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This article summarizes our study to develop an intracavity parametric signal amplification system for
improving the sensitivity of a gravitational-wave detector at high frequencies to aim at an observation of a
postmerger remnant of a binary neutron star collision. The detector configuration is based on a dual
recycling interferometer and an optical parametric amplifier crystal is inserted into the signal recycling
cavity. The cavity is detuned and an optical spring is generated for the differential motion of the two end
mirrors. The amplifier converts the energy of the pump beam to the optical spring and the spring frequency
can be enhanced to a few kilohertz. The system is contrasting to the squeeze injection technique commonly
used in second-generation gravitational-wave detectors. Although both techniques use an optical para-
metric amplifier crystal, the squeeze injection reduces noise while signal amplification increases the signal
to modify the optomechanical dynamics of the system.
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I. GRAVITATIONAL WAVES AT kHz

Since the great discovery of gravitational waves by LIGO
in 2015 [1], nearly a hundred events have been observed in
the global gravitational-wave detectors network. The obser-
vation band of the currently operating detectors, which is
definedwith the strain sensitivity better than10−23ð1= ffiffiffiffiffiffi

Hz
p Þ,

is from a few tens of Hertz to 1–2 kHz. The band is slightly
lower than the expected merger frequency of neutron star
binaries. Although several neutron star binary inspirals have
beenobserved byLIGOandVirgo [2], a clear footprint of the
merger and postmerger signal has not been obtained. Several
models exist to explain the equation of state of a neutron star
and the observation of the gravitational wave at themerger is
said to be the only way to acquire information about
mysterious astronomical object [3].
Several proposals have been made to observe high-

frequency gravitational waves. NEMO is a new detector
planned to be built in Australia [4]. It employs silicon
mirrors cooled down to 123–150 K to take advantage of the
low thermal lensing effect due to the high thermal con-
ductivity of the material, and make the most use of the low
thermal expansion at 123 K to reduce the thermoelastic
dissipation. KAGRAþ is an upgrade plan of KAGRA, the
currently operating detector in Japan [5]. One of the
proposals states that thicker and shorter sapphire suspen-
sion fibers are employed to extract more heat to allow a few
megawatts of light in the arm cavities [6]. Both NEMO and
KAGRAþ aim to start the operation between second- and

third-generation detectors (Einstein Telescope [7] and
Cosmic Explorer [8]).
The limiting noise source at such high frequencies is the

quantum shot noise. The signal extraction port of the laser
interferometric detector is kept at the dark fringe. The
vacuum field that enters the interferometer from its dark
port is the source of the shot noise [9]. The substitution of
the vacuum field by the field squeezed in the phase
quadrature reduces the shot noise level. The squeeze
injection technique has already been implemented in most
of the currently operating detectors [10–12]. Tuning the
interferometer’s resonant condition to increase the signal
response is another way to improve shot noise. A typical
cavity bandwidth is narrower than that of the kilohertz. A
slight detuning of the cavity helps shift the resonance from
the laser frequency to the kilohertz signal sideband fre-
quency [13]. Even without detuning, the phase rotation
inside the interferometer helps shift the resonant condition
if the signal recycling cavity (SRC) at the interferometer’s
dark port is long; this phase rotation is called the long-SRC
effect [14]. NEMO, and perhaps KAGRAþ, plan to
employ the long-SRC configuration. The detuning of the
SRC converts a part of the phase modulation signal
sideband to the amplitude modulation that couples with
the laser to generate a radiation pressure force on the mirror.
The optomechanical loop creates an optical spring [15].
Analogous to a bar-type detector, the gravitational wave
signal is enhanced at the resonance of the optical spring. It
would be an alternative candidate to improve the sensitivity
at high frequencies with the optical spring frequency
possibly increasing to a few kilohertz.*somiya@phys.titech.ac.jp
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Adding an active filter inside the SRC is a breakthrough to
circumvent the so-called Mizuno limit, which explains the
trade-off between the peak sensitivity and bandwidth with a
given laser power [16]. The basic idea of the intracavity
active filter canbe found in intracavity readout schemes [17],
particularly in the optical lever scheme proposed by
Khalili [18]. Chen revisited the optical lever and invented
an intracavity ponderomotive amplifier [19]. The ponder-
omotive amplifier comprises an auxiliary interferometer
with light mirrors connected to the dark port of the main
interferometer. The phase signal from the main interferom-
eter is coupled with the laser light of the auxiliary interfer-
ometer to generate radiation pressure on the light mirrors.
The phase signal from the auxiliary interferometer is sent
to themain interferometer. The external energy of the laser in
the auxiliary interferometer is introduced to actively amplify
the signal. By replacing the ponderometive amplifier with
an optical parametric amplifier, Somiya proposed an intra-
cavity parametric signal amplification system first without
SRC detuning [20] and then with SRC detuning [21].
Further advanced versions of the intracavity schemes have
been proposed since then. Adya proposed an intracavity
squeezing with the long-SRC effect [22]. Korobko com-
bined a nondetuned parametric amplifier with the long-SRC
effect to effectively enhance the bandwidth of an interfer-
ometer (quantum expander) [23].Miao invented a scheme to
use the negative dispersion of a micro-resonator to expand
the cavity bandwidth (white-light cavity) [24–27].
In this article, we summarize our study on the parametric

signal amplification system. In our previous work [21],
the interferometer configuration was a resonant sideband
extraction that comprises a Michelson interferometer with a
Fabry-Perot resonator in each arm and two recycling
cavities. We have found that a dual recycling interferometer
without arm resonators is more suitable for the amplifica-
tion system because the amplifier in SRC decreases the
bandwidth. (An alternative approach would be to use two
signal recycling mirrors as is suggested, for example,
by Miao [28].) This is the configuration of the existing
gravitational-wave detector GEO600 [29]. We assume an
arm length of GEO600 (L ¼ 1200 m) and anticipate
implementing the signal amplification system in GEO600
in the near future. This article will answer some unan-
swered questions about intracavity system: (i) why the
detune angle needs to be around π=4 and (ii) why the intra-
cavity system is sensitive to the optical loss in the
interferometer. The optical losses and squeeze angle
rotation, which were not included in our previous
work [21], are introduced. In Sec. II, we provide a
mathematical expression for the response of the dual-
recycling interferometer without losses and discuss the
optical resonance and optical spring frequencies with
parametric amplification. In Sec. III, we calculate the
sensitivity spectrum and discuss the condition to improve
the signal-to-noise ratio with different parameter sets.

In Sec. IV, we discuss the optical losses and we present
our target sensitivity curve in Sec. V.

II. INPUT-OUTPUT RELATION OF THE
INTERFEROMETER WITH THE

INTRACAVITY AMPLIFIER

Figure 1 illustrates our setup. The laser light at ω0 is
injected into the interferometer and serves as the carrier
light to probe the displacement of the mirrors. The
electromagnetic field around the carrier light at time t in
the Heisenberg picture is given by

EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω0

Ac

r
e−iω0t

Z
∞

0

½aþe−iΩt þ a−eiΩt�
dΩ
2π

þ H:c:;

ð1Þ

where a� is the annihilation operator at ω0 � Ω, A is the
cross sectional area of the beam, and H.c. means the
Hermitian conjugate. It is common to use the two-photon
formalism [30] to express the amplitude andphase quadrature
components of the carrier light: a1 ¼ ðaþ þ a−Þ=

ffiffiffi
2

p
; a2 ¼

ðaþ − a−Þ=
ffiffiffi
2

p
i. Bold letters in Fig. 1 are vectors with

the amplitude quadrature component (subscript “1”) in
the top column and the phase quadrature component (sub-
script “2”) in the bottom column. These fields satisfy the
commutation relations: ½a1ðΩÞ;a†2ðΩ0Þ�¼−½a2ðΩÞ;a†1ðΩ0Þ�¼
2πiδðΩ−Ω0Þ. The interferometer is operated at the dark
fringe such that all the light field entering from the laser is
reflected to the laser source. The output field to the photo-
detector comes from the interferometer’s dark port. The
input-output relations of the fields are given as

b ¼ −rsaþ ts f ; e ¼ rs f þ tsa; c ¼ RðϕÞe;
f ¼ RðϕÞSðs; ηÞd; d ¼ Kce2iβ þ αheiβ: ð2Þ

Here rs and ts are the amplitude reflectivity and transmittance
of the signal recycling mirror, β ¼ LΩ=c is the phase delay
of the signal field after a single trip of the arm with L as the
arm length and c as the light speed, α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0IBSL2=ðℏc2Þ

p
represents the signal strength with IBS the laser power at the
beam splitter and ℏ the Planck’s constant, h ¼ ð0; hÞT with h
the gravitational-wave signal in strain, and RðϕÞ is the
rotation matrix with ϕ as the detune phase of the SRC.
Sðs; ηÞ is the squeezing matrix with a squeeze factor s and
squeeze angle η andK is the optomechanical couplingmatrix
of the interferometer, which are given as follows:

Sðs; ηÞ ¼ RðηÞ
�
s 0

0 1=s

�
Rð−ηÞ; ð3Þ

K ¼
�

1 0

−K 1

�
; K ¼ 4ω0IBS

mc2Ω2
: ð4Þ
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Note that the squeezing matrix is operated to the field
propagating downstream from the beam splitter to the signal
recyclingmirror as the pump beam is injected to the crystal in
the direction. The location of the crystal inside the SRC is
unspecified.Equation (3) demonstrates that the phase rotation
of the field before entering the crystal can be included in the
squeeze angle rotation η. Solving the series of Eqs. (2)–(4),
we obtain the input-output relation of the interferometer:

b ¼ 1

M
ðAae2iβ þ HheiβÞ ð5Þ

with

M ¼ sþ sr2se4iβ − rse2iβ
�
ð1þ s2Þ cos 2ϕ

þK
2
fð1þ s2Þ sin 2ϕþ ð1 − s2Þ sin ð2ϕþ 2ηÞg

�
;

A11 ¼
1þ s2

2
ð1þ r2sÞ cos 2ϕ −

1 − s2

2
t2s cos 2η

þK
4
½ð1þ r2sÞð1þ s2Þ sin 2ϕþ t2sð1 − s2Þ sin 2η

þ ð1þ r2sÞð1 − s2Þ sin ð2ϕþ 2ηÞ� − 2srs cos 2β;

A12 ¼ −
t2s
2

�
ð1þ s2Þ sin 2ϕþ ð1 − s2Þ sin 2η

þK
2
f2ð1þ s2Þsin2ϕþ ð1 − s2Þ cos 2η

− ð1 − s2Þ cos ð2ϕþ 2ηÞg
�
;

A21 ¼
t2s
2

�
ð1þ s2Þ sin 2ϕ − ð1 − s2Þ sin 2η

−
K
2
f2ð1þ s2Þcos2ϕþ ð1 − s2Þ cos 2η

þ ð1 − s2Þ cos ð2ϕþ 2ηÞg
�
;

A22 ¼
1þ s2

2
ð1þ r2sÞ cos 2ϕþ 1 − s2

2
t2s cos 2η

þK
4
½ð1þ r2sÞð1þ s2Þ sin 2ϕ − t2sð1 − s2Þ sin 2η

þ ð1þ r2sÞð1 − s2Þ sin ð2ϕþ 2ηÞ� − 2srs cos 2β;

H12 ¼ −
tsα
2

½ð1þ s2 þ 2srse2iβÞ sinϕ
þ ð1 − s2Þ sin ðϕþ 2ηÞ�;

H22 ¼
tsα
2

½ð1þ s2 − 2srse2iβÞ cosϕ
þ ð1 − s2Þ cos ðϕþ 2ηÞ�;

H11 ¼ H21 ¼ 0: ð6Þ
By selecting the readout phase ζ, given by the relative phase
of a local oscillator to the amplitude quadrature, we observe

the output fieldbζ ¼ b1 cos ζ þ b2 sin ζ. The signal response
function is given by jðH12 cos ζ þH22 sin ζÞ=Mj, the noise
response function is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA11 cos ζ þ A21 sin ζj2 þ jA12 cos ζ þ A22 sin ζj2

p
jMj ;

and the sensitivity is given by the ratio of the noise and the
signal components at this readout quadrature. CoefficientM
represents the amplification factor of the optical spring.
As explained in Buonanno and Chen’s paper [15], the roots
of the equationM ¼ 0 provide the optical spring and optical
resonance frequencies, atwhich thequantumnoise sensitivity
spectrum can be improved.
The optical resonance is approximately given by

Ωres ≃
c
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−
1

4

�
sþ 1

s

�
cos 2ϕ

s
: ð7Þ

By defining

ϕs ≡ 1

2
arccos

�
1

2

�
sþ 1

s

�
cos 2ϕ

�
ð8Þ

the optical resonance can be expressed as Ωres ∼ ϕsc=L,
which becomes ϕc=Lwithout the parametric amplification.
The expression coincides to that shown in Harms’s
paper [31].
Solving M ¼ 0 with β → 0, we obtain the optical spring

frequency Ωos as follows:

Ωos≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0IBS
mc2

ðsþ 1
sÞsin2ϕ− ðs− 1

sÞsinð2ϕþ2ηÞ
ðrsþ 1

rs
Þ− ðsþ 1

sÞcos2ϕ

s
; ð9Þ

which can be maximized by choosing η to satisfy ϕþ η ¼
π=4 for s < 1 and ϕþ η ¼ −π=4 for s > 1 to obtain

Ωopt
os ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0IBS
mc2

ðsþ 1
sÞ sin 2ϕþ js − 1

s j
ðrs þ 1

rs
Þ − ðsþ 1

sÞ cos 2ϕ

s
: ð10Þ

Without the parametric amplification, the optical spring
frequency appears infinitely high with r → 1 and ϕ → 0,
but intracavity optical losses limit it in reality. With
parametric amplification, the optical spring frequency
can be made significantly high by tuning the squeeze
factor s even if r is limited to a decent value.
In fact, the optical resonance changes with s. We shall fix

the optical resonance and compare the optical spring
frequency with different parametric gain s. Define the
detune phase at s ¼ 1 as ϕ0. The same optical resonance is
given with the parametric amplification when ϕs ¼ ϕ0 is
satisfied, that is, when the detuned phase ϕ is fixed to
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ϕfix ¼
1

2
arccos

�
2s

1þ s2
cos 2ϕ0

�
: ð11Þ

One can see that the detune phase approaches to π=4
when s moves away from unity. The increasing rate of the
optical spring frequency by the parametric gain, defined
by the ratio of Ωosðs;ϕfixÞ to Ωosðs ¼ 1;ϕ ¼ ϕ0Þ, is then
calculated as

�ðs − 1
sÞ2 þ 4sin22ϕ0

ð1þ s2Þ2sin22ϕ0

�1
4

; ð12Þ

with η fixed to 0, and is given by

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 1

sÞ2 þ 4sin22ϕ0

q
þ js − 1

s j
2 sin 2ϕ0

3
75

1
2

; ð13Þ

with ϕþ η fixed to π=4 for s < 1 and to −π=4 for s > 1.
Figure 2 illustrates the increasing rate of the optical spring
frequency. The solid curves correspond to η ¼ 0 and the
dashed curves correspond to η chosen to maximize the
optical spring frequency. The denominator in Eq. (9)
approaching to zero explains the steep increase of the
increasing rate in the vicinity of s ¼ 1. Optimization of
the squeeze angle makes the dashed curve symmetric for
s and 1=s. The optical spring frequencies Ωzero

os and Ωmax
os

coincide at s ≪ 1, and one can assume η ≃ 0 for sim-
plicity of the calculation. (See Khalili’s work [32] for
further discussion of η.)

III. SIGNAL RESPONSE FUNCTION AND
QUANTUM-NOISE LIMITED SENSITIVITY

Figure 3 shows the signal response (top), noise response
(middle), and quantum-noise limited sensitivity (bottom) of

a detuned interferometer with and without the parametric
amplifier for different signal-recycling mirror reflectivities.
The response functions are dimensionless (see Sec. II for
the definition) and the sensitivity is given by the power
spectrum density of the vacuum field at the dark port
multiplied by the ratio of the response functions. The laser
power is 100 kW at the beam splitter, the test mass is 1 kg,
the arm length is 1200 m, and the amplitude reflectivities of
the signal recycling mirror are

ffiffiffiffiffiffiffiffiffi
0.99

p
for the left six panels

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9995

p
for the right six panels. The detune angle is

set to ϕfix in Eq. (11) with ϕ0 ¼ 5.74 deg, which leads to
an optical resonance frequency at 4 kHz; the condition does
not depend much on rs, and ϕ0 is nearly equal for rs ¼ffiffiffiffiffiffiffiffiffi
0.99

p
and rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9995

p
. For simplicity, the squeeze angle

rotation η is fixed to zero. Different colors represent
different parametric gains (s ¼ 1; 1=2; 1=10; 1=70; 1=500
for red, blue, green, orange, and purple, respectively). The
readout phase ζ is fixed to zero for the results in the left
column of each 6-panel block and tuned to improve the
sensitivity for the results in the right column of the block.
Let us first examine the results without amplification (red
curves). The noise source comprises a vacuum field directly
reflected by the signal-recycling mirror and a vacuum field
that emerges from the interferometer. The former is flat in
frequency and the latter is amplified around the optical
spring frequency. The signal is also amplified by the optical
spring, and the gain is higher than the noise response owing
to the presence of a directly reflected vacuum field. Thus,
the sensitivity is improved around the optical spring.
The leftmost column of Fig. 3 shows that the peak of

the optical spring moves to a higher frequency with
parametric gain but the dip at the optical spring frequency
vanishes in the sensitivity. This can be explained by the
fact that the noise response also increases with parametric
gain. Owing to the significant active amplification of the
fields inside the SRC, the contribution of a vacuum field
directly reflected by the signal recycling mirror becomes
negligible.
There are two approaches to improve the sensitivity with

making use of the amplified optical spring. One is to

c

a b
e f

d

D

FIG. 1. Optical setup of the interferometer with an intracavity
signal amplifier.

FIG. 2. The increasing rate of the optical spring frequency as a
function of the parametric gain s.
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increase the reflectivity of the signal recycling mirror.
The second right column of Fig. 3 presents the optical
spring in the sensitivity more clearly and the noise level is
lower at 2–3 kHz compared with that of the leftmost
column. The other approach is to tune the readout phase. In
the second left column of Fig. 3, the readout phase ζ is
selected to be 85 deg for s ¼ 1=2, 64 deg for s ¼ 1=10,
47.25 deg for s ¼ 1=70, and 45.0947 deg for s ¼ 1=500. In
the rightmost column of Fig. 3, the readout phase ζ is
selected to be 120 deg for s ¼ 1=2 and s ¼ 1=10, 90 deg
for s ¼ 1=70, and 46.9 deg for s ¼ 1=500. Both the signal
and noise responses decrease in a certain frequency band,
and the sensitivity can reach a level of 10−24ð1= ffiffiffiffiffiffi

Hz
p Þ in

strain. The noise field is highly squeezed in the frequency
band between the optical spring and optical resonance
frequencies. However, this approach is highly sensitive to
the optical losses discussed in the following section.

IV. OPTICAL LOSSES OF THE
INTRACAVITY SYSTEM

In this section, we introduce optical losses in the
mathematical expression according to the calculation by
Yaginuma [33]. Here the squeeze angle rotation η is fixed to

zero for simplicity. The input-output relations of the fields
are given as

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵPD

p
ð−rsaþ ts f Þ þ

ffiffiffiffiffiffiffi
ϵPD

p
u;

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵSR

p
ðrs f þ tsaÞ þ

ffiffiffiffiffiffiffi
ϵSR

p
v;

c ¼ RðϕÞe; f ¼ RðϕÞSðs; 0Þd;
d ¼ Kce2iβ þ αheiβ; ð14Þ

where ϵPD and ϵSR are the optical losses at the photo
detection and optical losses in the SRC, respectively, and u
and v are the loss vacuums introduced at the photo
detection and SRC, respectively. The optical losses of
the end mirrors, the nonlinear crystal, and the beam splitter
are included in the loss in the SRC, as the frequency
responses are all identical. Solving the series of equations,
we obtain

b ¼ 1

ML ðALae2iβ þ HLheiβ þ Uuþ Vve2iβÞ; ð15Þ

with

FIG. 3. The frequency responses of signal (top) and noise (middle), and the quantum-noise limited sensitivity (bottom) of a detuned
signal-recycling interferometer with the parametric amplifier; dl stands for dimensionless. The readout phase is fixed to zero in the left
column and is tuned to improve the sensitivity in the right column. The optical losses are not included.
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ML¼ sþsr2sð1−ϵSRÞe4iβ
−rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵSR

p
e2iβ½ð1þs2Þcos2ϕþKsin2ϕ�;

AL
11¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p �
−
1−s2

2
t2s

þð1þr2sÞ
�
1þs2

2
cos2ϕþK

2
sin2ϕ

��

−srsð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD

p
e−2iβþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−2ϵSR

p
e2iβÞ;

AL
12¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p
t2s

�
1þs2

2
sin2ϕþKsin2ϕ

�
;

AL
21¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p
t2s

�
1þs2

2
sin2ϕ−Kcos2ϕ

�
;

AL
22¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p �
1−s2

2
t2s

þð1þr2sÞ
�
1þs2

2
cos2ϕþK

2
sin2ϕ

��

−srsð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD

p
e−2iβþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−2ϵSR

p
e2iβÞ;

HL
12¼−tsαð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵSR−2ϵSR

p
srse2iβÞsinϕ;

HL
22¼ tsαð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵPD−ϵSR

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵSR−2ϵSR

p
srse2iβÞcosϕ;

HL
11¼HL

21¼ 0;

V11¼ ffiffiffiffiffiffiffi
ϵSR

p
ts

�
1þs2

2
cos2ϕþK

2
sin2ϕ−srse2iβ−

1−s2

2

�
;

V12¼−
ffiffiffiffiffiffiffi
ϵSR

p
ts

�
1þs2

2
sin2ϕþKsin2ϕ

�
;

V21¼ ffiffiffiffiffiffiffi
ϵSR

p
ts

�
1þs2

2
sin2ϕ−Kcos2ϕ

�
;

V22¼
ffiffiffiffiffiffiffi
ϵSR

p
ts

�
1þs2

2
cos2ϕþK

2
sin2ϕ−srse2iβþ

1−s2

2

�
;

U11¼U22¼
ffiffiffiffiffiffiffi
ϵPD

p
ML;

U12¼U21¼ 0: ð16Þ

Here,we ignore higher-order terms of ϵPD and ϵSR. The signal
response function is given by jðHL

12 cos ζ þHL
22 sin ζÞ=MLj,

the noise response function is given by

FIG. 4. The frequency responses of signal (top) and noise (middle), and the quantum-noise limited sensitivity (bottom) of a detuned signal-
recycling interferometerwith the parametric amplifier; dl stands for dimensionless. The readout phase is fixed to zero in the left column and is
tuned to improve the sensitivity in the right column. The optical losses (1000 ppm in the SRC and 10% at the photo detection) are included.
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1

jMLj
h
jAL

11 cos ζ þ AL
21 sin ζj2 þ jAL

12 cos ζ þ AL
22 sin ζj2

þ jV11 cos ζ þ V21 sin ζj2 þ jV12 cos ζ þ V22 sin ζj2

þ jU11 cos ζ þ U21 sin ζj2 þ jU12 cos ζ þU22 sin ζj2
i1
2;

and the sensitivity is given by the ratio of the noise and the
signal components at ζ. Figure 4 shows the signal response
(top), the noise response (middle), and the quantum-noise
limited sensitivity (bottom) with the same interferometer
setup as that used in Fig. 3 but with optical losses ϵSR ¼
1000 ppm and ϵPD ¼ 10%. Note that the noise response
function is the root sum square of responses of dark port
vacuum and all the loss fields. Compared with the results
shown in Fig. 3, the noise response does not gomuch beyond
the level of thevacuum fluctuation at frequencies between the
optical spring andoptical resonance for rs ¼

ffiffiffiffiffiffiffiffiffi
0.99

p
anddoes

not reach the level for rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9995

p
. The signal response

decreases with loss, but the difference from the lossless case
is trivial. The approach to improve the sensitivity by fine-
tuning the readout phase turns out to be not as effective in the
presence of optical losses. On the other hand, the other
approach to improve the sensitivity by employing a high
reflectivity signal-recyclingmirror remains effective.The left
panel of Fig. 5 shows the contributions of the vacuum field
entering the interferometer through the dark port (a) and the
loss fields (v and u) with different rs. The parametric gain is
s ¼ 1=70, the detune phase is set to ϕfix for each curve,
and the readout phases are chosen to flatten the dark port
vacuum contributions on the floor; −28.6 deg, −45.8 deg,
−68.8 deg for r2s ¼ 99.5; 99.8; 99.95%, respectively. While
the dark port vacuum contribution decreases with a high
signal-recyclingmirror reflectivity, the loss contributiondoes
not depend much on the reflectivity. The right panel of Fig. 5
shows the magnitudes of the noise fields given by the

determinant of the matrices multiplied to the fields in
Eq. (15). Both the dark port vacuum and the intracavity
loss field are not only squeezed but magnified by the
intracavity parametric amplifier. The internal loss behavior
is explained in Appendix A.

V. TARGET SENSITIVITY

Figure 6 shows the target sensitivity obtained using an
intracavity parametric amplifier. The parameters used to
calculate the sensitivity are same as those used for the
orange curve in the second right panel of Fig. 4: s ¼ 1=70,
rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9995

p
, ζ ¼ 0, m ¼ 1 kg, and IBS ¼ 100 kW. The

loss contribution is dominant in the sensitivity. The signal
recycling mirror reflectivity is chosen to reduce the
influence of dark port vacuum contribution while main-
taining the floor bandwidth as high as 3 kHz. We show
three sensitivity curves, Advanced LIGO, KAGRA, and
Einstein Telescope, as references. It should be noted that
our target sensitivity does not include classical noise. The
target sensitivity is better than that of the second generation
detectors by some factors in the frequency band of
1–3 kHz.
The sensitivity could reach 10−24ð1= ffiffiffiffiffiffi

Hz
p Þ at 1–3 kHz

with more ambitious parameters: s ¼ 1=200, rs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9999

p
, ϵSR ¼ 100 ppm, m ¼ 5 kg, and IBS ¼ 300 kW

(ζ ¼ 80.2 deg, ϕ ¼ 44.1962 deg). The noise level is
comparable to the sensitivity of Einstein Telescope in
the frequency band, and it satisfies the requirement of
observing the postmerger remnant of a binary neutron star
collision with sufficient regularity, which is suggested in
the study of NEMO [4]. Almost the same sensitivity can be
realized with a decent requirement for the internal loss
if the arm length is increased to 4 km; the parameters
are as follows: s ¼ 1=200, rs ¼

ffiffiffiffiffiffiffiffiffiffiffi
0.999

p
, ϵSR ¼

1000 ppm, m ¼ 0.5 kg, and IBS ¼ 300 kW (ζ ¼ 0,

1/s

FIG. 5. Left: contributions of the dark port (DP) vacuum and the loss fields with different signal recycling mirror reflectivities. The
parametric gain is s ¼ 1=70 and the readout phase is chosen to flatten the noise floor for each curve. Right: magnitudes of the DP
vacuum field and the loss fields emerging from the interferometer regarding the inverse of the parametric gain s. The noise magnitude is
the area of the noise ellipse shown in Appendix A.
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ϕ ¼ 44.7336 deg). See Appendix B for a discussion of the
arm length.

VI. SUMMARY AND FUTURE PROSPECTS

We presented the intracavity signal amplification tech-
nique, one of the most promising techniques for next-
generation gravitational wave detectors to observe sources
in the kilohertz band. The quantum-noise limited strain
sensitivity can go beyond the sensitivity of second-
generation detectors and can even reach 10−24ð1= ffiffiffiffiffiffi

Hz
p Þ

with somewhat ambitious parameters. Our study revealed
that the noise field could be magnified with intracavity
amplifier in the presence of internal optical loss. This
interesting behavior of the internal loss can easily limit the
sensitivity; therefore the interferometer parameters should
be carefully chosen.
In this work, the squeeze angle rotation η is fixed to

zero or chosen to maximize the optical spring frequency.
It is because the purpose of the intracavity amplifier has
been to increase the optical spring frequency to a few
kilohertz. Choosing a different η, one can certainly
improve the sensitivity at different frequencies with the
optical spring. It would be thus an interesting option to
consider frequency dependent η to possibly improve the
sensitivity in a broad frequency band. This approach is
analogous to the frequency dependent squeezing tech-
nique [9] that has been implemented in the current
gravitational-wave detectors [34,35].
In parallel with the theoretical efforts to further improve

the sensitivity curve, it is essential to experimentally
demonstrate the effectiveness of the technique. Prototype
experiments have been conducted in multiple institutes.
Researchers at theUniversity ofWesternAustralia employed
a thin membrane as the test mass and observed the optical

spring with a single optical resonator and an intracavity
parametric amplifier [36]. Otabe et al. observed the optical
spring with a single resonator and an intracavity amplifier
but found the second harmonics generation of the carrier
light prevents the optical system for approaching the
threshold of the decent amplification of the signal field [37].
Harada et al. succeeded in operating the signal recycling
interferometer with an intracavity parametric amplifier,
attempting to observe the shift of the optical spring
frequency [38,39].
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APPENDIX A: OPTICAL LOSSES WITH THE
INTRACAVITY AMPLIFIER

In Fig. 5, we observe that the noise field magnitude
can be larger than the magnitude of the input field. This
interesting phenomena cannot be observed in the case
without an intracavity amplifier. The top panel of Fig. 7
shows the simple experimental setup of a single optical
resonator and intracavity amplifier. The vacuum field a is
injected from the left side through the input mirror with
amplitude reflectivity r1 ¼

ffiffiffiffiffiffiffiffiffi
0.99

p
and amplitude trans-

mittance t1 ¼
ffiffiffiffiffiffiffiffiffi
0.01

p
. The loss vacuum c is injected from

FIG. 6. Quantum-noise limited sensitivity with the intracavity parametric amplifier. The parameters used for the target sensitivity are
mostly the same as those used for the orange curve in the second right panel of Fig. 4: s ¼ 1=70, rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.9995

p
, ζ ¼ 0, m ¼ 1 kg, and

IBS ¼ 100 kW. The detune phase is slightly shifted from ϕfix (by 0.017 deg) to flatten the noise floor. Sensitivity curves of Advanced
LIGO (aLIGO), KAGRA, and Einstein Telescope (ET) are shown as references. We also plot a sensitivity curve with more ambitious
parameters, which reaches 10−24ð1= ffiffiffiffiffiffi

Hz
p Þ.
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the other side through the end mirror with r2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0.999

p
and

t2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
0.001

p
. The output fields are b on the left side and d

on the right side. Actually, the d field is lost and it cannot be
extracted in the end. Each output field comprises a fraction
of a and c, which are squeezed by the intracavity amplifier
with gain s. The bottom panel of Fig. 7 shows the
calculated noise magnitude of the contributing input fields
for each output field. Here the noise magnitude is the area
of the noise ellipse, which is given by the product of two
quadrature components, b1 × b2 for example, or math-
ematically by the determinant of the matrix multiplied by
the field. Let us focus on field a. A significant fraction of
the field is reflected and a small fraction transmits through
the resonator without the amplifier (s ¼ 1). The noise
magnitude is less than unity for either the reflected or
transmitted field. With the amplifier (let us consider s > 1),
the reflectivity and transmittance of the resonator are
given by

ra1 ¼
−r1 þ r2s
1 − r1r2s

; ra2 ¼
−r1sþ r2
s − r1r2

;

ta1 ¼
t1t2s

1 − r1r2s
; ta2 ¼

t1t2
s − r1r2

ðA1Þ

for each quadrature component. The noise magnitude at the
reflection becomes zero with s ¼ r2=r1ð≡sthÞ and the noise
magnitude both at the reflection and at the transmission
becomes infinity with s ¼ 1=r1r2. Above the threshold,
s > sth, the noise magnitude of the transmitted field
exceeds unity, and that of the reflected field exceeds unity
when s becomes larger than 1=r2. This irregular phenome-
non may appear to violate the energy conservation law;
however, the signs of the coefficients in front of the
reflected and transmitted fields are the opposite. If we
could coherently subtract the two fields with a certain
combination, then the output fields must have the magni-
tude of unity, but this is impossible because the transmitted
field is actually lost. The noise field ends up being
increased by the resonator with an intracavity amplifier.

APPENDIX B: ARM LENGTH
AND STRAIN SENSITIVITY

If the arm length is enlarged by a factor n, the detune
phase shall be reduced by the same factor to maintain the
same optical resonance. The parametric gain s0 required to
obtain the same optical spring frequency can be derived by
solving Eq. (13) with ϕ0 reduced by n or approximately
with sinϕ0 reduced by n:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ4sin22ϕ0

p
−A

2sin22ϕ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A02þ4sin2ð2ϕ0=nÞ

p
−A0

2sin2ð2ϕ0=nÞ
; ðB1Þ

where we consider the inside of the square root of
Eq. (13) and we define A ¼ s − 1=s and A0 ¼ s0 − 1=s0.
Equation (B1) can be reduced to the following form:

A0 ¼ 1

2

�
ð1þ ϵÞA −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϵÞ2A2 − 4ð1 − ϵÞ

q �
≃ ϵAðA ≫ 1Þ: ðB2Þ

Here, we define ϵ≡ ðsin2 ð2ϕ0=nÞ= sin2 2ϕ0Þ2, which
can be approximated as ≃1=n2 when the detune angle
(without parametric amplification) is sufficiently small.
Calculating the sensitivity, we can see that the noise level in
displacement is identical with a different arm length in the
lossless case.

FIG. 7. Top: Vacuum field a (red circle) injected to a single
optical resonator through the input mirror with the amplitude
reflectivity of r1 and the loss field c (blue circle) injected through
the end mirror with the amplitude reflectivity of r2. The output
fields b and d comprise of a (red ellipses) and c (blue ellipses),
both of which are squeezed by the intracavity parametric
amplifier. Bottom: magnitudes of the output fields as a function
of the parametric gain s. Below the threshold s ¼ r2=r1, the
squared sum of the magnitudes of each input field (either red or
purple in two plots) emerging from the two ports is kept in unity.
Above the threshold, the output fields are larger than the input
fields.
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