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Investigations on the resonancelike phenomenon in the collisional flavor instability (CFI) of neutrinos,
which were observed in the linear phase recently, are reported. We show that it occurs not only for the
isotropy-preserving modes as pointed out in the previous work but also for the isotropy-breaking modes
and that it enhances the linear growth rate of the CFI. Employing linear analysis and nonlinear numerical
simulations in the two-flavor scheme and under the relaxation approximation for the collision term, we
discuss the criterion for the resonancelike phenomenon observed in the linear phase, its effect on the
subsequent nonlinear evolution as well as the influences of homogeneity-breaking (k ≠ 0) perturbations
and of anisotropy in the background on the resonancelike structure. We will also touch on idea the
cohabitation of the resonancelike structure with the fast-flavor conversion.
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I. INTRODUCTION

Neutrino flavor oscillations, particularly the fast-flavor
conversion (FFC), have been studied extensively recently
due to their more rapid growth compared to other con-
version modes [1–6]. The neutrino-flavor-lepton-number
(NFLN) crossing, that is, the situation, in which one
flavor is dominant over the other in certain momentum
directions while the opposite is true in other directions at
least for a pair of neutrino flavors, is known to be the
criterion for FFC [7]. In its application to core-collapse
supernovae (CCSNe), the electron-lepton-number (ELN)
crossing has been conveniently searched for in many
papers [8–18], since other flavor-lepton-numbers are nor-
mally much smaller. The ordinary nonforward scatterings
of neutrinos were once thought to destroy the coherence
among neutrinos, thus, working against the neutrino flavor
oscillations. The interplay between FFC and ordinary
collisions has been investigated from various directions
[19–27]. Interestingly, some numerical simulations, in
which the collision rate was artificially modified by orders
of magnitudes, found that FFC can be enhanced by the

collisions [22]. It was also pointed out that the collisions
may modify the neutrino spectra so that FFC could be
driven [28]. The so-called collisional dilemma, i.e.,
enhancement or damping of FFC by the ordinary collision,
has not been fully resolved so far.
Recently the existence of a new type of flavor con-

version referred to as the collisional flavor instability
(CFI), which is driven by the collisions themselves and
can occur without the NFLN crossing and hence FFC, was
pointed out [29]. Properties of CFI were investigated
in the same framework in another paper [27]. It was
also shown that the onset of CFI could be hastened by FFC
[30]. For homogeneous, isotropic, and monochromatic
neutrino distributions the condition for CFI is thought to
be that the collision rate for neutrino should be different
from that for antineutrino [29]. The existence of CFI was
later confirmed numerically for homogeneous, isotropic
but non-monochromatic neutrino distributions [31]. The
authors added to the criterion for CFI a condition that
there exists at least one ELN crossing in neutrino energy.
The first global simulation of CFI was performed for static
backgrounds taken from different stages in a core-collapse
supernova simulation [32], demonstrating that the flavor
oscillation due to CFI could occur faster than advection.
On the other hand, the enhancement of CFI by an
asymmetry in the collision rates between neutrino and
antineutrino was first noticed in [27]. The resonancelike
behavior was pointed out in [33].
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In the following sections, we derive the exact linear
growth rate of the CFI mode with k ¼ 0 in the resonance-
like structure based on the dispersion relation for the
homogeneous, isotropic and monochromatic neutrino dis-
tributions in the background and give the criterion for
the resonancelike phenomenon as well. We consider not
only the isotropy-preserving mode but also the isotropy-
breaking mode, which has been somehow overlooked in the
literature so far, and demonstrate that they also give rise to
the resonancelike phenomenon. For the isotropy-preserving
mode, on the other hand, we solve the quantum kinetic
equation numerically in the resonancelike region and study
the nonlinear evolution of the system there. We show that
the saturation is reached more rapidly in that case but that
the saturation level is hardly affected.
We then procced to the non-monochromatic case. We

adopt the Fermi-Dirac distribution for the neutrino energy.
Numerically evaluating the dispersion relation, we find that
the growth rate in and the criterion for the resonancelike
phenomenon obtained in the monochromatic case remain
good approximations if the monochromatic collision rates
are simply replaced by the mean collision rates. Finally,
the effect of nonvanishing wave numbers (k ≠ 0) in the
perturbation or of the anisotropy in the background angular
distributions in momentum space is studied again based on
the dispersion relation. It is found that CFI gets weaker in
both cases. We also touch the case, in which the ELN
crossing is present initially and the FFC coexists with the
resonancelike structure of CFI.

II. DISPERSION RELATION

The neutrino flavor content in the two-flavor approxi-
mation is described by the neutrino flavor density matrix

ρðx; PÞ ¼
�
fνe S

S� fνx

�
; ð1Þ

where the star means the complex conjugate, the diagonal
elements are neutrino occupation numbers in the individual
flavor eigenstates whereas the off-diagonal elements re-
present the coherence between the two flavors, x ¼ ðxμÞ is
the spacetime position, and P ¼ ðE; vÞ is the 4-momentum
vector of neutrinos in which neutrinos are assumed to
be ultrarelativistic particles traveling at the speed of light
jvj ¼ 1 in natural units, which we will employ hereafter
throughout the paper. We use the signature convention of
ημν ¼ diagðþ1;−1;−1;−1Þ for the Minkowski metric. In
the flavor isospin convention, the negative energy E < 0
stand for antineutrinos as ρðEÞ ¼ −ρ̄ð−EÞ. Note that
quantities associated with antineutrinos are indicated by
the bar.
The evolution of the flavor density matrix is described

by the quantum kinetic equation

iv · ∂ρ ¼ ½H; ρ� þ iC; ð2Þ

whereH is the Hamiltonian and C is the collision term. The
Hamiltonian has the vacuum, matter and neutrino contri-
butions given as

H ¼ Hvac þHmat þHν;

Hvacðx; PÞ ¼
M2

2E
;

Hmatðx; PÞ ¼
ffiffiffi
2

p
GFv · diagðjeðxÞ; jxðxÞÞ;

Hνðx; PÞ ¼
ffiffiffi
2

p
GFv ·

Z
dP0ρðx; P0Þv0; ð3Þ

where M2 is the neutrino mass-squared matrix; jαðxÞ is the
lepton number 4-current of the charged lepton species α;
the integral over 4-momentum is abbreviated as

Z
dP ¼

Z
∞

−∞

E2dE
2π2

Z
dv
4π

: ð4Þ

The collision term C can be written for neutrinos in the
relaxation approximation as

Cðx; PÞ ¼ 1

2
fdiagðΓeðx; PÞ;Γxðx; PÞÞ; ρeq − ρg; ð5Þ

where the curly bracket denotes the anticommutator,
Γαðx; PÞ is the collision rate for the charged lepton α,
and ρeq is the density matrix for the equilibrium state that is
approached through the collision. The collision term for
antineutrinos is written in the same manner.
The quantum kinetic equation (2) may be linearized with

respect to S if jSj ≪ fi as

v · ð∂ − Λ0e þ Λ0xÞSex
þ ðfνe − fνxÞ

ffiffiffi
2

p
GF

Z
dP0v · v0SexðP0Þ

þ 1

2E

X
z¼e;x

ðM2
ezSzx − SezM2

zxÞ þ iΓexSex ¼ 0; ð6Þ

where Λ0z ¼
ffiffiffi
2

p
GF½jzðxÞ þ

R
dPfνzðx; PÞv� and ΓexðEÞ ¼

½ΓeðEÞ þ ΓxðEÞ�=2. Assuming the plane wave solution as
usual as

Sðx; PÞ ¼ Sðk; PÞeik·x; ð7Þ

where k ¼ ðω; kÞ is the 4-wave vector and ignoring the
vacuum term, which is important for the slow instabilities
[34] but plays a minor role to give initial perturbations for
the fast instability, we obtain

fv ·ðk−Λ0eþΛ0xÞþ iΓexgSexþðfνe −fνxÞv ·a¼0; ð8Þ
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where the vector a is defined as

a ¼
ffiffiffi
2

p
GF

Z
dPSexðPÞv: ð9Þ

Then, S can be solved as

Sexðk; PÞ ¼ −
ðfνe − fνxÞv · a

v · ðk − Λ0e þ Λ0xÞ þ iΓex
: ð10Þ

Substitution of this expression back into the definition
of a in Eq. (9) leads to the following homogeneous
equation:

ΠexðkÞaexðkÞ ¼ 0; ð11Þ

where the matrix Πex is defined as

ΠexðkÞ ¼ ηþ
ffiffiffi
2

p
GF

Z
dPðfνe − fνxÞv ⊗ v⊺

v · ðk − Λ0e þ Λ0xÞ þ iΓex
: ð12Þ

Λ’s in the denominator may be absorbed into k, shifting the
real part of k alone and unaffecting the instability [35]. Note
that the so-called zero mode with k ¼ 0 does not mean a
mode homogeneous in space after this shift. In the isotropic
case the neutrino contribution to the shift vanishes.
Nontrivial solutions of a exist if and only if

detΠexðkÞ ¼ 0; ð13Þ
which gives us the dispersion relation ω ¼ ωðkÞ. The
positive imaginary part of ω, Imω > 0, implies that the
flavor eigenstate is unstable and the perturbation in S grows
exponentially in time—an indication of CFI. Introducing
spherical coordinates for the neutrino velocity v, we can
write down the matrix Πex as

ΠexðkÞ ¼ ηþ
ffiffiffi
2

p
GF

Z
∞

−∞

E2dE
2π2

Z
1

−1

dcθ
2

Z
2π

0

dϕ
2π

fνeðE; vÞ − fνxðE; vÞ
ω − v · kþ iΓexðEÞ

×

0
BBBBBBBB@

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
cϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
sϕ cθffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2θ

q
cϕ ð1 − c2θÞc2ϕ ð1 − c2θÞsϕcϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
cθcϕffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2θ

q
sϕ ð1 − c2θÞsϕcϕ ð1 − c2θÞs2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
cθsϕ

cθ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
cθcϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2θ

q
cθsϕ c2θ

1
CCCCCCCCA
; ð14Þ

where the following abbreviations are used: cθ ¼ cosðθÞ;
sθ ¼ sinðθÞ; cϕ ¼ cosðϕÞ; sϕ ¼ sinðϕÞ.
The expression is significantly simplified if the back-

ground neutrino is isotropic in momentum space. In fact,
for k ¼ 0, Πex becomes even simpler, being diagonal. The
equation to be solved is reduced in this case to

I ¼
ffiffiffi
2

p
GF

Z
∞

−∞

E2dE
2π2

fνeðEÞ − fνxðEÞ
ωþ iΓexðEÞ

¼ −1; 3: ð15Þ

Note that the solutions for I ¼ 3 are degenerate with the
multiplicity of 3. The solutions of Eq. (15) are collectively
referred to as the homogeneity-preserving modes although
the wave vector is shifted. It should be noted that only the
solution branch for I ¼ −1 has been studied in previous
papers [31,33]. This is because the authors of these papers
assumed tacitly that the perturbation is isotropic. In fact, the
spatial components of a vanish in that case so that the three
spatial components of Eq. (11) become trivial. This is
equivalent to ignoring the modes for I ¼ 3. If one allows
anisotropic perturbations instead, the spatial components of
a become nonzero and the solution branch for I ¼ 3 is
recovered. For this reason, we call the solution branch for

I ¼ −1 the isotropy-preserving branch and refer to the
solution for I ¼ 3 as the isotropy-breaking branch.
The analysis of the real and imaginary parts of Eq. (15)

leads to the necessary condition for the occurrenceofCFI, i.e.,
Im½ω� > 0, that the following function, FðEÞ, of Eð> 0Þ,

FðEÞ ¼ ½fνeðEÞ − fνxðEÞ�½Imωþ ΓexðEÞ�
× ½ðReωÞ2 þ ðImωþ Γ̄exðEÞÞ2�
− ½fν̄eðEÞ − fν̄xðEÞ�½Imωþ Γ̄exðEÞ�
× ½ðReωÞ2 þ ðImωþ ΓexðEÞÞ2� ð16Þ

should have at least one zero point, or crossing in
energy. When the energy-dependent collision rates, ΓexðEÞ
and Γ̄exðEÞ, are identical for neutrinos and antineu-
trinos, this condition is reduced to the criterion derived
in Ref. [31].

III. MONOCHROMATIC NEUTRINOS

A. Exact solutions in linear analysis

In this section, we consider monochromatic neutrinos
and solve Eq. (15) analytically. We assume the following
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background distributions:

fνeðEÞ−fνxðEÞ¼
2π2ffiffiffi
2

p
GFE2

½gδðE−ϵÞ− ḡδðEþ ϵ̄Þ�; ð17Þ

where g; ḡ; ϵ; ϵ; are model parameters. Then Eq. (15)
becomes

g
ωþ iΓ

−
ḡ

ωþ iΓ̄
¼ −1; 3; ð18Þ

where Γ ¼ ΓexðE ¼ ϵÞ; Γ̄ ¼ Γ̄exðE ¼ −ϵ̄Þ. Note that in the
typical situation in the supernova core of our concern
following inequalities hold by several orders of magnitude:
g; ḡ ≫ Γ; Γ̄, the fact used in the following. Equation (18)
can be solved easily to produce

ω� ¼ −A − iγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − α2 þ i2Gα

p
; ð19Þ

for the isotropy-preserving modes and

ω� ¼ A
3
− iγ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A
3

�
2

− α2 − i
2

3
Gα

s
; ð20Þ

for the isotropy-breaking modes. In the above equations,
the following notations are introduced:

G¼gþ ḡ
2

; A¼g− ḡ
2

; γ¼Γþ Γ̄
2

; α¼Γ− Γ̄
2

: ð21Þ

Note that when the collision rates are identical between
neutrino and antineutrino, or α ¼ 0, the imaginary part
of ω� is −γ < 0, implying that they are all stable. It
follows hence that the inequality of the collision rates is
needed for CFI, which was the criterion postulated
in Ref. [29].
The complex frequencies given in Eqs. (19) and (20) are

approximated as

ω� ¼
8<
:−A − iγ �

�
jAj þ i GjαjjAj

�
; if A2 ≫ Gjαj;

−A − iγ � ffiffiffiffiffiffiffiffiffiffi
i2Gα

p
; if A2 ≪ Gjαj;

ð22Þ

for the isotropy-preserving branch and

ω� ¼

8>><
>>:

A − iγ �
�
jAj
3
− i 1

3
Gjαj
jAj
�
; if A2 ≫ Gjαj;

A
3
− iγ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−i 2

3
Gα

q
; if A2 ≪ Gjαj;

ð23Þ

for the isotropy-breaking branch. The results for the
isotropy-preserving modes were derived previously outside
the resonancelike region in [29,31] and inside it in [33],
whereas those for the isotropy-breaking modes have not

been presented so far because the authors assumed isotropy
not only for the background but also for perturbations as we
mentioned earlier.
We plot the real and imaginary parts of ω for the two

branches in Figs. 1 and 2, respectively, for the following
parameter values: g ¼ 1 cm−1; γ ¼ 2.05 × 10−7 cm−1;
α ¼ −4.5 × 10−8 cm−1. In these plots we take ḡ as a free
parameter. It is apparent from the plots of imaginary part
that there is a rather narrow region of ḡ, in which the growth
rate is enhanced roughly by two orders of magnitude.
This is the resonancelike structure that Ref. [33] first
pointed out and we will focus on in this paper. In fact,
the resonancelike peak occurs near the point, at which the
real parts of ωþ and ω− come close to each other. Note that
although the resonancelike structure was reported only for
the isotropy-preserving modes in Ref. [33], it occurs also
for the isotropy-breaking modes as shown in Fig. 2.
To locate where the enhancement occurs exactly, we

differentiate ωþðg; ḡ;Γ; Γ̄Þ of the isotropy-preserving
branch in Eq. (19) with respect to ḡ as

∂ω

∂ḡ
¼ 1

2
þ 1

2
ðA2 − α2 þ i2GαÞ−1

2ð−Aþ iαÞ

¼ 1

2
þ 1

2
jCj−1

2

��
−A cos

θ½C�
2

þ α sin
θ½C�
2

�

þ i

�
α cos

θ½C�
2

− A sin
θ½C�
2

��
; ð24Þ

where we define C as

C ¼ A2 − α2 þ i2Gα ¼ jCjeiθ½C�: ð25Þ

The imaginary part of the derivative vanishes at the unique
value of ḡ that corresponds to A2 ¼ α2. Thus, the reso-
nancelike peak occurs when jAj ≈ jαj, i.e., the number
densities of neutrino and antineutrino come close to each
other. Note that the difference between Γ and Γ̄ is usually
orders of magnitude smaller than the difference between g
and ḡ, i.e., jαj ≪ jAj.
In the isotropy-preserving branch, the imaginary part of

ωþ is given approximately as

Imωþ ≈

8<
:

−γ þ Gjαj
jAj ; if A2 ≫ Gjαj;

−γ þ ffiffiffiffiffiffiffiffiffi
Gjαjp

; if A2 ≪ Gjαj;
ð26Þ

In the situation of our concern, where g; ḡ ≫ Γ; Γ̄, the first
case is nonresonant, since G ≫ jαj. On the other hand, the
second case may fall in the resonancelike region. Note that
the imaginary part is positive in the second regime unless α
is much smaller than γ. In the first regime, on the other
hand, the signature of the imaginary part is determined by
the competition of the difference between g and ḡ and of
that between Γ and Γ̄.
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FIG. 2. Same as Fig. 1 but for the isotropy-breaking branch.

FIG. 1. Real and imaginary parts of the complex frequencyω for the isotropy-preserving branch as a function of ḡ. For (a) and (b) we take
g ¼ 1 cm−1; γ ¼ 2.05 × 10−7 cm−1; α ¼ −4.5 × 10−8 cm−1, whereas for (c) we artificially magnify the collision rate of antineutrinos to
Γ̄ ¼ 2.5 × 10−2 cm−1, so that jαj ∼ 2.5 × 10−2 cm−1 which implies ḡ ≈ 1.025 cm−1 at the resonancelike peak. See the text for the
notational details.
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Although we have so far regarded ω as a function of ḡ,
one can also take other parameters. If one varies g instead of
ḡ, the same criterion jAj ≈ jαj is obtained. This resonancelike
peak, if regarded as a function of one of the collision rates,
reaches its maximum height at a certain value of this rate.
Note also that the resonancelike peak occurs at g ∼ ḡ but not
exactly at g ¼ ḡ. To see this more clearly, we choose a
different parameter set, in which we artificially raise the
collision rate of antineutrinos to an unrealistically high value
Γ̄ ¼ 0.025 cm−1 so that jαj ≈ 0.025 cm−1. We then obtain
ḡ ≈ 1.025 cm−1 at the peak. This deviation from g ¼
1 cm−1 is confirmed in Fig. 1(c). One should also notice
that the peak amplitude in the resonancelike structure is
much larger, and the peak width is also much broader in
this extreme case. A similar analysis shows that the
resonancelike structure occurs also for the isotropy-breaking
branch. The peak location is a bit different from that for
the isotropy-preserving mode and satisfies A2 ¼ ð3αÞ2, as
demonstrated in Fig. 2(c) again for the exaggerated value of
Γ̄ ¼ 0.025 cm−1. It is also observed that the peak width in
the resonancelike structure for the isotropy-breaking mode
is not appreciably different from that for the isotropy-
preserving mode whereas the peak amplitude is smaller
by a factor ∼2 for the isotropy-breaking mode than that for
the isotropy-preserving mode.
So far we have employed the dispersion relation. The

behavior discussed above can be also derived directly from
the original quantum kinetic equation. Since it provides
a different insight into the resonancelike structure, we
will look at it below. We assume that the background is
homogeneous, isotropic, and monochromatic. The vacuum
and matter terms are ignored to focus on CFI. Then the
Hamiltonian and the collision term are given as

H ¼ Hν ¼ Hd þHo

¼
�
gνe − gν̄e 0

0 gνx − gν̄x

�
þ
�

0 S − S̄

S� − S̄� 0

�
;

ð27Þ

C ¼
 

Γeðgνe;eq − gνeÞ ΓeþΓx
2

ðSeq − SÞ
ΓeþΓx

2
ðS�eq − S�Þ Γxðgνx;eq − gνxÞ

!
;

C̄ ¼
 

Γ̄eðgν̄e;eq − gν̄eÞ Γ̄eþΓ̄x
2

ðS̄eq − S̄Þ
Γ̄eþΓ̄x

2
ðS̄�eq − S̄�Þ Γ̄xðgν̄x;eq − gν̄xÞ

!
: ð28Þ

Note that the Hamiltonian is divided into the diagonal part
Hd and the off-diagonal part Ho. The equilibrium distri-
butions are set to the unperturbed states:

gνi;eq ¼ gνi ;

gν̄i;eq ¼ gν̄i ;

S̄ð�Þeq ¼ Sð�Þeq ¼ 0: ð29Þ

The linearized equations for S and S̄ are given as

i∂tV ¼ WV; ð30Þ

where V is vector defined as

V ¼
�
S

S̄

�
; ð31Þ

and W is the matrix expressed as

 
−ðgν̄e − gν̄xÞ− i 1

2
ðΓe þ ΓxÞ ðgνe − gνxÞ

−ðgν̄e − gν̄xÞ ðgνe − gνxÞ− i 1
2
ðΓ̄e þ Γ̄xÞ

!
:

ð32Þ

Note that we assume that the perturbation is also isotropic
in deriving these equations here.
The general solution is given as the superposition of two

independent solutions:

VðtÞ ¼ Vþe−iωþt þ V−e−iω−t; ð33Þ

where V�;ω� are the eigenvectors and eigenvalues to the
matrix W. The eigenvalues are obtained as [31]

ω� ¼ −A − iγ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − α2 þ 2iGα

p
; ð34Þ

where the notations are identical to those for Eq. (19).
It is interesting to point out that the elimination of the

diagonal part of the Hamiltonian does not change the two
eigenvalues, which suggests that CFI is driven by an
interplay of the off-diagonal part of the Hamiltonian and
the collision terms. That may be illuminated more clearly
by treating the collision term as a perturbation. Let us first
consider the case with H ¼ Ho and no collision term,
C ¼ 0. The eigenvalues and eigenvectors in this case are
given as

ω1 ¼ 0; V1 ¼
�
1

1

�
;

ω2 ¼ −g − ḡ; V2 ¼
�
g

ḡ

�
: ð35Þ

Below we introduce the following notations:

g ¼ gνe − gνx ; ḡ ¼ gν̄e − gν̄x ;

Γ ¼ 1

2
ðΓe þ ΓxÞ; Γ̄ ¼ 1

2
ðΓ̄e þ Γ̄xÞ; ð36Þ

This is a stable-flavor evolution with no growth of
amplitudes.
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Now we reinstate the collision terms but as a perturba-
tion. The characteristic equation is then written as

½−g − ðω0 þ ΔωÞ − iΓ�½ḡ − ðω0 þ ΔωÞ − iΓ̄� þ gḡ ¼ 0;

ð37Þ

where the eigenvalue is expressed as the sum of the
unperturbed value given in Eq. (35) and a (small) shift.
To linear order, the shifts are obtained for the two modes as

Δω1 ≈
iḡΓ − igΓ̄
g − ḡ

;

Δω2 ≈
igΓ − iḡ Γ̄
ḡ − g

: ð38Þ

They are divergent at g ¼ ḡ unless Γ ¼ Γ̄, an indication of
the resonancelike structure in the current setting, i.e., the
collision term is assumed to be small and so is the shift, the
latter of which is no longer correct at g ≈ ḡ, however. Note
that the two shifts have opposite signatures, in qualitative
agreement with the exact solution.

B. Numerical simulations

Now we go beyond the linear analysis. We solve the
quantum kinetic equation

i∂tρ ¼ ½Hν; ρ� þ iC ð39Þ

for the homogeneous, isotropic, and monochromatic neu-
trino distributions. The vacuum and matter terms are
omitted again. The following simulations are meant to
study the nonlinear evolution of the isotropy-preserving
mode both outside and inside the resonancelike regions.
For this purpose we vary, rather arbitrarily, ḡ, the distri-
bution function of antineutrino. For comparison, we also
run linear simulations in which the Hamiltonian is fixed to
the initial value.
Since the vacuum term, which would produce perturba-

tions to the flavor eigenstate automatically, is neglected
here, we give an initial perturbation by hand as follows:

g ¼ gνe ¼ 1 cm−1;

ḡ ¼ gν̄e is a free variable;

S ¼ S̄ ¼ 10−8 þ 0i cm−1: ð40Þ

For simplicity, we assume that all neutrinos are initially in
the electron flavor and the initial perturbation is isotropic
so that the isotropy-breaking mode does not appear in
this simulation. As discussed in the previous section, the
occurence of CFI is dictated by the four quantities: g; ḡ;Γ,
and Γ̄ [see Eq. (36)]. Note that in the linear simulations, g
and ḡ are conserved quantities and unchanged in time.

The collision rates are chosen as

Γe ¼ Γx ¼
Γ
2
¼ 1.6 × 10−7 cm−1;

Γ̄e ¼ Γ̄x ¼
Γ̄
2
¼ 2.5 × 10−7 cm−1; ð41Þ

which correspond to

γ ¼ 2.05 × 10−7 cm−1;

α ¼ −4.5 × 10−8 cm−1: ð42Þ

Since the Γ and Γ̄ are much smaller than g and ḡ, the
resonancelike peak occurs essentially at g ¼ ḡ.
The results of the linear simulations are shown first

in Fig. 3 for three different values of ḡ: 1.000; 1.009, and
1.100 cm−1. The first one almost corresponds to the
resonancelike peak whereas the second and third values
give the edge of and a point outside the resonancelike
region, respectively. The blue curves are the modulus of
flavor coherence, jSj, plotted against time while the yellow
lines indicate, for comparison, the exponential growths
with the values of ωþ given in Eq. (19) for these settings.
As should be clear, jSj shows the exponential growth as
expected in all cases. In particular, the growth is much
faster indeed in the resonancelike region. Note also that
the initial conditions are not exactly the eigenmodes
corresponding to ωþ and some deviations from the exact
exponential growth are seen.
Now we procced to the results of the fully nonlinear

simulations run for the first two initial conditions employed
in the linear simulations presented just above. They
correspond to the peak and edge of the resonancelike
structure, respectively. In Fig. 4 we plot not only jSj, the
modulus of the flavor coherence and the off-diagonal
component of the density matrix, but also the distribution
functions of all neutrinos, which are also the diagonal
components of the density matrix, as functions of time. For
reference, the exponential growths with the values of ωþ in
Eq. (19) for the current settings are again exhibited.
One recognizes clearly that there are two distinct phases,

the linear phase, in which the flavor coherence grows
exponentially at the rate given in the linear analysis, and the
nonlinear saturation phase, where the jSj peaks out and
levels off thereafter. The distribution functions of neutrinos
and antineutrinos also settle gradually to states that are
steady in the statistical sense and are different from the
initial ones (see the insets in each panel). The transition
from the linear phase to the nonlinear phase may be
characterized by jSj ∼ g. It is found from the result in
the resonancelike structure that the saturation level of the
flavor coherence is not particularly large (actually smaller)
compared with the case for the edge of the resonancelike
region and that the role of resonancelike phenomenon is
just to shorten the time it takes to reach saturation.
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This may be supported by another simulation, a
variant of the second case, in which the Γ̄ is changed to
3.6 × 10−7 cm−1 with other parameters, particularly g and
ḡ, fixed so that it should give the point closer to the
resonancelike peak. The result is presented as Fig. 4(c).
Note that the linear growth rate is twice as large as that in
the second case and is close to that in the first case. The
saturation occurs earlier consistently with the enhanced
linear growth rate. On the other hand, the asymptotic state
is almost the same as that in the second case. It is mostly

determined by the initial neutrino distributions and little
affected by the resonancelike phenomenon.
It should be noted that the asymptotic state may be

oscillating in time and is steady—not in the literal sense but
in the statistical sense. The substantially smaller popula-
tions of νx and ν̄x in the asymptotic states in these models
are the consequence of our choice of the equilibrium state
in the relaxation approximation adopted in the simulation
and are rather artificial. It should be also be mentioned that
in reality, where the background matter and neutrinos

FIG. 3. The time evolutions of jSj, the modulus of the flavor coherence, for three values of ḡ in the linear simulations. We take
α ¼ −4.5 × 10−8 cm−1, and g ¼ 1 cm−1. In the plots, the yellow straight lines are the exponential evolution at the growth rate, and the
blue curves are numerical results. (a) ḡ ¼ 1.000 cm−1 approoximately corresponds to the resonancelike peak, (b) ḡ ¼ 1.009 cm−1 gives
a an edge of the resonancelike region, and (c) ḡ ¼ 1.100 cm−1 is outside the resonancelike region.
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themselves may change significantly due to advection over
the timescale of neutrino oscillations, the asymptotic state
may never be reached. It was found that CFI could win the
competition against advection (see [32]). What conse-
quences the accelerated saturation may have, if any, for
the core-collapse supernova remain to be studied.
It is interesting to point out that in the first case

corresponding approximately to the resonancelike peak,
a very fast-flavor bouncing occurs in the beginning of the
nonlinear saturation phase right after the peak-out. It is due

to the diagonal part of the collision term, in which the
equilibrium distributions is imposed. In fact, if we reset the
equilibrium values to the actual asymptotic values when
the nonlinear phase is reached, this feature disappears.

IV. NONMONOCHROMATIC NEUTRINOS

We extend the analyses in the previous section to non-
monochromatic neutrinos. We assume that neutrinos and
antineutrinos have energy spectra given by the Fermi-Dirac

FIG. 4. (a) and (b) the nonlinear time evolutions for the same initial conditions as in Figs. 3(a) and 3(b), respectively. Not only the
flavor coherence jSj (blue lines) but also the distribution functions of neutrinos and antineutrinos (colors indicated in the legends) are
presented. (c) a variant of (b), in which Γ̄ is changed to 3.6 × 10−7 cm−1 so that the initial condition should be closer to the resonancelike
peak. The longer evolutions leading up to the asymptotic states are shown in the insets.
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distributions. We begin with the linear analysis and discuss
the criterion for the resonancelike phenomenon as well as
the growth rate at the resonancelike peak in this case. We
then study the nonlinear evolutions of the system in the
resonancelike region for the isotropy-preserving mode with
k ¼ 0 by numerical simulations. Finally, going back to the
linear analysis, we investigate the effects of nonvanishing
wave numbers in the perturbation as well as of anisotropies
in the background on CFI. As an extreme case of the latter,
we discuss a possible interplay of the resonancelike structure
in CFI with FFC on the same footing.

A. Linear analysis

We assume that neutrinos and antineutrinos have
continuous energy spectra given by the Fermi-Dirac
distributions,

fiðE; gi; Ti; μiÞ ¼
gi

exp½E=Ti − μi� þ 1
; ð43Þ

where gi, Ti, and μi are the model parameters for the
neutrino species i, and E is the neutrino energy. Assuming
for simplicity that only electron flavor is present initially,
we choose

gνe ¼ 1;

gν̄e is a free variable;

gνx ¼ gν̄x ¼ 0; ð44Þ

and the shorthand notation

g ¼ gνe ;

ḡ ¼ gν̄e ; ð45Þ

will be used in the following. The temperatures are set to

Tνe ¼ 4 MeV;

T ν̄e ¼ 5 MeV; ð46Þ

and we further assume that μ ¼ 0. Although it is not
presented here, we confirmed that a nonzero μ does not
qualitatively change the result in the following. The
collision term is now assumed to depend on the energy
quadratically as

ΓðEÞ ¼ Γ0

�
E

10 MeV

�
2

; ð47Þ

with

Γ0 ¼ 10−5 cm−1 ð48Þ

common to all flavors.

For later convenience we introduce the number density
multiplied by

ffiffiffi
2

p
GF, ni, the mean energy, hEii, and the

mean collision rate, hΓii for the neutrino species i as

ni ¼
ffiffiffi
2

p
GF

Z
E2dE
2π2

fðE; gi; Ti; μiÞ;

hEii ¼
ffiffiffi
2

p
GF

ni

Z
E3dE
2π2

fðE; gi; Ti; μiÞ;

hΓii ¼
ffiffiffi
2

p
GF

ni

Z
E2dE
2π2

ΓðEÞfðE; gi; Ti; μiÞ: ð49Þ

These three quantities defined above have same unit. Note
that a change in gi influences only ni while a variation in Ti
or μi influences all of ni; hEii, and hΓii. We also introduce
the following quantities:

G ¼ nþ n̄
2

; A ¼ n − n̄
2

;

γ ¼ hΓi þ hΓi
2

; α ¼ hΓi − hΓi
2

: ð50Þ

We solve Eq. (15) numerically to obtain the dispersion
relation. In doing so, the energy range from 0 MeV to
80 MeV is divided into nonuniform 128 bins concentrated
more at low energies.
We plot in Fig. 5 the contour lines for ReI ¼ −1 or 3

(blue) and ImI ¼ 0 (orange) in the complex ω plane for
some representative values of ḡ. The intersection of the two
contour lines gives the dispersion relation ωðkÞ at k ¼ 0.
One of the two solutions (except for the origin) with a
positive imaginary part is the unstable mode. The first three
plots in the figure are for the isotropy-preserving branch at
ḡ ¼ 0.51, 0.511, 0.512, respectively, and the last plot is for
the isotropy-breaking branch at ḡ ¼ 0.512. For the current
choice of parameters, which correspond to

hΓi ¼ 2.07031 × 10−6 cm−1;

hΓ̄i ¼ 3.23531 × 10−6 cm−1;

α ¼ hΓi − hΓ̄i
2

≈ −5.825 × 10−7 cm−1; ð51Þ

the resonancelike peak is expected to occur approximately at
ḡ ¼ 0.512 [panels (c) and (d)] givingn ≈ n̄ ≈ 4.88691 cm−1.
This is confirmed in Fig. 6, where we plot the real and
imaginary parts of ω for the unstable isotropy-preserving
branch as a function of ḡ. One can see a familiar enhancement
of the imaginary part, or the growth rate of the instability.
We also investigate an extreme case, in which we

artificially magnify the collision rate Γ̄ of antineutrino
by five orders of magnitude, Γ0 ¼ 1 cm−1 in Eq. (48),
while the other parameters are unchanged. This gives
α ¼ −1.6174 cm−1. The result is shown in Fig. 6(c).
The resonancelike peak occurs at ḡ ¼ 0.74, which
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corresponds to A ¼ −1.0081 cm−1. The number density of
antineutrino is noticably different from that of neutrino in
this case just as inferred from the result of the mono-
chromatic case. Again the approximate formula (orange
line) is compared with the numerical result shown in blue.
This time the approximation is not so successful as before
although the peak shift as well as the broadening of
resonancelike region are captured qualitatively. It is pointed
out that thanks to this broadening the case with n ¼ n̄ is

still in the resonancelike region, although not at the peak,
and hence the growth rate is enhanced. We explored other
neutrino spectra, such as the Fermi-Dirac distributions with
nonvanishing chemical potentials or Gaussian and poly-
nomial distributions that are not too irregular. The results
are qualitatively the same as those given above and hence
will not be presented here.
Finally, it is worth pointing out that the growth rate

of the resonancelike structure is well-approximated by the

FIG. 5. The contour lines for ReI ¼ −1 or 3 (blue) and ImI ¼ 0 (orange) in Eq. (15). Their intersections give the dispersion relation
ωðk ¼ 0Þ. Panels (a)–(c) are for the isotropy-preserving branch whereas panel (d) displays the result for the isotropy-breaking branch.
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formula for the monochromatic case, Eq. (19), for ωþ, with
the following substitutions:

g
ð−Þ

→ n
ð−Þ

Γ
ð−Þ

→ hΓi
ð−Þ

: ð52Þ

Note that this approximate formula agrees with the one
derived previously in [33] under the assumption of
jΓj; jΓ̄j ≪ jωj if γ and α2 are neglected accordingly. This
is demonstrated in Fig. 6(b), where the numerical solution
displayed in blue is compared with the approximate one
presented in orange. Their agreement matches what was
shown in [33]. Although the criterion for resonancelike
phenomenon posited in that paper is appropriate only when
the collision rates are small, the condition jAj ∼ jαj is
always satisfied at the resonancelike peak regardless of the
parameter values.

B. Numerical simulations

We again solve Eq. (39) numerically for homogeneous
and isotropic neutrinos with Fermi-Dirac distributions as
the energy spectra. The background distributions are
actually the same as those employed for the linear analysis
in the previous section, Eqs. (44)–(48). Since the vacuum

term is omitted in the kinetic equation, we need to set an
initial perturbation by hand, which is also assumed to be
isotropic and homogeneous. Hence only the isotropy-
preserving branch is considered. We take ḡ as a free
parameter and vary it so that the unperturbed state should
be either near the resonancelike peak or near the edge of the
resonancelike region.
In the simulation, the energy range from 1 MeV to

100 MeV is divided uniformly into 100 bins this time.
We adopt the following initial perturbations only to the
off-diagonal components of the density matrix:

SðEÞ ¼ ð1þ 0.8iÞ10−5fðEÞ;
S̄ðEÞ ¼ ð−0.5þ iÞ10−5f̄ðEÞ: ð53Þ

The numbers in the functions are chosen rather arbitrarily.
The results of the linear simulations, in which the

Hamiltonian is fixed to the initial value, is shown in Fig. 7
for two choices of ḡ; one corresponding approximately to
the resonancelike peak and the other giving the edge of
the resonancelike region. The value of A=αmeasures how
close the initial configuration is to the resonancelike
peak; the closer to unity it is, the nearer to the resonance-
like peak the initial state is. It is evident that the flavor
coherence grows at a common rate for all energies [31],

FIG. 6. The real (a) and imaginary (b) parts of the complex frequency ω for the unstable isotropy-preserving branch as a function of ḡ.
For the imaginary part, the numerical solution ImωnumðḡÞ shown in blue is compared with the approximate one ImωapprðḡÞ exhibited in
orange. In panel (c), the collision rate Γ̄ of antineutrinos is artificially magnified by 105.
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just as expected from the energy-independent nature
of ωðkÞ. In the resonancelike region, it grows much
faster.
The corresponding results for the nonlinear simulations

are presented in Figs. 8 and 9. Again one recognizes that
the linear phase is followed by the nonlinear saturation
phase also in this case with the nonmonochromatic energy
spectra. In the linear phase the flavor coherence grows at a
common rate for all energies just as in the linear simu-
lations given above (see Fig. 8). In the case for the
resonancelike peak [panel (a)], the nonlinear phase is
reached much faster than in the case for the edge of the
resonancelike region [panel (b)].
It is also found that the beginning of the nonlinear phase

is marked for each energy when jSðEÞj ¼ fðEÞ is satisfied
individually, which is a direct extension of the monochro-
matic case. The saturation level is not much different
between the two cases (see Fig. 9), indicating again that
the main effect of the resonancelike phenomenon is to
accelerate the linear growth and the asymptotic state is
hardly affected. The bouncing in the nonlinear phase is
observed only for the resonancelike peak. The bouncing
amplitude seems to be related with the difference between
the equilibrium distribution and the asymptotic distribution
although the exact mechanism of bouncing is not clear at
the moment. This is induced by the diagonal part of the
collision term. In fact, if we discard the diagonal part
effectively by resetting the equilibrium distributions to the

asymptotic ones, the bouncing feature is gone just as in the
monochromatic case.

C. k ≠ 0 perturbation/anisotropy in the background

In this last section, we investigate the resonancelike
structure either for k ≠ 0 perturbations in the homo-
geneous and isotropic background or for k ¼ 0 modes
in the homogeneous but anisotropic background. We
work on the dispersion relations in the linear regime.
The neutrino energy spectra are again assumed to
be the Fermi-Dirac distributions given in Eq. (43), with
the same parameters as in Eqs. (44)–(46) and, in
addition, with ḡ ¼ gν̄e ¼ 0.512, corresponding to the
resonancelike peak at k ¼ 0. The collision rates are given
by Eqs. (47) and (48).
We begin with the k ≠ 0 perturbation in the homo-

geneous and isotropic background. In the following the
wave vector k is assumed to be parallel to the z-axis. We
solve Eq. (14) numerically to obtain the dispersion relation.
For k ≠ 0, there appear two nonvanishing off-diagonal
components in Πex in addition to the diagonal ones, which
survive in the k → 0 limit. In order to see how the isotropy-
preserving and isotropy-breaking branches at k ¼ 0 are
mixed with each other to new modes in the k ≠ 0 case, we
decompose Πex as

Πμν
ex ¼ ημν þ Aμν: ð54Þ

FIG. 7. The time evolutions of jSj, the modulus of the flavor coherence, at different neutrino energies in the linear simulations for the
continuous energy spectrum. Two values of ḡ are adopted: ḡ ¼ 0.512 and 0.519; α ¼ −1.165 × 10−6 cm−1, and g ¼ 1 giving
nνe ¼ 4; 887 cm−1. The violet lines indicate for reference the exponential evolution at the growth rate given by the linear analysis.
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FIG. 8. The nonlinear time evolutions for the same initial conditions as in Fig. 7. Not only the flavor coherence jSj but also the
distribution functions of neutrinos and antineutrinos are presented for different energies (line types given in the legend). The purple solid
line indicates the exponential growth at the rate given by the linear analysis.

FIG. 9. The longer-term evolutions of the same simulations as in Fig. 8.
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Then, its determinant can be written explicitly in a simple
form as

detΠex ¼ ðA11 − 1Þ2½ðA00 þ 1ÞðA33 − 1Þ − ðA03Þ2�; ð55Þ

where the following relations

A11 ¼ A22;

A30 ¼ A03; ð56Þ

are used. Note that in the limit of k ¼ 0, the following
relations hold further:

A30 ¼ A03 ¼ 0;

A33 ¼ A11 ¼ A22; ð57Þ

and the dispersion relation is obtained from

detΠex ¼ ðA00 þ 1ÞðA11 − 1Þ3 ¼ 0: ð58Þ

In fact, the isotropy-preserving branch is derived from
the first factor and the isotropy-breaking branch is origi-
nated from the second factor. In the case of k ≠ 0, while
A11 − 1 ¼ 0 is unchanged, ðA00þ1ÞðA11−1Þ−ðA03Þ2¼0
now mixes the isotropy-preserving and isotropy-breaking
branches to produce four branches in general. In the
following we look into these modes in detail.
From the first factor in Eq. (55), a pair of solutions are

obtained, which take the following form a ¼ ð0; ax; ay; 0Þ
and are perpendicular to k, and they hence break the

isotropy in the x − y plane. On the other hand, the second
factor can vanish in three different manners: ð1ÞA00 þ 1 ¼
A03 ¼ 0; ð2ÞA33 − 1 ¼ A03 ¼ 0, or ð3ÞðA00þ1ÞðA33−1Þ¼
ðA03Þ2≠0. The first case produces a solution of the form
a ¼ ðat; 0; 0; 0Þ, which is isotropy-preserving. The second
case leads to a ¼ ð0; 0; 0; azÞ, which is hence isotropy-
breaking in the z direction; that is, the direction of k. The
last one yields a solution with the form of a ¼ ðat; 0; 0; azÞ
in general, which is also isotropy-breaking. If the first and
second factors vanish simultaneously, the solution takes a
combined form; for example, the combination of the first
factor with case (1) for the second factor gives a solution
of the following form: a ¼ ðat; ax; ay; 0Þ. These cases are
exceptional, though, and occur only for special spectra/
collision rates. In fact, we find that case (3) is always
satisfied in the second factor of Eq. (55) for the ranges of k
and ḡ considered in this paper.
In Fig. 10, we display plots of the contours indicated in

each panel for k ¼ 0.001 cm−1. The left panel gives the
solutions for the first factor in Eq. (55) whereas the right
panel shows the solutions for the second factor. The latter
corresponds to case (3) as mentioned above. At this small k,
all the modes are not much different from the counterparts
at k ¼ 0. For later convenience, we refer to the solutions for
unstable modes in these plots as Q, W, and Y. Mode Q
originated from the first factor in Eq. (55) merges at k ¼ 0
with Y from the second factor to give the isotropy-breaking
modes. On the other hand, mode W is reduced to the
isotropy-preserving mode at k ¼ 0. These modes are all
isotropy-breaking at k ≠ 0. In Fig. 11 we plot the linear

FIG. 10. The plots of the contour lines denoted in each panel in the complex ω plane at k ¼ 0.001 cm−1. The gray band around the
origin is the numerical unreliable region that should be discarded.
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growth rates, Imω, for these three modes as a function of ḡ
at the same value of k ¼ 0.001 cm−1. The resonancelike
structure is evident in all cases around ḡ ¼ 0.512.
In Fig. 12, we show the k-dependence of these growth

rates at ḡ ¼ 0.512, i.e., around the resonancelike peak. It is
apparent that they decrease monotonically with k, indicat-
ing that the resonancelike peak gets weaker at nonvanishing
k for all modes. This is actually true outside the resonance-
like region as well. The nonzero k tends to reduce the CFI
itself. It is noted that the presence of k in the denominator
of Eq. (14) poses a challenge in the numerical integration
by discretization in the region −k < Reω < k; 0 < Imω <
ΓðEmaxÞ. We do not think that the numerical solutions in
these ranges are reliable and hence do not consider those
solutions outside the resonancelike region or inside it but
at large values of k that approach this problematic region,
which is indicated as the gray bands around the origin
in Fig. 10.
Next we study the effect of the anisotropy in the

homogeneous neutrino background on the resonancelike
structure. We introduce the following angular-dependence
to the neutrino distributions in momentum space:

fiðE;gi;Ti;μi;θ;δiÞ¼ð1þδicosθÞfiðE;gi;Ti;μiÞ; ð59Þ

where fiðE; gi; Ti; μiÞ on the right hand side is the Fermi-
Dirac distribution for neutrino species i; 0 < θ < π is the
angle that the neutrino velocity makes with the radially

outward direction; the factor δi controls the degree of
anisotropy. Since we are interested in the resonancelike
structure in CFI in this paper, we first consider a case with no
angular crossing, and hence no FFC. We then look at two
cases with different angular crossings to see the interplay
between the resonance-like structure in CFI and FFC. We
solve Eq. (14) numerically for k ¼ 0 to obtain the dispersion
relation ωðk ¼ 0Þ for the anisotropic (but homogeneous)
background just described. Note that the integration over the
solid angle can be done analytically for k ¼ 0.
We first present the results for the first case, in which

only electron-type neutrinos and antineutrinos are present
initially with the same anisotropy, δ ¼ δ̄. We choose the
model parameters as in Eqs. (44)–(48) together with ḡ ¼
0.512 and k ¼ 0 so that the unperturbed state corresponds
to the resonancelike peak at δ ¼ 0. We vary the value of δ to
see how the anisotropy affects CFI in the resonancelike
region. The choice of k ¼ 0 simplifies the analysis a lot.
In fact, only Π03

ex, which is linear in δ, is nonvanishing as the
off-diagonal components of Πex just as in the previous case
with k ≠ 0, and the diagonal components are unchanged
from those for the isotropic case. Since the dispersion
relation is obtained from detΠex ¼ 0 given as Eq. (55)
again, we refer to the corresponding modes as Q, W, and Y.
Under the current setting, all modes are isotropy-breaking
for δ ≠ 0. Note that mode Q is independent of δ and δ̄ in this
setting, and is always identical to the isotropy-breaking
mode for isotropic neutrinos.

FIG. 11. The resonancelike structures for the unstable branches Q in (a), W in (b), and Y in (c), at k ¼ 0.001 cm−1.
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In Fig. 13 we plot the linear growth rates for the three
modes Q, W, and Yas functions of ḡ at δ ¼ 0.4 to show that
the resonancelike structure occurs indeed also in this case.
Note that Q and Y are strictly distinct from each other at
δ ≠ 0. In Fig. 14 we demonstrate how the background
anisotropy affects CFI. It is observed that it tends to reduce
CFI. This time the effect is pretty minor, though.
Now we go on to the study of a possible interplay of

the resonancelike phenomenon in CFI with FFC. For this
purpose we choose

δ ¼ 0.1;

δ̄ ¼ 0.08: ð60Þ

The values of other model parameters are unnchanged
from the previous case for δ ¼ δ̄. We adjust ḡ so that there
should be an ELN crossing in the angular distributions of νe
and ν̄e. There is indeed an interval of ḡ, in which the
angular ELN crossing and thus FFC occur. In this model, νe
is dominant in the radially outward direction while the
opposite is true in the inward direction. Note that the mean
energies and collision rates for ν̄ are unchanged by the
variation of ḡ. We study at k ¼ 0 the behavior of the fast-
unstable branch in the presence of the collision term.
We show in Fig. 15(a) the growth rates of this mode as

functions of ḡ both with (red) and without (blue) the
collision term. As is evident from the latter, FFC occurs in
this mode for 0.505≲ ḡ≲ 0.517, where Imω is positive.
Interestingly, the resonancelike structure in CFI takes place

almost in the same region as could be inferred from the red
line, in which the foot of the resonancelike peak can be
recognized near the both ends of the FFC range. It is also
apparent that the resonancelike phenomenon has a very
small impact on the growth rate when the FFC is in
operation: it only modifies the amplitude very slightly
and shifts the peak position only a bit.
This is more evident when we take a different parameter

set; δ ¼ 0.1 and δ̄ ¼ 0.095. The result is shown in
Fig. 15(b). In this case, the degrees of anisotropy are not
much different between νe and ν̄e and, as a consequence,
the range for the ELN crossing is much narrower in ḡ (see
the blue line). Now the shift in the peak position by the
resonancelike phenomenon in CFI is apparent. Note that
without FFC the height and width of the resonancelike
structure are essentially unchanged with this variation of δ̄.
Because of this shift, the amplitude of FFC, on the other
hand, is enhanced or reduced, depending on where we look
at. Such a shift becomes also noticeable for larger devia-
tions of δ̄ from δ if the difference in the collision rates is
large enough. As mentioned above, it seems that when FFC
and the resonancelike phenomenon in CFI are simulta-
neously in operation, the growth rate is set by the former
(recall that the growth rate of CFI at the resonancelike
peak for the current setting at δ ¼ δ̄ is ∼0.005 cm−1,
i.e., 10 times smaller than the growth rate of FFI alone).
More systematic investigations in a broader parameter
range are certainly needed to see how generic this is,
but they will be deferred to future studies.

FIG. 12. The linear growth rates for the unstable branches Q in (a), W in (b), and Y in (c) as functions of the wave number k.
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FIG. 14. The linear growth rates for mode W studied as functions of the degree of anisotropy δ. (a) at the resonancelike peak
(ḡ ¼ 0.512) and (b) at roughly half the peak amplitude (ḡ ¼ 0.51).

FIG. 15. The linear growth rates as functions of ḡ for anisotropic backgrounds with an ELN crossing. The collision term is either
turned on (red) or off (blue). (a) δ ¼ 0.1 and δ̄ ¼ 0.08 and (b) δ ¼ 0.1 and δ̄ ¼ 0.095.

FIG. 13. The resonancelike structures for the anisotropic neutrino backgrounds. The degree of anisotropy is identical for νe and ν̄e:
δ ¼ δ̄ ¼ 0.4. (a)–(c) correspond to the unstable banches Q, W, and Y respectively. Note that Q and Y are no longer degenerate.
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V. CONCLUSION

We have presented in this paper the results of a
systematic study on the resonancelike structure in CFI.
Employing the two-flavor approximation for simplicity, we
have done both linear analysis and nonlinear numerical
simulations. The collision is taken into account in the
relaxation approximation, which is actually exact for the
emission/absorption as well as iso-energetic scatterings of
neutrinos. We have always assumed that the neutrino
distributions are homogeneous initially but have considered
both isotropic and anisotropic distributions in momentum
space. We have also taken into account the continuous
energy distributions of neutrinos. By changing rather
arbitrarily the number densities or the collision rates for
the antineutrinos, we have produced both configurations in
and out of the resonancelike region freely.
Starting with the linear analysis of the simplest case,

i.e., the monochromatic, homogeneous, and isotropic
background with k ¼ 0 perturbations, we have analytically
obtained the dispersion relations both for the isotropy-
preserving and isotropy-breaking modes. Note that the
latter has been overlooked in the literature so far. We have
confirmed that the resonancelike structure shows up at
A ∼ α [see Eq. (21) for the notations] for the isotropy-
preserving branch, where the two modes, ωþ and ω−
[Eq. (19)], come close to each other. We have demonstrated
that a similar feature occurs at A ∼ 3α also for the isotropy-
breaking branch. In both cases, the resonancelike peak is
obtained at g ∼ ḡ [Eq. (17)] but not exactly at g ¼ ḡ. In fact,
the deviation becomes larger for a greater difference
between the collision rates, Γ for neutrino and Γ̄ for
antineutrinos. The resonancelike region is also broadened
in that case.
We have then conducted numerical simulations for

the same background setting to investigate the nonlinear
evolutions of the perturbations, which were again assumed
to have k ¼ 0 and added only to the off-diagonal compo-
nents of the density matrix. We have confirmed the
exponential growth at the rate given by the linear analysis
in the linear phase, which we have found is followed by the
nonlinear saturation phase, where the flavor coherence
levels off and the distribution functions are settled to new
steady states asymptotically. We have observed a bouncing
with large amplitudes only around the resonancelike peak.
Its mechanism is unclear for the moment but we have
demonstrated that it is induced mainly by the diagonal part
of the collision term.
We then proceeded to the nonmonochromatic case, in

which we assumed that neutrinos have Fermi-Dirac dis-
tributions as their energy spectra. In the linear analysis for
the homogeneous and isotropic background with the k ¼ 0
perturbation, we have shown that there are again isotropy-
preserving and isotropy-breaking branches and that both
of them give a resonancelike structure. We also demon-
strated that the growth rate in the resonancelike structures is

well-approximated by the exact formula for the mono-
chromatic case with an appropriate substitution of variables
as long as the collision rates are not much different between
neutrino and antineutrino. This was pointed out in the
previous work [33] for small collision rates. Our results
have extended its validity.
The nonlinear simulations have been done for the same

background as for the linear analysis above. The perturba-
tion was assumed to have k ¼ 0 and to be also isotropic.
Only the isotropy-preserving mode has been calculated. As
expected from the dispersion relation, we observed that the
perturbation grows exponentially at the same rate for all
energies of neutrinos. We have found that for different
energies of neutrinos the nonlinear saturation phase begins
when their flavor coherence becomes of the similar
amplitude to the distribution functions at their energies,
jSðEÞj ∼ fðEÞ [Eq. (1)], a direct extension of the mono-
chromatic case. We found that the saturation level is not
affected much by the resonancelike phenomenon and its
main role is to shorten the time it takes to get to the
saturation. We have also seen the bouncing of the flavor
coherence after its peak-out near the resonancelike peak
alone again.
We finally conducted the linear analysis either for the

k ≠ 0 perturbation to the isotropic background or for the
k ¼ 0 perturbation to anisotropic background configura-
tions. In the former we have shown how the isotropy-
preserving and isotropy-breaking branches at k ¼ 0 are
mixed for k ≠ 0 to produce new branches and demonstrated
that resonancelike structure occurs just in the same way for
all these modes. We have also found that the CFI is weaker
for modes with k ≠ 0 than k ¼ 0.
For the anisotropic background with no electron-lepton-

number, or ELN, crossings, we have shown that resonance-
like structure shows up again in the same way and that the
CFI tends to be weaker, albeit slightly, for the anisotropic
background. With an ELN crossing, on the other hand, the
growth rate seems to be set by the fast-flavor conversion, or
FFC, and the resonancelike phenomenon in CFI, the region
of which tends to overlap with the range of FFC, shifts
the peak position and broadens the range of instability. The
growth rate may be enhanced or reduced, depending on the
position in the unstable range.
There remain many issues to be addressed further. Not

to mention, we need to extend the analysis to three flavors.
The relaxation approximation should be removed to
incorporate nonisoenergetic collisions. The parameter
regions considered in this paper are rather limited. For
instance, we have investigated a rather small k in the k ≠ 0
perturbation although new modes with different properties
may emerge for larger k. Interplays of the resonancelike
phenomenon in CFI with FFC in the nonlinear phase
should be studied, probably numerically. Indeed the
growth of the isotropy-breaking modes may induce
FFC in that phase. The mechanism of the large-amplitude
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bouncing in the resonancelike peak case needs to be
understood. The asymptotic state in the nonlinear satu-
ration phase should be characterized. We are interested in
what consequences, if any, the resonancelike structure in
CFI may have for core-collapse supernovae and compact
object mergers. In fact, the advection, which is ignored
in this paper, occurs in these realistic situations and the
buildup time of flavor instabilities becomes crucially
important [32]. These will all be future works.
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