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Numerical simulations of neutron star mergers represent an essential step toward interpreting the full
complexity of multimessenger observations and constraining the properties of supranuclear matter.
Currently, simulations are limited by an array of factors, including computational performance and input
physics uncertainties, such as the neutron star equation of state. In this work, we expand the range of nuclear
phenomenology efficiently available to simulations by introducing a new analytic parametrization of cold,
beta-equilibrated matter that is based on the relativistic enthalpy. We show that the new enthalpy
parametrization can capture a range of nuclear behavior, including strong phase transitions. We implement
the enthalpy parametrization in the SpECTRE code, simulate isolated neutron stars, and compare performance
to the commonly used spectral and polytropic parametrizations. We find comparable computational
performance for nuclear models that are well represented by either parametrization, such as simple hadronic
equations of state. We show that the enthalpy parametrization further allows us to simulate more complicated
hadronic models or models with phase transitions that are inaccessible to current parametrizations.
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I. INTRODUCTION

Multimessenger observations of the gravitational wave
event GW170817 [1,2] have highlighted the role of neutron
star binaries (BNS) in probing the physics of dense matter,
e.g., [3–5]. In addition, further astronomical observations
[1,6–13] and terrestrial nuclear experiments [14,15] have
facilitated new insights into the equation of state (EoS) of
NSmatter [9,10,16–22]. Nonetheless significant uncertainty
exists about the properties of dense matter above nuclear
saturation density,1 ρnuc ≡ 2.8 × 1014 g=cm3, which trans-
lates to uncertainty in the properties of astrophysical NSs
whose densities can reach ∼7ρnuc [18,22].
The merger phase of a BNS coalescence carries the

largest imprint of nuclear matter and strong gravity and it
can only be studied numerically. Numerical relativity
(NR) simulations of BNS coalescences through merger
require solving the equations of general relativistic mag-
netohydrodynamics (GRMHD) simultaneously with the
Einstein field equations and, possibly, the Boltzmann
equations for neutrino radiation transport [24–26]. The

system of equations is closed with a nuclear EoS. See,
e.g., [27–31] for reviews of the field. Such simulations
have been used to interpret existing signals, e.g. [32–37],
and targeted simulations will likely be an essential tool for
understanding future observations.
The most generic strategy for representing the nuclear

EoS numerically is piecewise, i.e., using independent
expressions in different density or pressure intervals. For
example, interpolated tables of thermodynamic quantities
such as pressure and internal energy at every value of the
density and composition offer access to the widest range of
nuclear behavior. However, the temperature- and compo-
sition-dependent tables currently used, e.g., [38], have a
significant memory footprint and evaluation requires com-
putationally expensive operations such as constant access
to the table and interpolation [39]. The latter may also be
inaccurate (at low order) or prone to unphysical oscillations
for EoSs with discontinuities or underresolved features (at
high order). A related approach makes use of piecewise
parametrizations such as a piecewise-polytrope [40], which
is effectively a sparsely sampled table for the polytropic
exponent. Though it can capture a range of high-density
behavior, discontinuities in derivatives of thermodynamic
quantities can degrade simulation accuracy [41,42].

1The saturation density of atomic nuclei is determined via
theory and experiments [23]; here we fix a value for convenience.
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A different strategy is based on functional representations
of the EoS that stay smooth across density scales, such as a
single-polytropic or spectral parametrization [41–44]. Such
parametrizations typically cannot fully represent nuclear
EoS models, as they are restricted to a finite number of
parameters in the density range of interest [41,44]. On top of
this, smoothness across density scales fails to capture
nuclear models that contain nuclear transitions to exotic
degrees of freedom.
In this study, we propose a new parametrization of the

nuclear EoS that bridges smooth and discontinuous models
while balancing accuracy and computational efficiency.2 We
parametrize the relativistic enthalpy [45] via a combination
of analytic polynomials and trigonometric functions. Unlike
pressure, the difference in enthalpy at densities ½ρnuc; 3ρnuc�
for two EoSs is typically small compared to the enthalpy of
either. The enthalpy can thus be effectively written as a
“baseline” part plus small corrections. We capitalize on this
in order to write the enthalpy as a polynomial, typically
capturing ∼99% of the EoS, plus small trigonometric
corrections, bringing the fit accuracy to 1 in 105. Such a
decomposition can capture a wide range of phenomenology
with modest changes to the relevant parameters. In addition,
further thermodynamic quantities such as the pressure can
be evaluated efficiently and analytically.
We implement this parametrization in SpECTRE [46,47], a

scalable next-generation multiphysics computational astro-
physics code that uses task-based parallelism [48]. A
primary science target for SpECTRE is fast and accurate
GRMHD simulations of BNS coalescences. We use
SpECTRE to test the enthalpy parametrization on isolated
NSs in the Cowling approximation, i.e., we do not evolve
the spacetime [49], while evolving the ideal GRMHD
equations [26] with a discontinuous Galerkin-finite differ-
ence (DG-FD) hybrid scheme [50,51]. Though these
simulations assume a static spacetime, they still allow us
to evaluate the role of the enthalpy parametrization in
questions of convergence, efficiency, and resolvability of
nuclear physics in simulations.
We show that the enthalpy parametrization is able to

effectively represent a wide range of nuclear behavior,
while incurring small additional computational costs rela-
tive to simpler parametrizations. After reviewing the gen-
eral requirements a parametrization must meet in Sec. II,
we introduce the enthalpy parametrization in Sec. III. We
demonstrate that it can faithfully fit various nuclear models
ranging from smooth EoSs to phase transitions in Sec. IV.
We perform numerical simulations with SpECTRE and find
that for resolutions of at least 130 m, the EoS evaluation
cost is subdominant to other simulation components. We
also simulate hybrid stars with quark cores and find that

such simulations can be carried out stably with better-than-
expected runtime scaling properties under increasing res-
olution. We conclude with discussions in Sec. V.

II. EoS PARAMETRIZATIONS FOR
RELATIVISTIC SIMULATIONS

A. General requirements

We begin with a general discussion of the requirements
phenomenological parametrizations of the nuclear EoS
must meet for efficient use in numerical simulations.
These include (i) faithful representation of target nuclear
models, (ii) parametric extensibility, and (iii) computational
performance related to smoothness (to the extent allowed
by the underlying nuclear physics) and/or a fully analytic
formalism.
The first requirement is that the parametrization is

generic enough that it can faithfully represent the target
nuclear physics. While no standard faithfulness metrics
exist, a common test is the L2 difference of quantities of
interest [40,43]. Nonetheless it is unclear how different
metrics relate, for example the L2 difference of the local
polytropic indices and that of the mass-radius curve [41,52].
One particular challenge to smooth parametrizations is
modeling strong phase transitions [53,54]. In general we
would like a parametrization where, whatever the metric, we
can improve the fit via iterative approximation. In principle
this is available to any parametrization by adding more
parameters and smoothly changing parameter values. In
practice, however, the functional form of the parametriza-
tion may limit the accessible parameter space, as shown
in [55] for the spectral parametrization.
The second requirement is that the parametrization allows

us to parametrically explore a wide range of possible high-
density behavior. This entails continuously, and without
significant fine-tuning, extending the parametrization to
produce EoSs that might differ from existing nuclear
models. An example of such an extension would be a
parameter which controls the pressure at a particular density
and thus allows us to isolate the effect of this density scale
on macroscopic observables. Another benefit of such
continuous extensibility is that it allows us to construct a
map from the EoS to observables, e.g., [56]. This approach
has already been successfully used in the case of binary
black hole mergers to produce accurate surrogates of the
map of binary configurations to gravitational waves [57,58].
A similar methodology could be used to construct a
surrogate for the postmerger gravitational-wave signature
of BNS mergers, whose EoS dependence is not well
captured by a small number of parameters [59,60].
At the same time, we consider practical requirements in

terms of computational performance: speed and accuracy of
the relevant evaluations, and smoothness of the thermody-
namic quantities where possible. A fully analytic form for
the EoS and all the relevant thermodynamic quantities is a

2We use the term “model” to refer to a nuclear-theoretic
prediction and “parametrization” for a functional form for the
EoS.
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sufficient (but perhaps not necessary) condition. Tabulated
EoSs, while guaranteeing maximal flexibility, fail in this
regard. Consider, for example, primitive variable recovery.
Numerical simulations evolve the components of the stress-
energy tensor which are nonlinear functions of primitive
variables such the rest-mass baryon density ρ, pressure p,
and specific internal energy ϵ. This process involves
inverting the relation between the stress-energy tensor
and the primitive variables with root-finding routines
during which the EoS, for example pðϵÞ, is evaluated
repeatedly. For tabulated EoSs this includes computing the
temperature T from ϵ via another root-find and then
computing pðTÞ via a table lookup and interpolation.
The EoS tables are typically too large to store in the
CPU caches and so the nested root-finding routines require
repeated loading of data from main memory, causing
significant overhead that dominates simulation cost [39].
Another advantage of fully analytical parametrizations is

that they enable efficient computation of all necessary
thermodynamic quantities in a consistent way. Besides
tabulated EoSs, this also applies to certain parametrizations
that require interpolation or numerical integration. For
example, the spectral parametrization allows for analytic
evaluation but not integration of dϵ=dρ. Then, ϵðρÞ is
computed via a computationally expensive numerical
integral as high accuracy is required to avoid thermody-
namic inconsistency during primitive variable recovery.
Even if tables are used in simulations, ensuring smoothness
and consistency requires building higher-order interpolants
(or sampling very densely). This effectively amounts to
constructing local parametrizations of the EoS which
satisfy some stitching constraints. Therefore, even the
use of tables in NR simulations stands to gain from
understanding fully analytic representations of the nuclear
EoS.

B. Existing parametrizations of the EoS

The simplest parametrization of cold, beta-equilibrated,
dense matter is a single polytrope that prescribes a relation-
ship between the rest-mass baryon density ρ and the
pressure p

pðρÞ ¼ KρΓ; ð1Þ

where Γ is the polytropic exponent and K is the polytropic
constant; both are independent of ρ. For example, a
degenerate neutron gas would obey a polytropic relation
with Γ ¼ 5=3. Polytropes have a long history in NS
simulations, e.g., [61–64], and more recent code tests,
e.g., [51,65,66], due to their simplicity, low computational
cost, and the fact that they allow for analytic evaluation of
pressure, internal energy, specific enthalpy, and rest-mass
density. Nonetheless, their simplicity makes polytropes
incompatible with realistic EoS nuclear models, either
hadronic (for example, polytropes do not satisfy the same

universal relations as hadronic models [67]) or hybrid ones
that include multiple degrees of freedom.
Piecewise-polytropes [68] extend single-polytropes to

multiple polytropic segments at different densities, thereby
decoupling low- and high-density behavior. With enough
piecewise segments, piecewise-polytropes can also fit
EoSs with strong phase transitions [69]. While piece-
wise-polytropes retain some of the computational simplic-
ity of the single-polytrope and have been employed in
BNS mergers [70–73], the lack of smoothness across
stitching boundaries tends to increase the computational
cost and decrease the accuracy [41,42]. Extensions to
continuous polytropic indices [42,74] guarantee differ-
entiability of the pressure; however, it is unclear how to
extend the parametrization to guarantee further derivatives
of the pressure exist at the stitching point. Generically
stitching two Cn functions to form a globally Cn function
requires matching nþ 1 derivatives, which may require
the introduction of functions to the parametrization of pðρÞ
for example, which make it difficult to solve for eðρÞ
analytically.
Finally, the spectral parametrization [43] accurately

reflects a broad range of nuclear models while maintaining
smoothness across density scales. The parametrization has
a similar form to a polytrope

pðρÞ ¼ KρΓðρÞ; ð2Þ

but now ΓðρÞ is expanded in a basis of smooth functions,
typically a polynomial. The spectral parametrization can
successfully reproduce hadronic nuclear models with a
comparable number of parameters as polytropes, though it
cannot capture sharp changes in the speed of sound that are
associated with phase transitions [41,43]. Compared to
piecewise polytropes and other EoS with discontinuities,
the spectral parametrization can lead to reduced computa-
tional cost in simulations [41] for a given accuracy require-
ment, while remaining more computationally intensive than
pure polytropes. Our current implementation of the spectral
EoS balances faithfulness to nuclear models and computa-
tional efficiency by expressing ΓðρÞ as a a polynomial in
log ρ [41]. More complex basis functions could improve
faithfulness, but they would come at the cost of computa-
tional efficiency since computation of the internal energy
requires a numeric integral whose accuracy depends on
how rapidly ΓðρÞ varies.
The above discussion highlights the role of balancing

faithfulness and computational efficiency in selecting EoS
parametrizations for numerical simulations. While the
single-polytrope is computationally efficient, it is too
restrictive in terms of nuclear physics. Piecewise-polytropes
expand the range of nuclear models accessible, but at the
cost of longer runtimes and loss of accuracy due to non-
smoothness at the stitching boundaries. The spectral para-
metrization strikes some balance, but performs optimally
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when few parameters are used; it is therefore restricted to
simple nuclear models. Ultimately, we would prefer an EoS
parametrization which is able to fit to a problem-specific
precision, matching the level of other errors in simulations at
the lowest possible cost. This motivates the introduction of a
new parametrization with increased flexibility to model a
wider range of nuclear EoSs without considerable perfor-
mance losses.

III. ENTHALPY PARAMETRIZATION OF THE EoS

In this section we introduce a new enthalpy parametri-
zation with a flexible number of degrees of freedom that
expands the range of microscopic physics we are able to
represent in numerical simulations. In the following, we
work in geometric units: c ¼ 1, G ¼ 1.

A. Parametrizing the enthalpy

The specific enthalpy of a system h is defined as the
enthalpy per unit mass. In relativistic contexts it represents
the energy required to inject a unit of rest mass into the
system while remaining in thermodynamic equilibrium.
The first law of thermodynamics requires that at zero
temperature T and in β-equilibrium,

hðρÞ≡
�
∂e
∂ρ

�
T;β

¼ de
dρ

¼ pðρÞ þ eðρÞ
ρ

; ð3Þ

where e and p are the energy density and pressure, while ρ
is the rest-mass energy density of baryons.
We choose to directly parameterize the enthalpy for three

primary reasons. First, the enthalpy is a monotonically-
increasing and slowly-varying function of the baryon den-
sity, which is numerically beneficial. Second, the enthalpy
can be intuitively interpreted as a measure of the stiffness of
the EoS: a larger enthalpy corresponds to higher pressure
and energy density. Third, and importantly for hydrody-
namic simulations, the enthalpy in cold, beta-equilibrated
matter is related to other thermodynamic quantities by linear
operations, which facilitates analytic calculations and avoids
interpolation or numerical integration.
From the first law, we have

dh
d log ρ

¼ de
dρ

þ dp
dρ

− h ð4Þ

¼ dp
dρ

¼ dp
de

de
dρ

ð5Þ

¼ hc2s ; ð6Þ

Equation (5) suggests that dp=dρ is zero if and only if
dh=dρ is zero. Equation (6) provides the motivation for our
parametrization choices. Consider, for example, a constant
speed of sound cs ¼ cs;0. Then

c2s;0 ¼ c2s ¼
dp
de

⇒ p ¼ p0 þ c2s;0Δe; ð7Þ

with p0 ¼ pðe0Þ and Δe≡ e − e0. In this special case
Eq. (6) becomes

hðlog ρÞ ∝ expðc2s;0 log ρÞ
≈ ρ0½1þ c2s;0 logðρ=ρ0Þ þ…�; ð8Þ

where ρ0 is some fiducial density. Equation (8) suggests
that if c2s is slowly varying,3 the enthalpy can be approxi-
mated as exponential in log ρ. Moreover, a smaller c2s
accelerates the convergence of the series of Eq. (8), though
this also depends on the choice of density scale ρ0. We
therefore choose the Taylor expansion in Eq. (8) as the
starting point of the enthalpy parametrization.
We further select log ρ=ρ0, as the independent variable of

the parametrization. This choice enables us to better resolve
the low-density EoS. Equation (8) further suggests that
hðlog ρÞ ∝ expðc2s;0 log ρÞ is analytically and computation-

ally simpler than hðρÞ ∝ ρc
2
s;0 as the Taylor expansion of

ρc
2
s;0 converges more slowly than the expansion of

expðc2s;0 log ρÞ for noninteger cs;0.
Lastly, a desirable property of the specific enthalpy is

that it is continuous across first-order phase transitions.
This can be seen from Eq. (5) where maintaining a constant
pressure across the transition guarantees that the enthalpy
will be constant as well. This indicates that across certain
weak transitions the enthalpy can be expanded in a basis of
continuous functions, unlike, for example, a local poly-
tropic exponent.

B. Decomposition

Motivated by Eq. (8), we introduce a parametrization of
hðlog ρÞ. Given an EoS in some density region ρmin ≤ ρ ≤
ρmax we select a density scaling parameter ρ0 ≤ ρmin such
that z≡ logðρ=ρ0Þ is positive in the relevant density range.
Importantly, ρ0 is not necessarily equal to ρmin thus
introducing an additional parameter. We then write

hðzÞ ≈ hpðzÞ≡
Ximax

i¼0

γizi; ð9Þ

where hðzÞ is the target enthalpy and hpðzÞ is its approxi-
mation. This polynomial decomposition is motivated by the
previous observation that hðzÞ is approximately exponen-
tial in z for nearly constant speeds of sound, corresponding
to γi ∼ c2is;0=i!. The rapid convergence of the γi sequence
indicates that the i > imax terms will be small provided that
the speed of sound is slowly varying.

3In general, causality and stability bound 0 ≤ c2s ≤ 1.
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Given that hðzÞ is positive and increasing and zi > 0,
catastrophic floating point cancellation in numerical calcu-
lations can be avoided by restricting to γi ≥ 0. This
guarantees that each term γizi is a small and positive
correction to previous terms. Furthermore, the polynomial
expansion of Eq. (9) can be efficiently and stably evaluated
with Horner’s method [75]. Allowing for more general γi is
possible, but this comes at a risk of oscillatory behavior and
cancellation of large terms which make convergence pre-
dictions difficult. The implications and rationale behind the
choice to set γi ≥ 0 are further discussed in Appendix C.
A consequence of setting γi ≥ 0 is that Eq. (9) is unable

to model certain EoSs, for example the case where dh=dz ¼
hc2s is not strictly increasing, even with imax → ∞. Such a
nonmonotonic speed of sound could be encountered for
complicated hadronic models or more generically if non-
hadronic degrees of freedom are introduced [53,76–78]. We
therefore augment Eq. (9) by decomposing htðzÞ ≈ hðzÞ −
hpðzÞ as a Fourier series

htðzÞ≡
Xjmax

j¼1

aj sinðjkzÞ þ bj cosðjkzÞ; ð10Þ

where k sets the “wavelength scale” of the fit. In a Fourier
series k is typically fixed to

k ¼ kF ≡ 2π

zmax − zmin
¼ 2π

logðρmax=ρminÞ
; ð11Þ

but here we vary it and find that k⪆kF leads to good fits. The
effect of perturbing k around kF is small, as we explore in
Appendix A. The trigonometric expansion of Eq. (10) can
also serve as a low-pass filter to remove high-frequency
oscillations from the tabulated EoS data that may not be
physical or computationally resolvable. In summary, the
enthalpy parametrization is

h�ðzÞ≡ htðzÞ þ hpðzÞ ≈ hðzÞ: ð12Þ

In Fig. 1 we demonstrate the enthalpy parametrization fit
of Eq. (12) and its polynomial, Eq. (9), and trigonometric,
Eq. (10), components for a phenomenological EoS drawn
from a Gaussian process prior [79,80]. The polynomial fit
alone is accurate to aboutOð1%Þ, while the total fit is good
to about one part in 105. For reference, we also plot
c2s ¼ ð1=hÞdh=dz, as a measure of the complexity of the
EoS. Even though c2s is not globally nearly constant, it is
slowly varying and nearly monotonic.
Given the generic form of the enthalpy parametrization,

there is no guarantee that a particular fit will satisfy stability
c2s ≥ 0 and causality c2s ≤ 1. If htðzÞ ¼ 0, the fit is
guaranteed to be stable, and a sufficient but not necessary
condition for causality is γi ≤ γi−1=i, which becomes

FIG. 1. Results of a fit to an EoS drawn from a Gaussian process with the enthalpy parametrization. We plot various thermodynamic
quantities as a function of z. The fit parameters are ρmin ¼ ρnuc, ρmax ¼ 7ρnuc, ρ0 ¼ 0.5ρnuc, k ¼ π=ðlogð7ÞÞ, and imax ¼ jmax ¼ 10. Top
panel: The tabulated EoS h (solid, orange) and the total fit h� (solid, light blue). We also plot the polynomial fit to the EoS hp (dashed,
indigo). Both the total and the polynomial fit are indistinguishable from the tabulated EoS by eye. Second Panel: The residuals of the
total fit h − h�. In this metric, the fit demonstrates excellent agreement relative to h − 1 ¼ p=ρþ ϵ ≳ 1 × 10−2. Third panel: The
trigonometric fit hr ¼ h − hp. Fourth panel: ð1=hÞdh=dz ¼ c2s , for both the tabulated EoS and the total fit. Heuristically, the speed of
sound has a comparable number of plateaus to the number of obvious peaks in ht.
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necessary and sufficient in the case of a constant sound
speed. If htðzÞ is nonzero, then h�ðzÞ can oscillate,
changing on scales of order the most quickly varying
Fourier mode. Therefore, both conditions must be checked
on a grid of spacing

δz≲ 1

jmaxk
; ð13Þ

where, as above, jmax is the index of the fastest varying
“Fourier” mode.
While an unstable fit to the EoS cannot be tolerated in a

numerical simulation, an acausal fit may be used if it is very
nearly causal (i.e. if

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s − 1

p
is small compared to the

velocity resolution of the simulation). In practice, however,
fits typically are neither acausal nor unstable; if they are it is
often a sign that the fit to the EoS is poor and more
parameters should be used.

C. Computing thermodynamic quantities

Given the expansion of Eq. (12), we can analytically
compute the thermodynamic quantities needed for
GRMHD evolution as formulated in SpECTRE [46,51], or
similar codes [81]. For example, the energy density is

de
dz

¼ ρ
de
dρ

¼ ρ0 expðzÞhðzÞ ⇒

eðzÞ ¼ ρ0

Z
z

z0

expðz0Þhðz0Þdz0 þ eðz0Þ: ð14Þ

Since hðzÞ is expressed in terms of sines, cosines, and
polynomials, the integral of Eq. (14) can be computed using
the following identities

Z
expðzÞ sinðnkzÞdz

¼ expðzÞ sinðnkzÞ − nk cosðnkzÞ
1þ n2k2

þ C; ð15Þ
Z

expðzÞ z
n

n!
dz

¼ expðzÞ z
n

n!
−
Z

zn−1

ðn − 1Þ! expðzÞdz ¼ …; ð16Þ

where the ellipses indicate that integration by parts can be
repeated until the integral becomes trivial. Equation (16) is
also a gamma function, but it is typically incomplete.
Nonetheless, all integrals can be evaluated analytically and
eðzÞ has an expansion of the form

eðzÞ ¼ expðzÞ
�X

i

γ0iz
i þ

X
j

a0j sinðkjzÞ þ b0j cosðkjzÞ
�

þ e�; ð17Þ

where the constant e� is determined by setting eðzminÞ ¼
emin and the coefficients satisfy

γ0i ¼
1

i!

X
imax≥l≥i

ð−1Þimax−ll!γl; ð18Þ

a0j ¼
aj

1þ j2k2
þ bjjk

1þ j2k2
; ð19Þ

b0j ¼
bj

1þ j2k2
−

ajjk

1þ j2k2
: ð20Þ

The pressure pðzÞ can also be evaluated analytically with
a similar expansion given that

pðzÞ ¼ ρ0hðzÞ expðzÞ − eðzÞ ¼ hρ − e: ð21Þ

This equation showcases the benefits of setting γi ≥ 0 in
Eq. (9) to avoid cancellations in the enthalpy expansion.
The pressure is computed as the difference of two relatively
large quantities, each typically 1–3 orders of magnitude
larger than the pressure itself in the relevant density
interval. If the expansion of hðzÞ additionally had large
coefficients (i.e., much larger than the enthalpy) terms of
eðzÞ will be computed by sums of alternating large
numbers, which is numerically undesirable. However,
because γl ∼ 1=l! for EoSs with slowly varying speed
of sound, the terms in Eq. (18) are of comparable size, and
about the same size as corresponding terms of hðzÞ. Thus
the terms of pðzÞ are computed to comparable precision as
the terms of eðzÞ and hðzÞ. We find this holds more broadly,
even when the speed of sound is not slowly varying, as γl is
typically decreasing even if it is not decreasing exponen-
tially as in the constant-c2s case.
Lastly, we can also analytically compute

dp
dρ

¼ dh
dz

; ð22Þ

through

dh
dz

¼
X
i

iγizi−1 þ
X
j

jk½aj cosðjkzÞ − bj sinðjkzÞ�: ð23Þ

As can be seen from Eqs. (17) and (23), parameters that
enter linearly in the original expansion of hðzÞ also appear
linearly in all relevant thermodynamic quantities.

D. Low-density stitching

The enthalpy parametrization is best suited for high-
density regions where pressure and energy density are
comparable. Low-density regions with p ≪ hρ ∼ e might
be better fit by direct parametrizations of the pressure. We
therefore combine the enthalpy parametrization with a
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simpler low-density parametrization below ρmin. Inciden-
tally, this density region coincides with the region of
validity of nuclear theory calculations [82–84] and terres-
trial experiments [14,15,85–87]. The low-density EoS is
therefore better constrained and thus there is reduced need
for flexibility in the EoS parametrization. Moreover, the
low-density EoS has a reduced impact on NS observables,
especially if the simulation resolution is low, such that
ðdp=drÞΔr > δp, where Δr is the grid spacing and δp is
the difference induced by EoS mismodeling.
A number of options exist for the low-density EoS,

including direct parametrizations of nuclear models [82] or
chiral effective field theory(χ-EFT) results [18,88]. Here we
select the existing spectral parametrization implementation
[41], as it is more flexible than single-polytropes, but
smoother than piecewise-polytropes and tabulated EoSs. In
certain cases, we explore extending the spectral paramet-
rization up to relatively high densities ∼2ρnuc if it can fit the
target EoS well enough in this density regime. Due to the
low number of parameters in the spectral parametrization,
all degrees of freedom are determined by requiring differ-
entiability of the pressure and continuity of the internal
energy at the stitching points. We verify this stitching
maintains C1 smoothness, see Appendix A.

E. Free parameters and fitting

The number of free parameters needed to achieve good
fits of arbitrary EoSs will impact the simulation cost.
Indeed, the cost of evaluating any EoS-dependent quantity
is proportional to the number of coefficients used for the
enthalpy parametrization. Therefore it is prudent to use
only as many terms as necessary to achieve an accurate fit;
accuracy in the context of numerical simulations is mea-
sured relative to other simulation errors. There is no
definitive metric for EoS mismodeling error, as the relevant
error will depend on the application. For example, in
applications to BNS inspirals, the relevant errors are in
GW phase, matter hydrodynamic variables, and magnetic
field variables. When considering the fitness of an EoS
parametrization for use in simulations, all these factors
should be taken into consideration.
Nonetheless, it is pragmatically necessary to define

surrogate goodness-of-fit statistics in order to both fit the
enthalpy parametrization to data and determine approxi-
mately if such a fit is good. We describe the fitting procedure
of the parametrization to a tabulated model that we employ
in Appendix A. Briefly, we fit the specific enthalpy hðzÞ on a
linear grid in z but with variable precision, requiring higher
precision at lower densities to achieve equal cost across
density scales. However, fitting is not the only way to extract
coefficients for use in the enthalpy parametrization; for
example, coefficients to approximate a polytropic EoS are
derived in Appendix B using a Taylor expansion of the
specific enthalpy. Nonetheless, for realistic nuclear models,
fitting the specific enthalpy is usually necessary.

One convenient benchmark is to examine the error in
radius of a typical neutron star induced by using a enthalpy
parametrization fit as compared to a tabulated model. In
order to demonstrate the general requirements for fitting, we
fit a collection of realistic nuclear theoretic EoSs, compute
the error in the radius of a 1.4M⊙ NS (ΔRtyp) and display the
results in Table I. These fits are all carried out with
imax ¼ 12, and jmax ≤ 5, and have typical NS radius error
of less than 70 m. EoS modeling error would therefore likely
not be limiting in simulations with∼70meter resolution; this
is a conservative choice of error measure as realistic
simulation errors will likely dominate static errors. Additio-
nally, we fit phenomenolgical EoSs drawn from a Gaussian
process-mixture model priors [80,89]. We examine two
cases, first are draws from a model-agnostic prior, which
are only loosely informed by nuclear theory calculations.
The second class are Gaussian process draws conditioned on
χ-EFT up to 1.5ρnuc [17,87]. For the χ-EFT, we distinguish
between draws from hadronic, hyperonic, and quarkyonic
conditioned processes. This indicates the draws are from
processes conditioned on EoS models of the given type, so
that, e.g., the hadronic process is consistent with known
hadronic EoSs. Nonetheless the processes use “agnostic”
kernels which lead to very compatible distributions on EoSs
for each of the three cases [80,89]. Both nuclear-theoretic
and phenomenological EoSs show comparable fit quality,
indicating that the enthalpy parametrization is able to
reproduce a wide range of EoS models.

TABLE I. A list of EoS fits with the enthalpy parametrization to
nuclear theoretic and phenomenological EoS. Theoretic EoSs are
listed according to the conventions of [40]. Phenemenological
EoSs are drawn from Gaussian process priors. The EoSs gp1 and
gp2 are drawn from a model agnostic Gaussian process prior
[80,89]. EoSs gpχeft1, gpχeft3, and gpχeft5 are drawn from
Gaussian process priors conditioned on χ-EFT predictions at low
densities. These three EoSs represent draws from hadronic,
hyperonic, and quarkyonic conditioned GPs, respectively.

EoS Rtyp [km] ΔRtyp [km] ΔMmax [M⊙] jmax References

alf2 12.968 −0.028 −0.003 3 [90]
bsk19 10.763 −0.006 −0.001 5 [91]
ap4 10.595 −0.02 0.001 3 [92]
H4 12.931 0.01 0.001 3 [93]
bbb2 11.442 −0.05 −0.008 5 [94]
eng 12.306 −0.071 −0.009 2 [95]
mpa1 11.696 −0.062 −0.003 5 [96]
ms1 14.223 −0.015 −0.007 5 [97]
qmc700 11.942 −0.008 −0.002 5 [98]
sly 11.873 −0.053 −0.003 5 [99]
wff2 10.373 −0.049 −0.002 5 [100]
gp1 12.302 −0.02 −0.007 4 [89]
gp2 12.345 −0.024 0.001 4 [89]
gpχeft1 10.496 −0.052 0.001 5 [17]
gpχeft3 10.509 −0.049 0.001 5 [17]
gpχeft5 10.789 −0.057 −0.002 5 [17]
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We list jmax in Table I as we expect that the number of
trigonometric terms is the leading-order driver of cost to
evaluate the parametrization. We quantify this further in
Sec. IVA 2. Contrarily we expect little dependence of
evaluation cost of imax because evaluation of polynomials
using Horner’s method is extremely efficient. For realistic
EoSs, fine-tuning of low-density stitching and nonlinear
parameters can reduce the number of trigonometric cor-
rection terms that are required to achieve a good fit. Even
when no fine-tuning is required, typically good fits are
achieved with jmax ∼ 4. We quantify this in Fig. 2 by
showing the error in the radius of a typical star for 6
different χ-EFT informed Gaussian process draws, when no
fine tuning of nonlinear or low-density parameters is
performed. The fits are better when more trigonometric
correction terms are included, all falling below 100 m error
by jmax ¼ 4. These errors are often due to the EoS at low-
densities, and so typically fine-tuning of certain parameters,
such as the low density polytropic index, or the energy
density of EoS at the stitching density, must be carried out
to achieve ∼10-meter-error fits. In practice, though, this
may not be necessary as quantities such as the tidal
deformability are determined by the bulk of the matter,
interior to the crust, therefore crust modeling errors may be
less significant then predicted by using the radius as a
metric. These considerations will be especially important
for BNS simulations where GW emission is predominately
determined by tidal deformability, and other sources of
error may overshadow EoS modeling error.

F. Use cases

The primary function of the enthalpy parametrization is
to represent EoS models for use in numerical simulations
containing dense matter. Given the wide range of models of

nuclear matter, the enthalpy parametrization is intentionally
very flexible. Existing parametrizations of the nuclear EoS
typically have a handful of parameters, and extending them
might be nontrivial. In contrast, well-interpolated tables
have many “parameters,” or tabulation points, some of
which wewould prefer not to resolve in simulations (such as
artificially rapid changes in some pressure derivative). The
enthalpy balances these requirements in such a way that the
maximal level of flexibility can be found without introduc-
ing extraneous parameters. This allows us to resolve EoSs
from nuclear theory, Sec. IV B, as well as EoSs which
extend or modify nuclear models, Sec. IV C. Such flexi-
bility is crucial for determining the observational implica-
tions of new degrees of freedom at arbitrary density scales.
Furthermore, the requirements laid out in Sec. II are

tailored for a specific application of EoS parametrizations,
namely numerical simulations involving NSs. These
requirements are domain specific and need not necessarily
lead to efficient parametrizations for different applications,
for example EoS inference using astrophysical data.
Besides the general faithfulness and computational effi-
ciency considerations, EoS parametrizations employed in
inference need to satisfy an additional requirement: they
must provide a reliable path from the observed data to the
EoS constraints. Specifically, the data must be the primary
driver of inference while the impact of the EoS para-
metrization itself must be either minimal or driven by first
principles and nuclear theory. Parametrizations that impose
a functional form for the EoS in terms of a finite number of
parameters may fail this requirement [44,101]. Specifically,
the spectral, piecewise-polytropic, and speed-of-sound
parametrizations impose additional phenomenological cor-
relations between different densities that are not guided by
nuclear theory but instead by the arbitrary functional form
of the parametrization itself [102]. Though we have not
repeated the analysis of [102], we expect that the enthalpy
parametrization has the same pitfall as it possesses many
nearly-irrelevant degrees of freedom that are not con-
strained by current observations and will generically impart
correlations between density scales. We therefore caution
against using it for inference purposes.

IV. PARAMETRIZATION VERIFICATION
AND SIMULATIONS

In this section, we look in depth at fitting nuclear and
phenomenological models with the enthalpy parametriza-
tion and perform numerical simulations. First, we use
SLy1.35 [41], a spectral fit to the SLy EoS [40,99] with
a low-density polytropic exponent of 1.35962. This repre-
sents a nuclear EoS which has been effectively simplified by
being fit with a spectral EoS. Therefore, this test allows us to
analyze the performance of the enthalpy parametrization on
a problem where lower dimensional parametrizations are
applicable, in terms of both accuracy and computational
performance. We next consider a tabulated DBHF [103]

FIG. 2. Radius error in fitting Gaussian process-generated
EoSs conditioned on χ-EFT [17,87] with the enthalpy para-
metrization. We plot two hadronic-conditioned draws, two
quark-conditioned draws, and two hyperonic draws. A problem
with stitching stability affected multiple of the fits at jmax ¼ 3, so
we exclude these.
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EoS, derived from relativistic, ab initio calculations of
protons and neutrons dressed via interactions with one-
boson exchange potentials.4 It is relatively stiff, with a
typical NS radius of ∼13.5 km. This allows us to assess the
accuracy with which we can fit realistic nuclear models. We
then modify the DBHF EoS using a constant-speed-of-
sound parametrization [104] to construct a model with a
strong phase transition, DBHF_2507. With this we assess
the ability of the enthalpy parametrization to augment
realistic low-density models with phenomenological exten-
sions inspired by nuclear theory.
Using the three models presented above, we study the

evolution of isolated NSs by numerical simulation. As in
Ref. [51], we work with SpECTRE within the Cowling
approximation and examine NS modes that are sourced
by density perturbations due to numerical noise. We neglect
spacetime dynamics and magnetic fields, which will likely
be most relevant in crust physics where magnetic and matter
pressure are comparable. We run each simulation for 40,000
CFL-limited time steps [105]. For the DG-FD hybrid solver
of SpECTRE we use a sixth-order (P5) discontinuous Galerkin
schemewhere each element uses 63 Gauss-Lobatto points on
the mesh. If an element switches its mesh from discontinu-
ous Galerkin to finite difference, we use 113 uniformly
spaced grid points for finite difference cells. The finite
difference solver needs to compute the solution (in our case
ρ, p, and Wvi, where W is the Lorentz factor and vi the
spatial velocity) at cell interfaces (halfway between grid
points). We compute these using two different reconstruction
schemes: the widely employed monotonized central [106]
and a positivity-preserving adaptive order schemewhich was
recently implemented in SpECTRE [107]. In the nth order
adaptive scheme, we first try reconstructing the finite-
difference interface values with a degree n − 1 polynomial
without any limiting procedure. If the reconstructed values
are (i) not positive or (ii) trigger a certain oscillation-
detecting criterion, we repeat the reconstruction with pro-
gressively lower-order methods. In this work we use the
fifth-order adaptive scheme which first tries reconstruction
with a quartic polynomial and switches to monotonized
central if the reconstructed values fail to satisfy the con-
ditions described above. Finally, if the monotonized central
reconstruction did not produce positive values at the inter-
face, first-order reconstruction is used.

A. SLy1.35

1. SLy1.35: Fit results

We fit SLy1.35 with the enthalpy parametrization and
show the error in pressure divided by density as a function
of density in Fig. 3. We vary the number of trigonometric
terms in Eq. (10) and show results with jmax ¼ 2 and

jmax ¼ 5. The jmax ¼ 5 fit shows exceptional agreement;
the error measure, Δp=ρ, is near or below 1 × 10−4 over
essentially the entire domain. The jmax ¼ 5 fit shows
increased error, though Δðp=ρÞ remains near or below
3 × 10−3 above ρnuc. We stitch to a spectral parametrization
below ρnuc, marked in the Fig. 3 as a vertical dashed blue
line. Even though the low-density behavior of the EoS is a
spectral EoS fitting a spectral EoS, it is not guaranteed the
low-density fit is good, because we prioritize smooth
stitching to the enthalpy solution above accurate low-
density EoS modeling, see Appendix A. In line with this,
we see a significantly better low-density fit for jmax ¼ 5.

2. SLy1.35: Relativistic simulations

We carry out simulations directly with SLy1.35 using
the defining spectral expansion [41] as well as the jmax ¼ 5
enthalpy parametrization fit; details are given in Table II.
We evolve a NS with an initial central density of ∼3.04ρnuc
which has a Tolman-Oppenheimer-Volkoff (TOV) [108]
mass of about 1.4M⊙ and a radius of about 11.5 km, see
Figs. 3 and 4. The simulation resolution corresponds
approximately to a 220 m finite difference grid spacing.
We plot the central density as a function of time and
its spectrum

ρ̂cðωÞ ¼
Z

T

0

ρcðtÞe−iωtdt; ð24Þ

FIG. 3. Fitting SLy1.35 (a spectral model of SLy) with the
enthalpy parametrization, expressed through the difference in
pressure divided by the density. The SLy1.35 EoS value for
pðρÞ=ρ is marked by a maroon dashed line for comparison to the
residuals. The jmax ¼ 5 and jmax ¼ 2 fit residuals are marked in
light blue and indigo. The vertical blue dashed line marks the
stitching density between the enthalpy and the spectral para-
metrizations, while the vertical red dot-dashed line marks the
central density of the NS we simulate in Sec. IVA 1. The solid red
horizontal line marks an error level of 3 × 10−3 for comparison
with fits in Sec. IV B 1; errors below 3 × 10−3 at ð1; 3Þρnuc serve
as a heuristic for a good fit.

4The EoS we use has employed the Bonn A potential defined
in Ref. [103].
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in Fig. 5 and find essentially identical evolution between
the spectral and enthalpy fits, in line with expectations
from the static tests of Sec. IVA 1. This demonstrates that
the enthalpy parametrization is able to faithfully reproduce
results from lower-dimensional parametrizations.
With regards to computational cost, the enthalpy para-

metrization results in an overall 15% increase in total

runtime compared to the spectral parametrization on similar
hardware. To isolate the EoS evaluation cost, we benchmark
the pðρÞ and ϵðρÞ evaluation in Table III. The two para-
metrizations have comparable evaluation times though exact
numbers are sensitive to the number of trigonometric terms
in the enthalpy case. While pðρÞ evaluation is in general
faster with the spectral parametrization, the opposite is true
for ϵðρÞ. This is because the spectral parametrization needs
to perform a quadrature to calculate ϵðρÞ, see Sec. II. In the
enthalpy parametrization, trigonometric terms cause slow-
downs, although even with 2 × jmax ¼ 10 terms the pðρÞ
cost does not exceed a factor of 4. Further studies with
single-polytropic nuclear EoSs suggest that this disadvant-
age effectively disappears if jmax ¼ 0, see Appendix B.

B. DBHF

1. DBHF: Fitting a tabulated nuclear model

We fit the tabulated DBHF EoS with the enthalpy
parametrization and further explore the effect of low-
density stitching to the spectral parametrization by probing
two different stitch densities: ρnuc and 2.5ρnuc; these fits are
referred to as “low-stitch” and “high-stitch” in what
follows. In the high-stitch case we use jmax ¼ 10 trigo-
nometric terms, while we find that jmax ¼ 5 is enough for
the low-stitch one. See Appendix A for more details. We
examine the microscopic and macroscopic performance of
both fits in Figs. 6 and 7. On the microscopic side, the low-
stitch fit achieves higher accuracy above 1.1ρnuc, but worse
accuracy below.

FIG. 4. Radius error ΔR as a function of mass for the SLy1.35
EoS and the jmax ¼ 10 and jmax ¼ 5 enthalpy parametrization
fits. We mark the mass of the stars with central density
ρc ∼ 3.04ρnuc, (simulated in Sec. IVA 2), with dashed-dot lines.
Consistently with the microscopic comparison of Fig. 3, the
enthalpy fit can reproduce macroscopic quantities with excellent
agreement. The error decreases with more trigonometric terms,
but always remains small compared to 200 m grid resolution.

TABLE II. Analysis settings for the SpECTRE simulations with fits to the SLy1.35, DBHF, DBHF_2507 EoSs, and a polytropic EoS.
Labels are chosen to serve as unique identifiers for the runs. The integer suffix represents the approximate grid spacing of the run in
meters. Elts describes the number of computational elements used in the (three-dimensional) domain. FD Δx represents the finite-
difference grid spacing, in meters, of the finite-difference cells in each element when using finite-difference instead of discontinuous-
Galerkin methods; this is the primary measure of resolution of the run and allows for easy comparison to other codes. ρc represents the
initial central (rest-mass) density of the NS being simulated. Cost, in cpu-minutes per CFL-limited timestep, is the approximate cost of
computing one time step in this simulation. While runtime depends on an array of factors and may not always be indicative of EoS
evaluation speed, differences of ≳20% represent on otherwise identical runs likely represent EoS-induced slowdown. Figs represents
which figures contain plots pertaining to this run. Info represents the section in which more information about the EoS can be found.
Radius represents the TOV radius of the NS being simulated. Elts/D represents the approximate number of computational elements
across the diameter of the star.

Label Elts FD Δx (m)a ρc (1=M2
⊙) Cost (cpum/st) Figs Info Radius (km) Elts/D

spectral-sly-mc-220 ð24Þ3 224 0.00138 3.5 5 IVA 2 11.5 9
enthalpy-sly-mc-220 ð24Þ3 224 0.00138 4.1 5 IVA 2 11.5 9
spectral-dbhf-mc-130 ð24Þ3 134 0.001 4.1 8 IV B 2 13.4 18
enthalpy-dbhf-mc-130 ð24Þ3 134 0.001 3.7 8 IV B 2 13.5 18
enthalpy-pt-mc-130 ð24Þ3 134 0.0021 5.1 N/A IV C 11.8 16
enthalpy-pt-ppao-70 ð48Þ3 67 0.0021 24.6 10 IV C 11.8 32
enthalpy-pt-mc-70 ð48Þ3 67 0.0021 20.7 10 IV C 11.8 32
enthalpy-polytrope-mc-130 ð24Þ3 134 0.00128 2.07 16 B 14.1 19
polytropic-polytrope-mc-130 ð24Þ3 134 0.00128 2.1 16 B 14.1 19
enthalpy-smoothpt-170 ð24Þ3 168 0.0021 3.5 NA IV C 3 11.9 12

aWe express resolution in finite difference grid spacing for easy comparison to finite difference codes.
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The macroscopic side presents a clearer picture. When
we use the enthalpy parametrization to describe the EoS
down to a density of ρnuc, we obtain excellent agreement
with the tabulated EoS, with radius differences Oð1Þ m for
astrophysically relevant NS masses. However, when we
stitch to the spectral parametrization at 2.5ρnuc the radius

error increases to Oð100Þ m at 1.4M⊙. The improved
agreement between the 2.5ρnuc and the ρnuc stitching fits
can be attributed to the high accuracy of the enthalpy
parametrization in the range ρnuc to 2.5ρnuc, as seen in
Fig. 6. The difference in the two errors is particularly
pronounced near 2ρnuc, consistent with the observed strong
correlation between the pressure at twice saturation density
and radius of a 1.4M⊙ star [109]. This further establishes
the importance of the enthalpy parametrization as a flexible
EoS parametrization at nuclear saturation and above, in this

FIG. 6. Same as Fig. 3 but for the DBHF nuclear EoS model
and two enthalpy fits that are stitched to a spectral parametriza-
tion at ρnuc (low-stitch, light blue) and 2.5ρnuc (high-stitch,
indigo). We also plot the tabulated DBHF model pðρÞ=ρ in
dashed-teal for reference. The vertical dashed lines denote the
stitching densities. We also mark the value Δp=ρ ¼ 3 × 10−3 as a
solid red horizontal line for reference. We mark the central
density of the star we simulate in Sec. IV B 2 with a vertical red,
dot-dash line.

FIG. 7. The NS mass-radius relation but for the DBHF nuclear
model and two enthalpy fits that are stitched to a spectral
parametrization at ρnuc (low-stitch, light blue) and 2.5ρnuc
(high-stitch, indigo). We find visibly improved fits to the M–R
relation when the enthalpy parametrization extends down to
lower densities. Red dots mark the NSs we evolve in Sec. IV B 2.

FIG. 5. NS central density as a function of time (top panel) and
its spectrum (bottom panel) for SpECTRE simulations with
SLy1.35 (red dashed) and its jmax ¼ 10 enthalpy fit (blue solid).
These runs are labeled spectral-sly-mc-220 and enthalpy-sly-mc-
220 in Table II. In both plots the curves are nearly indistinguish-
able. We plot times in both milliseconds (ms), and dynamical
times (tdyn ≡ 1=

ffiffiffiffiffi
ρc

p
).

TABLE III. Evaluation cost in nanoseconds for the spectral and
two different enthalpy fits to SLy1.35 for the pressure and internal
energy evaluated at ρ ¼ 5 × 10−4M2

⊙. The spectral parametriza-
tion has a shorter (longer) pressure (internal energy) evaluation
time. The enthalpy evaluation cost further increases with the
number of trigonometric terms employed.

Evaluation cost (ns)

Parametrization pðρÞ ϵðρÞ
Enthalpy, jmax ¼ 5 224 225
Enthalpy, jmax ¼ 2 120 120
Spectral 62 315
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case it appears errors in p=ρ must be at most 3 × 10−3 to
achieve high-precision reproduction of astrophysical
observables. However, this is not an indication that the
spectral parametrization cannot fit DBHF well, it just
cannot fit DBHF well while maintaining C1 pressure
smoothness at the high-density transition to the enthalpy
parametrization and the low density transition to the crust;
see Appendix A.

2. DBHF: Relativistic simulations

We next turn to SpECTRE simulations using the DBHF fits
from the previous section. Since the low- and high-stitch
fits predict Oð100Þ m differences for R1.4, we target a
resolution at that level in order to resolve their effect. We
select a NS central density of 2.21ρnuc that lies between the
two stitching densities of ρnuc and 2.5ρnuc, see Figs. 6 and 7.
Run details and settings are given in Table II. As a
consequence, the NS resulting from the high-stitch EoS
is fully described by the spectral part of the EoS. In the low-
stitch EoS, the NS is described with the enthalpy para-
metrization out to r=R ≈ 7=8, about two-thirds of the
coordinate volume of the star.
While the high-stitch EoS does represent a spectral fit to

the DBHF EoS, the spectral parameters are selected by the
requirement that the spectral parametrization reproduces
the correct low-density behavior of DBHF and is smoothly
stitched to the enthalpy parametrization. It is important to
note that a better spectral fit to any particular astrophysical
quantity, such as R1.4 may be possible, but the fit accuracy
is typically lower than in the enthalpy parametrization case.
Even if the few degrees of freedom in the spectral model are
fit to minimize errors in astrophysical observables, fixing
the low-density behavior of the EoS often results in RðMÞ
deviations of 50 m or more [41]. In what follows, we
leverage the mismatch of Fig. 7 to examine how well we
can resolve EoSs with ∼100 m radius differences in
simulations with similar resolution. Since the high-stitch
NS is fully described by the spectral parametrization, this
test also serves as a comparison of runtimes between the
spectral and enthalpy parametrizations. We do not utilize
the tabulated version of DBHF because SpECTRE currently
cannot perform GRMHD simulations using tables.
We carry out simulations as detailed in Table II and plot

the spectrum of the central density of each star in Fig. 8. The
two spectra disagree both in the location of the NS modes
and their strength, a consequence of the EoS mismodeling
shown in Figs. 6 and 7. In particular, the fundamental radial
modes disagree by nearly 3.5%, a difference of ∼130 Hz in
this case. Table II further shows the simulation runtime
which is comparable in the 130 m resolution case; each run
took about a day on ∼70 processing elements. Based on the
benchmarking results of Sec. IVA 1, total EoS evaluation
time should be comparable for the two runs, as the spectral
parametrization evalautes the pressure about twice as
quickly as the enthalpy parametrization, but evaluates the

internal energy about three times slower. Since the number
of pressure and internal energy evaluations throughout the
entire simulation is not known a priori, we cannot pre-
emptively conclude which should run faster, though it is
likely the difference would be small. This is reflected in the
runtime; differences of 10% are found, with the enthalpy
parametrization running slightly faster. Nonetheless, this
could be due to an array of confounding factors such as task
allocation efficiency, and hardware differences. We therefore
conclude that the enthalpy parametrization, despite having
more flexibility, is not slower than lower dimensional
parametrizations at these resolutions for practical problems.

C. DBHF_2507: Phase transitions

We now turn our attention to EoS with strong phase
transitions and study both smooth and nonsmooth (i.e.,
piecewise) EoSs. We base our studies on DBHF_2507
which is constructed by combining DBHF with the
constant-speed-of-sound phenomenological parametriza-
tion for strong phase transitions [104]. We select a
transition density of ρt ¼ 2.5ρnuc and latent heat ratio
Δe=e ¼ 0.7 [53,110]. The pressure remains constant dur-
ing the phase transition, while above that it has a constant
speed of sound with c2s ¼ 1. The induced phase transition
causes a second stable branch to appear in the M–R
relation above masses ∼1.6M⊙.

1. DBHF_2507: Piecewise parametrization

In its original form described above, DBHF_2507 is
piecewise smooth, and it can be represented effectively by
a piecewise version of the enthalpy parametrization. Below
the phase transition we use either the low- or high-stitch
fits from Sec. IV B, and transition to a new enthalpy

FIG. 8. NS central density spectrum for SpECTRE simulations
with enthalpy fits to the DBHF nuclear EoS that are stitched to the
spectral parametrization at ρnuc (low-stitch, blue solid) and 2.5ρnuc
(high-stitch, red dashed). These runs are labeled enthalpy-dbhf-
mc-130 and spectral-dbhf-mc-130 respectively in Table II. The
simulated star has a central density of ≈2.2ρnuc; it is marked in
Figs. 6 and 7. In the red case, the NS is completely described by
the spectral EoS as its central density is below 2.5ρnuc.
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segment after the transition. In the high-stitch case, the
hadronic part of the EoS is completely described with the
spectral parametrization. During the transition, DBHF_
2507 possesses a formally constant pressure as a function
of density; however, constructing TOV solutions using the
method of Lindblom [45]—the TOV method implemented
in SpECTRE—requires dh=dz ¼ dp=dρ to be strictly pos-
itive. Therefore, in the transition region we modify the EoS
to exhibit dh=dz ¼ δ, where δ is some quantity large
enough to guarantee that hðzÞ is numerically invertible, but
still small enough to have a small impact on the TOV
solution relative to the target resolution.5 After the end of

the phase transition, hðzÞ is given by a constant speed of
sound form, see Eq. (8); this is similar to the procedure
demonstrated in [111].
The advantage of the enthalpy parametrization in this

problem is that it is able to model constant-speed-of-sound
matter (see Appendix B for the polytropic case) efficiently
and with no fine-tuning. Compare this to polytropic (or
spectral) models, which can only model constant-speed-of-
sound matter well when

Γ≡ ρ

p
dp
dρ

¼ ρ

p
hc2s ¼

pþ e
p

c2s ð25Þ

is slowly varying. This is typically not true until some
density greater than the phase transition, where p ¼ p0þ
c2sΔe ≈ c2sΔe, especially if c2s is small compared to 1, such
as models where c2s ¼ 1=3 in the core [77,112]. In contrast,
the enthalpy parametrization can model constant-speed-of-
sound matter to arbitrary precision, and benchmarking
results demonstrate that in such cases it can even outper-
form polytropic EoSs by up to 25%.
We plot theM–R curve in Fig. 9, using the low-stitch and

high-stitch fits for the hadronic part of the EoS as discussed
in Sec. IV B 1. The low-stitch EoS shows better agreement
with DBHF_2507, consistent with previous results; see
Fig. 7. The transition mass and radius for the low-stitched
model are functionally identical to the tabulated values with
errors of ≲0.01M⊙ and ≲1 m. In the high-stitch case the
errors increase to 0.05M⊙ and ∼100 m. Nonetheless, errors
decrease with increasing central density and the maximum
mass Mmax is consistent to ∼0.01M⊙ for both fits. This
indicates that the enthalpy parametrization can produce
effective EoS fits at high densities even when extending a
(relatively) poor low-density fit.6

2. DBHF_2507: Relativistic simulations

We perform SpECTRE simulations with both the high-
and low-stitch EoSs and NSs with central density of
ρc ¼ 4.67ρnuc, above the transition density from nuclear
to quark matter; see the red dots in Fig. 9. Preliminary
results with low spatial resolutions demonstrated that for
such ρc > ρt, the NS undergoes strong density oscillations
that are quickly damped. Given that the fundamental mode
is long-lived [113], this short damping timescale is probably

FIG. 9. Same as Figs. 6 and 7 but for the DBHF_2507 EoS.
The procedure by which the low- and high-stitch EoSs of
Sec. IV B 1 are extended through the phase transition is described
in Sec. IV C. Consistent with Fig. 7, the low-stitch case can more
accurately reproduce the parameters of the phase transition,
though caution must be exercised when comparing to tabulated
models as differences in interpolation in this case can be
substantial. See the text of Sec. IV C. In the top panel, the black
vertical dashed line marks the onset of the phase transition. The
red dot-dashed line in the top panel and the red dots in the bottom
panel mark the NSs we use in subsequent simulations, analogous
to Figs. 6 and 7 respectively.

5At a central density of 5.07ρnuc, the difference in radius
induced by using δ ¼ 1 × 10−4 instead of δ ¼ 1 × 10−3 is less
than 5 m.

6Such comparisons to tabulated models might be difficult to
interpret, as a 1% interpolation inconsistency in ρðpÞ can lead to
differences of Oð100 mÞ on the second stable branch. This
problem is more pronounced here as the DBHF_2507 construc-
tion requires computing ρðeÞ ¼ 2.5ρnuc via table-based root
finding, a procedure that depends on the interpolation strategy
and, in turn, affects the transition mass and radius. For hadronic
EoSs this issue is suppressed, as differences in interpolation are
smoothed over by the integration of the TOV equations. The
enthalpy parametrization, having an analytic expression for eðρÞ,
does not face this issue.
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related to numerical dissipation. Therefore we perform and
compare simulations at various grid resolutions to ensure
convergence, increasing the number of computational ele-
ments while the number of grid points inside each element is
fixed. The main results presented below correspond to a
∼70 m resolution. We also restrict to the low-stitch fit since
the differences between the low- and high-stitch fits are
likely resolvable for < 130 m resolution, see Fig. 9.
We plot the central density and the spectrum in the top

and bottom panels of Fig. 10 for both reconstruction
schemes. We find good agreement in the frequency and
damping time of the density modes, though the mono-
tonized central scheme predicts more than double the power
of the adaptive order method below ∼80 kHz. Interestingly,
we find that the presence of a quark core in the NS changes
the spectrum qualitatively, c.f., Fig. 8. The spectrum is now
dominated by modes in the Oð10Þ kHz range, an order of

magnitude higher than the hadronic NS case of Fig. 8. The
spacing of the modes, about 16 kHz, is of order c=2Rcore,
where Rcore ∼ 6 km is the radius of the quark core. We
attribute this to density perturbations that are confined to the
quark core and are only weakly coupled to the bulk behavior
of the star across the transition. In order to confirm this, we
plot the density profile of the star extracted from the run
enthalpy-pt-ppao-70 as a function of radius in Fig. 11 at
different times. Most of the oscillation power sourced in the
quark core is reflected back into the core at the quark-
hadronic boundary, with only a small fraction getting
transmitted into the hadronic region. The reflected pulse
gets inverted (fixed-end reflection); this is consistent with
theoretical expectations since the sound speed changes from
c2s ¼ 1 in the quark core to c2s ∼ 0.3 in the hadronic region
at the boundary.
The initial perturbation needed to drive these modes is

provided by numerical noise near the transition, with
Oð50–100 kHzÞ being the scale of the sound crossing
frequency of a computational element of our domain. High
frequency modes, in particular p-modes being primarily
confined to the core of the star is in line with expectations
for radial modes [114].
Simulation runtimes are provided in Table II. We find that

the adaptive-order simulation (enthalpy-pt-ppao-70) has a
∼20% longer runtime than the monotonized central
(enthalpy-pt-mc-70) simulation, which is expected. Turning
to the EoS and comparing enthalpy-pt-mc-130 and
enthalpy-dbhf-mc-130 at identical resolutions, number of
CPUs, and reconstruction schemes, we find a Oð40%Þ
increase in runtime for DBHF_2507 as compared to DBHF.
We do not attribute this runtime slowdown to increased EoS
evaluation time, as the enthalpy EoS employed beyond the
phase transition uses no trigonometric correction terms, and
thus is nearly computationally identical to the polytrope
profiled in Table IV. This indicates that individual EoS
evaluations (above the transition) are actually somewhat
cheaper than in either of the fits to DBHF, discussed in
Sec. IV B (below the transition they are identical). Instead,
we attribute the slowdown to the nonsmoothness of this
EoS; pðρÞ is not analytically C1 across the phase transition,
and ρðpÞ is an incredibly sensitive function near the
transition. Since our default primitive recovery scheme
requires root-finding to determine ρðpÞ [115], this can
result in significant slowdowns.
Comparing the simulations enthalpy-pt-mc-130 and

enthalpy-pt-mc-70, we also find that refining the grid
resolution from 134 m to 67 m results in only a 4-fold
increase in runtime, compared to the expected
ð134=67Þ3 ¼ 8.7 We attribute this lower-than-expected

FIG. 10. Normalized NS central density as a function of time
(top panel) and its spectrum (bottom panel) for SpECTRE simu-
lations with enthalpy fits to the DBHF_2507 nuclear EoS that are
stitched to the spectral parametrization at ρnuc for two different
choices of finite-difference reconstruction schemes. The adaptive
order reconstructor is marked in blue and the monotonized central
reconstructor is marked in red. Run details are listed as enthalpy-
pt-ppao-70 and enthalpy-pt-mc-70 respectively in Table II. The
simulated star has a central density of ∼4.67ρnuc; it is marked in
Fig. 9. We find excellent agreement on mode frequencies but
slight differences in power distribution.

7Since we run simulations with a fixed number of time
steps, refining the grid does not lead to any major slowdown
from time stepping. This would not be the case if we ran to a fixed
final time.
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increase to the DG-FD hybrid scheme [50]. At higher
resolutions each cell is smaller, therefore finite-difference
cells are more tightly concentrated in regions with dis-
continuities. This results in a lower fraction of the NS
reverting to the slower finite-difference scheme from the
faster discontinuous Galerkin scheme. We display a slice

of the NS for enthalpy-pt-ppao-70 in Fig. 12, and mark the
cells which have reverted to finite-difference in red. The
majority of the NS interior is indeed using the discon-
tinuous Galerkin method, with finite difference being used
only at the phase-transition and surface interfaces.

3. Smooth transitions

Due to its flexibility, the enthalpy parametrization can
also be used to model smoother transitions in the EoS,
such as those that may arise from a crossover transition. To
demonstrate this, we begin with DBHF_2507 and average
the speed of sound at nearby points over the entire EoS.
This is distinct from the small perturbation added to the
EoS in Sec. IV C, as in this case we expect the resulting
EoS to be well described by a smooth interpolant. To
demonstrate this, we fit this new smoothed EoS with
jmax ¼ 4 trigonometric terms and display the fit in Fig. 13.

FIG. 11. Rest-mass density profile relative to the initial profileΔρ≡ ρðr; tÞ − ρðr; 0Þ as a function of radius for a hybrid star described
with DBHF_2507 (left panel; details in Sec. IV C) and a simple polytrope with Γ ¼ 2 (right panel; details in Appendix B) for different
times (top to bottom). We denote the NS surface with a vertical solid gray line in each panel and the quark-hadronic boundary with a
vertical red line in the left panel. We show snapshots of the density at four different times in order to examine the dynamical behavior of
the density oscillations. For the hybrid star (left) density perturbations are partially transmitted and reflected at the quark-hadronic
boundary, while for the polytrope (right) the wave smoothly propagates back and forth within the NS interior. Small black arrows
highlight the wave packet and its traveling direction. The hybrid star snapshots are from the run enthalpy-pt-ppao-70 and the polytrope
snapshots are from a simulation with identical domain, finite-difference reconstruction scheme, and central density, but a polytropic EoS
(B6) in place of DBHF_2507. See polytropic-polytrope-mc-130 for details of a lower-resolution polytropic simulation.

TABLE IV. Performance (in nanoseconds) of the enthalpy and
single-polytropic fits to a single polytrope in evaluating the
pressure and internal energy at ρ ¼ 5.0 × 10−4M2

⊙. The enthalpy
parametrization outperforms then polytrope in both cases.

Evaluation cost (ns)

Parametrization pðρÞ ϵðρÞ
Enthalpy 43 44
Polytrope 57 58
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We find sub-1% agreement in the 1 − 2ρnuc density region
which most directly affects macroscopic observables.
Relative errors are typically higher below the enthalpy-
spectral transition point (set to ρnuc here). This is because
smoothing the EoS is done by locally averaging the speed
of sound, so that after averaging the speed of sound is
locally close to being constant. For polytropic and nearly
polytropic EoSs the speed of sound is not nearly constant

at low densities, so a spectral parametrization cannot
effectively fit the smooth c2s EoS.
We expect simulating NSs with EoSs displaying smooth

but rapidly varying speeds of sound to be slower. This is for
two primary reasons. First, fitting EoSs to some fixed
degree of precision for more complicated EoSs typically
requires adding more parameters, increasing evaluation
time. Second, EoSs with rapid changes in dp=dρ tend to
slow down primitive recovery, as the function ρðpÞmust be
evaluated by root-finding. Even though the EoS in this case
is analytically smooth, root-finding algorithms require
more evaluations if the function is quickly varying.
We perform a run with identical central density,

ρ ∼ 4.67ρnuc for 10,000 CFL limited time steps, in order
to bound performance decreases. We display the results in
Table II as enthalpy-smoothpt-170. We find that the EoS
presented in Fig. 13 requires a comparable time per
evolution step to enthalpy-dbhf-mc-130 indicating the
EoS is sufficiently smooth to not induce a large slowdown
at this resolution. We further plot the oscillations of the
central density of both the smooth-transition DBHF_2507
model (smooth) and enthalpy-pt-mc-130 (sharp) in Fig. 14.
We find that the smoothed fit does not lead to the character-
istic decoupling of core modes, meaning that such a model
would be a poor representation of the true DBHF_2507
EoS, even if it is able to reproduce other characteristics of
DBHF_2507, such as a small radius near Mmax.
In general, we expect smooth EoSs to be most effec-

tively represented by globally smooth parametrizations,
while EoSs with discontinuities will be better modeled by
piecewise parametrizations. In addition, nonsmoothness
can lead to a loss of accuracy in simulations [41], so an
additional trade-off may exist between accuracy and
performance in the choice to use a smooth versus a

FIG. 12. NS rest mass density (color bar, units of M−2
⊙ ) on the

y–z plane at t ¼ 100M⊙ for the run enthalpy-pt-ppao-70. Red
marks subdomain elements where finite-difference is used. The
finite-difference cells are confined near the NS surface (outer
circle, white solid line) and the phase transition layer (inner
circle) where discontinuities are expected. The majority of the
star is still evolved with the more computationally efficient
discontinuous-Galerkin method.

FIG. 13. Same as Fig. 6 but for the smoothed version of
DBHF_2507 constructed in Sec. IV C 3. The enthalpy para-
metrization achieves sub-1% errors in the most relevant
region, 1 − 2ρnuc.

FIG. 14. NS central density as a function of time for the run
enthalpy-smoothpt-170 (blue, solid) and enthalpy-pt-mc-130
(red, dashed). The smooth fit poorly reflects the mode structure
of the true DBHF_2507 EoS, even though the behavior of the
microscopic EoS is qualitatively similar.
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piecewise representation. The enthalpy parametrization is
flexible enough to be effective in both the piecewise EoS
and the smooth EoS cases.

V. DISCUSSION

We introduced a new enthalpy-based parametrization for
the cold nuclear EoS that can capture a wide range nuclear
models and their phenomenological extensions using poly-
nomials and trigonometric terms. The enthalpy paramet-
rization emphasizes flexibility, as it is able to effectively
model both smooth and nonsmooth nuclear models, and
computational performance as its evaluation cost scales
with the number of parameters used. For example, it
displays comparable performance to single-polytrope para-
metrizations for the case of polytropic EoSs, while the
computational cost scales with the number of fit parameters
for more complex (such as nonsmooth) models. This trade-
off between computational performance and flexibility,
allows us to tune EoS fits to the resolution requirements
of the problem at hand.
Computational performance is achieved by inexpensive

evaluation of the various thermodynamic quantities. The
pðρÞ evaluation cost does not exceed Oð4Þ times that of a
polytropic EoS for any case we investigated, even when
many trigonometric terms are used. In cases where this
slowdown is significant, the enthalpy parametrization may
be sped up significantly by using Clenshaw’s method [75].
We obtain faster evaluation of ϵðρÞ than the existing
spectral parametrization in all cases, as the latter evaluates
ϵ numerically, while the enthalpy parametrization computes
all thermodynamic quantities analytically. Overall, the
additional computational cost of the enthalpy parametriza-
tion on top of other existing parametrizations is always
smaller than the cost of other simulation components.
With the caveat that quantifying EoS fitting accuracy is

subtle and depends on the parameters one compares, we
overall find that the enthalpy parametrization is able to
successfully fit nuclear models. In principle and in the
context of numerical simulations, EoS parametrizations
need only fit the nuclear EoS as well as the simulation
resolution. Nonetheless, even subpercent errors in the
pressure near ρnuc − 2ρnuc can lead to ∼100 m differences
in NS radii. In contrast to lower-dimensional or less flexible
parametrizations, we show that the enthalpy parametriza-
tion is able to fit tabulated and phenomenological nuclear
models to effectively arbitrary precision by using additional
parameters. The optimal number of parameters is then
determined by balancing accuracy and computational cost
for a given numerical resolution.
The enthalpy parametrization’s flexibility allows us to

efficiently and with little fine tuning represent both smooth
and nonsmooth nuclear models. The latter may correspond
to models with strong phase transitions that we can fit and
numerically evolve using SpECTRE. Our simulations dem-
onstrate that we can stably evolve such stars in the Cowling

approximation. However, studying the evolution of hybrid
hadronic-quark NSs away from an unstable EoS branch that
falls between the hadronic and the quark branches [116]
hinges on full metric evolution coupled to GRMHD.
SpECTRE’s hybrid DG-FD scheme is crucial for the computa-
tional performance of these simulations. The DG-FD
scheme allows phase transitions to be modeled with
lower-order finite-difference methods while continuing to
use higher-order discontinuous-Galerkin methods through-
out the individual hadronic and quark regions. This leads to
better computational scaling than might be expected upon
mesh refinement, as better resolution of boundaries (such as
the quark-hadronic matter boundary) within the star reduces
the amount of the domain which uses the slower finite-
difference approach.
The enthalpy parametrization is a step toward ensuring

that numerical simulations can efficiently represent a wide
range of nuclear phenomenology. Accurate simulations of
NSs will continue being crucial for the interpretation of new
astrophysical and experimental data. Even with current EoS
constraints, the space of potential BNS phenomenology is
large, and many questions remain regarding the impact of
magnetic fields, instabilities, temperature effects [117,118]
and transport physics. Future steps include extending the
applicability of the enthalpy parametrization beyond cold,
beta-equilibrated nuclear matter, and incorporating more
physical effects in SpECTRE simulations.
The simulations presented here were performed with

SpECTRE commit hash 2df19579a84385b3d5ab4663e3-
da7e33012e0355. The earliest release of SpECTRE with this
commit is version 2023.01.13 [119]. Input files for the runs
performed, including enthalpy fit parameters for each EoS
studied, are available on Github [120].
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APPENDIX A: FITTING THE ENTHALPY
PARAMETRIZATION

In this Appendix we provide details about the procedure
with which we fit some tabulated EoS data with the
enthalpy parametrization which includes the following
parameters:

(i) The upper ρmax and lower ρmin density limits are
chosen based on the densities of interest. For NS
simulations, reasonable values are ρmin ¼ ρnuc,
ρmax ¼ 7ρnuc, but the upper limit depends on the
maximum density expected in the simulation.

(ii) The scaling parameters ρ0 and the wave number of
the trigonometric correction terms k are not fit, but
rather fixed. When we extend a model via a constant
speed of sound, Sec. IV C, the choice of ρ0 is
determined by the modeling problem. When the
EoS is fit, ρ0 is chosen ρ0 ∈ ð0; ρmin�, so that
zmax ¼ logðρmax=ρ0Þ≲ imax, see Sec. C. We find
ρ0 ¼ ρmin=2 is generally a robust choice. Analogous
to how ρ0 controls the scale of polynomial terms, k
controls the scale of trigonometric oscillations. As
described in Sec. III, typically k ≈ kF is a good
choice, but small perturbations k ∈ ½kF=2; 2kF� may
improve the fit quality for certain problems, depend-
ing on the details of the EoS. Figure 15 shows that
the effect of varying k is small for the particular test
problem displayed in Fig. 1.

(iii) The parameters imax and jmax determine the number
of polynomials and trigonometric terms respec-

tively; see Eqs. (9) and (10). The quality of the fit
is a strong function of imax and jmax, but increasing
jmax above ∼10 comes at a considerable computa-
tional cost even at low resolutions. On the other hand
the cost of increasing imax is small, typically of order
2% or less of the total cost of the pðρÞ evaluation per
additional polynomial term.

(iv) The coefficients of the polynomial γi, Eq. (9), and
the trigonometric aj, bj, Eq. (10), expansion are fit
through a linear least-squares approach.

(v) The energy density of the EoS at the stitching point,
emin ¼ eðzminÞ. This is the integration constant
associated with solving de=dz ¼ ρh. This parameter
is constrained by ρminhmin − emin ¼ pmin ≥ 0. In
principle eðzminÞ can be computed from EoS tables,
but in practice EoS tables may be too coarsely
tabulated, or may contain violations of the first law
of thermodynamics at levels which significantly
affect the computed value of ϵ. For example, a
fractional error of 1 × 10−3 in emin will often trans-
late to a fractional error of ∼1 × 10−1 in ϵ, which
therefore shifts the value of pðzÞ by 10%, as hρ ¼
pþ ϵ is fixed by the parametrization. Therefore in
certain cases it is more effective to treat emin as a
free parameter, and further use it to optimize the
values of pðρÞ. In practice emin is set by the low-
density EoS parametrization to guarantee thermo-
dynamic consistency.

Given a target EoS with enthalpy hðziÞ at discrete
densities zi, the linear fit is based on minimizing the cost
function

Cðaj; bj; ciÞ ¼
X
k

�
h�ðzk; aj; bj; ciÞ − hðzkÞ

σðzÞ
�

2

; ðA1Þ

where h� is given in Eq. (12). The factor σðzÞ is the fit
tolerance which can be chosen such that the fit is optimal at
different density regions. We choose to target similar
relative uncertainty on the nonrest-mass component of
the enthalpy density ðh − 1Þρ ¼ pþ ϵρ across density
scales: σðzÞ ∝ ρðzÞ ∝ expðzÞ. Overall, the tolerance scales
as 1=ρ, so the fit is relatively better (with respect to h) at low
densities. The energy density at the stitching point is then
selected; if the tabulated EoS is sufficiently high-resolution,
it can be computed by, e.g., the trapezoidal rule. Otherwise,
there is no canonical choice for this value, we choose it to
maximize agreement with tabulated pðρÞ at high densities.
Finally, the EoS fit is completed by stitching to some

other EoS parametrizaton at ρstitch ¼ ρmin. In the majority of
cases this is the spectral parametrization, though we also
explore another enthalpy segment in Sec. IV C and a
polytrope in Appendix B. The low-density spectral EoS
itself transitions to a lower-density polytrope at some fixed
reference density ρr. Following Ref. [41], we define x≡
logðρ=ρrÞ and write the spectral pressure as

FIG. 15. Cost, Eq. (A1), in arbitrary units, of the fit to the
phenomenological EoS of Fig. 1 as a function of k. The minimum
occurs at k slightly larger than kF, in this case near k ¼ 1.4kF.
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psðxÞ ¼
8<
:

p0 exp½Γ0x� x ≤ 0;

p0 exp
hP

3
i¼0

1
iþ1

Γixiþ1
i

x > 0;
ðA2Þ

where p0 controls the overall pressure, and Γ0;Γi are the
spectral coefficients. The low-density behavior fixes Γ0,
while requiring a C1 transition to the enthalpy parametriza-
tion, i.e., continuity in pressure, energy density, and
pressure derivative fixes 3 more parameters. In practice
because emin ¼ estitch is an integration constant in the
enthalpy parametrization, we can freely set it to the value
computed for estitch from the low-density parametrization,
guaranteeing exact consistency.
The remaining 1 degree of freedom is selected by either

maximizing smoothness across the lower-density transi-
tion to the polytrope or maximizing accuracy of the low-
density EoS. Smoothness is prioritized when the stitching
density is below the core density of typical NS. Then, we
set Γ1 ¼ 0.0 [41], guaranteeing that Eq. (A2) is C2 across
the transition ρr. This typically produces good fits to the
overall M–R curve for the entire EoS. If the spectral
parametrization is stitched to the enthalpy parametrization
at a higher density (near the core density of astrophysical
NSs as is the case in the high-stitch fit of Sec. IV B) we
instead allow Γ1 to vary, choosing it to maximize the
agreement of the total parametrized EoS with the target.
Both strategies typically result in machine-precision level
C1-stitching to the enthalpy parametrization, with resid-
uals much smaller than mismodeling in the low-density
regime.

APPENDIX B: APPROXIMATING
A SINGLE POLYTROPE

As an example of the strategy for fitting a target EoS
with the enthalpy parametrization, we consider a single-
polytrope. In this case, the enthalpy coefficients can be
computed analytically. The general goal is to express the
EoS in the form of Eq. (8), i.e., compute the enthalpy as a
function of log-density.
The polytropic exponent is defined as

ΓðzÞ≡ d logp
d log ρ

¼ ρ

p
dh
dz

¼ ρ

p

d
�
1
ρ
de
dz

�
dz

: ðB1Þ

For a constant polytropic exponent ΓðzÞ ¼ Γ0 and using the
identity

pðzÞ ¼ hðzÞρðzÞ − eðzÞ ¼ de
dz

− eðzÞ; ðB2Þ

Eq. (B1) becomes

d2e
dz2

− ðΓ0 þ 1Þ de
dz

þ Γ0e ¼ 0: ðB3Þ

The solution to this differential equation is

eðzÞ ¼ ðe0 − ρ0Þ expðΓ0zÞ þ ρ0 expðzÞ; ðB4Þ

where we have enforced eðz ¼ 0Þ ¼ e0 and eðz → −∞Þ →
ρðzÞ8 and the enthalpy is

hðzÞ ¼ 1

ρ

de
dz

¼ e0 − ρ0
ρ0

Γ0 exp½ðΓ0 − 1Þz� þ 1: ðB5Þ

Comparing with Eq. (9) the polynomial coefficients of
the enthalpy expansion are γi ¼ h0ðΓ0 − 1Þi=i!, with
h0 ¼ Γ0ðe0 − ρ0Þ=ρ0, if i ≠ 0, and γ0 ¼ h0ðΓ0 − 1Þ þ 1.
In practice, evaluating the polynomial expansion of Eq. (9)
requires many floating point operations. Nonetheless, this
computation is not necessarily slower than evaluating a
simple polytrope if Γ0 is not an integer, because floating-
point exponentiation typically at least an order of magni-
tude slower than multiplication and addition.
We use this enthalpy parametrization of the polytrope

model to compare against the direct single-polytrope
SpECTRE implementation and verify the predicted Cowling-
approximation NS modes [51,125]. The low-density EoS in
the enthalpy parametrization case is stitched to the exact
polytropic expression

PðρÞ ¼ 100

M−2.0
⊙

ρ2.0: ðB6Þ

We evolve a NS with central density 1.28 × 10−3M−2
⊙ ≈

2.84ρnuc, which is the same as the stars evolved in
Refs. [51,125]. The number of terms necessary in the
polynomial expansion depends on the desired accuracy. For
a resolution of 130 m we find that imax ¼ 8 is more than
sufficient. This is consistent with theoretical expectations,
as the first neglected term, is of order 1=9! ≈ 2 × 10−6,
indicating errors should be of this scale or smaller. Results
are shown in Fig. 16 where the enthalpy fit to the polytrope
and the direct single-polytropic parametrization return
essentially identical results. We display the run details in
Table II, as enthalpy-polytrope-mc-130 and polytropic-
polytrope-mc-130.
We find effectively no difference in the runtime for the

simulations using each of the polytropic and enthalpy
parametrizations. Examining the cost of individual EoS
calls in Table IV, we find the enthalpy parametrization is
somewhat faster in both pðρÞ and ϵðρÞ evaluation, indicat-
ing that in this case, EoS evaluation time is not a significant
contribution to runtime. This speedup is also expected to

8This is equivalent to assuming the specific internal energy ϵ is
0 in ordinary, low-density cold matter. This can be done by
defining the baryon “rest” mass to be the average mass of a
baryon in the outer crust of a NS (despite the fact these baryons
may be bound in, e.g., iron and therefore differ from the mass of a
free neutron/proton by up to 1%).
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extend to constant-speed-of-sound matter, which has an
identical functional form to a polytropic EoS when
expanded in the enthalpy parametrization, the only differ-
ence being the values of the coefficients.
The reason the polytropic EoS evaluation is not faster

despite having a very simple analytic expression is the
inefficiency of floating-point exponentiation. In the case of
our test problem the floating point exponent 2.0 is only
known during runtime, and so the compiler cannot optimize
EoS calls. If the exponent is known to be an integer at
compile time, the calls can be evaluated using repeated
multiplication. We implement this improvement for this

particular test problem, and find the cost of polytropic pðρÞ
evaluations to be 10 ns on identical hardware, indicating a
5-fold improvement. Nonetheless, this speedup is not
reflected in the total evolution runtime for resolutions of
at least ∼120 m as the EoS evaluation cost is subdominant
to other simulation components.

APPENDIX C: NUMERICAL CONSIDERATIONS
FOR ENTHALPY COEFFICIENTS

Here we expand upon numerical considerations for
choices of polynomial, coefficients γi. The choice, γi ≥ 0
in Eq. (9) effectively bounds the number of terms in the
polynomial expansion which can be practically used. To
see this, consider zmax ≡ logðρmax=ρ0Þ. Coefficients γi must
satisfy γizimax ≲Oðγ0Þ ∼ 1, otherwise they would be larger
than the total enthalpy in this region, which is typically also
of this scale. With this in mind, we consider i as “too large”
if i ≫ zmax, as any term which satisfies γizimax ≲ γ0 has

γizi

γizimax
¼

�
z

zmax

�
i
; ðC1Þ

small except when z is nearly zmax. That is, the degree of
freedom is only relevant at the highest densities, and this
density region shrinks as i gets larger. For typical scales,
such as ρ0 ¼ 0.5ρnuc, ρmin ¼ ρnuc, and ρmax ¼ 7ρnuc,
then zmax ∼ logð14Þ ≈ 2.6.
One can decrease ρ0 to increase the relevant value of

zmax, but this requires adding more parameters, which may
not be desirable, since many of them may be irrelevant, or
degenerate. One way to view this, is that in the Taylor
expansion of the exponential function (equivalently the
expansion of hðzÞ in a constant speed of sound case), the
term zi=i! is the largest term on z ∈ ði − 1; iÞ, and is
generally decreasing in relevance away from this region
relative to other terms. Therefore the ith term of this
expansion is most relevant near z≲ i, and is unimportant
far from this region. This implies that flexibility is
essentially equidistributed in logðρÞ for this approximation
(the same argument applies to the spectral parametrization),
and that higher polynomial terms cannot resolve features at
low densities. Instead, we choose to switch to a new
function basis at this point, optimized to capture the largest
scale features at lowest order of approximation.

FIG. 16. NS central density as a function of time (top panel) and
its spectrum (bottom panel) for SpECTRE simulations with an
enthalpy fit to a single polytrope with Γ0 ¼ 2.0 (blue) and a direct
single-polytropic parametrization (red, dashed,). Known Cowling
frequencies [125] are marked as dashed vertical lines. The spectra
are identical by eye.
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