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The recent body of work points out that the mean-field approximation, widely employed to mimic the
neutrino field within a neutrino-dense source, might give different results in terms of flavor evolution with
respect to the correspondent many-body treatment. In this paper, we investigate whether such conclusions
derived within a constrained framework should hold in an astrophysical context. We show that the plane
waves, commonly adopted in the many-body literature to model the neutrino field, provide results that are
crucially different with respect to the ones obtained using wave packets of finite size streaming with a
nonzero velocity. The many-body approach intrinsically includes coherent and incoherent scatterings. The
mean-field approximation, on the other hand, only takes into account the coherent scattering in the absence
of the collision term. Even if incoherent scatterings are included in the mean-field approach, the nature of
the collision term is different from that in the many-body approach. Because of this, if only a finite number
of neutrinos is considered, as often assumed, the two approaches naturally lead to different flavor
outcomes. These differences are further exacerbated by vacuum mixing. We conclude that existing many-
body literature, based on closed neutrino systems with a finite number of particles, is neither able to rule out
nor assess the validity of the mean-field approach adopted to simulate the evolution of the neutrino field in
dense astrophysical sources, which are open systems.
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I. INTRODUCTION

The evolution of neutrino flavor in dense astrophysical
environments has been an active field of research due to its
rich phenomenology and conceptual complexity, yet not
fully explored [1,2]. In dense astrophysical environments,
such as core-collapse supernovae and compact binary
mergers, neutrinos experience a potential due to other
neutrinos [3–10], in addition to the one due to matter
[11–13]. A key reason for the varied phenomenology is the
nonlinearity of flavor evolution due to neutrino-neutrino
forward scattering. The Hamiltonian in the quantum kinetic
equations depends on the neutrino background, which itself
evolves dynamically. One of the key features of neutrino
flavor evolution in the presence of a neutrino background is
that the flavor evolution of all momentum modes is
correlated, often referred to as “collective neutrino flavor
conversion.”
Right from the onset of the investigation of the physics of

collective neutrino flavor conversion, there have been
several controversies in the field due to the seemingly
nontrivial quantum mechanical aspects of flavor evolution.
For example, one of the earliest discussions focused on
whether the self-interaction Hamiltonian has significant
off-diagonal components [14–17], a key feature required
for nonlinear feedback in the equations of motion.

More recently, several papers have raised questions
regarding the validity of the mean-field approximation
adopted to model the neutrino flavor evolution—see
Ref. [18] for a recent review and references therein.
When neutrinos undergo flavor conversion in the core of

a supernova, they stream as wave packets with a finite
width from the decoupling region. Traditionally, this
implied that each streaming neutrino was assumed to
interact with a mean field resembling the neutrino back-
ground. The mean-field approach adopted to describe the
evolution of the one-particle reduced density matrix is
based on a crucial assumption that the two-particle corre-
lation that can develop due to the collision term does not
affect the flavor evolution. This assumption of molecular
chaos ansatz (or Stosszahlansatz), is valid when one
assumes that the average duration of each scattering
process is small [Oð10−21Þ s] [19] with respect to the
timescale over which the flavor evolution occurs
[≳Oð10−10Þ s] [20,21]. While being an approximation,
such a framework has been widely adopted since the flavor
conversion history depends on the average interaction rate
of neutrinos with the background along the streaming field.
In this paper, we argue that many of the apparently

different conclusions extrapolated by the investigation of
the flavor evolution in the many-body and mean-field
approaches rely on tackling intrinsically different physical
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systems. Hence, any assessment of the validity of the mean-
field approach to model the evolution of the neutrino field
within an astrophysical source requires further work.
Importantly, the many-body literature mostly relies on
closed neutrino systems with a limited number of particles.
While the propagation and flavor conversion of neutrinos in
a dense astrophysical source should be mimicked by
considering an open system with an infinitely large number
of particles. The many-body formalism naturally includes
momentum-changing processes (both coherent and inco-
herent scatterings). On the other hand, in the absence of the
collisional term, only the coherent forward scattering terms
enter the Hamiltonian in the mean-field approach.
This paper is organized as follows. Section II provides an

overview of the approximations intrinsic to the treatment of
a closed neutrino system, in contrast to an astrophysical
neutrino-dense source which should be considered as
an open system. In Sec. III, we outline the many-body
formalism. In Sec. IV, we explore the neutrino flavor
conversion phenomenology foreseen by the many-body
approach by relying on the commonly adopted plane wave
approximation for neutrinos within a closed interaction
box. Section V relaxes the plane-wave approximation and
focuses on assessing the impact of the size of the wave
packet on the flavor evolution in the many-body approach.
We finally discuss and summarize our findings in Sec. VI.
An overview of the implicit assumptions made when
deriving the equations of motion within the context of
the mean-field theory is provided in the Appendix.

II. OPEN VS CLOSED SYSTEM

In the literature adopting the many-body approach in the
context of neutrino oscillations, a finite number of neu-
trinos, Oð10–1000Þ, is confined within a box of finite
volume and assumed to interact for an infinite amount of
time. On the other hand, in neutrino-dense astrophysical
sources such as a core-collapse supernovae, the neutrino
density isOð1028Þ cm−3 after decoupling, which is relevant
for neutrino collective effects in the bulb model [3], and
neutrinos stream from the interaction region at the speed of
light. In order to mimic the flavor evolution of astrophysical
neutrinos within an idealized framework, one could then
consider a box of finite size, where an infinitely large
number of neutrinos represented by wave packets of finite
size streams in and out of the interaction box, while
interacting with the other neutrinos met in the interaction
volume. As a consequence, even if two neutrinos undergo a
momentum changing collision, they will not see each
other again.
In the literature on spin systems, it is common to

consider a closed system of interacting spins. This implies
that the spins continue to interact with each other for a
long period of time and the quantum entanglement
between the particles can grow with time. It is conceivable
that our compact astrophysical source may be in a highly

mixed state because of the large interaction rate among its
particles, the evolution of the state of a subset of the
astrophysical system made of a finite number of neutrinos
may also have a mixed state character. Yet, this fact does
not directly imply that our subsystem is entangled.
Assuming that our subset is actually entangled, as inferred
from simplistic analyses (e.g. see Ref. [18] and references
therein), it remains to be assessed whether such an
entanglement may have physical consequences. In fact,
as known in condensed matter physics, “fluffy bunny
entanglement” could take place, i.e. a kind of entangle-
ment that is unavoidable, but useless and cannot be
verified because of lack of access to the entire quantum
state [22,23].
The arguments above highlight that in order to draw

conclusions on the validity of the mean-field approach to
investigate the flavor evolution in neutrino-dense sources,
one needs to develop brand-new and physically motivated
simulations. Given the nontrivial conceptual and technical
challenges linked to the problem, in what follows, we focus
on a simpler system (not aiming to mimic the physics of
neutrinos within a dense source) and investigate the
implications of some of the assumptions currently adopted
in the neutrino many-body literature on the topic.

III. NEUTRINO EQUATIONS OF MOTION IN
THE MANY-BODY APPROACH

In this section, we briefly summarize the many-body
formalism and begin by describing the initial state. We
consider N particles, which are either physical particles or
systems that can be considered as a single quantum object.
The initial wave function is constructed by taking the outer
product of the flavor eigenstates. The state thus constructed
has 2N components in the two flavor approximation. Note
that in this case the equation of motion has 2N components
as opposed to 2 field equations foreseen within the mean-
field approach (see the Appendix). For example, if we
consider a system consisting of two particles, the first one is
νe and the second one is νμ, with two distinct momenta, the
initial state in the many-body formalism is

0
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jμμi

1
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0
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0
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1
CCCA: ð1Þ

Since Eq. (1) is a wave function, it evolves in time
according to the Schrödinger equation. As the system
evolves, the state described by Eq. (1) can become
entangled and cannot be represented in the form of an
outer product of two-component wave functions.
The self-interaction Hamiltonian, which governs the

evolution of the wave function, is derived by considering
all possible momentum exchanges, including with itself.
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The ði; jÞ entry of the self-interaction Hamiltonian is
proportional to the number of ways in which momenta
in the state i can be exchanged to give the state j [24]. This
is equivalent to keeping the momenta unchanged and
counting the number of ways in which we can exchange
the labels of the particles in our system. For example, the
state jeμi has four momentum exchanges possible; two
with the exchange of momenta with itself, which retain the
state, and two with the exchange of particles with the other
particle, which convert the state to jμei. As a matter of
convention, these numbers are divided by 2 to take into
account the double counting. Thus, for our two-particle
system in Eq. (1), the self-interaction Hamiltonian is given
by [24]:

H ∝

0
BBB@

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

1
CCCA: ð2Þ

In order to ensure that the Hamiltonian has units of energy,
the Hamiltonian is multiplied by ð ffiffiffi

2
p

GF=VÞð1 − cosΘÞ,
where V is the normalization volume, Θ the angle between
the momenta of the neutrinos, and GF being the Fermi
constant.
The wave functions are uniformly distributed over the

volume V, with periodic boundary conditions. The strength
of self-interaction is

μ0 ≡
ffiffiffi
2

p
GF

V
ð1 − cosΘÞ: ð3Þ

In the presence of the vacuum term, the flavor of each
particle evolves independently of the other particles.
Hence, in the two-particle case, the vacuum Hamiltonian
is given by,

Hvac ¼
ω1

2

�− cos 2θ1 sin 2θ1
sin 2θ1 cos 2θ1

�

⊗
ω2

2

�− cos 2θ2 sin 2θ2
sin 2θ2 cos 2θ2

�
: ð4Þ

Here, ωi and θi are the vacuum frequency and the vacuum
mixing angle for the ith neutrinos. It should be noted that, if
time and ωi are expressed in terms of μ0, the equation of
motion is completely independent of the value of μ0 used.

IV. PLANE WAVES IN A CLOSED INTERACTION
VOLUME

If there is a collection of νe and νμ states, with
momentum p⃗ and k⃗, respectively, then it is possible that
two of these neutrinos will undergo momentum changing
scattering. One possible outcome of the scattering is that we

find a νe with momentum k⃗ and νμ with momentum p⃗.
From the perspective of a hypothetical observer, neutrinos
with momentum p⃗, which were initially all νes, are now a
collection of νe and νμ. Nevertheless, this scattering
amplitude is not coherently enhanced by the number of
neutrinos present, as we will see later.
We consider the temporal evolution of the neutrino

ensemble sketched in Fig. 1 made of two momentum
beams, where a neutrino that is initially in the νe state
(represented by a plane wave Ψνe that extends through the
interaction volume V ¼ L3) and undergoes interactions
with a variable number of νμs initially in the second beam
(represented by Ψ1;2;3

νμ in Fig. 1). Throughout the evolution,
the momenta of the neutrinos are restricted to one of the
two beams.
In the mean-field formalism [see Eq. (A5)] no flavor

evolution occurs if collisions are ignored. The incoherent
scattering leads to isotropization in the center of mass
frame; so if incoherent collisions are included, we expect
that both beams will have an equal number of each flavor of
neutrinos. However, if we evolve the same system through
Eq. (2), flavor oscillations are seen as displayed in Fig. 2.
For one νμ initially in the second beam (1νe þ 1νμ

scenario), we expect 50% νes and νμs in both beams.
This should be an equilibrium state, i.e., no flavor evolution
should be expected as a function of time when this
configuration is reached. If we increase the number of
neutrinos in the second beam, e.g., we have 1νe in the first
beam and Nνμs in the second beam, we expect that the
equilibrium state of the first beam consists of a 1=ðN þ 1Þ
fraction of νe, since in the equilibrium state both beams will

FIG. 1. Sketch of the setup of our system. The orange line
indicates a plane wave of νes in the initial state, while the three
green lines stand for three plane waves that are initially in the νμ
state (representative of the 1þ 3 case of Fig. 2). The interaction
volume is V ¼ L3, and periodic boundary conditions are as-
sumed. Since the wave functions do not have spatial dependence,
the neutrinos can be considered as stationary. Since each plane
wave is stationary, this implies that neutrinos interact with each
other in the interaction volume for an indefinite period of time.
The wave functions are shown in the cartoon as stacked one
above the other for the purpose of legibility.
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have equal flavor content. (We have verified that this is the
case numerically by solving the Boltzmann equations by
relying on the collision term only; results not shown here).
When we solve the evolution equations for this system

using Eq. (2), we find that the flavor fraction in each beam
does not reach equilibrium, as expected. Instead, we see an
oscillatory pattern as shown in the top left panel of Fig. 2.
This plot shows the temporal evolution of the flavor
transition probability, P1

eμ, of the neutrino (1) that is
initially in a pure νe state and undergoes interaction with
a variable number of νμs for ωvac ¼ 0. In order to obtain this
plot and the following ones, we have used μ0 ¼ 10 km−1;
however, since t is expressed in units of μ−10 , our results are
independent of the value of μ0.

The reason for this peculiar behavior is due to the fact
that when an incoherent scattering occurs, the amplitude for
such a process is coherently added with the case of no
scattering.1 As a result, the neutrino, which was initially νe,
becomes a superposition of two flavor eigenstates. This can
only happen if both the incoming and outgoing waves are
plane waves.

FIG. 2. Flavor transition probabilities for the system in Fig. 1 and for one of the neutrinos being νe initially. Top left: flavor transition
probability of a neutrino that is initially in the νe state, interacting with N νν neutrinos for ωvac ¼ 0 and N ¼ 1, 3, 7. The oscillatory
behavior is solely due to the incoherent scattering term. Top right: zoomed in version of the top left panel for the case with 3νμs in the
background. The orange dashed line is the plot of Eq. (5), which is in perfect agreement with the numerical results. Bottom left: same as
the top left panels, but for a neutrino that is initially in the νe state interacting with N νx neutrinos. In this case, the flavor evolution has a
contribution from coherent forward scattering as well as incoherent scattering terms. Bottom right: zoomed in version of the bottom left
panel for the case with 3 νxs [see Eq. (6)] in the background. The orange dashed line represents Eq. (7).

1In scattering theory, when a particle scatters off a potential the
wave function of the out-going particle is given by the sum of the
incident (in) wave function and the scattered wave function:
Ψout ¼ Ψin þ Ψscattered. The same holds in the system we con-
sider, with Ψout, Ψin, and Ψscattered being plane waves.
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We have verified that the dependence of the flavor
evolution on the number N of background neutrinos
displayed in the top left panel of Fig. 2 goes like Nt2 near
t ¼ 0, in agreement with the findings presented in
Ref. [24]. Coupling this finding together with the obser-
vation that the flavor evolution follows a sin-squared
function, we find that the following empiric formula
reproduces the results presented in the top left panel of
Fig. 2:

P1
eμðtÞ ¼

4N
ðN þ 1Þ2 sin

2

��
N þ 1

2

�
t

�
; ð5Þ

where t is in units of μ−10 . We demonstrate the excellent
agreement between this empirical formula and the numeri-
cal results for N ¼ 3 in the top right panel of Fig. 2. Such
degree of agreement holds for all cases with different N for
which we have numerical results.
These results are consistent with the ones presented in

Ref. [25], albeit the reason for the oscillatory behavior in
the neutrino oscillation probability was not attributed to
incoherent collisions in Ref. [25], rather to differences
between the many-body and the mean-field approaches.
However, this is not the case. The origin of the oscillatory
behavior found in the many-body approach is actually due
to the fact that incoherent scatterings are taken into account
by construction in the many-body Hamiltonian [Eq. (2)],
while only the coherent scatterings are considered in the
mean-field approach [Eq. (A10)]. It is possible that, for the
same reason, different outcomes for the flavor evolution in
the many-body and mean-field approaches were found in
Refs. [26,27].
The bottom panels of Fig. 2 show the flavor evolution in

the case of a νe scattering on a beam made out of maximal
linear superposition νe and νμ:

jνxi ¼
jνei þ jνμiffiffiffi

2
p : ð6Þ

In this case, we expect flavor conversion in the mean-field
approach in the absence of the collision term [24,28]. Due
to the presence of both coherently enhanced scattering term
as well as the incoherent collision term, the flavor evolution
of νe due toNνxs in the background is expected to scale like
1=4ðN2 þ NÞt2 [24], which is in agreement with our
finding in the bottom left panel of Fig. 2. It should be
noted that the period of oscillation in the top left plot and
the bottom left plot is the same irrespective of the number
of background neutrinos (N). Because of this, Eq. (5)
should be adapted to the case of a background consisting
of νx:

PeμðtÞ ¼
NðN þ 1Þ
ðN þ 1Þ2 sin2

��
N þ 1

2

�
t

�
: ð7Þ

The bottom right panel of Fig. 2 shows the agreement
between Eq. (7) and the numerical results for N ¼ 3. A
similar formula can be obtained for a background that
exists as any linear combination of flavor eigenstates.
The oscillatory behavior seen in the left panels of Fig. 2

can also be understood in terms of Rabi oscillations. The
simplest case to understand is the 1þ 1 case in which the
flavor can be thought of as the orientation of a spin-1=2
particle; νe being the Sz ¼ 1=2 state and νμ being the
Sz ¼ −1=2. The two particles can form a spin triplet state
(J ¼ 1) or a spin singlet state (J ¼ 0). The initial state
considered in our example is neither a triplet nor a singlet,
but a superposition. Consequently, the probability of
finding the system in a triplet or a singlet state evolves
as a function of time, as shown in the top left panel of
Fig. 2. As for the bottom left panel of Fig. 2, because of
the composition of νx in terms of νe and νμ, the
combination of νe and νμ for the singlet and triplet states
is as described above, but the combination of two νes is
purely a triplet state and not affected by Rabi oscillations.
This results in a smaller oscillation amplitude in the
1þ 1 case.
The results presented in Fig. 2 can be further modified by

the vacuum mixing term (ωvac ≠ 0), as shown in Fig. 3,
where maximal mixing angle θvac ¼ π=4 is assumed. We
would like to emphasize that the change in the flavor
evolution is gradual with increasing vacuum term. There
are no sudden changes when the mixing angle is increased
from zero to nonzero value as mentioned in Ref. [25]. The
same holds for increasing the vacuum frequency. For a
system that is initially in the flavor eigenstates, the flavor
evolution is solely due to the incoherent scattering term and
increasing the vacuum frequency leads to a gradual change
in the flavor evolution.

FIG. 3. Same as the top left panel of Fig. 2, but with ωvac ≠ 0
and θvac ¼ π=4. The vacuum mixing term further modifies the
oscillatory trend of the flavor transition probability.
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In this section, we have reported results obtained using
the many-body approach for a finite number of background
neutrinos N. These findings differ from the ones expected
in the mean-field case. Yet, this does not prove that the
many-body approach captures flavor conversion effects that
are not obtained within the mean-field approach. In fact, the
incoherent scattering term is proportional toG2

FN, while the
coherent forward scattering term is proportional to G2

FN
2.

Consequently, in the limit of N → ∞, which should mimic
the mean-field scenario, the incoherent term should become
negligible, and the result of the many-body formalism may
be the same as the ones obtained by relying on the mean-
field approach. This “expectation” was also reported in
Ref. [29], but not demonstrated. Due to the limitations
linked to the maximum value of N that we can afford in our
simulations, it remains to be assessed whether incoherent
collisions may eventually lead to flavor conversion effects
that are not captured by the mean-field equations. If any of
such effects should be present, it will be crucial to assess
whether they lead to such large changes on the flavor
transition probability of neutrinos that could indeed have
astrophysical implications. Note that, even if we were to
perform many-body simulations with a large N, the impact
of incoherent collisions will have to be evaluated moving
beyond the plane-wave assumption, as discussed in the next
section.

V. SIZE OF THE WAVE PACKET

The assumption of infinitesimally small wave packet size
adopted in the mean-field approach is more suitable to
mimic the physics of the interior of a neutrino-dense
astrophysical source, which forms an open thermodynamic
system. On the other hand, plane waves (adopted in Sec. IV
and more commonly in the literature on this subject) are
rather motivated in the condensed matter systems where the
particles are essentially stationary and form a closed
system.
The results of Sec. IV crucially depend on the assumption

of using plane waves. To demonstrate this, we repeat the
same calculation, however now using wave packets. The
geometry of our system is identical to the one introduced in
Fig. 1 with periodic boundary conditions, however, the
neutrino wave packets are now localized, each covering a
third of the interaction volume, as shown in Fig. 4. The three
orange wave packets are initially νes, while the green wave
packets are νμs. We assume that these wave packets move in
opposite directions with velocity v, as illustrated in Fig. 4.
If we assume that the velocity of the wave packets is

v ¼ 0, then each wave packet interacts with only one other
wave packet of another flavor. The system behaves like
the one used to obtain the results presented in Fig. 2. The
results of the many-body Hamiltonian are the same as the
(1þ 1) case shown in Fig. 2. This is indeed what we see in

Fig. 52 for v ¼ 0, where we show the flavor transition
probability of one of the neutrinos that starts as νe.
The flavor evolution of the neutrinos is modified, if the

neutrinos travel with nonzero velocity (with the velocity
being measured in units of Lμ0), as shown in Fig. 5. As the
neutrinos move, the interaction strength between the
neutrinos changes, being proportional to the degree of
overlap among wave packets.
As the velocity is increased, which is equivalent to

increasing the size of the box while keeping μ0 unchanged,
the flavor evolution becomes independent of velocity (see
cyan and magenta curves in Fig. 5) and converges to the case
of three νes interacting with three νμs with zero velocity,
albeit with a self-interaction strength that is lower by a factor
of 3. This is not surprising since the neutrinos travel very fast
in a system with periodic boundary conditions, and they see
all the other neutrinos in a short period of time.However, this
equivalence between these two systems is a consequence of
the periodic boundary conditions. If we consider a train of
wave packets, such that each neutrino sees another neutrino
for a brief period of time only, we should expect flavor
equilibration. This kind of evolutionwould be expected in an
astrophysical systemwhere the typical time evolution period
is much larger than the size of the neutrinos wave packets, as
also postulated in Ref. [30].
The results presented in Fig 5 can be further modified

by the vacuum mixing term (ωvac ≠ 0), as shown in Fig. 6.
The comparison between Figs. 3 and 6 suggests that the
interplay between the incoherent scattering term and the

FIG. 4. Analogous of Fig. 1, but now with wave packets of
finite size instead than plane waves. The orange wave packets
show three neutrinos that are in νe state initially, and the three
green wave packets are neutrinos that are in the νμ state initially.
The arrows denote the direction of motion and periodic boundary
conditions are assumed. The probability of interaction between
the two neutrinos at a given time is expected to be proportional to
the overlap between the two wave packets.

2It should be noted that the normalization for the wave packets
has been modified so that the normalization of the wave functions
depicted in Fig. 4 is same as the one of the wave functions
depicted in Fig. 1; as a matter of convention we choose not to
absorb this change of normalization in μ0.
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vacuum term leads to a different flavor outcome using the
plane wave approximation with respect to the wave packet
case. This also suggests that the plane wave assumption
with static waves adopted in the literature is not reliable
for gauging the flavor conversion phenomenology in a
neutrino-dense source.

VI. DISCUSSION AND CONCLUSIONS

A growing body of literature aims to model neutrino
flavor conversion in the presence of neutrino-neutrino
interactions within the many-body formalism, through
simple setups involving a small number of neutrinos
[Oð10–100Þ particles]. In this paper, we show that the
different flavor outcome pointed out in the literature with
respect to the widely used mean-field approach is due to the
fact that the many-body and mean-field Hamiltonians are
intrinsically different for a system containing a small
number of neutrinos. In fact, a key feature of the many-
body approach is that the momentum-changing incoherent
scattering between the neutrinos is inherently present in the
Hamiltonian. The incoherent collisions are not included in
the mean-field Hamiltonian that by definition only involves
the coherent forward scatterings of neutrinos. This is also
responsible for the lack of entanglement entropy in the
mean-field approach in the absence of nonforward colli-
sions and its presence in the many-body context. It remains
to be assessed whether the entanglement found for many-
body neutrino simulations with a small number of particles
has any physical implications or it is of the fluffy-
bunny kind.
Additionally, the small number of particles usually

adopted in the many-body papers, as a consequence of
technical limitations, prevents us from mimicking a system
with an infinitely large number of particles that would
resemble an ensemble for which the mean-field approach
could make sense. Since these few particles (mimicked by
extended plane waves) are constrained to interact for a long
time within a closed volume with periodic boundary
conditions, such a system has no similarities with the
situation occurring in an astrophysical environment where
an infinite amount of neutrinos (mimicked by wave packets
of finite size) would stream in and out of a box in the
absence of periodic boundaries.
More importantly, we show a strong dependence of the

flavor conversion phenomenology in the many-body
approach on the size of the wave packets or equivalently
their velocities. Also, the incoherent scattering term of the
many-body approach cannot be replicated using the mean-
field approach.
On the basis of these findings, we conclude that the

existing literature, focusing on the phenomenology of
flavor conversion within systems of finite size and with
a small number of particles in the many-body approach,
cannot assess the validity of the mean-field approach to
simulate the flavor evolution within an astrophysical
system, neither it can mimic the behavior of neutrinos in
the core of a supernova streaming out of the core.
Many open questions remain to be addressed concern-

ing our understanding of the behavior of neutrinos in
dense media. While the many-body approach might
encapsulate features of neutrino interactions that might
not be captured by a mean-field treatment, it is not clear

FIG. 6. Same as Fig. 5, but with ωvac ≠ 0 and θvac ¼ π=4.
Similar to Fig. 3, the vacuum term in the Hamiltonian further
modifies the flavor transition probability in the many-body
approach.

FIG. 5. Flavor transition probability for one of the neutrinos
being νe initially and for the system sketched in Fig. 4 as a
function of time. We perform the simulation for different values
of the velocity v and ωvac ¼ 0. The flavor evolution is solely due
to incoherent scatterings.
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whether the mean-field neutrino equations of motion
could be corrected to include effects beyond the ones
taken into account through the mean-field approach,
analogously to the Bogoliubov de Gennes equation
developed for Bose-Einstein condensates. While prelimi-
nary formal work exists regarding higher order corrections
that can be included in the mean-field approach to include
two particle correlations using the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [21,31], it
is not clear whether and under which conditions the two
particle correlations will become important. We conclude
that existing work cannot invalidate the mean-field treat-
ment since it focuses on a system that does not reproduce
the streaming flow of a large number of neutrinos
simulated through the mean-field treatment in neutrino-
dense astrophysical sources.
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APPENDIX: MEAN-FIELD APPROACH

In this appendix, we summarize the neutrino equations of
motion and related properties used within the mean-field
formalism to model collective flavor conversion. For
simplicity, we restrict the discussion to the two-flavor
approximation without loss of generality.

1. Equations of motion

In the context of mean-field theory, the equations of
motion can be written by relying on the density matrix
formalism. In the two-flavor approximation, the density
matrices for each momentum mode can be written as
2 × 2 matrices, ρ and ρ̄, for neutrinos and antineutrinos,
respectively.
The diagonal components of the density matrix denote

the occupation numbers for the flavor states, while the off-
diagonal components contain information regarding coher-
ence. Let us consider, e.g., thewave functionwhich consists
of a coherent superposition of νe and νμ:

ψ ¼
�
a

b

�
; ðA1Þ

the corresponding density matrix is

ρ ¼
� jaj2 ab�

a�b jbj2
�
: ðA2Þ

The quantities jaj2 and jbj2 are proportional to the
occupation numbers, which are conserved due to the
unitarity of neutrino flavor evolution. If, on the other
hand, we consider a mixture of νe and νμ, which are
uncorrelated, e.g., because the wave packets are spatially
separated and consequently without any coherence, then
there are two separate wave functions,

ψνe ¼
�
a

0

�
and ψνμ ¼

�
0

b

�
: ðA3Þ

The density matrix for such a system is given by

ρ ¼
� jaj2 0

0 jbj2
�
: ðA4Þ

Due to the absence of coherence between the two wave
functions, the off-diagonal terms are absent.
In the context of mean-field theory, it is assumed in

numerical investigations that the initial state, or the starting
point, is composed of a mixture of flavor eigenstates
without any coherence between them. The implicit
assumption is that all neutrino flavors are created inde-
pendently in their flavor eigenstates. Hence, the density
matrix is initially described by Eq. (A4). The off-diagonal
components are then populated dynamically as the neutrino
field evolves as a function of time.
In the mean-field approximation, the equations of motion

that govern the flavor evolution have the following form:

i
�
∂

∂t
þ v⃗ · ∇!

�
ρðx⃗; p⃗Þ ¼ ½Hðx⃗; p⃗Þ; ρðx⃗; p⃗Þ�;

i

�
∂

∂t
þ v⃗ · ∇!

�
ρ̄ðx⃗; p⃗Þ ¼ ½H̄ðx⃗; p⃗Þ; ρ̄ðx⃗; p⃗Þ�; ðA5Þ

where the barred quantities refer to antineutrinos. The
density matrix for each spatial location x⃗ and momentum
mode p⃗ evolves in accordance with Eq. (A5), where
½� � � ; � � �� on the right-hand side denotes the commutator.
The Hamiltonian for neutrinos or antineutrinos, H or H̄,
contains three terms corresponding to the vacuum, matter,
and self-interaction terms:

Hðp⃗Þ ¼ Hvac þHV þHννðp⃗Þ; ðA6Þ

a similar expression holds for H̄ðp⃗Þ, except for a minus sign
preceding Hvac. As for the terms in the Hamiltonian, they
are defined as follows
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Hvac ¼
ωvac

2

�− cos 2θvac sin 2θvac
sin 2θvac cos 2θvac

�
; ðA7Þ

Hmat ¼
� ffiffiffi

2
p

GFne 0

0 0

�
; ðA8Þ

Hννðp⃗Þ ¼
ffiffiffi
2

p
GF

Z
ðρðp0!Þ − ρðp0!ÞÞ ðA9Þ

× ð1 − p⃗ · p0!Þdp0!; ðA10Þ

the vacuum term is a function of the vacuum frequency ωvac
and vacuum mixing angle θvac. The matter and self-
interaction terms in the Hamiltonian result from the
coherent forward scattering of neutrinos, with ne being
the electron number density. The coherent forward scatter-
ing is a phenomenon due to which neutrinos undergo
refraction in the medium when scattering off multiple
targets, and the scattering amplitudes undergo constructive
interference in the forward direction [32,33]. In the case of
a homogeneous gas, the spatial derivative in Eq. (A5) can
be neglected, as we assume in the rest of the paper.
It should be noted that in the presence of emission or

absorption terms that may be present due to collisions of
neutrinos with the background medium, the trace of the
density matrix evolves dynamically; however, we ignore
such terms [34,35]. In what follows, we briefly review the
concept of coherent forward scattering before looking into
the phenomenology that arises from Eq. (A5).

2. Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy

The equations used in the many-body approach can be
equivalently written as a series of equations using the
BBGKY hierarchy [21,31]. The equations of motion for
neutrinos in the mean-field approach can be obtained from
the first equation in the BBGKY hierarchy:

i
dρ1
dt

¼ ½H0ð1Þ; ρ1� þ tr2½Vð1; 2Þ; ρ12�; ðA11Þ

where ρ1 is the single-particle density matrix like the one in
Eq. (A2) and ρ12 is the two-particle density matrix (4 × 4
matrix). The subscript denotes the identity of the particles.
The trace in the last term is the sum of the interactions of
particle 1 with all possible particles 2. A similar equation
can be written for antineutrinos. The two-particle density
matrix is

ρ12 ≡ ρ1 ⊗ ρ2 þ c12: ðA12Þ

If we ignore c12, Eq. (A11) becomes

i
dρ1
dt

¼ ½H0ð1Þ; ρ1� þ ½tr2ðVð1; 2Þρ2Þ; ρ1�: ðA13Þ

This is the mean-field approximation. It should be
noted that the term c12 which encodes the correlations
between the particles is responsible for incoherent scatter-
ing [21,31]. This implies that, in the mean-field approach,
the incoherent scattering term is not present unless explic-
itly included. If the incoherent scattering term is included,
then the equations cannot be technically called mean-field
equations but are generally referred to as quantum kinetic
equations (QKEs). It is also possible to demonstrate that the
mean-field equations can be derived from the many-body
equations without using the BBGKY hierarchy [36].

3. Coherent forward scattering

In the case of nonforward collisions, neutrinos scatter
off, e.g., electrons and change momentum. As for the
coherent forward scattering, described by the matter term in
Eq. (A7), the interaction of neutrinos with a thermal bath of
electrons is considered, and we need to take into account
the scattering amplitude of neutrinos due to all the electrons
in the interaction region. Since the electrons form a thermal
bath, it is not possible to identify the electrons responsible
for the scattering, and the scattering amplitudes due to
scattering with all the electrons should be added coherently.
The result is a constructive interference of the scattering
amplitudes, if the scattered wave has the same momentum
as the initial one and a destructive interference in all other
cases. This phenomenon, where the scattering amplitudes
from multiple scatterings is coherently added, is named
coherent forward scattering. As a consequence of this
process, the flavor conversion probability of neutrinos is
modified [11–13,28].
It should be emphasized that the coherent sum of

scattering amplitudes cannot be considered, if we identify
the electron responsible for scattering. This is the same
principle that is seen in a double slit experiment, where the
interference pattern disappears, if we identify the slit
through which the photon has passed [37].
The same principles apply, if we consider the coherent

forward scattering of neutrinos due to other neutrinos;
however, additional considerations need to be incorporated.
In fact, differently from the coherent forward scattering of
neutrinos off electrons, the coherent forward scattering of
neutrinos off other neutrinos has some amplitudes that
preserve the flavor and others that do not preserve the
flavor. The part of the amplitudes that preserves the flavor is
identical to the case of neutrino coherent forward scattering
from electrons. In addition, we need to consider amplitudes
that result from neutrinos exchanging momentum, or
equivalently flavor, with neutrinos in the thermal bath.
Nevertheless, the flavor-changing amplitudes can only be
added coherently sometimes.
Let us consider an example of a neutrino scattering off a

thermal bath of neutrinos that is comprised of an uncorre-
lated mixture of νes and νμs. As discussed in Refs. [24,30],
since the neutrinos in the thermal bath are uncorrelated, the
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off-diagonal components of the density matrix are zero.
Therefore, the flavor-changing coherent forward scattering
amplitude is zero. The reason is that, if the incoming
neutrino exchanges flavor with one of the neutrinos in the
bath, the neutrino responsible for the scattering has also
changed its flavor. Since we can identify the neutrino from
the thermal bath responsible for the scattering, the scatter-
ing amplitude cannot be coherently added to another flavor-
changing amplitude. Such a process is considered under the
neutrino-neutrino collision term within the mean-field
approach. It is generally not included in the calculations
as it is very small compared to the refractive term. On the
other hand, let us suppose that the neutrinos in the thermal
bath are in a superposition of flavor eigenstates. In this case,
knowing which neutrino from the thermal bath is respon-
sible for the flavor exchange is not possible. This is why the

flavor-changing amplitude is proportional to the off-
diagonal component of the density matrices. Consequently,
the resulting neutrinos are a coherent superposition of
flavor eigenstates.
Note that we have ignored the momentum-changing

processes that can also be present due to scattering between
neutrinos. Although momentum-changing amplitudes are
present, they do not contribute in the limit of large number
densities in the mean-field approach. If we consider a dense
neutrino gas that is spatially homogeneous, but not iso-
tropic, and this gas is allowed to evolve as a function of
time and in the absence of neutrino oscillations, we expect
the neutrino gas to become isotropic due to incoherent
scattering between neutrinos in the center of mass frame. In
fact, it is possible to modify the neutrino flavor evolution
equations [Eq. (A5)] to include the collision term.
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