the same as the initial one, which is negative and
almost zero in the case with α ¼ 0.9 and 6=7, respectively.
As displayed in the right panels, the ELN-XLN becomes
zero in the angular region of vz < vc, and therefore the
vz-weighted ELN-XLN angular distribution in vz > vc
approaches to zero so as to keep the flux being constant.
For the periodic boundary condition, however, the flux
becomes positive in the asymptotic state (see orange lines),
exhibiting that it is not conserved.
One thing we do notice along the above argument is that

if the conserved quantity (either number or flux, depending
on the boundary condition) is initially zero, a flavor
equipartition is established in the whole angular direction.
We also confirm that the disappearance of ELN-XLN
angular crossings is a general ingredient that characterizes
the quasisteady state irrespective of imposed boundary
conditions. Satisfying the stability condition by damping
the ELN-XLN angular crossing, we conclude that the

FIG. 4. Time-averaged angular distributions (left panels) and ones weighted by velocity directions vz (right panels) in the window of
40 ns ≤ t ≤ 100 ns during the quasisteady state for α ¼ 0.9 (top) and α ¼ 6=7 (bottom). Dotted line is an initial ELN angular
distribution and solid green (orange) ones are time-averaged ELN-XLN angular distribution at z ¼ 2 m for the Dirichlet (periodic)
boundary condition.
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conservation law determines in angular directions which a
flavor equipartition is achieved.
Finally, we test our analytic model Eqs. (14) and (15) for

both the periodic and Dirichlet boundaries in the case with
α ¼ 0.9; the result is displayed in Fig. 5. We find that
our model (black dashed line) can capture the character-
istics in the quasisteady state of FFC for both boundary
conditions. Note that some minor deviations in 0 ≤ vz < vc
from numerical results come from the spatial variations as
noted for Fig. 2. This again indicates that different
boundary conditions differ only in what is conserved in
the simulation box, and that the mechanism leading to the
quasisteady state is essentially the same: the stability and
the conservation laws.

IV. CONCLUSIONS

In this paper, we generalize our previous study to
determine the quasisteady states of fast neutrino-flavor
conversion (FFC) based on the argument with stability and
conservation laws. This argument reveals the physical

reason for how the boundary condition affects the quasis-
teady state. This is due to the difference in conserved
quantity: ELN-XLN number and flux for periodic and
Dirichlet boundary conditions, respectively. Based on the
analytic argument, we provide a simple analytic scheme to
determine the asymptotic state of FFC, which can be applied
to both the periodic- and Dirichlet boundary cases. By
performing numerical simulations of FFC in a local one-
dimensional box, we show that our analytic model has the
ability to capture the essential trend of the asymptotic state.
Our time-dependent numerical simulations also

exhibit how the system approaches a quasisteady state,
depending on the boundary condition. In the periodic
one, FFC experiences a nonlinear saturation due to a
cascade through interactions among nearby flavor waves
and works to eliminate ELN-XLN angular crossings to
achieve the stability. Then, the number conservation for
both ELN and XLN leads to a flavor equipartition on the
shallower side of ELN-XLN angular distribution. In the
case of the Dirichlet boundary condition, we find an
intriguing temporal feature before reaching the final
asymptotic state. At the early epoch, the system locally
mimics the periodic cases and temporarily reaches a
pseudoasymptotic state following the number conserva-
tion. However, the quasisteady state is gradually repainted
over time after the neutrinos injected with the Dirichlet
boundary condition reach there. We demonstrate such a
transition from the pseudoquasisteady state to the final
one, in which the angular distributions of neutrinos
become very distinct from each other.
This study suggests that if the sign of the flux (HF) is

opposite to that of the number (HE), the angular direction
where flavor equipartition occurs should be opposite of
each other. Also, when the initial flux is zero, the entire
system establishes a full flavor equilibrium in the case of
the Dirichlet boundary. This mechanism is essentially the
same as in the periodic case for α ¼ 1, with symmetry
between neutrinos and antineutrinos. The only difference is
whether they impose a conservation law on the number or
the flux, while the disappearance of ELN-XLN angular
crossings remains a general condition determining the
quasisteady state. Note that the flux becomes spatially
constant in the quasisteady state even under the periodic
boundary condition. However, unlike the Dirichlet case,
neutrinos distributions are not fixed at the boundaries, and
the flux is not guaranteed to be identical to that in the initial
condition. Thereby, the flux is spatially constant but not a
temporally conserved quantity in the periodic boundary
condition.
Although we provide important clues in understanding

the asymptotic states of FFC, several improvements remain
left behind. One of the shortcomings in this study is that we
neglect the collision term. We also simplify the system by
employing the dilute inward-going neutrinos and the one-
dimensional spatial coordinate. Considering more general

FIG. 5. Time-averaged angular distributions in the window of
40 ns ≤ t ≤ 100 ns during the quasisteady state for α ¼ 0.9 at
z ¼ 2 m in the periodic (top) and Dirichlet case (bottom). Solid
line is for numerical simulations and dashed line is for our
analytical scheme.
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cases requires some improvements in both our approximate
scheme and numerical simulations. We leave the detailed
study to future work, which will be reported in our
forthcoming paper(s).
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