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We propose the mass-varying dark matter (MVDM) model consisting of a scalar field and a fermionic
field interacting via a simple Yukawa coupling and containing an exponential self-interaction potential for
the scalar field. Analyzing the evolution of this coupled scalar-fermion system in an expanding Universe,
we find that it initially behaves like radiation but then undergoes a phase transition after which it behaves
like pressureless dark matter. The one free parameter of this model is the temperature at which the phase
transition occurs; the mass of the dark matter particle, given by the mass of the fermion, is derived from this.
For a phase-transition temperature between 10 MeV and 107 GeV, the current dark matter relic density is
achieved for a fermion mass in the range of 1–109 GeV. In this dark matter model, the scalar becomes a
subdominant unclustered component of dark matter that can lower the amplitude of structure formation by
up to a few percent. Another feature is that the mass-varying fermion component can lead to discrepant
measurements of the current dark matter density of about 10% inferred from early- and late-time probes
assuming ΛCDM.
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I. INTRODUCTION

Dark matter comprises a significant fraction of the matter-
energy budget of the Universe [1]. Many models of dark
matter have been proposed where the dark matter interacts
with standard model particles only through the gravitational
force, as well as interacts weakly with the standard model
via mechanisms outside of gravity, e.g. [2–108]. However,
there has been no direct detection of dark matter in particle
physics experiments to date, and cosmological observations
suggest a good fit to ΛCDM with possible hints of
deviations being inconclusive at this point. Investigating
the full theoretical landscape of viable dark matter models as
broadly as possible may offer further clues to potential
detection avenues.
In this work, we propose a model where a scalar field

with a self-interaction potential is Yukawa coupled to a
fermion and gives the fermion an effective temperature-
dependent mass via this interaction. The coupled fermion-
scalar system considered here initially behaves like radia-
tion, but undergoes a phase transition in the early Universe
after which it behaves like pressureless dark matter. This
model provides a natural way of explaining the mass of a
heavy fermion dark matter particle. It also presents a novel
mechanism of creating dark matter from a first-order phase

transition as the Universe cools. While in this model dark
matter only interacts with the standard model gravitation-
ally, it provides two interesting cosmological features:
(1) the fermion mass increases slowly between the phase
transition and today, and (2) the scalar becomes a uniform
rolling field after the phase transition, comprising a sub-
dominant unclustered component of dark matter. Our work
repurposes the formalism of the mass-varying neutrino
(MaVaN) model of [109], later reanalyzed by [110,111]
in the context of finite-temperature field theory, which
aimed to explain the nonzero masses of the standard model
neutrinos from their interaction with quintessence dark
energy; instead we adapt this framework to explain a heavy
dark matter mass via an interaction with a scalar.
This paper is arranged as follows. In Sec. II, we describe

the model and its evolution through and after the phase
transition. In Sec. III, we discuss the phenomenological
implications, and in Sec. IV, we elaborate on possible
observational signatures, summarize, and conclude.
Throughout this work, we use the ðþ;−;−;−Þ metric,
work in natural units where ℏ ¼ c ¼ kB ¼ 1, and set the
present day relative abundance of dark matterΩDM;0 ¼ 0.26
to match the latest Planck 2018 TT, TE, EEþ lowEþ
lensingþ BOSS BAO data [1]. Here and subsequently the
subscript 0 denotes the present value for time-dependent
quantities.

II. THE MODEL

We consider a scalar field φ, with a self-interaction
potential UðφÞ that governs its dynamics, and a fermion ψ .
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We assume for simplicity a spatially flat Universe, but note
that the dynamics of the model does not require flatness.
We describe the Universe by the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric ds2 ¼ dt2 − a2ðtÞdx2,
where t is the cosmic time, aðtÞ is the scale factor of the
Universe, and x are the comoving coordinates. The dynam-
ics of the coupled scalar-fermion system is described by the
action Sφψ ¼ R d4x ffiffiffiffiffiffi−gp

L, where g≡ detðgμνÞ, and L is the
Lagrangian given by

L ¼ 1

2
∂μφ∂

μφ −UðφÞ þ ψ̄ði=∂ − m̄ψÞψ − gY ψ̄φψ : ð1Þ

Here, ∂μφ∂μφ=2 is the kinetic energy of the scalar field,
iψ̄=∂ψ is the kinetic energy of the fermion using the
notation =∂≡ γμ∂μ where γμ are the Dirac matrices, ψ̄ ≡
ψ†γ0 is the antiparticle of ψ , m̄ψ is the bare mass of the
fermion, and gY ψ̄φψ is the Yukawa coupling between the
fermionic and scalar fields. We choose this coupling
because it is the simplest Lorentz-invariant coupling
between a fermion and a scalar. In this work, we will
set the bare mass m̄ψ to be negligibly small, and ignore it
from all subsequent expressions. We also ignore higher-
order terms involving ψ that have dimension larger than 4,
since we will assume that they are irrelevant at the energy
scales of interest for our model by suppressing them with
small dimensionful coupling constants (and correspond-
ingly heavy mass scales).
Since the scalar field has no protective symmetries, it

will couple with the Higgs fieldH in the standard model via
interactions of the form gHφ2jHj2 andGHφjHj2, which will
make the fields of our model couple with standard model
particles nongravitationally. In Appendix B, we quantify
the allowed strength of the couplings constants gH and GH
in order to preserve the dark matter dynamics and find that
these interactions can be made negligibly small. Thus, we
ignore them from our analysis below. However, we note
that this required coupling ensures equilibrium between the
standard model and the dark matter sector at some point in
the early Universe, and thus an approximately common
temperature between these two sectors.
The partition function describing the system is the path

integral over all field configurations of the system and is
written conveniently by performing a change of variables to
Euclidean time1 τ ¼ it as

Zφψ ¼
Z

DφDψ̄DψeS
E
φψ ; ð2Þ

where SEφψ is the action in terms of the variable τ. We can
integrate out the fermion fields to write this in terms of an
effective scalar action SEeffðφÞ,

Zφψ ¼
Z

Dφ eS
E
effðφÞ ¼

Z
Dφ e½SEφþlnfdet D̂ðφÞg�; ð3Þ

where SEφ is the scalar action written in terms of τ and

D̂ðφÞ ¼ −β
�
∂

∂τ
− i

γ0γ ·∇
a

þ γ0gYφ − μ

�
: ð4Þ

Here μ is the chemical potential associated with the
fermions, and β ¼ 1=T is the inverse of temperature.2

For simplicity, we will set μ ¼ 0, which means either
the ψ are Majorana fermions, or there are an equal number
of Dirac fermions and antifermions in the T ¼ 0 ground
state. Letting the effective action SEeffðφÞ be minimized
when the scalar attains the value φ ¼ φm, we can see from
Eq. (4) that the fermion gets an effective mass of3

mψ ¼ gYφm: ð5Þ

At this minimum point we can write Zφψ ¼ ZFe−βVUðφcÞ,
where ZF is the fermionic partition function,4

ZF¼
Z

Dψ̄Dψ exp

�
1

β

Z
β

0

a3dτ
Z

d3xψ̄D̂μ¼0ðφmÞψ
�
: ð6Þ

This implies the free-energy density Fφψ ≡ − lnZφψ=βV
of the combined system can be written as

FφψðφmÞ ¼ UðφmÞ þ FFðφmÞ; ð7Þ

with FF ≡ − lnZF=βV being the free-energy density of the
fermions,

FF ¼ −
1

3π2

Z
∞

0

dpp4

ϵðpÞ ½nFðϵþÞ þ nFðϵ−Þ�; ð8Þ

1This change of variables makes the metric signature Euclid-
ean when written in terms of τ, and the path integral is
consequently easier to perform. It also makes a natural transition
to studying the system at finite temperature (see also Footnote 2).

2To analyze a system at finite temperature T ¼ 1=β, we
evaluate the action by integrating from τ ¼ 0 to β with periodic
(antiperiodic) boundary conditions for bosons (fermions) in
τ ∈ ½0; β�.

3After the phase transition, the effective action no longer has a
minimum, and the solution φ is obtained in a different way, as
described in Sec. II C.

4For the FLRW metric we have considered,
ffiffiffiffiffiffi−gp ¼ a3. Also,

V is the overall volume of the system which drops out of all
subsequent expressions since we divide by the volume to obtain
the free-energy density and the pressure.
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expressed in terms of the Fermi distribution function

nFðxÞ ¼ ðeβx þ 1Þ−1, with ϵðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
and ϵ� ¼

ϵðpÞ � μ. The free-energy density Fφψ is the effective
thermodynamic potential for the scalar field, where
FFðφÞ is adding finite-temperature corrections from the
scalar field’s interaction with the fermion. We note that
the one-loop contribution to the effective potential at a
finite temperature contains this temperature-dependent part
FFðφÞ, as well as a zero-temperature contribution that we
assume is already included in the Lagrangian in Eq. (1); we
discuss this in more detail in Appendix A.
The mass of the scalar field φ is defined as

m2
φ ≡ ∂

2FφψðφÞ
∂φ2

����
φ¼φm

: ð9Þ

The minimization of the free-energy density Fφψ at φm

implies

∂FφψðφÞ
∂φ

����
φ¼φm

¼ 0;
∂
2FφψðφÞ
∂φ2

����
φ¼φm

> 0: ð10Þ

Using the first of these and Eq. (7), we obtain

�
∂UðφÞ
∂φ

þ ∂FF

∂φ

�����
φ¼φm

¼ 0: ð11Þ

Solving Eq. (11) yields φm and thus the mass of the fermion
given by Eq. (5), prior to and at the phase transition.

A. Choice of the scalar potential UðφÞ
The choice of UðφÞ is critical to the overall dynamics of

this system. We choose the scalar field to have an
exponential potential, which can arise generically from
Kaluza-Klein, superstring, supergravity, and higher-order
gravity theories [112–120]. This potential is given by

UðφÞ ¼ M4e−λφ=M; ð12Þ

whereM and λ are free parameters to be determined from the
phase-transition temperature and the relic abundance of dark
matter. As we will see below, the coupling constant gY is not
an independent parameter of our model because it always
appears in combination with λ as gY=λ; thus in effect gY=λ
andM are the two free parameters that get set by the phase-
transition temperature and relic dark matter abundance.

B. Evolution prior to and at the phase transition
to dark matter

We define the dimensionless quantities

Δ≡M
T
; κ ≡ gYφ

T
; ð13Þ

and the integral I αðxÞ≡ R∞x dzðz2 − x2Þα=ðez þ 1Þ, in
order to write the free-energy density of the fermions as

FF ¼ −
2NF

3π2β4
I 3=2ðκÞ; ð14Þ

following [111]. Noting that dI 3=2ðκÞ=dκ ¼ −3κI 1=2ðκÞ,
Eq. (11) becomes

π2λ

2gYNF
Δ3 ¼ κeκλ=gYΔI 1=2ðκÞ; ð15Þ

folding inUðφÞ given in Eq. (12). HereNF is the number of
fermion generations, which we take to be one in our model.
We discuss the evolution of this system below.
At very high temperatures above the phase-transition

temperature TPT, the coupled fermion-scalar system is in a
stable phase where Eq. (15) has a solution φm, where the
free-energy density Fφψ has a minimum such that
FφψðφmÞ < Fφψð∞Þ. As the Universe cools, the system
enters a metastable phase where the solution φm corre-
sponds to a local, as opposed to a global, minimum, i.e.,
FφψðφmÞ > Fφψð∞Þ. Finally, when the temperature reaches
TPT, the solution of Eq. (15) is given by φ ¼ φPT, which we

FIG. 1. Normalized free energy Fφψ=M4, given by Eq. (7), as a
function of κ ¼ gYφ=T for two different phase-transition tem-
peratures TPT. At T > TPT the system is in a stable phase where
Fφψ has a minimum denoted by the filled circles. At the epoch of
phase transition, T ¼ TPT, the minimum is lost and becomes an
inflection point of the potential, as denoted by the filled squares.
After the phase transition, the potential Fφψ has no minimum,
and the scalar field slowly rolls toward the global minimum of 0
at φ ¼ ∞.
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will derive below. The loss of the minimum of Fφψ at the
phase transition makes mφ ¼ 0 from Eq. (9). After the
phase transition, the system transitions into a phase with no
equilibrium solution of Eq. (15). In this phase, m2

φ < 0,
which is unphysical for a particle; therefore we interpret the
field φ as a uniform rolling scalar field after the phase
transition. Qualitatively in this phase, the field φ slowly rolls
toward the global minimum of Fφψ ¼ 0 at φ ¼ ∞. We will
see in Sec. II C that, in this phase, the combined scalar-
fermion system behaves like dark matter. In Fig. 1, we show
how the normalized free-energy density Fφψ=M4 has a
minimum before the phase transition, which it then loses
after the phase transition.
The equation of state wφψ for the φψ fluid is defined

as wφψ ≡ Pφψ=ρφψ , where Pφψ ¼ −Fφψ is the pressure of
the combined system, and ρφψ is its total energy density
ρφψ ¼ UðφÞ þ 2IϵðκÞ=π2β4, where

IϵðxÞ≡
Z

∞

x

dz z2ðz2 − x2Þ1=2
ez þ 1

: ð16Þ

As shown in Fig. 2, the system initially behaves like
radiation with an equation of state parameter wφψ ≈ 1=3,
and then changes after the phase transition to behave like
dark matter with wφψ ¼ 0.

To solve for φPT at the phase transition, we make an
analytic approximation of Eq. (15). We do this by using the
fact that, at T ¼ TPT, the minimum of Fφψ is lost, i.e.,
the second derivative becomes zero, and by assuming that
the phase transition occurs in the regime where gYφ ≫ T,
which is valid given the current relic dark matter
density. This allows us to make the approximation
I 3=2ðκÞ ≈ 3κ2K2ðκÞ þOðe−2κÞ, where KnðxÞ is the modi-
fied Bessel function of the second kind [121]. Using
Eq. (15) yields the values at the phase transition of

TPT ¼
2gYM

λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
þ 1

� ; φPT ¼
3M

λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

� ;

ð17Þ
where B ¼ 6 × 21=3=πe. The redshift zPT at which the phase
transition occurs is obtained by noting that TPT can be
related to the temperature today as TPT ¼ ð1þ zPTÞ
T0ðgS;0=gS;PTÞ1=3, where gS denotes the effective relativistic
degrees of freedom. This gives

1þ zPT ¼ TPT

T0

�
gS;PT
gS;0

�
1=3

: ð18Þ

The fermion number density nψ is defined as nψ ¼ ð1=4π3ÞR
d3pnFðϵÞ, which holds at all times and does not assume

that the fermion is continuously in equilibrium with the
scalar.5 Since, in this section, we are interested in the fermion
number density at the phase-transition temperature, we can
use the limit mψ ¼ gYφ ≫ T, which we find later is a self-
consistent assumption. In this limit,

nψ ¼ 1

2

∂FF

∂mψ
¼ 1

2gY

∂FF

∂φ
¼ NFmψ

π2β2
I 1=2ðκÞ ð19Þ

using Eq. (14), as was also calculated in [110]. Solving for
I 1=2ðκPTÞ from Eq. (15) yields

nψ ;PT
M3

¼ λ

2gY
e−λφPT=M ¼ λ

2gY
exp

0
@−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

1
A;

ð20Þ

which gives the number density of fermions at the phase
transition. In Fig. 3 we show themasses of the fermion ψ and

FIG. 2. Equation of state for the combined scalar-fermion
system wφψ , as a function of redshift for several different
phase-transition temperatures TPT. The system initially behaves
like radiation and transitions to pressureless matter after the phase
transition.

5We note that at some time earlier than the phase-transition
point the fermion is in equilibrium with the scalar. For example,
we calculate explicitly that for a fiducial reheating temperature of
1010 GeV and a Yukawa coupling constant gY ¼ 1, we find that
the two sectors are in equilibrium; specifically, the temperature-
dependent rate of interaction Γφ↔ψ between φ and ψ at T ¼
1010 GeV is much larger the Hubble rate HðT ¼ 1010 GeVÞ at
that time.
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the scalar φ as a function of redshift z. The scalar mass
asymptotically approaches zero at the phase transition, after
which it becomes a uniform rolling field without a particle
interpretation.
The phase transition described above is a first-order

phase transition. This can be seen because, as the temper-
ature of the φψ system approaches TPT, the fermion mass
approaches its critical value mψ ;PT as mψ −mψ ;PT ≈
ðT − TPTÞ1=2. This critical exponent of 1

2
is a signature of

a first-order phase transition [122–125]. While sometimes
first-order phase transitions are characterized by a barrier
between the true and false vacua, which remains even after
the phase transition, in our model the false vacuum and the
barrier disappear at T ¼ TPT. The system then starts rolling
toward the true vacuum at φ ¼ ∞. Since the true vacuum is
at ∞, rather than at a finite value of φ, the transition of the
field from the false to the true vacuum is not instantaneous.
However, we have confirmed that the energy density of the
system undergoes an abrupt change at the phase-transition
point by calculating ρφψ before the phase transition, given
above Eq. (16), and ρψ þ ρφ after the phase transition, given
by Eq. (33). Note, however, that ρφ is continuous through the
phase transition. Moreover, there is a discontinuity in the
first derivative of the free energy with respect to the scalar
field, as seen from Eq. (10), where the derivative is always
zero before the phase transition and nonzero after; this is also
indicative of a first-order phase transition.

C. Evolution after the phase transition

As mentioned above, in the dark-matter phase Eq. (10)
no longer holds, and one needs to solve the full equation for
φ given by

φ̈þ 3H _φþ ∂Fφψ

∂φ
¼ 0; ð21Þ

as opposed to using Eq. (15). Here the dot denotes
derivatives with respect to t, and H is the Hubble rate
determined from the Friedmann equation

H2ðtÞ ¼
�
_a
a

�
2

¼ 8πG
3

ρtot; ð22Þ

where ρtot is the total energy density of the Universe.
Analogous to Eq. (5), we define the fermion mass in this
phase to be gY times the solution φðtÞ to Eq. (21), i.e.,

mψ ðzÞ≡ gYφðzÞ: ð23Þ

Since

∂Fφψ

∂φ
¼ ∂UðφÞ

∂φ
þ ∂FF

∂φ
ð24Þ

and ∂FF=∂φ ¼ 2gYnψ from Eq. (19), then

φ̈þ 3H _φ ¼ −
∂U
∂φ

− 2gYnψ ;PT

�
aPT
a

�
3

: ð25Þ

Here we note that nψ ∝ a−3 in the dark matter phase since ψ
is already a heavy particle at the phase-transition point.
We obtain the solution φ in the dark matter phase by

solving Eq. (25) numerically, and we show this solution in
Fig. 4. We can also obtain an approximate analytic solution
by guessing that the terms on the left-hand side of Eq. (25)
are negligibly small compared to the terms on the right-
hand side. This gives, using Eq. (20),

∂U
∂φ

¼ −λM3 exp

0
@−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

1
A�aPT

a

�
3

: ð26Þ

Since we also have

∂U
∂φ

¼ −λM3e−λφ=M; ð27Þ

then we can equate the right-hand sides of Eqs. (20)
and (26). Taking the natural logarithm of both sides gives
us the explicit form of the analytic solution φ,

FIG. 3. Mass of the fermion (solid) and the scalar (dashed) from
early times to today. The dotted vertical lines indicate the phase-
transition redshift for different choices of TPT. After the phase
transition, the mass of the fermion slowly increases, and the scalar
transitions from a particle to a uniform rolling field.
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φðzÞ ¼ 3M
λ

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bg8=3Y

λ8=3

q
− 1

þ ln
1þ zPT
1þ z

#
: ð28Þ

We show in Fig. 4 that this analytic solution is a good match
to the exact numerical solution. As a cross-check, when
substituting the analytic solution into Eq. (25), we find that
the two terms on the right-hand side are many orders of
magnitude larger than the terms on the left-hand side,
effectively making the latter negligible. We note, however,
that this is the case only for coupling constants gY larger
than 10−10; this is because for gY smaller than this, the
solution to Eq. (25) no longer leads to dark matterlike
behavior. For gY up to 1, we find the numerical solution
matches the analytic solution for phase-transition temper-
atures up to 107 GeV; formally, for gY values up to 1010 the
analytic and numeric solutions match well for phase-
transition temperatures up to 1017 GeV, which would yield
dark matter masses at the Planck scale, but we restrict to
gY ≤ 1 and an upper bound of 107 GeV in this work. We
bound the phase-transition temperatures below to be above
10 MeV to ensure the dark matter is in place prior to big
bang nucleosynthesis.
From Eq. (28) we see that the fermion mass increases

weakly with redshift as shown in Fig. 3, however, ρψðzÞ is

still well approximated by an a−3 dependence as we show
in Fig. 5. Explicitly, the fermion mass at the present time is
given by

mψ ;0 ¼
3gYM
λ

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bg8=3Y

λ8=3

q
− 1

þ lnð1þ zPTÞ
#
: ð29Þ

The energy density of the fermion is given by

ρψ ðzÞ ¼ mψðzÞnψ ðzÞ

¼ 3M4

2

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bg8=3Y

λ8=3

q
− 1

þ ln
1þ zPT
1þ z

#

× exp

 
−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

!�
1þ z
1þ zPT

�
3

: ð30Þ

The above discussion demonstrates that both the scalar and
the fermion components behave as pressureless dark matter
after the phase transition.
Since

∂U
∂φ

∝ UðφÞ and ρφ ¼ UðφÞ; ð31Þ

FIG. 4. Comparison of the exact numerical solution φ of
Eq. (25) with the analytic solution in Eq. (28), as a function
of redshift for several choices of the phase-transition temperature
TPT; this shows the validity of Eq. (28) as an accurate approxi-
mation to the true numerical solution. Here we scale φ by λ=M for
visual purposes.

FIG. 5. Energy density of the fermion component ρψ as a
function of redshift for several choices of the phase-transition
temperature TPT. The dashed black line shows an energy density
component diluting strictly as ð1þ zÞ3, and the variation of
the fermion energy density in Eq. (30) gives a small deviation
from this.
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then

ρφðzÞ ¼ M4 exp

 
−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

!�
1þ z
1þ zPT

�
3

ð32Þ

from Eq. (26). Thus, the energy density ρφ has an a−3

dependence, which makes it behave as pressureless matter
after the phase transition. Equation (28) shows that, after
the phase transition, φ slowly increases to ∞.

III. PHENOMENOLOGICAL IMPLICATIONS

Our model effectively has only one free parameter,
which is the phase-transition temperature TPT, once the
relic density of dark matter today ΩDM;0 is set to the
observed value. We fix ΩDM;0 ¼ ρDM;0=ρtot;0 to 0.26 in
order to match the latest Planck 2018 TT, TE, EEþ
lowEþ lensingþ BOSS BAO data [1], which then deter-
mines M and λ.
The total dark matter energy density ρDM is a sum of the

energy densities of both φ and ψ , which is given by

ρDMðzÞ ¼ M4

(
1þ 3

2

"
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bg8=3Y

λ8=3

q
− 1

þ ln
1þ zPT
1þ z

#)

× exp

 
−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

!�
1þ z
1þ zPT

�
3

; ð33Þ

from Eqs. (30) and (32). Using Eqs. (18) and (29) gives the
present abundance of dark matter in terms of the phase-
transition temperature as

ρDM;0T3
PTgS;PT

M4T3
0gS;0

¼ exp

 
−

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bg8=3Y

λ8=3

q
− 1

!�
1þ λmψ ;0

2gYM

	
:

ð34Þ

For the above, we will assume gS;0 ¼ 3.91 and gS;PT ¼ 100

as the effective degrees of freedom. We note that changing
gS;PT by an order of magnitude, either higher or lower, only
changes mψ ;0 by a few percent.
In Table I and Fig. 6, we show the mass of the fermion ψ

at the present time as a function of phase-transition
temperature TPT. We find that for TPT in the range of
10 MeV–107 GeV, we obtain mDM;0, given by mψ ;0, in the
range of 1–2 × 109 GeV. We also see that the lnð1=1þ zÞ
dependence of ρψ ðzÞ in Eq. (30) leads to a slight deviation
of ρψðzÞ away from a strict ð1þ zÞ3 scaling. We note that
whilemDM;0 is calculated here assuming a flat Universe, the
lnð1=1þ zÞ dependence is independent of the flatness
assumption. This deviation results in a discrepancy in
the energy density of the dark matter today ΩDM;0 inferred

from measurements at recombination versus late-time
measurements assuming a ΛCDM scaling. As shown in
Table I and Fig. 6, the discrepancy between the two
quantities can range from 10% to 20% for the allowed
range of phase-transition temperatures. In Fig. 7, we show
the fraction of the dark matter energy density comprising

FIG. 6. Mass of the dark matter at the present time mDM;0, as a
function of the phase-transition temperature TPT. Here the relic
dark matter energy density ΩLate-time

DM;0 has been fixed to 0.26 to
match the Planck primary CMBþ Planck lensingþ BOSS BAO
data [1]. We find masses in a range of interest for a dark matter
particle. We also show the fractional discrepancy in the relic
energy density of the dark matter ΩDM;0, inferred from measure-
ments at recombination versus late-time measurements assuming
ΛCDM; given a late-time measurement of ΩDM;0, this model
predicts a lower amount of dark matter at early times than
predicted by ΛCDM.

TABLE I. We show for a few specific values of the phase-
transition temperature TPT the present mass mDM;0 of the dark
matter, given by mψ ;0, and the fractional discrepancy in the relic
energy density of the dark matter ΩDM;0, inferred from mea-
surements at recombination versus late-time measurements
assuming ΛCDM. The latter discrepancy arises from the varia-
tion of the fermion energy density as lnð1=1þ zÞ shown in
Eq. (30), which results in early-time inferences of ΩDM;0 being
slightly smaller than late-time measurements if a ð1þ zÞ3 scaling
of ρDM is assumed. Here we set ΩLate-time

DM;0 ¼ 0.26 to match the
Planck primary cosmic microwave background ðCMBÞ þ
Planck lensingþ BOSSBAO data [1].

TPT mDM;0 ðGeVÞ ΩCMB
DM;0=ΩLate-time

DM;0

107 GeV 2.0 × 109 0.88
103 GeV 1.5 × 105 0.84
10 MeV 1.0 0.78
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the unclustered scalar field, i.e., Ωφ=ΩDM ≡ ρφ=ρDM, as a
function of redshift for several choices of the phase-
transition temperature TPT. We see that the scalar field is
a subdominant component of the dark matter that can range
from a few to subpercent of the total dark matter density
after the phase transition.

IV. DISCUSSION

We have proposed the mass-varying dark matter
(MVDM) model comprised of a scalar field, with an
exponential self-interaction potential, interacting via a
Yukawa coupling with a fermionic field. Studying the
evolution of this system, we find that, as the Universe cools,
the coupled system undergoes a phase transition after
which it behaves like pressureless dark matter; in this dark
matter phase, the mass of the heavy fermion increases over
time and the scalar acts as a uniform, unclustered rolling
field. This model contains only the phase-transition temper-
ature as a free parameter once the relic dark matter
abundance today is matched to observations.
The novelty of this model lies in the fact that both the

mass of the fermion and the dark matterlike behavior of the
system at late times arises from the temperature-dependent
interaction between the fermion and the scalar. The choice
of the potential for the scalar field, which might arise

naturally from a higher-energy theory involving supersym-
metry, supergravity, or compactified extra dimensions
[112], enables this unique behavior. The mass of the fermion
lies in the range of 1–109 GeV for allowed phase-transition
temperatures in the range 10 MeV–107 GeV, which are
mass and temperature ranges of interest for dark matter.
The cosmological observational signatures of this model

are that the unclustered scalar field leads to a scale-
independent suppression of structure formation of order a
percent. This would lead to a discrepancy between the
amplitude of structure formation derived from expansion
rate probes in the context of ΛCDM, versus direct structure
growth measurements. A larger observable feature arises
from the mass-varying fermionic component, which results
in a discrepancy of about 10% between the dark matter relic
density ΩDM;0 measured today and that inferred from
measurements at recombination assuming a ð1þ zÞ3 scaling
of ρDM to extrapolate it to today. Such behavior may help to
alleviate some cosmological tensions recently discussed in
the literature [1,126–139]. In general, both the H0 and σ8
tensions can be alleviated if the amount of dark matter
between recombination and today is lower than predicted by
ΛCDM; a lower amount of dark matter would suppress
structure growth and would lead to an earlier onset of dark
energy domination increasing low-redshift H0 measure-
ments. Whether the model presented here yields less or
more dark matter than predicted by ΛCDM depends on the
redshift at which direct measurements of the dark matter
density are being made; for direct low-redshift measure-
ments of the dark matter density, this model predicts less
dark matter at all earlier times than predicted by ΛCDM.
However, for direct measurements of the dark matter density
at recombination, this model predicts more dark matter at all
later times than predicted byΛCDM.We note, however, that
primordial CMB data only constrains the density of dark
matter at recombination under the assumption of flatness
and perfect knowledge of the sum of the masses of the
neutrinos. Relaxing flatness and neutrino mass assumptions,
CMB inferences of the dark matter density are well con-
strained only by adding low-redshift observations, for
example, from CMB lensing or BAO. We leave further
investigation in this direction to future work.
This simple model can be extended by coupling the

fermion and scalar fields weakly to the standard model
beyond what we have focused on this analysis. For example,
as mentioned previously, the scalar field will couple to the
Higgs field, which makes the fields of our model couple with
standard model particles nongravitationally. Additionally,
more complex interactions between the dark sector and the
standard model are possible. In such cases, this dark sector
could be probed via direct-detection experiments which
involve collisions of the dark matter particles with standard
model particles, via indirect-detection experiments which
look for the standard model products of dark matter self-
annihilations or decays and/or via particle colliders. One can

FIG. 7. Fraction of the dark matter energy density contained in
the unclustered scalar field φ as a function of redshift for several
different phase-transition temperatures TPT. We see the scalar
field is a subdominant component of the dark matter that can
range from a few to subpercent of the total dark matter energy
density after the phase transition.
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also extend the dark sector component of the model further
to construct more complex models with both the scalar and
the fermionic sectors comprising multiple fields and an
appropriately generalized Yukawa interaction among those
fields. In addition, the fermions can be charged under some
internal gauge symmetry of the dark sector. The phenom-
enological implications of such an extended dark sector
might lead to additional interesting observational signatures.
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APPENDIX A: VACUUM QUANTUM
CORRECTIONS

In our work the scalar potentialUðφÞ is given by Eq. (12),
and its exponential form leads to the solution of Eq. (25)
given by Eq. (28). This solution ensures that the massmψ of
the fermion only has a weak logarithmic dependence with
redshift in addition to the expected ð1þ zÞ3 dependence so
that its energy density does not deviate significantly from
the ΛCDM expectation; see discussion in Sec. III. In
addition, it also ensures the ð1þ zÞ3 dependence of the
energy density of the scalar component.
We assume in this work that the scalar potential UðφÞ

of the form in Eq. (12) arises from a higher-energy
theory. Such exponential potentials of scalar fields arise
generically in several classes of fundamental theories at
high energies [112]. For example, Kaluza-Klein theories
contain extra dimensions which, when compactified to a
four-dimensional theory, produce an effective scalar field
with an exponential potential [113,114]. Exponential
potentials also arise in superstring and supergravity the-
ories [115–119], as well as in higher-order gravity theories
[120]. We also assume in this work that adding a coupling
of the scalar with a fermion, given by the Yukawa coupling
in Eq. (1), does not destroy the higher-energy fundamental
physics generating the exponential potential, for example,
given that the coupling is not supersymmetric.
In addition, when adding this coupling between the

scalar and fermion, a significant zero-temperature quantum
correction to the potential UðφÞ arises unless UðφÞ is
considered to be an effective low-energy potential with
the vacuum quantum correction included. This zero-temper-
ature quantum correction arises from the fermionic one-loop

contribution to the potential obtained by summing all one-
particle irreducible diagrams6 with one fermionic loop to get

Vfermion
1-loop ðφÞ ¼ −2

Z
d4p
ð2πÞ4 ln ½p

2 þm2
ψðφÞ�; ðA1Þ

where mψðφÞ ¼ gYφ as in Eq. (23). Since this integral
diverges as p → ∞, we regularize it by introducing a cutoff
Λ; we integrate from p ¼ 0 to Λ and then remove the Λ
dependence from physical results by imposing the renorm-
alization condition that the contributionVfermion

1-loop ðφPTÞ is zero
at the phase-transition point. This gives

Vfermion
1-loop ðφÞ ¼ −

g4Yφ
4

16π2
ln

φ2

φ2
PT

: ðA2Þ

There is also a bosonic one-loop contribution to the
potential, given by

Vboson
1-loopðφÞ ¼

g2Y
64π2

�
∂
2Fφψ

∂φ2

�
2

ln

�
1

g2Yφ
2

∂
2Fφψ

∂φ2

�
: ðA3Þ

Here Fφψ is the tree-level free-energy density given in
Eq. (7). We can ignore this bosonic one-loop contribution
since it takes on complex values away from the minimum of
the potential where ∂

2Fφψ=∂φ2 < 0.
The fermionic correction Vfermion

1-loop ðφÞ is around
Oð1040–1080Þ larger than UðφÞ today, depending on
TPT, and thus it would naively destroy the shape of Fφψ

far from the phase transition. In the dynamics of our model,
∂Fφψ=∂φ is the important quantity, and we should compare
∂Vfermion

1-loop ðφÞ=∂φ to ∂UðφÞ=∂φ to determine the relative
importance of the vacuum correction. We note that the
former is ∝ g4Y=λ

3 using Eq. (28) for φ, and the latter is ∝ λ
from Eq. (27). Thus, as we discussed in Sec. II A, since
g4Y=λ

4 is always fixed in our model, the relative importance
of Vfermion

1-loop ðφÞ cannot be diluted by lowering the coupling
constant gY , as may naively be assumed.
A solution is to view the Lagrangian given by Eq. (1) as

an effective low-energy description that includes the zero-
temperature fermionic quantum correction. We consider it
premature to justify our Lagrangian on the basis of a higher-
energy UV-complete particle physics theory at this point,
and further investigation is warranted on how specifically it
may arise as a low-energy effective description of a class of
theories based on the framework of supersymmetry, super-
string theory, higher-order gravity theories, or Kaluza-Klein
theories. In this work, we only demonstrate that given this
Lagrangian we find a viable model of dark matter that fits
observational constraints. We note that a similar situation of

6A one-particle irreducible diagram is one which cannot be
split into two nontrivial diagrams by cutting a single line
anywhere in the diagram.
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suppressing zero-temperature quantum corrections may
arise for possible descriptions of inflation where quantum
corrections arise from the coupling of the scalar inflaton
field with matter, as is expected for reheating to occur; such
vacuum quantum corrections can potentially destroy the
shape of the inflaton potential unless suppressed by a
higher-energy mechanism. We leave further investigation
of these issues to future work.

APPENDIX B: COUPLING OF THE SCALAR
WITH THE HIGGS

The scalar potential UðφÞ will also receive corrections
from the interaction of φ with other fields present in the
Universe, consistent with the underlying symmetries gov-
erning these fields. Of particular importance are the terms
of the form GHφjHj2 and gHφ2jHj2, where H is the Higgs
field, and GH and gH are the dimensionful and dimension-
less couplings of the scalar φ to the Higgs, respectively.
These are the only relevant terms, i.e., terms of dimension 4
or lower, involving the coupling of the scalar φ with fields
of the standard model.
The φ and φ2 terms in the potentialUðφÞ are −λM3φ and

λ2M2φ2, and these are modified due to the Higgs inter-
action as

−λM3φ ↦ ð−λM3 þGHjHj2Þφ;
λ2M2φ2 ↦ ðλ2M2 þ gHjHj2Þφ2: ðB1Þ

The vacuum expectation value of the Higgs field is jHj ¼
0 before the electroweak phase transition and jHj ¼
246 GeV after, so these corrections apply only after this
phase transition. Since we aim to preserve the exponential
form of the potential UðφÞ, we desire these additional
contributions from the Higgs coupling to be small, resulting
in the following conditions:

jGHjHj2j ≪ jλM3j; jgHjHj2j ≪ jλ2M2j; ðB2Þ

which can also be expressed as

����GH

M

����≪
���� λM2

jHj2
����; jgHj ≪

���� λ2M2

jHj2
����: ðB3Þ

In Table II, we present the upper bounds on the
magnitude of the dimensionless constants GH=M and
gH, assuming that they result in couplings less than a
percent of the original φ terms in Eq. (B2). We find that
coupling constants smaller than those listed in the table will
preserve the original model dynamics.
One can also calculate a lower bound on the couplings

from the assumption that the dark sector was in thermal
equilibrium and shared a common temperature with the
standard model sector at some point prior to the phase-
transition temperature. We compute this by comparing the
Hubble rate HðTÞ at a fiducial reheating temperature of
1010 GeV with the rate of interaction between φ and the
Higgs field H, i.e., by requiring

Γφ↔H ¼ nφhσvi ≥ HðTÞ; ðB4Þ

where hσvi is the temperature-dependent thermally aver-
aged cross section of the interaction between φ and H. We
find that, for this fiducial reheating temperature, the lower
bounds on the coupling constants GH=M and gH, based on
the interaction terms GHφjHj2 and gHφ2jHj2, are 8.7 ×
10−12 and 2.3 × 10−11, respectively. Comparing with
Table II, we see that the upper and lower bounds on these
parameters can be consistently satisfied.
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