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A stochastic gravitational-wave (GW) background consists of a large number of weak, independent
and uncorrelated events of astrophysical or cosmological origin. The GW power on the sky is assumed
to contain anisotropies on top of an isotropic component, i.e., the angular monopole. Complementary to
the LIGO-Virgo-KAGRA (LVK) searches, we develop an efficient analysis pipeline to compute the
maximum-likelihood anisotropic sky maps in stochastic backgrounds directly in the sky pixel domain
using data folded over one sidereal day. We invert the full pixel-pixel correlation matrix in map-making
of the GW sky, up to an optimal eigenmode cutoff decided systematically using simulations. In addition
to modeled mapping, we implement a model-independent method to probe spectral shapes of stochastic
backgrounds. Using data from LIGO-Virgo’s first three observing runs, we obtain upper limits on
anisotropies as well as the isotropic monopole as a limiting case, consistent with the LVK results. We
also set constraints on the spectral shape of the stochastic background using this novel model-
independent method.
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I. INTRODUCTION

Direct detections of gravitational waves (GWs) from
Advanced LIGO [1], Advanced Virgo [2] and KAGRA [3]
detectors so far have been traced back to point-like sources,
which make up a tiny fraction of the GW sky. The bulk of
unresolved signals associated with multiple point sources
or extended sources combine incoherently to form back-
grounds of GWs. A stochastic gravitational-wave back-
ground (SGWB) consists of a large number of independent
and uncorrelated events which are typically individually
weak, i.e., below the detection threshold of the detector.
SGWBs can be categorized as either astrophysical, when
produced by low-redshift, individually indistinguishable
GW events [4,5], or cosmological [6], as a result of high-
energy events in the early Universe such as cosmic inflation
[7–9], cosmic string networks [10–13], primordial black
holes [14–16], and first order phase transitions [17–22].
Ground-based GW detectors are sensitive to SGWBs

constrained between tens of Hz and a few hundred Hz. In
other frequency bands, upper limits on SGWBs are set by
the isotropy of the cosmological microwave background
(CMB) [23] in the lowest frequencies [24], by timing
residual analyses in millisecond pulsars in the nHz band
[25], by normal modes of the Earth [26] and the Moon [27]
in the mHz to Hz band, and loosely by primordial

deuterium abundance from big bang nucleosynthesis
[28,29] over a broad frequency range.
Studying SGWBs may potentially open a window onto

∼10−32 s (at a redshift z > 1025) after the big bang. Our
current knowledge of the early Universe mostly comes
from the CMB [30,31], the relic electromagnetic (EM)
radiation from 380,000 years (z ∼ 1100) after the big bang
during the epoch of recombination. Before recombination,
the Universe was opaque to EM waves. Hence, GWs
present a unique opportunity to probe the earliest moments
of the Universe.
Background gravitational radiation is stochastic in the

sense that it can only be characterized statistically, in terms
of moments of its probability distribution. Stochastic GW
signals can mimic shot noise, appearing as individual bursts
in the timestream, or they can be described as Gaussian,
where a multitude of signals overlap so that the central limit
theorem applies. They may also exhibit popcorn-like
features in the time domain, with partially overlapping
signals but still far from the Gaussian regime [32]. To
differentiate between the aforementioned sources of sto-
chastic backgrounds, several subtraction or multi-fitting
methods have been proposed [33–35], which leverage on
the particular statistical nature of each signal contribution.
At cosmological scales, we assume the GW sky is

isotropic based on the isotropy of the CMB, which traces
the matter distribution in the Universe. However, at local
scales, the nonuniform distribution of astrophysical GW
sources may produce an anisotropic SGWB. Moreover,
similar to the CMB dipole anisotropy [36–38], our peculiar
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motion with respect to the SGWB rest frame induces a
recurring modulation affecting the dipole. It is thus fair to
assume the SGWB power contains anisotropic components
on top of an ensemble average isotropic value.
An approach to reconstruct the angular power distribu-

tion in an anisotropic SGWB is computing the maxi-
mum-likelihood map solutions using cross-correlated data
[39–41] from a network of ground-based GW detectors.
This is typically done assuming stationary Gaussian detec-
tor noise and a specific model for the spectral power
distribution of the signal, and employing a weak-signal
approximation [42,43]. The latter implies we can ignore
any signal contribution to the data auto-correlations,
essentially allowing us to estimate the noise covariance
from the data directly [44]. Mapping can be carried out in
any set of basis functions on the sky, e.g., spherical
harmonics of the SGWB power as adopted by the LIGO
Scientific, Virgo and KAGRA (LVK) collaboration [45,46],
or sky pixel indices as in [47–52].
Directional searches by the LVK collaboration [46,53–55]

include the broadband radiometer analysis (BBR) [56], the
spherical harmonic decomposition (SHD) [43], the narrow
band radiometer analysis (NBR) [56], and the all-sky, all-
frequency analysis (ASAF) [57]. The BBR targets persistent
point sources emitting GWs over a wide frequency range,
whereas the SHD hunts for extended sources with smooth
frequency spectra. TheNBR inspects frequency spectra from
specific locations on the sky, such as Scorpius X-1, SN
1987A and the Galactic Center, in narrow frequency bands.
The ASAF scans the sky in individual frequency bins,
searching for excess GW power for each pixel-frequency
pair. The BBR, SHD and NBR approaches integrate over
frequencies employing a filter which includes a power-law
model for the SGWB power spectrum, while the ASAF is a
generic unmodeled search. Out of all of these, the SHD
search is the only one that takes pixel-pixel correlations into
account.
Complementary to the LVK searches, we present an

efficient analysis pipeline built in PYTHON to map anisot-
ropies in SGWBs directly in the sky pixel domain using
data folded over one sidereal day. Our pipeline is tailored to
folded data [58–60], which assumes the SGWB signal is
stationary (i.e., is time-independent) and exploits the
temporal symmetry of the Earth’s rotation to reduce the
computation time by a factor of total observing days. In
the pipeline, we use the HEALPix hierarchical pixelization
scheme [61], in which the sky is discretized into equal area
elements. We invert the “full” pixel-pixel correlation matrix
in map-making of the GW sky, up to an optimal eigenmode
cutoff decided systematically using simulations. In addition
to modeled maximum-likelihood mapping, we implement a
spectral-model-independent method to probe the spectral
shape of a SGWB based on previous work in [50], now
taking into account the deconvolution regularization prob-
lem systematically as a function of frequency. In both
approaches, sky maps are converted from the pixel domain

to the Fourier domain to place upper limits on the angular
power spectrum, as well as the power spectrum of the
monopole component of the background.
In Sec. II, we outline our methodology to compute the

maximum-likelihood map solutions of the SGWB sky
power assuming a standard model for the power spectrum.
In Sec. III we outline our unmodeled approach to mapping,
where we employ adaptive frequency-banding and an
adaptive pixelization scheme to probe the shape of the
signal power spectrum, as well as recovering the angular
distribution. In Sec. IV, we describe the various simulations
used to verify our pipeline. In Sec. V, we apply our pipeline
to data from LIGO–Virgo’s first three observing runs
(O1–O3). In Sec. VI, we discuss our results and outlook
for upcomingobserving runs and the field ofGWcosmology.

II. SGWB MAPPING

A. Energy density spectrum

A SGWB is characterized by its spectral emission.
Specifically, we introduce a dimensionless quantity, the
normalized GW energy density spectrum,

ΩGWðfÞ≡ 1

ρc

dρGW
d log f

; ð1Þ

where ρGW is the GW energy density and ρc is the critical
energy density required to close the Universe today,

ρc ¼
3H2

0c
2

8πG
: ð2Þ

Here, c ¼ 2.998 × 108 ms−1 is the speed of light and
H0 ¼ 67.4 km s−1 Mpc−1 [62] is the Hubble expansion
rate of the current epoch (with some controversy on its
measured value in the literature [62–65]). Conceptually,
ΩGWðfÞðdf=fÞ is the ratio of the GWenergy density to the
total energy density required to close the Universe today in
a small frequency interval from f to f þ df.
ΩGWðfÞ is a sky-averaged quantity, and may be written

as an integral over the sky of the directional energy density
ΩGWðf;ΘÞ,

ΩGWðfÞ ¼
1

4π

Z
S2
dΘΩGWðf;ΘÞ; ð3Þ

where Θ is a direction on the sky on the two sphere in a
general basis. ΩGWðf;ΘÞ may be interpreted as the energy
density spectrum in each direction, and is the target of
several anisotropic stochastic background searches. As our
detectors measure GW strain, it is useful to report the
relation between the energy density and the GW strain
power Pðf;ΘÞ,

ΩGWðf;ΘÞ ¼
4π2

ρcG
f3Pðf;ΘÞ: ð4Þ
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This follows directly from Isaacson’s formula for GW
radiation, which implies [32,66]

ρGW ¼ π

G

Z
∞

0

df
Z

dΘf2Pðf;ΘÞ: ð5Þ

Different conventions are used at times when defining the
normalization of the quantities above. We employ the
conventions as in [32].
For the sake of simplicity, stochastic searches typically

assume that the directionality and the spectral shape of the
signal are independent, such that the GW strain power
Pðf;ΘÞ in Eq. (4) may be factored into a spectral term and
an angular term,1

Pðf;ΘÞ ¼ HðfÞPðΘÞ: ð6Þ

The spectral shape HðfÞ is usually modeled as a power
law given by

HαðfÞ ¼
�

f
fref

�
α−3

; ð7Þ

where α is the spectral index and fref is a reference fre-
quency. This choice of model is well-motivated by many
astrophysical and cosmological models [5,6], however
there are well-known spectral shapes outside this regime,
e.g., the combined SGWB from compact binary coalescen-
ces (CBCs) at higher frequencies [67]. The power-law
assumption is a good approximation for the CBC SGWB
at current detector sensitivities, but is expected to break down
as sensitivity increases. For a direct comparison with the
LVK results [46], we also set fref to 25 Hz.
PðΘÞ in Eq. (6) is the angular power distribution that can

be expanded in a set of chosen basis functions eηðΘÞ on the
two sphere,

PðΘÞ ¼
X
η

PηeηðΘÞ: ð8Þ

For a pixel basis, we write

PðΘÞ≡ PðΘpÞ ¼ Pp0δðΘp;Θp0 Þ; ð9Þ

where Pp0 is the power of the signal in each pixel. For a
spherical harmonic expansion,

PðΘÞ ¼
X∞
l¼0

Xl

m¼−l
PlmYlmðΘÞ; ð10Þ

where Plm are the spherical harmonic coefficients of the
signal and YlmðΘÞ are the spherical harmonic basis

functions. Note that in general the units of sky power
components may be different depending on the basis and
conventions used. Here, we assume units of GW sky power
are strain power per steradian.

B. Cross-correlation statistic

The SGWB strain signal is best understood as a super-
position of sinusoidal plane waves coming from all
directions on the sky,

hμνðt; xÞ ¼
Z

∞

−∞
df

Z
S2
dΘ

X
P¼þ;×

hPðf;ΘÞePμνðΘÞei2πfϕ;

ð11Þ

where ϕ ¼ ðt − Θ · x=cÞ. Here, x is a position vector in a
general coordinate system. A GW detector in location x
such as an interferometer measures

hðtÞ¼
Z þ∞

−∞
df

Z
S2
dΘ

X
P¼þ;×

FPðf;ΘÞhPðf;ΘÞei2πfϕ; ð12Þ

where FP is the polarization response function of the
detector, defined for example in [32]. As instrumental
noise is itself stochastic, this sort of signal is not clearly
distinguishable from noise in a single detector, in particular
in the case where the signal is weak with respect to the
noise and both are hard to model independently. However,
even a weak stochastic background induces a correlated
signal across multiple detectors. In current stochastic
searches performed on LIGO-Virgo data, the noise is
assumed to be fully independent between detectors, hence
the cross-correlation of the data streams yields an optimal
statistic for the stochastic signal. The latter is often referred
to in the literature as an optimal filter [68], and we describe
its application as an estimator for the SGWB signal in what
follows.
Consider the case of a baseline I made up of two ground-

based GW detectors 1, 2 each with data output

sðtÞ ¼ hðtÞ þ nðtÞ; ð13Þ

where hðtÞ denotes the strain due to a SGWB and nðtÞ
denotes the detector noise. When detector noise is uncorre-
lated within the baseline, the expectation value of the cross-
correlation between the strain in detector 1, s1, and the
strain in detector 2, s2, will be sensitive to the signal
component only. This can be intuitively derived as

hCIi ¼ hh1h2i þ hh1n2i þ hh2n1i þ hn1n2i
≃ hh1h2i þ hn1n2i ≃ hh1h2i: ð14Þ

We drop terms hh1n2i and hh2n1i since the GW signals and
the instrumental noise are uncorrelated. The angle brackets
here refer to an ensemble averaging, which is taken in

1See Sec. III for a brief discussion of the validity of this
assumption.
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practice by averaging over time, as well as frequency,
baselines, and all other available independent measure-
ments of the signal.
We do not consider correlated noise in our discussion.

However, there exists a type of noise, Schumann magnetic
resonances caused by the EM field of the Earth, which
can mimic a correlated SGWB in the detectors. Several
methods have been proposed to mitigate these effects in a
GW detector network, including noise subtraction methods
[69–72], the “GW Geodesy” method [73,74], and spectral
modeling [75].
In practice, it is usually more efficient to work with data

divided into smaller time segments and transformed to the
frequency domain, making use of the fast Fourier transform
(FFT) [76] algorithm and parallel processing. In the case
we consider here, the data are split into segments of equal
duration τ, where τ is much bigger than the light travel time
between the two detectors but small enough so that detector
response functions do not change significantly over the
interval. The cross-spectral density (CSD) for a baseline I
of two detectors evaluated in time segment labeled t and at
frequency f is defined as

CIðt; fÞ ¼ 2

τ
s̃�1ðt; fÞs̃2ðt; fÞ ≃

2

τ
h̃�1ðt; fÞh̃2ðt; fÞ; ð15Þ

where s̃ðt; fÞ is the short-term Fourier transform (SFT) of
sðtÞ of duration τ. For conventions used, please see [77].
Then, by Eq. (6) and the SFT of Eq. (11), the expectation
value of CIðt; fÞ is given by [77]

hCIðt; fÞi ¼ τHðfÞ
X
η

Pηγ
I
ηðt; fÞ; ð16Þ

where γIηðt; fÞ here is the unnormalized overlap reduction
function (ORF), which describes the correlated sensitivity
of the baseline to the sky and frequency modes of the
signal.
In the pixel basis, η → p, so that the unnormalized ORF

becomes

γIp;tf ¼
X

P¼þ;×

FP
1 ðt;ΘpÞFP

2 ðt;ΘpÞei2πfΘp·△xðtÞ=c; ð17Þ

where FPðt;ΘpÞ are detector response functions for P ¼
fþ;×g plane polarized waves, and Θp is the general
direction on the sky discretized in the pixel domain, i.e.,
it is the direction pointing to the center of the pixel p. The
ORF can be transformed to the spherical harmonic basis by

γIlm;tf ¼
Z
S2
dΘpγ

I
p;tfY

�
lmðΘpÞ: ð18Þ

Note that the normalization of this function on the whole
sky is 5=ð8πÞ [68].

Using compact notation with summation over directions
Θ on the sky implied, we put the signal model Eq. (16) in a
general basis into matrix form

hCI
tfi ¼ KI

tfη · Pη; ð19Þ

where

KI
tfη ≡ τHðfÞγIηðt; fÞ: ð20Þ

The noise covariance matrix for the CSD is sub-
sequently [77]

NI
tf;t0f0 ≡ hCI

tfC
I�
t0f0 i − hCI

tfihCI�
t0f0 i

≈
τ2

4
δtt0δff0Pn1ðt; fÞPn2ðt; fÞ; ð21Þ

where the one-sided noise power spectrum Pn satisfies

hs̃ðt; fÞs̃�ðt0; f0Þi ≃ hñðt; fÞñ�ðt0; f0Þi
¼ τ

2
δtt0δff0Pnðt; fÞ: ð22Þ

To lighten the notation in remaining derivation, we drop
superscripts for detector baselines and subscripts for
function dependencies when there is no confusion.

C. Maximum-likelihood maps

We assume detector noise is Gaussian and stationary on
the timescale τ, and further assume that the SGWB is
Gaussian, unpolarized, and its spectral shape HðfÞ is
known.2

The likelihood function for the cross-correlation statistic
of a single baseline is then (using short-hand notation)

LðCjPÞ ∝
Y
tf

exp

�
−
1

2
χ2ðPÞ

�
; ð23Þ

where, given the signal model in Eq. (19), the chi-squared
statistic is

χ2ðPÞ≡ ðC − hCiÞ†N−1ðC − hCiÞ
¼ ðC − K · PÞ†N−1ðC − K · PÞ; ð24Þ

where the dot product indicates a sum over spatial indices.
Maximizing the likelihood function Eq. (23) with respect

to P is equivalent to minimizing the chi-squared statistic
Eq. (24). By matrix differentiation, we derive the maxi-
mum-likelihood estimates of angular power spectrum, the
clean map,

2In case of a non-Gaussian signal, we can expect the approach
to be sub-optimal, as the likelihood used does not capture key
features of the signal. In case of a polarized background, extra
terms to the ORF must be considered [48].
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P̂η ¼
X
η0
Γ−1
ηη0Xη0 ; ð25Þ

where X is the so-called dirty map, and Γ is the Fisher
information matrix.
The dirty map represents the GW sky seen through the

beam matrix of the two detectors and is given by

Xη ¼
X
tf

K†
tfηN

−1
tf Ctf: ð26Þ

The Fisher matrix, which can be interpreted as a point
spread function, codifying how signals from point sources
spread elsewhere due to finite coverage of the sky by a
network of GW detectors, is

Γηη0 ¼
X
tf

K†
tfηN

−1
tf Ktfη0 : ð27Þ

The specifics of the derivation are described in [48].
The clean map statistic can be viewed as a directional
extension of the optimal statistic derived in [68], and is thus
robust to noise nonstationarity on timescales longer than
the analyzed time segment τ, as it consists of an inverse
noise-weighted average over segments.
The above derivation for a baseline of two GW detectors

is easily generalized to a multidetector network. Assuming
each baseline provides an independent measurement of the
signal, it is sufficient to sum dirty maps and Fisher matrices
over all baselines in the network

X ¼
X
I

XI; Γ ¼
X
I

ΓI; ð28Þ

to obtain the network clean map using Eq. (25).
In the weak signal limit, we can further show [43]

hX · X†i − hXihX†i ≈ Γ; ð29Þ

hP̂ · P̂†i − hP̂ihP̂†i ≈ Γ−1: ð30Þ

Therefore, Γ is the covariance matrix for the dirty map X
and Γ−1 is the covariance matrix for the clean map P̂.
We can then define the signal-to-noise (SNR) map to be

the result of the matrix multiplication [49]

ρ ¼ Γ−1
2 · P̂; ð31Þ

which takes off-diagonal elements of the Fisher matrix into
account, and the noise standard deviation map to be

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagΓ−1

p
: ð32Þ

The noise map so defined is only sensitive to diagonal
elements of the inverse Fisher matrix, ignoring all

pixel-pixel correlations. However, correlations between
different locations on the sky are nontrivial. The noise
map is thereby only an approximation of the noise standard
deviation of the estimator P̂. In the case of a singular Fisher
matrix, the calculation of the SNR requires regularizing
adjustments as described below.
The dirty maps and Fisher matrices may be calculated

over broad frequency bands to improve detection statistics.
However, this implies integrating over the spectral shape of
the SGWB,HðfÞ, hence the resulting clean map Eq. (25) is
a biased estimator of the angular power distribution, as
we do not knowHðfÞ a priori. The standard spectral-model
approach is to assume a power-law spectral model HαðfÞ
as in Eq. (7) and estimate P̂ for a set of α candidates.
We consider here three possible spectral index values, in
keeping with the LVK searches [46]: α ¼ 0, a flat energy
density spectrum consistent with many cosmological mod-
els [6]; α ¼ 2=3, an astrophysical background dominated
by CBCs [5]; and α ¼ 3, a generic flat strain spectrum [78].
Other approaches, such as the ASAF approach, solve for P̂
in each frequency bin, and do not require a model forHðfÞ;
however, in this case it is not possible to invert the full
Fisher matrix, as it is prohibitively singular in a single
frequency bin. This is the main motivation for integrating
over broader frequency ranges when taking pixel-pixel
correlations into account.

D. Deconvolution regularization

To perform the deconvolution in Eq. (25), we need to
invert the Fisher matrix which is typically singular due
to the uneven sampling of the sky. In the absence of
detections, current search methods employed by both the
LVK collaboration and independent groups condition the
Fisher matrix in an ad hoc way; specifically, the LVK has
proceeded either by restricting only to diagonal elements
and hence ignoring all pixel-pixel correlations as in the
BBR search for point sources, or discarding the smaller 1=3
of eigenvalues and fixing a maximum multipole as in the
SHD search for extended sources [46]. Other groups have
instead chosen a fixed condition number for the Fisher
matrix [49,50]. It is clear that moving toward the detection
era for SGWBs systematic ways to better regularize the
Fisher matrix must be established, especially to claim
confident detections.
The Fisher matrix is in general singular since there exist

null directions the detector network is insensitive to
[48,79]. The current level of singularity may be seen in
the right panel of Fig. 1, where eigenvalues of the LIGO
Hanford-LIGO Livingston-Virgo (HLV) network Fisher
matrix with present data are shown. To address this issue,
we use a singular value decomposition (SVD) [80] of the
Fisher matrix to rank contributing directions and discard
eigenmodes which carry little information [43]. The inher-
ent condition number of the matrix, i.e., the ratio between
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the minimum and maximum eigenvalues, depends on the
spectral shape. Including too many eigenmodes introduces
unwanted noise whereas discarding too many eigenmodes
sacrifices signals. The SVD technique allows to condition
the matrix, i.e., impose an eigenvalue threshold such that all
normalized eigenvalues that are smaller than the imposed
condition number are discarded. This approach was pre-
viously explored systematically in [52]. In the rest of this
paper, the notation Γ−1 indicates a regularized inverted
Fisher matrix, and Γ is the regularized Fisher matrix. In
particular, in calculating the SNR as presented in Eq. (31),
we employ the square root of the regularized Fisher matrix.
We present a method to determine this threshold empiri-

cally via simulations. For each spectral index α, we impose
the condition number returning the least residual sum of
squares (RSS) from a respective high SNR monopole
simulation,

RSS ¼ ðPinj − P̂ÞTðPinj − P̂Þ; ð33Þ

where Pinj is the injected monopole. Monopole simulations
are used for the calculation since we expect an intrinsic
monopole irrespective of spectral shapes, and stronger than
any higher multipoles [32]. The monopole simulations are
generated using the HLV detector network configuration in
its O3 sensitivity, since most sensitivity of the combined
O1þ O2þ O3 runs comes from O3. The residuals com-
puted for different condition numbers are illustrated in the
left panel of Fig. 1. The optimal condition numbers with the
smallest residuals for different power laws are listed in
Table I. The percentages of eigenvalues kept using the
optimal condition numbers are also shown in Table I. Note
these are quite different from the nominal value of 2=3 in
the LVK SHD searches, and depend strongly on the spectral
index. The comparison between the Fisher matrix

eigenvalues and the associated optimal condition numbers
for the HLV network for different power laws is shown in
the right panel of Fig. 1.
A GW detector network is diffraction-limited, i.e., the

resolution and hence the point spread function inherently
depends on the frequency of the source. Choosing a pixel
basis with a higher resolution than the internal detector
resolution at the relevant signal frequencies compromises
SNRs of the deconvolved map. The angular resolution
of a two-detector baseline is estimated by the diffraction
limit [81]

△θ ≃
λ

2D
¼ c

2fD
; ð34Þ

where D is the baseline length. The expected angular
resolution lmax ¼ π=Δθ per frequency for our analyses can
be derived from Eq. (34), with some technicalities. The HL
baseline length DHL ¼ 3002 km is used throughout the
analyses for being the most sensitive baseline, so we expect
this baseline to dominate the resolution. Furthermore, for
broadband analyses we expect each frequency to contribute
as a function of overall signal spectral shape [46]. While we
quote results at a fixed reference frequency in this case,

FIG. 1. The left panel shows the condition numbers (i.e., eigenvalue thresholds) and resulting normalized residual sums of squares for
power laws of spectral indices 0, 2=3 and 3. We select the threshold returning the least residual sum of squares in a monopole injected
simulation for each spectral index. The right panel illustrates the comparison between the Fisher matrix eigenvalue distributions for the
HLV network for different values of α. The horizontal dashed lines show the optimal thresholds determined via monopole simulations.

TABLE I. Optimal condition numbers and associated per-
centages of eigenvalues kept for Fisher matrices of the HLV
network in its O3 sensitivity. Results are computed empiri-
cally via monopole injected simulations in a pixel basis of
Npix ¼ 3072 pixels.

α Condition number Percentage of eigenvalues

0 10−5.5 27.51%
2=3 10−5.5 48.93%
3 10−3.5 100%
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chosen in line with previous results, this frequency does not
determine our angular resolution. On the other hand, for the
banded approach described below, we quote results at the
midpoint of each frequency band considered. As these
are not broad-band integrated results, the reference fre-
quency used here can give a reasonable estimate of
the expected angular resolution in each band. Note that
a recent study shows that the diffraction limit is not optimal
to resolve sources [82], however we are most concerned
here with maximizing the detection statistic, not the
recovered resolution. In our pixel-basis approach, we use
this limit as a lower bound on the number of pixels to use,
so as to over-resolve the anisotropies. The upper bound on
pixel number is set by Fisher matrix regularization, as
described below.
Finally, adding more detectors to the network is a form of

regularization, since it provides larger coverage of the sky.
With ever-improving sensitivities of existing detectors and
addition of new detectors (KAGRA [3] and LIGO India
[83]) in the future, Fisher matrices in modeled broadband
searches will be much better conditioned so that specialized
regularization techniques will become less important. On
the other hand, however, the spectral-model-independent
method described in Sec. III relies heavily on trustworthy
regularization of all Fisher matrices in its narrowband
searches.

E. Multipole moments

Extended anisotropies are parameterized in multipole
moments of the power on the sky, which are quantified by
their spherical harmonic coefficients. We carry out our
analysis in the pixel domain by choosing a pixel basis
expansion as in Eq. (9). Hence, to obtain limits on
anisotropies about the mean background, we convert from
the pixel basis to the spherical harmonic basis.
We can construct estimators of spherical harmonic

coefficients P̂lm for the GW sky directly using estimated
angular power in pixels P̂p by

P̂lm ¼ ðY† · Γ · YÞ−1 · ðY† · Γ · P̂pÞ; ð35Þ
where Y ¼ Ylm;p is the spherical harmonic basis matrix.
Noise in the Fourier domain can be computed as [50]

N̂l ¼
1

1þ 2l

X
m

����
X
pp0

Ylm;pΓpp0Y�
p0;lm

����
2

: ð36Þ

Analogous to the approach in CMB experiments, we
construct unbiased estimators of the squared angular power
Ĉl in the spherical harmonic basis by

Ĉl ¼
1

1þ 2l

X
m

jP̂lmj2 − N̂l: ð37Þ

Assuming a spectral index α, our maximum-likelihood
estimates P̂η of the GW angular power spectrum yield an

estimate of the normalized GW energy density ΩGW at a
reference frequency fref, integrated over a broad band of
frequencies. The normalized GW energy density at the
reference frequency fref is calculated using the noise-
weighted monopole value P̂00 of the GW power across
the sky estimated from the maps by Eq. (35),

Ωα ≡ΩGWðfrefÞ ¼
2π2

3H2
0

f3refP̂00: ð38Þ

Note the computation of P̂00 includes a normalization by a
factor of 5=ð8πÞ due to the normalization of detector
overlap functions [68]. The GW energy density spectrum
at arbitrary frequencies is then obtained by rescaling
the frequency-integrated estimate of ΩGW with its spectral
shape,

ΩGWðfÞ ¼ Ωα

�
f
fref

�
α

: ð39Þ

III. SPECTRAL-MODEL-INDEPENDENT
APPROACH

In Eq. (6), we assume the GW power on the sky can be
factored into separate directional and frequency compo-
nents, and we further assume the spectral shape is a power
law of index α as in Eq. (7). Though these two simplifi-
cations are motivated by many astrophysical and cosmo-
logical models [5,6], they are not exact and will eventually
break down.
There are SGWBs with non power-law spectral shapes.

For example, in low frequencies, the SGWB due to CBCs is
well modeled by a power law of spectral index 2=3.
However, in high frequencies, we expect a spectral turnover
determined by the redshift-dependent star formation rate
and the average total mass of binary black holes (BBHs)
[84,85]. Measuring this turnover will thus allow us to probe
the average BBH total mass, the evolution of that quantity
over cosmic time, and the star formation history of the
Universe. Moreover, there may even be backgrounds with
direction-dependent spectral emission, which the spectral-
model search is not optimal for.
A generic, spectral-model-independent approach thus

allows us to probe the spectral shape of the SGWB and
potentially identify contributing sources and mechanisms.
Toward building a general, model-agnostic search for
SGWBs, a first step is to reduce the assumption of spectral
shapes to a minimum while maintaining the GW strain
power factorization.

A. Adaptive frequency banding

To reconstruct the spectral dependence of a SGWB, we
run map-making in distinct frequency bands of adaptively
chosen bandwidths. The number of bands is a user input to
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the pipeline, which ideally is numerous enough to achieve a
good approximation of the spectral shape. Nevertheless, it
competes with the conditioning of the Fisher matrix in each
band. Each band needs to be wide enough for the Fisher
matrix to be adequately well-behaved so as to allow
inversion. With the number of bands as input, the algorithm
chooses frequency endpoints with each band containing
equal amount of noise-weighted strain power. Within each
band, we then assume a fixed, least-informative prior flat
in energy density, HαðfÞ ∼ f−3, to run map-making. The
optimal condition number of the Fisher matrix for each
band would ideally be determined independently using the
method presented in Sec. II D with a monopole simulation
in that band. However, running a simulation for each band
is computationally expensive. At the current sensitivity
level, we choose to use the broadband optimal condition
number in Table I for each spectral shape as a proxy. With
the assumption of an angular-independent spectral shape
and with the Fisher matrix properly conditioned, estimated
GW energy densities in each frequency band trace out the
strain power spectral dependence.

B. Adaptive pixelization

In the spectral-model-independent method, a single
angular resolution does not accommodate all frequency
bands due to different diffraction limits estimated via
Eq. (34). Fixing an angular resolution across all bands
over-resolves lower frequencies and hence impairs the
Fisher matrix conditioning, and under-resolves higher
frequencies and hence loses attainable SNRs. We therefore
independently estimate the expected angular resolution for
each frequency band using Eq. (34), with D ¼ DHL and f
to be the midpoint of the band. We limit ourselves to the
optimal resolutions within the HEALPix package [61] (i.e.,
choices of resolution Nside ¼ 2n), implying a coarse res-
olution variation over frequency bands, as described in
Sec. IV. We choose the pixel resolution such that point
sources are over-resolved: specifically, spread across four
pixels. We leave the pixelization optimization as well as the
exploration of alternative pixelization schemes which allow
for finer resolution variations for future work.

IV. SIMULATIONS

We demonstrate the maximum-likelihood mapping
method in the pixel domain outlined in Sec. II C in the
spectral-model-dependent case by running our pipeline to
recover various injected maps for power-law models of
spectral indices 0, 2=3, and 3. We also illustrate the
spectral-model-independent approach to probe spectral
dependence as described in Sec. III via simulations using
a realistic spectral shape from the population studies of
GWTC-3 [67]. We use the present sensitivity from the HLV
detectors to construct the simulations, released publicly in
[86]. For all spectral models, we inject loud angular power

distributions of monopoles, Gaussian random fields, and
random point sources on the sky. The simulated input strain
power is h2 ∼Oð10−45Þ for the map-making verification,
while we use h2 ∼Oð10−40Þ for the spectral-model-
independent method testing. These may be considered very
high SNR cases at present sensitivity, as may be observed
in the SNR maps presented in Fig. 2.
The simulated data consist of sequential CSD frequency

segments corresponding to time segments of τ ¼ 96 s over a
sidereal day, same as the LIGO-Virgo folded dataset format
[86], where changes in ORFs are negligible and the noise
within each segment stays constant to a good approximation.
We simulate CSDs for all three baselines in theHLV detector
network in [20, 1726] Hz in both the spectral-model-
dependent and independent cases. We then run the complete
analysis pipeline to compute maximum-likelihood map
solutions for comparisons with injected maps.
We generate simulated CSD time series via Eq. (19).

We also add simulated Gaussian noise consistent with
the representative LIGO noise curve [87,88]. To verify
the pipeline implementation, we use Eqs. (25)–(27) to
compute P̂.
With expected SGWBs and associated spectral indices in

mind, we demonstrate the map-making functionality in
three cases: a monopole map with α ¼ 0; a Gaussian
random field with α ¼ 2=3 and an maximum resolution
lmax ¼ 8; and a map of 30 random point sources with
α ¼ 3. We run our searches in the frequency range of
[20, 1726] Hz, similarly to the LVK broadband searches
in O3 [46]. We choose a pixel basis of 3072 pixels, or
equivalently Nside ¼ 16 in the HEALPix scheme, with each
pixel covering 13.4 deg2.
In Fig. 2, we show input maps, reconstructed clean maps,

SNR maps and normalized residual maps for all three cases.
All injected maps are successfully recovered, with minimal
residual maps. We have also verified all combinations of
injected maps and spectral indices not shown in Fig. 2. Note
that our mapping method in the pixel domain successfully
recovers both extended sources as in the case of the
monopole and Gaussian maps as well as the map with 30
random point sources, although with some caveats. The
“point” sources are generated in the same resolution as the
recovery map, meaning that each “point” here spans
13.4 deg2. For a more realistic check, point source simu-
lations need to be generated at a finer resolution and
recovered by coarser graining. Also, for α ¼ 3, the Fisher
matrix is well-conditioned hence we do not need to apply
conditioning in its inversion. Without the information loss,
point sources for α ¼ 3 are well recovered whereas for other
spectral indices the recoveries manifest leakage and loss of
resolution. An example of point source recovery for α ¼ 0 is
shown in Fig. 3, illustrating the “smearing” of the point
source recovery. Limited by computational resources, we
defer work on improving the resolution on the clean map to
future work.
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For spectral-model-independent narrowband searches,
we show the pipeline’s capability to probe spectral shapes
using injected maps of a monopole, a Gaussian random
field and 30 random point sources. The pipeline runs map-
making in 30 adaptively chosen frequency bands in the
search range of [20, 1726] Hz for each simulation. In each
band, we set f to be the midpoint frequency, and

adaptively produce sky maps of 192, 768, 3072 pixels,
or equivalently Nside ¼ 4, 8, 16 in the HEALPix scheme,
with each pixel covering 214.9 deg2, 53.7 deg2, 13.4 deg2

respectively. These choices allow for good regularization of
the Fisher matrix, and allow us to aptly over-resolve
anisotropies according to the diffraction limit. We plot
the reconstructed spectral shapes and energy densities in

FIG. 2. Top to bottom: input, clean, SNR, and normalized residual maps from simulations described in Sec. IV. From left to right:
monopole (α ¼ 0), Gaussian random field (α ¼ 2=3), 30 random points (α ¼ 3). For all simulations, the pixel with the maximum
residual is at the level of a few percent of the injected signal. We have verified that the residuals are Gaussian distributed with norm 1. In
the monopole reconstruction, the SNR map presents a characteristic horizontal band due to the shape the ORF traces on the sky over
1 day; this may be also noticed in Fig. 9. In the Gaussian field case, the injected map has patches of zero power, and is thus more subject
to poor estimation due to noise fluctuations than the other cases shown. In the case of 30 random points, the SNR map presents a residual
of the point-spread function with negative values as it is the result of the matrix operation in Eq. (31), which can give rise to negative
fluctuations where the pixel power is very low.
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each case, along with the target model in Fig. 4. In the
first two cases, map monopoles in different bands
collectively trace out the expected spectral shape. The
recovery of the spectrum is harder in the case of random
point sources: we find that the monopole is not well
recovered at lower frequencies, while the spectrum
emerges in the higher frequency bands. As may be
observed in Fig. 5, the recovered maps at lower
frequencies do not resolve the point sources, causing
GW power leakage. More on this sort of effect is

explained in [89]. This may also be due to a sub-optimal
conditioning of the Fisher matrix, which can be explored
by repeating simulations as described in Sec. II D in
each individual frequency band.

V. APPLICATION TO LIGO-VIRGO DATA

We apply the methods outlined above to real data
obtained by the LIGO and Virgo GW detectors. Our results
clearly show no evidence for a signal, in agreement with the

FIG. 3. Example of recovery of 30 point sources for α ¼ 0. The smearing of the point spread is not completely deconvolved due to the
singularity of the Fisher matrix in this case. The negative power in P̂ is due to noise fluctuations.

FIG. 4. Reconstructed normalized energy densities and spectral dependencies in 30 adaptive frequency bands for maps of a monopole
(blue), a Gaussian random field (orange), and 30 random point sources (green) for a non-power law spectral shape. On the left:HðfÞ; on
the right: ΩðfÞ, as defined in Eqs. (4) and (6). The spectral shapes are well reconstructed for maps of extended sources (note that the
recoveries almost overlap in the plots), whereas for point sources reconstruction is imperfect in particular in the lower frequency bands.
See the text for details.

FIG. 5. Left to right are input map for the spectral-model-independent run in 30 adaptive frequency bands and reconstructed clean
maps for bands [20, 93.46875] Hz and [1092.71875, 1726] Hz.
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LVK results [46], hence we set upper limits on anisotropies
as well as the isotropic monopole as a limiting case using
the maximum-likelihood mapping method in the pixel
domain described in Sec. II. We also set constraints on
the spectral shape of the SGWB using the spectral-model-
independent method described in Sec. III.
For the analyses, we use the publicly available folded

datasets of the first three observing runs of Advanced LIGO
and Advanced Virgo [86]. The strain time series is Fourier
transformed and cross-correlated between each available
pair of detectors in the network at the time of observing.
The cross-correlated data from each pair are then folded
over one sidereal day [58,59], reducing the computation
time for anisotropic searches by a factor of the number of
total observing days. This makes the processing of sto-
chastic searches feasible in any modern-day personal
computer. For O1 and O2, cross-correlated data only exist
for the HL baseline, while for O3, data from all three
combinations, HL, HVand LV, are available. Each sidereal-
day folded dataset is chunked into 898 segments, with each
segment lasting τ ¼ 96 s.
We perform all our analyses in the frequency range

between 20 and 1726 Hz at a resolution of 1=32 Hz,

although 99% of sensitivity for isotropic broadband analy-
ses comes from the frequency band between 20 and 300 Hz
[45]. This is because, depending on the spectral shape of
the signal and the regularity of the Fisher matrix, aniso-
tropic searches are not limited by the same sky-integrated
sensitivity as isotropic searches.

A. Spectral-model-dependent, broadband limits

For the spectral-model-dependent, broadband searches,
we present the results using three spectral indices, α ¼
0; 2=3 and 3, same as the LVK searches [46]. The entire

FIG. 6. Clean maps, SNR maps and noise maps broadband-integrated over [20, 1726] Hz at a reference frequency of fref ¼ 25 Hz
using data from LIGO–Virgo’s first three observing runs. From left to right are for spectral indices 0, 2=3 and 3.

TABLE II. Maximum pixel SNRs of the reconstructed broad-
band clean maps and 95% confidence level upper limits on the
normalized GWenergy density at a reference frequency of fref ¼
25 Hz for the HLV network using data from the first three
observing runs.

α Max SNR (% p-value) 95% upper limit on Ωα

0 1.9 (6) 7.3 × 10−9

2=3 2.2 (3) 5.1 × 10−9

3 2.7 (1) 5.1 × 10−10
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range of frequencies is integrated into a single map for each
case of α. Combining O1, O2 and O3 analyses, we show
the reconstructed clean maps computed via Eq. (25), SNR
maps via Eq. (31) and noise maps via Eq. (32) in Fig. 6 for
each spectral index α ¼ 0; 2=3 and 3 from left to right
respectively. The condition number chosen for each index
is listed in Table I.
We calculate the normalized GW energy density at a

reference frequency of fref ¼ 25 Hz for each spectral index
and find these are consistent with 0, hence we set
frequentist 95% confidence level upper limits summarized
in Table II. Our upper limits are consistent with the LVK
isotropic search results [45]. From the SNR maps in Fig. 6
we find the maximum SNR values across the sky, reported

in Table II. These are well below a significant deviation
from 0. To confirm this, we calculate p-values from the
distributions of the SNR maps; these are also reported in
Table II. We thus conclude that we find no evidence of GW
signals in either the monopole or anisotropies. Note that the
SNR maps are Gaussian distributed with norms less than 1:
the same behavior is observed in the LVK collaboration
work [46], and stems from the fact that the maps have been
regularized. The p-values calculated here include this re-
normalization.
We also show the upper limits on the angular power

spectrum Cl’s of the SGWB obtained via Eq. (37) in Fig. 7.
These are approximately consistent with the LVK aniso-
tropic search results [46], given that regularization is
performed very differently, hence the spread over l modes
appears different in the two upper limits. Our choice of the
maximum l mode included here is dictated by our pixel
resolution, jointly with the expected angular resolution of
this style of search discussed in [46]. The relation between
l mode and number of pixels necessary to resolve it,
expressed in terms of the HEALPix Nside parameter, is
roughly lmax ∼ 2Nside. This would suggest going up to
an lmax ¼ 32 for our analysis. However, even in the most
sensitive scenario (α ¼ 3), according to [46] we expect
resolutions higher than lmax > 16 to be unattainable, due to
the shape of the LIGO and Virgo noise curves. Hence, we
select lmax ¼ 16.

B. Spectral-model-independent, narrowband limits

Using the spectral-model-independent method described
in Sec. III, we first divide the search range between 20 and
1726 Hz into 10 and 20 frequency bands with adaptively
chosen endpoints. Since O3 achieves the best sensitivity
out of the three observing runs and HL is the most sensitive
out of the three baselines, the frequency endpoints are

FIG. 7. 95% upper limits on the angular power spectrum Cl of
the SGWB for power laws of α ¼ 0; 2=3 and 3 at a reference
frequency fref ¼ 25 using data from LIGO-Virgo’s first three
observing runs. We have noted the outlier for l ¼ 6 in the α ¼ 3
case: this is currently under investigation and is believed to be due
to a noise fluctuation which makes the point value of C6 negative.

FIG. 8. 95% upper limits on the energy densities in distinct frequency bands used in the spectral-model-independent spectral analysis.
We show our results in 10 and 20 bands. The method assumes a scale invariant spectral shape in each spectral band. The results are
consistent with noise-dominated estimates.
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chosen such that each band contains the same amount of
noise weighted strain power of the O3 HL data. O1 HL, O2
HL, O3 HV and O3 LV analyses then employ the same
frequency banding as O3 HL.
The mapping method described in Sec. II C is run on

each band separately and the resulting upper limits on the
GW energy density are plotted in Fig. 8. The energy den-
sities in different bands collectively probe the spectral
shape of the SGWB. The spectral shapes obtained in our
analyses are consistent with a noise-dominated estimate
with increasing power as a function of frequency, resem-
bling the detector noise curve. We also show the clean
maps, SNR maps and noise maps for three narrowband
analyses in low, mid and high frequencies of the 10-band
case in Fig. 9. The lowest frequency band is between 20
and 133.125 Hz; the mid band is between 270.5 and
324.21875 Hz; and the highest band is between 765.8125
and 1726 Hz. We note that the changes in the scale of
structures are evident as frequencies increase and ourmethod
chooses the resolution of each band accordingly as demon-
strated in Fig. 9.

VI. CONCLUSIONS

In this work, we have developed a maximum-likelihood
mapping method in the pixel domain for the SGWB power
on the sky, complimentary to the methods of the LVK
collaboration [46]. In SGWB mapping, Fisher matrix
regularization has long been an active area of research.
We have presented an empirical method, albeit preliminary,
to systematically regularize the Fisher matrix in mapping
deconvolution via monopole simulations. In addition to
modeled searches, we have introduced an improved spec-
tral-model-independent, narrowband search method to
probe the spectral shape of the SGWB, with adaptive
frequency banding and adaptive pixelization techniques
applied to each band. We have shown that this is a valid
method to probe spectral shapes of anisotropic back-
grounds, and may serve as a first step to characterize these
signals which may then inspire a targeted search with a
more refined model.
We have verified both the modeled and the unmodeled

methods in various simulations and we apply both to

FIG. 9. Clean maps, SNR maps and noise maps for three frequency bands representative of low, mid and high frequencies in the
spectral-model-independent search. In this analysis of the combined O1þ O2þ O3 data, the search range is divided into 10 bands.
From left to right, the plots shown are for frequencies between 20 and 133.125 Hz, between 270.5 and 324.21875 Hz and between
765.8125 and 1726 Hz, and Npix ¼ 192, 768, 3072 respectively.
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LIGO–Virgo’s folded datasets from the first three observ-
ing runs. In the spectral-model-dependent, broadband
searches, we do not find any excess signals on top of
the detector noise. In the spectral-model-independent,
narrowband searches, our obtained spectral shapes are
consistent with noise-dominated estimates. Our results
are in agreement with what is found by the LVK, as
summarized in Table II.
In futurework,wewill improve the reliability of the Fisher

matrix regularization method when applied to narrowband
searches. The method is sub-optimal in narrow bands as the
Fisher matrix conditioning will be band-dependent. This is
particularly evident in our simulations of point sources,
which are very sensitive to Fisher regularization (see
Figs. 4 and 5). Ideally, the condition number for each band
is independently determined, while in this study we have
used the broadband condition numbers as an alternative.
Furthermore, we can explore setting constraints on different
parametricmodels of the SGWB spectral shape starting from
our spectral-model-independent results. Finally, the ultimate
goal of the spectral-model-independent method is to extend
its capability to search for angular-dependent, frequency-
dependent (most general) backgrounds.

In expectation of a first detection of SGWBs in the
coming observing runs, we also plan to use the pipeline to
probe interesting questions. For example, we aim to assess
whether we should expect to detect the isotropic or
anisotropic component of the SGWB first, assuming differ-
ent observing scenarios and signal characteristics.
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