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Broadband time-ordered data obtained from telescopes with a wavelength-dependent, asymmetric beam
pattern can be used to extract maps at multiple wavelengths from a single scan. This technique is especially
useful when collecting data on cosmic phenomena such as the cosmic microwave background (CMB)
radiation, as it provides the ability to separate the CMB signal from foreground contaminants. We develop a
method to determine the optimal linear combinations of wavelengths (“colors”) that can be reconstructed
for a given telescope design and the number of colors that are measurable with high signal-to-noise ratio.
The optimal colors are found as eigenvectors of a matrix derived from the inverse noise covariance matrix.
When the telescope is able to scan the sky isotropically, it is useful to transform to a spherical harmonic
basis, in which this matrix has a particularly simple form. We propose using the optimal colors determined
from the isotropic case even when the actual scanning pattern is not isotropic (e.g., covers only part of the
sky). We perform simulations showing that maps in multiple colors can be reconstructed accurately from
both full-sky and partial-sky scans. Although the original motivation for this research comes from mapping
the CMB, this method of polychromatic mapmaking will have broader applications throughout astrophysics.
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I. INTRODUCTION

In many if not most astrophysical observations, both
spatial and spectral information about the incoming
radiation are invaluable. Unfortunately, some astrophysical
surveys are made with broadband detectors that provide
little spectral information. This problem is particularly
noteworthy in observations of the cosmic microwave
background (CMB) radiation, for which more fine-grained
spectral information would be invaluable in separating the
CMB signal from foreground contamination.
Reliably separating the different physical components

contributing to CMB maps is an extremely important step
in drawing conclusions from these observations (e.g., [1]
and references therein). These inferences must generally be
drawn from a relatively small number of broadband maps.
Numerous methods have been developed to achieve this
goal (e.g., [2–5]). To do this separation as well as possible,
one must extract every bit of information from the data one
has. In this paper, we examine the prospect of extracting
spectral information from a single broadband total-intensity
survey.
When a telescope scans the sky with a broadband

detector, each observation in the time-ordered data is a
weighted average of signals at different spatial points
and at different wavelengths. Because the antenna pattern
is inevitably wavelength dependent, it is in principle

possible to reconstruct spectral information even though
each individual observation lacks spectral resolution
[6–11]. Because such spectral information can be
extremely valuable, we develop in this paper a systematic
approach to determining the amount and kind of infor-
mation that can be reconstructed.
Reconstruction of spectral information requires a tele-

scope whose antenna pattern lacks azimuthal symmetry,
and which scans the sky in a way that causes it to “hit”
a given point in different orientations.We illustrate thiswith a
toymodel. Imagine that a patch of sky contains awavelength-
dependent sinusoidal variation Iðx; λÞ ¼ fðλÞ sinðkxÞ,
where ðx; yÞ denote position on the sky.A telescope observes
this patch with an antenna pattern that smooths the sky in the
x direction but not in the y direction. If the smoothing is
wavelength dependent, then different wavelengths will be
suppressed by different amounts, and the observed signal
will be a sinewavewhose amplitude is aweighted sumof the
amplitudes at different wavelengths,

R
fðλÞwðλÞdλ, for some

weighting function wðλÞ that accounts for the wavelength-
dependent smoothing. Now suppose that the telescope is
rotated so that it smooths in the y direction but not the
x direction. Then the observed signal amplitude will be an
unweighted sum proportional to

R
fðλÞdλ. Comparing these

two signals would allow the observer to reconstruct a “color”
in addition to the overall amplitude of the signal, even though
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each individual observation is a broadband total-power
measurement.
In the CMB context, the instrument for which this

observation is most likely to be relevant is the Q & U
Bolometric Interferometer for Cosmology (QUBIC) ([8]
and references therein), because the technique of bolomet-
ric interferometry combines highly asymmetric beam
patterns with broadband detectors. However, the technique
may be applicable in other contexts involving telescopes
with highly asymmetric beams, such as the CHIME 21-cm
experiment [12], which uses long parabolic antennas.
In this paper, we do not focus on application to a

particular telescope, but on developing a formalism for
quantifying the available information for any given instru-
ment. We will present illustrative examples, some of which
are loosely inspired by QUBIC and by a long parabolic
dish, but they are not intended to mimic any particular
experiment in detail.
Our approach is based on a generalization of the well-

known minimum-variance mapmaking procedure for turn-
ing time-ordered data into sky maps (e.g., [13]). In the
original formalism, one reconstructs a single spatially-
dependent signal s⃗, which is an Np-dimensional vector
giving the signal in each of Np pixels. To extend this
formalism to the polychromatic case, we divide the
observed wavelength range into Nf bins and consider a
wavelength-dependent signal at each pixel. Our signal
vector thus has dimension NpNf.
It is straightforward to write down the formal minimum-

variance reconstruction of this signal vector from a given
vector d⃗ of time-ordered data. Because the wavelength-
dependent information is limited, this reconstruction has
extremely large error bars and is of limited use. Certain linear
combinations of wavelengths, however, can be reliably
reconstructed. That is, we can choose weights v1;…; vNf

and reconstruct a signal at each pixel p of the form

up ¼
X
f

vfspf; ð1:1Þ

where spf refers to the signal at pixel p and wavelength f.
We will identify the weights v⃗ that can be reconstructed

most accurately. The noise level in these reconstructions
can also be computed, so we can determine how many such
wavelength combinations are worth reconstructing in any
given experiment.
The remainder of this paper is organized as follows.

Section II describes the mathematical and computational
formalism. Section III presents illustrative results of tests
performed on simulated data. A discussion of some
conclusions is found in Sec. IV. Some mathematical details
are relegated to appendices.

II. METHOD

This section contains information about the mathemati-
cal methods behind this research. We begin by reviewing

the mapmaking problem in the monochromatic case (e.g.,
[13–15]), and then extend those results to a case containing
polychromatic data. We then describe the method to be
used when mapping signals obtained from such data, as
well as various operations to perform to optimize these
calculations. Finally, we show that there are specific modes
that are filtered out of the reconstructed maps; the same
modesmust be filtered out of the true signal when comparing
the two.

A. Monochromatic mapmaking

The data collected by a telescope can be modeled by the
linear equation

d⃗ ¼ As⃗þ n⃗; ð2:1Þ

where the data vector d⃗ of size Nt contains all of the time-
ordered data (TOD) gathered by a given telescope, the
pointing matrix A of size Nt × Np contains information
about which pixels each TOD element is sensitive to, the
signal vector s⃗ of size Np contains the intensity of light as a
function of position (i.e., pixel), and the vector n⃗ of size Nt
contains instrument noise. The quantities Nt and Np are the
number of time steps and the number of pixels, respectively.
The elements of the pointing matrix can be written as

Atp ¼ AðRtðr̂pÞÞApix; ð2:2Þ

where Aðr̂Þ is the antenna pattern at some specific
reference orientation, Apix is the area of a pixel, introduced
here for later convenience in Sec. II C when transforming to
a spherical harmonic basis, and Rt is a rotation matrix that
transforms Aðr̂Þ to the orientation at time t and pixel p.
It is often the case that the antenna pattern is composed

of a superposition of many individual peaks, each having
the same Gaussian-like shape. For example, in a single-
difference measurement, A would consist of two offset
antenna patterns, one with negative weight. Of more
relevance to the current work is the case of interferometer-
like antenna patterns such as that produced by QUBIC,
which consists of many identically shaped peaks.
In this case, it is numerically preferable to replace the

true sky signal s⃗ with a smoothed signal that has been
convolved with the shape of a single peak in A [14]. After
making this replacement, the pointing matrix A becomes
very sparse, with each row containing only a few nonzero
elements corresponding to the δ-function-like peaks at
the individual pixels corresponding to the peaks of A.
This renders computations and storage of A much more
efficient.
With this substitution, the mapmaking algorithm returns

an estimate of the smoothed signal, not the true signal. If
one wished (unwisely) to try to reconstruct features smaller
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than the beam scale, one could attempt to deconvolve the
reconstructed map.
When solving for the best estimate of the signal, we want

to retrieve all information possible about the signal given
the data. However, the pointing matrix is not square and
often very large, making inversion impossible. There are
many methods of finding a solution to this problem, and in
this research we use the minimum-variance reconstruction
method used by the COBE-DMR team [16] (among
others). The estimated signal map is

ŝ ¼ ðATN−1AÞ−1ATN−1d⃗; ð2:3Þ

where ŝ is a vector of size Np that is the best estimate of s⃗,
and N is the noise covariance matrix of size Nt × Nt, such
that N ¼ hn⃗n⃗Ti. The resulting ŝ is the unbiased, maximum-
likelihood estimator of s⃗, meaning that, by the Cramér-Rao
inequality, it is also the minimum-variance unbiased
estimator. The noise covariance matrix of ŝ is

M ¼ ðATN−1AÞ−1: ð2:4Þ

This method of mapmaking loses no information contained
in the TOD [13].

B. Polychromatic mapmaking

We now consider maps that are functions of wavelength.
To be specific, we discretize the wavelength range under
consideration into Nf narrow wavebands, which we call
wavelength bins, each with a different signal map. The
signal vector s⃗ consists of all of these maps stacked on top
of each other and thus has size NpNf. We will discuss the
required number of wavelength bins in Sec. III.
The pointing matrix A now has dimensions Nt × NpNf.

The elements of A are

AtðpfÞ ¼ AðRtðr̂pÞ; λfÞApix: ð2:5Þ

This expression differs from Eq. (2.2) in that the columns
of A are now labeled by a pair of indices ðpfÞ corre-
sponding to pixel and wavelength bin, and the antenna
pattern now depends on the wavelength λf. Continuing to
treat A as a sparse matrix as described in Sec. II A, each
row of A now contains a copy of the antenna pattern for
each waveband. We compute the pointing matrix for each
antenna pattern separately as sparse matrices at a given
waveband, and then horizontally stack these matrices,
creating a matrix composed of Nf submatrices.
One can perform the minimum-variance map

reconstruction (2.3) and reconstruct the polychromatic
signal with noise covariance M given by Eq. (2.4).
However, theNpNf × NpNf covariance matrix is unwieldy.
Moreover, in practice the inverse noise covariance matrix

M−1 ¼ ATN−1A ð2:6Þ

is typically nearly singular, so the inversion to produceM is
unstable. Even when the inversion can be performed accu-
rately, the diagonal elements (i.e., the noise variances in the
reconstructed signal) are so large that the reconstructed signal
is not particularly useful. This occurs because there is simply
not enough information to reconstruct the full wavelength-
dependent signal with reasonable accuracy.
Rather than reconstructing the entire polychromatic

signal, we will reconstruct only certain linear combinations
of wavelengths chosen to have low noise. To be specific,
we will find a set of Nf-dimensional vectors v⃗ð1Þ; v⃗ð2Þ;…
representing different combinations of wavelengths that we
wish to estimate. Each vector v⃗ðiÞ corresponds to a signal
map u⃗ðiÞ, given by

uðiÞp ¼
X
f

vðiÞf spf: ð2:7Þ

For instance, if vðiÞf is the same for all f, the resulting map

u⃗ðiÞ would be the total power across all wavelengths, while
a v⃗ðiÞ that was positive on one half of the wavelength range
and negative on the other would give a “color” map.
Suppose that we have chosen an orthonormal basis of

such Nf vectors. Then there is an orthogonal operator U
such that

u⃗ ¼ Us⃗; ð2:8Þ

where u⃗ is the concatenation of the maps u⃗ðiÞ just as s⃗ is the
concatenation of the individual wavelength maps. To be
specific, U consists of one copy for every pixel of the
orthogonalNf × Nf matrix whose rows are the vectors v⃗ðiÞ:

UðpiÞðp0fÞ ¼ vðiÞf δpp0 . Our goal will be to choose the vectors

v⃗ðiÞ so that the useful information in the data is concentrated
in the first few vectors, and we can safely ignore the later,
noise-dominated ones.
The optimal estimator of u⃗ is easily shown to be

û ¼ Uŝ ð2:9Þ

as one would expect. That is, each individual color map has
pixel values

ûðiÞp ¼
X
f

vðiÞf ŝpf: ð2:10Þ

The estimated map corresponding to the ith wavelength
combination has inverse noise covariance matrix elements

ðMðiÞ−1Þpp0 ¼
X
f;f0

vðiÞf M−1
ðpfÞðp0f0Þv

ðiÞ
f0 : ð2:11Þ
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Let wðiÞ be the trace of this matrix. This quantity is the sum
of the inverse noise variances of all pixels in the ith map
and is a natural figure of merit for the map. It can be
written as

wðiÞ ¼
X
f;f0

vðiÞf M̄−1
ff0v

ðiÞ
f0 ; ð2:12Þ

where the Nf × Nf matrix M̄−1 has elements

M̄−1
ff0 ¼

X
p

M−1
ðpfÞðpf0Þ: ð2:13Þ

The best linear combination of wavelengths is the one
that maximizes the corresponding w. This is the eigenvector
of M̄−1 with the largest eigenvalue. Indeed, for any number
of maps k between 1 and Nf, the best kmaps to reconstruct
are the ones corresponding to the greatest k eigenvectors of
M̄−1. See Appendix A for the proof of this claim.

C. Transformation to spherical harmonic space

Computing M̄−1 in pixel space remains a computation-
ally expensive task. However, if we assume we are
performing an isotropic experiment, which we define as
one in which a given telescope is able to scan the whole sky
uniformly and in all orientations, we can instead perform
this calculation in a basis of spherical harmonic coeffi-
cients. In this basis, the noise covariance matrix is

M̃ ¼ ðY†A†N−1AYÞ−1; ð2:14Þ

where Y is the linear operator that transforms a set of
spherical harmonic coefficients into the corresponding
map, whose elements are

YðpfÞðlmÞ ¼ Ylmðr̂pÞ; ð2:15Þ

independent of f. M̃ is of sizeNpNf × NL, whereNL is the
number of alm coefficients we are estimating. As shown in
Appendix B, under the assumptions of an isotropic experi-
ment, the matrix is block diagonal, with no correlation
between lm pairs. Moreover, the blocks for all m corre-
sponding to a given l are identical.
Let Cl be one such block of M̃−1. Then, holding an lm

pair fixed and suppressing the index l, the elements of
Cl are

Cff0 ¼ M̃−1
ðlmfÞðlmf0Þ ¼ σ−2t ðY†A†AYÞff0 ; ð2:16Þ

assuming white noise with N ¼ σ2t 1.
As shown in Appendix B,

Cff0 ¼
Nt

σ2t

1

2lþ 1

X
m0

Alm0fA�
lm0f0 ; ð2:17Þ

where Almf is a coefficient in the spherical harmonic
expansion of the antenna pattern at wavelength λf.
For any given l, the eigenvectors of Cl with largest

eigenvalues give the best linear combinations of wave-
lengths, with inverse noise variances given by the eigen-
values. To obtain the best linear combinations over all l, we
should “trace over” lm, just as we trace over all pixels in
defining the matrix M̄−1 in Eq. (2.13). In fact, because of
the orthonormality in spherical harmonics, this trace,
namely

X
l

ð2lþ 1ÞCl; ð2:18Þ

is equivalent to M̄−1 for isotropic experiments (i.e., in the
limit Nt → ∞ with all antenna pattern orientations equally
sampled).
Because the spherical-harmonic formalism is extremely

efficient, we use it to determine the best linear combina-
tions of wavelengths to reconstruct, even when the actual
data do not scan the whole sky isotropically.

D. Filtering the pure signal

While computing M̄−1 in spherical harmonic space
allows us to avoid computing M−1 when finding linear
combinations, the computation of ŝ in Eq. (2.3) still relies
on M. Because M−1 is the product of sparse matrices, we
can use conjugate gradient methods to solve

M−1ŝ ¼ ATN−1d⃗ ð2:19Þ

for ŝ and hence for the optimal wavelength combinations û
efficiently.
Unfortunately, M−1 has a null space of modes to which

the observations are completely insensitive. For example,
consider the monopole subspace of signals that are inde-
pendent of position but may depend on wavelength. The
pointing matrix treats all wavelengths identically in this
subspace—the wavelength dependence of the antenna
pattern is irrelevant for monopole signals. There are thus
Nf − 1 wavelength-dependent monopole maps that lie in
the null space of A and hence of M−1. In fact, for any l,
only 2lþ 1 wavelength combinations can be reconstructed,
so for every l such that 2lþ 1 < Nf, there areNf − ð2lþ 1Þ
unmeasurable modes.
Because of theAT on the right side of Eq. (2.3), the right

side lies in this null space and the conjugate gradient
solution proceeds without issue. In interpreting the result-
ing signal estimator, one must remember that these modes
have been filtered out of it. In particular, when we compare
reconstructed maps with a hypothetical input signal, we
must filter the input maps. To be specific, we can compute
a filtered input signal map s̄ from a candidate signal map s⃗
by finding a conjugate gradient solution to
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ðATN−1AÞs̄ ¼ ATN−1ðAs⃗Þ: ð2:20Þ
This process removes the undetectable modes from the pure
signal, allowing for a fair comparison of ŝ and s̄. A visual
representation of the pure, filtered, and estimated signals
can be found in Sec. III.

III. RESULTS

A. Antenna patterns

We tested three different asymmetric antenna patterns
to produce simulated data in order to perform this analysis
for polychromatic map-making. These are, in order of
increasing complexity, a great-circle antenna pattern,
1-dimensional interferometer antenna pattern, and a
2-dimensional interferometer antenna pattern, as shown
in Fig. 1. Here and throughout this paper, all pixelized
data on the sphere are in HEALPix pixelization [17], and all
computations on such maps use the HEALPy Python imple-
mentation of HEALPix [18].
We emphasize that our goal is not to simulate actual

instruments in full detail (although the 2D interferometer
may be considered “QUBIC-like” [8,9], and the great-circle
pattern is “CHIME-like” [12]). Rather, our goal is to show
illustrative examples of asymmetric antenna patterns of
the sort to which the methods described in this paper are
applicable.
The great-circle pattern is that produced by a telescope

that has much sharper resolution along one direction than
along the orthogonal direction (as might be produced by a
parabolic dish that is long but not wide). In the flat-sky
approximation, its antenna pattern would be of the form
Aðx; yÞ ¼ exp½−x2=ð2σ2xÞ − y2=ð2σ2yÞ� with σx ≫ σy. As
noted in Sec. II A, no useful information can be recovered
on scales smaller than σy, so we take the signal vector we
are attempting to reconstruct to have been smoothed by a
Gaussian with beam width σy. In this case, the antenna

pattern has zero width in the y direction and width σ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x − σ2y

q
in the x direction. The antenna pattern is thus a

Gaussian of width σ lying along a great circle, with delta-
function behavior in the perpendicular direction.

In the one- and two-dimensional interferometer patterns,
we imagine an antenna pattern with a series of equally
spaced peaks lying under a broad Gaussian envelope.
The peaks are all assumed to have identical shapes, and
once again we take the reconstructed signal to have been
smoothed by these shapes, allowing us to replace each peak
with a delta function. The two-dimensional interferometer
pattern is thus similar to what would be found in an
interferometer with a square array of antennas.
In all cases, the antenna patterns scale linearly with

wavelength—that is, the widths of Gaussians and the
spacing between peaks are all proportional to λf. Since
this scaling is the only way wavelength appears in any of
our computations, we express λf in units that make the
descriptions of our antenna patterns as simple as possible.
For the great circle pattern, we assume a Gaussian beam

and measure wavelength in units such that the beam width
along the great circle is λf. For the interferometer patterns,
we measure wavelength in units such that the space
between peaks is exactly λf. The heights of the peaks
are determined by the beam pattern of a single antenna,
which is of course broader than the individual peaks. We
take this pattern to be Gaussian with width 1.32λf, meaning
that the first peak away from the center has height 0.5 times
the central peak. When modeling the antenna patterns,
we keep all peaks with amplitude at least 10−3 times the
central peak.

B. Simulated signals

Throughout this section, the simulated signal vector, s⃗, is
composed of linear combinations of two independent maps,
with wavelength-dependent weights. To be specific, let f
and g be two Gaussian random fields on the sphere. Then
the signal at any location r̂ and wavelength λ is a linear
interpolation of these two functions:

sðr̂; λÞ ¼ wfðr̂Þ þ ð1 − wÞgðr̂Þ; ð3:1Þ

where w ¼ ðλ − λminÞ=ðλmax − λminÞ ranges from 0 at the
minimum wavelength in the observed band to 1 at the
maximum wavelength.

FIG. 1. Antenna patterns used for simulated map reconstructions. The three panels show the great circle, 1D interferometer, and 2D
interferometer patterns described in Sec. III A. All are shown in HEALPix pixelization with Nside ¼ 16 (3072 pixels), although in the
calculations below higher resolution was used (see Table I).
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The pointing matrix is applied to this signal, and then
random noise is added to that product to create d⃗. The noise
vector, n⃗, is created by generatingNt independent Gaussian
random numbers with mean 0 and a user-supplied standard
deviation σt. The reconstructed signal ŝ is then computed
using the conjugate gradient method with the expression
described in Eq. (2.3).
The parameters used in the maps in this section can be

found in Table I. In all cases, we use HEALPix resolution
Nside ¼ 32, leading to Np ¼ 12288. We follow the pro-
cedure described in the next section to determine the number
Nf of frequency subbands required for each antenna pattern.
Finally, we choose the number of time steps to be Nt ¼
2NfNp, which insures that the linear system to be solved in
the full signal reconstruction is well conditioned. (Although
the full signal reconstruction is not particularly useful due to
its large errors, it is still convenient for it to be possible to
compute it numerically.)

C. Full-sky harmonic space calculations

We first performed calculations in harmonic space for a
hypothetical full-sky experiment with isotropic random
sampling of antenna orientations.
We begin by considering the choice ofNf, the number of

wavelength bins in our input signal vector. We wish effects

of wavelength discretization to be unimportant, so we
choose Nf to be large enough to produce a reasonable
approximation of the continuous case. In particular, as Nf

increases, the eigenvalues and eigenvectors of Cl should
approach stable continuum limits. We use the ratio of the
two highest eigenvalues as a measure of this approach to
stability. These ratios are plotted in Fig. 2. Based on these
plots, we chose the values of Nf in Table I.
We can immediately note from Fig. 2 that the two-

dimensional interferometer is far more promising than the
other two antenna patterns for polychromatic mapmaking:
the smaller eigenvalue ratios mean that the uncertainties in
the second-best map will be closer to those in the best map
in this case than in the other two.
Figure 3 shows eigenvectors of M̄−1 for the various

antenna patterns. For the two interferometer patterns, the
eigenvectors plotted have eigenvalues that are at least 0.1
times the largest eigenvalue, meaning that the noise levels in
thesemapswill beworse than those in the bestmapbyatmost
a factor of

ffiffiffiffiffi
10

p
. For the great-circle case, the second-best

eigenvector is shown even though it lies below this threshold.
It may come as no surprise that the linear combination

corresponding to the smallest uncertainty is reminiscent of
a total-intensity map, with weights approximately equal at
all wave bands. Thus, the bulk of the additional information

TABLE I. Map parameters. For each of the three antenna patterns described in Sec. III, we give the number of
pixels Np and the number of frequency bins Nf in the simulations. For both the full-sky and half-sky simulations,
we give the number of time steps Nt and the signal-to-noise ratio. In the latter, σs⃗ is the standard deviation of the
signal vector, and σt is the standard deviation of the noise in the time domain. The choice of values for the various
parameters is discussed in Sections III B and III C.

Full sky Half sky

Antenna pattern Np Nf Nt σs⃗=σt Nt σs⃗=σt

2-Dimensional interferometer 12288 20 4 91520 2.717 4 91520 2.762
1-Dimensional interferometer 12288 14 3 44064 3.021 17 20320 3.077
Great circle 12288 18 4 42368 2.463 4 42368 3.400

FIG. 2. Ratio of greatest two eigenvalues of Cl. The number of wavelength bins in the input signal vectors were chosen such that the
number of bins would be an approximation of the continuous case. We choose values of Nf, listed in Table I, to be large enough that the
ratio of the eigenvalues is close to its asymptotic limit.
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available via polychromatic map-making (as compared to
monochromatic) is found in the second-largest eigenvector,
which represents a color map.

D. Full-sky maps in pixel space

While the harmonic-space calculations above tell us the
expected noise level in the reconstructions, it is helpful to
view actual maps of the signals. Figures 4(a) and 4(b) show
maps of the best linear combination ofwavelengths of s⃗ and ŝ
for the 2-dimensional interferometer pattern. Theeigenvector
containing the best linear combination from this simulation is
the same as the one shown in Fig. 3(a). The notationUmap in
the figure titles refers to a signal map in a selected linear
combination, such as in the notation of Eq. (2.7).
As mentioned earlier, these near-total-intensity maps are

essentially the same as those obtained by monochromatic
mapmaking; to evaluate the polychromatic method we must
look at the second-best linear combination, that is, to the
eigenvector with the second-largest eigenvalue in Fig. 3(a).

Figure 5 shows maps of this combination. It is clear from
panels (a) and (b) that the pure signal and estimated signal
have discrepancies in structure on a large scale. Panel (c)
confirms this impression by showing the difference
between the two.
This difference is due to the null space ofM−1 described in

Sec. II D: modes in the null space that are present in the
original signal are absent in the reconstructedmap. Ifwe filter
the true signal s⃗ by removing the null space of M−1 before
taking the linear combination, we get the map shown in
panel (d). The difference between this and the reconstructed
map [panel (e)] is smaller and lacks the large-scale power of
the original difference map.
Figure 6 shows the second-best linear combination of

wavelengths for the 1-dimensional interferometer pattern,
as shown in Fig. 3(b). Figure 7 shows the second-best linear
combination of wavelengths for the great circle pattern, as
shown in Fig. 3(c). These maps give visual proof to the
claim that the great circle antenna pattern produces the least
reliable linear combinations of wavelengths.

FIG. 3. Eigenvectors of M̄−1 for each antenna pattern, assuming an isotropic experiment. As described in Sec. II, the eigenvectors are
the optimal colors to reconstruct. The horizontal axis is the bin number in wavelength, with 0 corresponding to λmin and the maximum
value to λmax. The legend gives the eigenvalue, scaled by the maximum eigenvalue.

FIG. 4. Best linear combination of wavelengths from a simulation using the 2-dimensional interferometer pattern. The notation U map
refers to a signal map in a selected linear combination, such as in the notation of Eq. (2.7). The best linear combination corresponds to a
near-total-intensity map, which is essentially the same as what is obtained by monochromatic mapmaking.

OPTIMAL METHOD FOR RECONSTRUCTING POLYCHROMATIC … PHYS. REV. D 107, 123002 (2023)

123002-7



FIG. 5. Second-best linear combination of wavelengths from a simulation using the 2-dimensional interferometer pattern.
The difference map ŝ − s⃗ shows the modes in the null space of M−1 that must be filtered (see Sec. II D.). The difference map
ŝ − s̄ lacks the large-scale power of the original difference map, which is expected. See Eq. (2.20) for the definition of s̄.

FIG. 6. Second-best linear combination of wavelengths from a simulation using the 1-dimensional interferometer pattern. As in the
case of the 2-dimensional interferometer shown in Fig. 5, there are large differences in the unfiltered maps. We omit these plots in this
figure, showing only the filtered comparison.

FIG. 7. Second-best linear combination of wavelengths from a simulation using the great circle pattern. The large-scale structure in the
difference map ŝ − s̄ gives visual proof to the claim that this antenna pattern produces the least reliable reconstructions.
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E. Half sky

The results of the previous section apply to an idealized
isotropic all-sky experiment. In this section, we show
results for a hypothetical experiment with partial sky
coverage. As described in Sec. I, we continue to perform
the calculation of M̄−1 in a spherical harmonic basis—that
is, the wavelength linear combinations we choose to
reconstruct are optimized as if we were doing an all-sky
isotropic experiment.
For the examples illustrated here, we assume the obser-

vations cover half the sky: the pointings are chosen
randomly and isotropically as before, but with pointing
centers restricted to the northern hemisphere θ < π=2.
Figure 8 shows a half-sky reconstruction for the

2-dimensional interferometer pattern.

The stark asymmetry of the 1-dimensional and great
circle antenna patterns compared to the 2-dimensional
antenna pattern makes it more difficult to achieve an
isotropic experiment with fewer time steps, namely the
ability to scan the sky in all possible orientations of the
telescope. Thus, for half-sky reconstructions, we must
increase the number of time steps for the 1-dimensional
and great circle antenna patterns. Figure 9 shows a half-
sky reconstruction for the 1-dimensional antenna pattern
with five times more time steps than in the full-sky
reconstruction. While a qualitative look at these maps does
not show large differences between the filtered and esti-
mated signals, the noise map in Fig. 9(c) shows once again
the largely random noise we expect between the two
signals. Figure 10 shows a half-sky reconstruction for

FIG. 8. Second-best linear combination of wavelengths from a simulation over half the sky using the 2-dimensional interferometer
pattern.

FIG. 9. Second-best linear combination of wavelengths from a simulation over half the sky using the 1-dimensional interferometer
pattern.
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the great circle antenna pattern. For the purpose of time,
this simulation was run with the same number of time steps
as in the full-sky case. If this antenna pattern were to be

used for polychromatic reconstruction, a larger dataset
would be required to yield more accurate results.

F. Noise covariance

In this section we illustrate the noise properties of the
reconstructed maps. The matrix M−1 is the noise covari-
ance matrix for the entire multiwavelength signal. We can
represent this matrix in the eigenbasis in wavelength space
(while leaving it unaltered in pixel space). Then each row of
the matrix will show the covariance of the noise in each
reconstructed signal at a given pixel. Because M is sparse,
any given row is easily found via the conjugate gradient
method.
Figure 11 illustrates the result of such a calculation. The

row of the noise covariance matrix corresponds to a
particular pixel in the northern hemisphere and to the
second-best wavelength combination. The maximum value
in the middle panel is thus the noise variance for this
reconstructed signal value. The structure in the middle
panel shows that the noise has some spatial correlation, and
the nonzero values in the first and third panel show that
there are nonzero but weak cross-correlations between the
different reconstructed wavelength combinations.
Another way to visualize the spatial structure of the noise

is via the noise power spectra Nl for the various recon-
structed maps. Figure 12 shows Nl for the three best linear

FIG. 10. Second-best linear combination of wavelengths from a simulation over half the sky using the great circle pattern.

FIG. 11. One row of the noise covariance matrix M in a simulation over half the sky using the 2-dimensional interferometer antenna
pattern. This row corresponds to a pixel in the northern hemisphere and to the second-best wavelength combination The middle panel
shows the noise has some spatial correlation, and the first and third panels show there is some nonzero cross-correlation between
reconstructed wavelength combinations.

FIG. 12. Noise power of the three best linear combinations of
wavebands from a simulation using the 2-dimensional interfer-
ometer pattern. These data were obtained by averaging the power
spectra of the reconstructed maps in 100 simulations made using
a data vector d⃗ consisting of white noise.
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combinations of wavebands using the 2-dimensional inter-
ferometer pattern. These were computed by applying the
polychromatic map reconstruction algorithm to 100 sets of
white-noise TOD. The noise power spectrum Nl for each
reconstructed color is the average of the power spectra of
the reconstructed maps.

IV. CONCLUSION

We have presented a formalism for finding the optimal
colors that can be extracted from a total-intensity broad-
band telescope that scans the sky with an asymmetric beam
pattern. This approach is inspired by CMB observations,
which often involve broadband detectors covering a small
number of wavelength bands. In analyzing CMB sky maps,
color information is important for component separation
but is unfortunately often in short supply. The ability to
squeeze extra color information out of such maps is
therefore of particular importance.
The underlying idea behind this method was developed

as part of the design of the QUBIC telescope, and experi-
ments of this sort, whose antenna patterns are highly
asymmetric, are most likely to benefit from it.
Although the method is inspired by CMB studies, color

information is of course invaluable in many areas of
astrophysics, so it is quite possible that the methods
developed herein will have broader applications.
We have shown that for some antenna patterns,

color maps can be produced that have noise levels of
the same order of magnitude as the total-intensity maps,
indicating that significant additional information is likely
to be available.
The colors that we find via this method are optimal for

the specific case of an all-sky isotropic scan pattern. Real
scans do not necessarily achieve this coverage. However,
we have demonstrated in our simulations that the noise
levels achieved in partial-sky experiments are similar to
those in the all-sky case, as expected.
Polychromatic mapmaking is possible in practice for

observations that scan the sky with broadband detectors,
using an instrument with an asymmetric beam. CMB
observations are the most natural arena in which to apply
this method: CMB detectors are generally broadband; color
information is vital for foreground separation, and some
CMB instruments have asymmetric beams. The QUBIC
experiment in particular is the inspiration for this work: one
of the authors is a member of the QUBIC Collaboration,
and this work builds on methods developed for QUBIC
[6,9]. We intend to explore implementation of the methods
developed here into the QUBIC analysis pipeline.
Although QUBIC is the main use case we envision, the

method may be applicable in other contexts. The highly
asymmetric antenna patterns that make the method most
promising are likely to be found in other interferometric
contexts or possibly for experiments such as CHIME [12]
with long narrow antennas.

Having shown that this method is promising, we envi-
sion a number of ways in which it can be extended:

(i) The method can be tested on simulations of other
antenna patterns and scan strategies, including, for
example, a more realistic model of QUBIC.

(ii) The method can be applied to maps containing
realistic astrophysical components, e.g., a simulation
including CMB fluctuations and foreground con-
taminants such as dust and synchrotron.

(iii) Generalization of the method to polarization data
should be straightforward. The foreground-removal
problem is particularly acute for CMB polarization
experiments, as the polarization signal is weak and
the polarization properties of the foregrounds are
more uncertain (e.g., [19]).
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APPENDIX A: EIGENVALUES AND
EIGENVECTORS OF COVARIANCE

MATRICES

Let ŝ be an unbiased estimator of some signal vector s⃗,
with uncertainties characterized by a covariance matrix M
with entries

Mdd0 ¼ hδŝdδŝd0 i ¼ hδŝδŝTidd0 : ðA1Þ

Suppose that we want to estimate u ¼ v⃗ · s⃗ for some
vector v⃗. We define an estimator

û ¼
X
d

vdŝd: ðA2Þ

Then

hðδûÞ2i ¼ hðv⃗ · δŝÞ2i
¼ hðv⃗TδŝÞðδŝT v⃗Þi
¼ v⃗ThδŝδŝTiv⃗
¼ v⃗TMv⃗: ðA3Þ

We want to choose the “best” vector v⃗—that is, the one
that minimizes the uncertainty—subject to the constraint
jv⃗j ¼ 1, or

P
d v⃗

2
d ¼ 1, for

δû2 ¼
X
d;g

vdMdgvg: ðA4Þ
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We differentiate with respect to an arbitrary component vh
such that

∂ðδû2Þ
∂vh

¼
X
g

Mhgvg þ
X
d

vdMdh ¼ 2ðMvÞh: ðA5Þ

Introducing a Lagrange multiplier to apply the constraint
gives

ðMvÞh ¼ λvh: ðA6Þ

The optimal linear combination of data points is thus an
eigenvector of the covariance matrix. From Eq. (A3), it
follows that

δû2 ¼ v⃗Tλv⃗¼ λv⃗T v⃗¼ λ: ðA7Þ

The eigenvalue of the covariance matrix is thus the
uncertainty variance in the linear combination correspond-
ing to the eigenvector. The optimal linear combination is
the eigenvalue corresponding to the smallest eigenvector.

APPENDIX B: COVARIANCE MATRICES IN
SPHERICAL HARMONIC SPACE

Assuming white noise (N ¼ σ2t 1), an arbitrary element
of the harmonic-space inverse noise covariance matrix M̃−1

can be written

M̃−1
ðlmfÞðl0m0f0Þ ¼ σ−2t

X
t

�X
p

AðRtðr̂pÞ;λfÞApixYlmðr̂pÞ

×
X
p0

AðRtðr̂p0 Þ;λf0 ÞApixYl0m0 ðr̂p0 Þ�
�
: ðB1Þ

We assume that the pixelization is fine enough that sums
over pixels can be converted to integrals. Moreover, we
assume an isotropic experiment, meaning that the rotation
matricesRt densely and uniformly sample SO(3), the space
of all possible rotation matrices. Under this assumption, we
can also convert the sum over t to an integral. The result is

M̃−1
ðlmfÞðl0m0f0Þ ¼

Nt

8π2σ2t

Z
SOð3Þ

dRflmfðRÞf�l0m0f0 ðRÞ; ðB2Þ

where Nt is the number of time steps, 8π2 is the volume of
the space SO(3), and

flmfðRÞ ¼
Z

d2r⃗AðRðr⃗Þ; λfÞYlmðr⃗Þ: ðB3Þ

Expanding the antenna pattern in spherical harmonic
coefficients gives

AðRðr⃗Þ; λfÞ ¼
X
L;M

ALMfYLMðRðr⃗ÞÞ: ðB4Þ

Substituting this into Eq. (B3) gives

flmfðRÞ ¼
X
L;M

ALMf

Z
YLMðRðr⃗ÞÞYlmðr⃗Þd2r⃗: ðB5Þ

The rotation of the spherical harmonic matrix Ylm can be
expressed in terms of a Wigner matrix,

YlmðRðr⃗ÞÞ ¼
X
m0

Dl
mm0 ðRÞYlm0 ðr⃗Þ: ðB6Þ

Substituting this into Eq. (B5) gives

flmfðRÞ ¼
X
L;M

ALMfDL
MM0 ðRÞ

Z
YLM0 ðr⃗ÞYlmðr⃗Þd2r⃗

¼
X
M

AlMfDl
Mm; ðB7Þ

using the orthonormality of the spherical harmonics.
Substituting this expression into Eq. (B2) gives

M̃−1
ðlmfÞðl0m0f0Þ ¼

Nt

8π2σ2t

X
M;M0

AlMfA�
l0M0f0

×
Z
SOð3Þ

dRDl
MmðDl0

M0m0 Þ�: ðB8Þ

This integral is ð8π2=ð2lþ 1ÞÞδll0δMM0δmm0 [20], leading to
the conclusion that

M−1
ðlmfÞðl0m0fÞ0 ¼ δll0δmm0

Nt

σ2t

1

2lþ 1

X
M

AlMfA�
lMf0 : ðB9Þ

The matrix M̃−1 is thus block diagonal in lm, with blocks
that depend only on l, not m.
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