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Baryons in the light-front approach: The three-quark picture
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In this work, a three-quark picture is constructed using a bottom-up approach for baryons in a light-front
quark model. The shape parameters, which characterize the momentum distribution inside a baryon, are
determined with the help of the pole residue of the baryon. The relation between the three-quark picture and
the diquark picture is clarified. When building the model, we find that Lorentz boost plays a crucial role, and
the bottom-up modeling approach can be generalized to multiquark states. Based on this, a unified theoretical
framework for describing multiquark states may be established. As a by-product of model construction, we
can easily obtain a newly improved definition of baryon interpolating current. The hadron interpolating
currents are the starting point of lattice QCD and QCD sum rules, and therefore are of great importance.
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I. INTRODUCTION

Recently, there have been some big events in the field of
heavy flavor physics, including the discovery of CP violation
(CPV) in neutral charm mesons [1] and the discovery of
doubly charmed baryons [2]. On the one hand, CPV has been
confirmed in many meson systems [3—5]; however, CPV has
never been observed in the baryon sector, and to search for
baryonic CPV is becoming particularly urgent [6]. On the
other hand, the discovery of doubly charmed baryon has
attracted great interest both theoretically and experimentally.
The study of the properties of heavy baryons plays an
important role in accurately testing the standard model,
searching for the origin of CP violation and new physics, and
understanding strong interactions.

From a theoretical perspective, baryons are generally
more complicated than mesons. In spite of this, there have
been many methods to study the decay properties of heavy
flavor baryons, including the light-front quark model,
SU(@3) flavor symmetry, effective field theory, QCD and
light-cone sum rules, perturbative QCD, and lattice QCD.
Some recent progress can be found in Refs. [7-27].
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In Ref. [7], the light-front quark model (LFQM) is used
to investigate the weak decays of doubly heavy baryons
under the diquark picture. In this picture, the two quarks
that do not participate in weak interactions are considered
to form a loosely bound system—a diquark. In this way, the
relatively complicated three-body problem inside a baryon
is reduced to a relatively simple two-body problem.
However, this diquark picture is criticized by some people.
Take the weak decays of E,.(bcq) as an example. When
the b quark decays, (cq) is considered as a diquark, while
when the ¢ quark decays, (bq) is considered as a diquark.
From this, one can see that the diquark picture is actually a
matter of expediency. In addition, the diquark picture
inevitably contains more parameters, such as the diquark
masses. Even for the 07 diquark [ud] and the 11 diquark
{ud} containing the same quark components, their masses
are considered to be different [28].

Under the diquark picture, in Ref. [29], the baryon-
quark-diquark vertex is given by

—\}gysﬁ/*(Pz’/lz)’ (1)

while in Ref. [30], it is

%ysm,m

2%75 <¢*(Pz7/12) -

where p;, (m,,) are, respectively, the momenta (masses)
of quark 1 and the diquark, 4, (e¢) is the helicity

M, _
we%m,zm), @)
P2 P+myM
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(polarization vector) of the diquark, P = p, + p,, and
M3 = P2. In fact, except for an unimportant negative sign,
there is a Lorentz boost between the two expressions, and
the latter have correctly considered this effect. Later, one
can see that this Lorentz boost effect plays a crucial role in
our model construction.

Early in 1998, the authors of Ref. [31] developed the
three-quark picture of heavy baryons. Recently, the three-
quark picture has been used to study the weak decays of
heavy flavor baryons in Refs. [32-37], and this work aims
to highlight the following points:

(i) Spin wave function will be constructed in a bottom-
up approach. In this work, we are limited to
considering ground state baryons. Several typical
baryons include Ay, Z,, and 5. This is due to the
following coupling in spin space: (1 ®1) ® 1=
0l ® % =1® % @ % One of our potentially
important discoveries is that the Lorentz boost
may become more important when constructing
the quark model of multiquark states, which have
a certain size, and are multibody QCD bound states.
Since we may still lack a quark model that can
describe all the multiquark states, this discovery may
be a key to unlock the door. It is worth noting that
LFQM has been applied to some relatively simple
multiquark states in Refs. [38,39]. In addition, as a
by-product of model construction, we can easily
obtain improved definitions of interpolating currents
of baryons.

(i1) A method for determining the shape parameters will
be proposed. The shape parameters [see Eq. (15)]
characterize the momentum distribution inside a
hadron. For the meson case, the shape parameter
is determined by the decay constant of the
meson [40]. The “decay constant” of a baryon is
the pole residue, which is used to determine the
shape parameters of the baryon (see below).

(iii) The relation between the diquark picture and the
three-quark picture will be clarified. In this work,
we will consider three weak decays: A, — A,
Y, = 2., and E.. — A,. For the first two processes,
the spectator quarks are, respectively, a scalar and an
axial-vector diquark, while for the last process, a
diquark is broken up in the initial state and a new
diquark emerges by rearranging quarks in the final
state. Here, for .. — A, the two charmed quarks in
=, are usually considered as an axial-vector diquark
and the u, d quarks in A, form a scalar one. In the
diquark picture, overlap factors are important quan-
tities for obtaining the physical form factors [7]. We
will derive the overlap factors for E.. — A, through
which the relation between the diquark picture and
the three-quark picture can be illustrated.

The rest of this article is arranged as follows. In Sec. II,

theoretical framework and some applications are introduced,

including the following: the definitions of baryon states; the
determination of the shape parameters; the form factors of
Ay = AL Z, > 2., and E.. — A,;the relation between the
two pictures; and improved definitions of interpolating
currents of baryons. In Sec. III, numerical results of shape
parameters, form factors, and semileptonic decay widths will
be shown and will be compared with others in the literature.
We conclude this article in the last section.

II. THEORETICAL FRAMEWORK
AND SOME APPLICATIONS

A. The baryon states

In this section, we will consider three baryon states: A,
Zp, and ;. They all have the same quark components udQ

and are all S-wave baryons, and their spins are, respec-
tively, 1/2, 1/2, and 3/2.

Under the three-quark picture, the baryon state in LFQM
is expressed as

B(P.S.5.)) = / (P} 2} {d s }2(2n)?
X53(P—ﬁ1—ﬁz—i73)\/%

X Z lPSSZ(ﬁl&i)Z»i)S’ilall2»i3)
A2y

XCijk|(]li(P1,ﬂl)qu.(Pz,/lz)quf(P&%)), (3)

where p; (4;) is the light-front momentum (helicity) of the
ith quark, the color wave function CY* = ¢'/*/\/6, and
the spin and momentum wave functions are contained in
W5S: | The light-front momentum is decomposed into p; =

(pz_’ pj_’ piJ_) and

pi= (P,tpu)’ PiL = (P}’Plz),
pr="PL gy =
T 7T 20

The intrinsic variables (x;, k;, ) are introduced through

pi = x;P*, piL = xiP, + ki,

3
inzl, Zku:oa (5)
i i=1

where x; is the light-front momentum fraction constrained
by 0 < x; < 1. The invariant mass M is defined by M3 =
P? with P = p, + p, + p3, and it can be shown that

k%l+m%+k%L+m§+k§l+m%

X1 X2 X3

M2 =

(6)
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M is in general different from the baryon mass M which
obeys the condition M?> = P2, This is due to the fact that
the baryon and the constituent quarks cannot be on their
mass shell simultaneously. However, y"u(P) = y*u(P)
holds [30]. The internal momenta are defined as

ki = (ki ki ki) = (e —

i

kizoei+ ki kiy)
m? + k2,

= (LR oMok ). (7
< xiMO XM, Ki| ()

and then it is easy to obtain

e. :xiMO mlz‘l’ki_
! 2 2xiM0
M 2 172
k=20 ML (8)
' 2 2x;M

where e; denotes the energy of the ith quark in the
rest frame of P. The momenta k;; and k;, constitute a
momentum three-vector lzi = (ki1 ki)

For A, in which the u, d quarks are considered to form a
0" diquark, ¥ in Eq. (3) can be shown as

5=1.5

W 2 (PisAi)
= Aoit(p3.43) (P + M) (=y5)Cit" (pa. 1)
X @(py, A )u(P,S)®(x;, ki), )

for ZQ, in which the u, d quarks are considered to forma 1+
diquark,

s=Ls.
Py (P Ai)

= Ayit(p3, 23) (P + Mo)(r* — v*)Cid" (py. A7)

xu<p1,zl>(%m)uu@sz)cb(xi,ku), (10)

and for X7, in which the u, d quarks are also considered to
form a 11 diquark,

s_-s
(Pi i)
= Al (P3’/13)(P+M0)(7” — v")Cit’ (py, 4)

X a(py, A)uy (P, S )®@(x;, ki), (11)
where 1# = P* /M, and @ is the momentum wave function.
The proofs of Egs. (9)—(11) can be found in the Appendix.

With the normalization of the baryon state
(B(P',S',S.)|B(P,S.S.)) =2(27)*P+&*(P' — P)

and
[ (L5021~ ) (S0 )
X @ (x;, ki )P = 1, (13)

one can obtain

AO - Al - All
1

= (14)

4\/M(3)(€1 +my)(ey +my)(e3 + ms)

The momentum wave function can be given by

e€1er63

DO(x;, ki )=, ———— , 15
(xikiy) \ sy o(ki.B)g ( ﬂ23) (15)

where ¢(k.f) = 4(/%)3/4 exp(— 2/}2'(%), and B, and f,; are

the shape parameters.

Some important notes are given below:

(1) The definition of a baryon state is the most important
part of LFQM, while the spin wave function is the
most important part in the definition of a baryon
state. It is worth pointing out that, when we arrive at
Egs. (9)—(11), we do not introduce any additional
assumptions; for example, it does not assume heavy
quark symmetry, nor does it depend on the coor-
dinate system selection of LFQM (see below).
Therefore, the spin wave functions in Egs. (9)—(11)
may not only apply to heavy flavor baryons but
should also apply to light flavor baryons.

(i) From the proof in the Appendix, one can clearly see
that, the Lorentz boost between the rest frame of
“diquark” and the rest frame of P plays a crucial
role. The proof of Eq. (9) is relatively simple, and
this is because the first case involves a scalar
diquark, whose Lorentz boost is trivial. The proofs
of Egs. (10) and (11) are relatively complicated,
because the latter two cases involve an axis-vector
diquark, whose Lorentz boost is nontrivial.

(iii) If we only consider the spin coupling, in principle,
we can choose any two quarks for spin coupling
first. However, when we consider the flavor wave
function, the two quarks that are coupled first are
usually already determined. For example, for A,
whose flavor wave function is (ud — du)Q/+/2, we
couple the u and d quarks first; while for Z7;",
whose flavor wave function is just ccu, we couple
the two charm quarks first.

(iv) If identical quarks are contained in the baryon
state, some additional factors should be added.
For example, for Z/, when we calculate
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(B(P',S',S.)|B(P,S.,S.)) to normalize the baryon
state, a factor of 2 appears because of two equivalent

contractions. An additional factor 1/ v/2 should be
added in the definition of |2{") in order to keep
Eq. (12) unchanged.

B. To determine the shape parameters

The shape parameters in Eq. (15) characterize the
momentum distribution inside the baryon. In this work,
we suggest that the shape parameters can be determined
by the pole residue of the baryon, whose numerical result
can be taken from, for example, lattice QCD or QCD
sum rules.

Taking Ay as an example, let us focus on the matrix
element (0|75, |Ag) with J,, = €qpc[uf Crsd,] Q.. On the
one hand, this matrix element can be calculated in LFQM,

(07, [AQ(P.S))
- /dedszL d)C3d2k3l 1
) 2022 2(27)° a3
x Tr[Cys(#3 + m3) (P + M) (=y5)C(p + my)T]
x (py +my)u(P,S,). (16)

D(x;, kiJ_)\/EAO

On the other hand, the pole residue of baryon is defined by
(015010 (P, S)) = Ap,u(P,S:). (17)
Respectively multiplying Egs. (16) and (17) with

Yo (P, S,)y" from the left, also noting that y"u(P) =
yTu(P), one can arrive at

d’(% ku)\/aAo

/ dx,d’ky | dxyd®ks, 1
2(2x)3 2(2727)3 VX 1X2X3
X Tr[Cys(p3 + m3) (P + My)(—ys)C(p2 + my)"]
X Trly ™ (p1 + my) (P + M,)] (18)

and
AAQTr[ﬁ(P + M))]. (19)

Equating Eqgs. (18) and (19), one can obtain the expression
of pole residue in LFQM

1
Mo = Tl M)
dx,d’ky, dxsd’ky, 1
| St e v
x Tr[Cys(p3 + m3) (P + My)(=y5)C(p + my)"]
X Trly* (1 + my) (P + M), (20)

D(x;, kii)\/gAO

which can be used to determine the shape parameters in @
provided the pole residue is known. Since there are two
shape parameters in @, one more equation is desirable; at
this time, use ) g @(P,S.)y"y~ to left multiply instead,
and finally we have

1
o = Ty (B + M)

/ dXQd2k2l dX3d2k3l 1
2(271')3 2(271')3 \/X1X2X3
X Tr[Cys(p3 + m3) (P + Mo)(—=ys)C(72 + my)"]

X Trly*y~ (g1 + mi) (P + Mo)). (21)

D(x;. ki1 )V6A,

The expressions of pole residues of X and .. can also
be obtained in a similar way.

In addition, it should be noted that the baryon mass M
can in turn be extracted by equating Egs. (20) and (21) once
the shape parameters are fixed by, for example, global
fitting.

C. Form factors of A, — A,

On the one hand, the weak decay matrix element
(Acley* (1 —ys)b|A,) can be parametrized in terms of
form factors

(A (P S Ier* (1~ 75)b1 (P.S.)
— (P 3){ [+ i e o) + 81l

o 7"
- [P (@) io )+ T s fulp.5),
(22)
where ¢ = P — P’ and f;, g; are the form factors. On the

other hand, the matrix element can also be calculated in
LFQM

(Ac(P',S2)|er*(1=ys5)blA,(P.S))

N
= [t pHa
X Tr[(P+Mo)(=75)C(p2+my)T Cys (P + M) (3 +m3)]
xa(P',SL) (¢ +my)y*(1=ys)(p1 +my)u(P,S,).  (23)

" (x], kil )O(x;. ki)

Now we extract the form factors f;, and g, in
the following method. Respectively multiplying the
“+” component of the vector current part of Eq. (22)
by s s #@(P.S)y u(P.S)) and Zsz,s:ﬁ(Psz)X
(33_1i0M g )u(P',S.) from the left, one can obtain
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TI' |:(P + M)]/+(P/ + M/) (f]}/Jr + fziGJrU j—;>:|
— 8PP, (24)
and

Tr {(P + M) (sz io*qu> (P + M)

j=1

2
X (fnf+ +fzia+”i—;ﬂ = —8P+P/+qﬁ fr. (25

Respectively multiplying the “+” component of the axial-

vector current part of Eq. (22) by > g g @(P,S.) x
riysu(PSy) and 35 g a(P.S,) (X5 o glys) x
u(P', S.) from the left, one can obtain
Tr [(P + M)y tys(P+ M) <gw+ + gaic™ %) 75]
=8P"Ptg (26)
and
2
Tr [(P + M) <Z ia*-"q%) (P+M)
=1

2
x (917’+ + gzidﬂ%) 7’5] = 8P+P/+QM92- (27)

Then doing the same thing for Eq. (23), one can obtain

— 1 d3~ d3~ o P Al A
fr=gprpr [P} Pz}W 0Ao

X Tr[(P + My)(—ys)C(#2 + my)" Cys(P' + My)

x (3 + m3)]

X Tr[(P + Mo)Ty (P + M) (#, + m)Ta(y + my)]
(28)

with

(E(P SL)|er"(1 = 7)b[S,(P.S.)) = / (P} (D)

ALA,

pi PP

I = 7+7 I, = }’+, (29)

where we have used y"u(P) = y*u(P). The same expres-
sions can be obtained for f, and g;,, except that

(i) for f,

M2
I :——zzidﬂqj, =y (30)
q j=1
(i) for g,
Uy=rtys,  Tho=r'ys (31)
(iii) for g,
2

M. ..
L= ioigys.
q j=1

I, = 7+75~ (32)

In practice, we choose the frame that satisfies g+ = 0,
that is,

Pt — Pt =0. (33)

When calculating the weak decay matrix element in
Eq. (23), one can find that the momenta of quark 2 and
quark 3 remain unchanged from the initial state to the final
state, from which one can obtain

ky, =kyi +x2q,,

Ky, = ks +x3q,, (34)

/
x2 = .X'z,
A
X3 = X3,
and furthermore,

k’u =k — (1 _XI)QL- (35)

One comment. As pointed out in Ref. [32], the form
factors f3 and g5 cannot be extracted for we have imposed
the condition ¢t = 0. However, these two form factors do
not contribute to the 1/2 — 1/2 semileptonic decays if the
electron mass is neglected.

VN
.X'l —xl,

D. Form factors of X, —» X,
(Z.]¢y*(1 —y5)b|%,) can also be obtained in LFQM as

Ol (xﬁ k:'J_)cD(xi’ kii)

X Tr[(P + My)(y? = v*)C(py + my)TC(y" — v'7) (P + Mp) (3 + m3)]

x (P, 52)%7675(#1 ) (1= ys) i + ml%msu@, 5.). (36)

3

where v* = P#*/M, and v* = P /M. It turns out that
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_ 1 3~ 3 = CI)’*(I) /

fi —W/{d pH{d Ps}WAMH

X Tr[(P + M) (y” — v")C(p + my)TC(y" — v")

X (P + M) (3 + m3))]

% B/ / 1 /
< Te| (4 Mo (P4 M) sl 4
1

X (py + ml)%}/pyS:| (37)

with
I = }’+, I, = 7+- (38)

f> and g, , can also be obtained by the same assignments to
I', , as those in Sec. IIC.

E. Form factors of £, — A,
(A |dy*(1 = y5)c|E..) can also be obtained in LFQM as
(Ac(P'.S)ldr* (1 = y5)c|Bec(P.S,))

ALA
3 04t
/{d paH & p*}\/ﬁ

(P, SL) (1 + my) (P + Mo) (y* —v*)C

O (x}, ki) )@ (x;, ki)

"
V2
X (p1+m)"(1—ys)Ty*T () +m))" Cys

_ / 1 B
X (P'+ Mjy)(ps 4 m3)—=y,7su(P,S,), (39)

V3
where the factor of 2 comes from the two equivalent

contractions and the factor of 1/ \/i comes from the
normalization of the Z/ state, which has been pointed
out in Sec. I A. It turns out that

B @,*@
fi= P+P/+ /{d3P2}{d%P%}\/?P/+P+A6AI

X\%Tr{(i"f'Mo)Fl(ﬁl+M6)(ﬁ2+m2)(P+M0)
X (y¥ = v*) (g1 — m)To(p)

X (p3 + m3) 1%75} (40)

—m\)ys(P' + M})

with
=y, =y (41)
f> and g, , can also be obtained by the same assignments to

I'| ; as those in Sec. I C except for the only one difference
for g,

Ly =ysy™. (42)

because we have performed a transpose in Eq. (39).

F. The relation between the two pictures

Denote the spin wave function in Eq. (9) as y((321) and
that in Eq. (10) as y,(321), i.e

wo(321) = it(ps. 43) (P + M) (—=75)Cit® (2. 22)
X ﬁ(ph/ll)”(pvsz)’
w1 (321) = @(ps. 43) (P + My) (r* — v*)Cii” (pa, 1)

ﬁ(l’hﬂl)(%h}’s) u(P.S.). (43)

¥o.1(321) have the same normalization factor as that in
Eq. (14). Moreover, y(321) are orthogonal

Sy (321 (321) = 0, (44)
RBVEYS

where quark 1’ does not need to be the same as quark 1.

Now consider the relation between the three-quark picture
and the diquark picture. The key observation is that in the
three-quark picture, the first two quarks form a diquark in the
diquark picture. Specifically, in y((321)/y(321), quark 3
and quark 2 are considered to form a scalar/axial-vector
diquark. In fact, y ;(321) constitute a diquark basis.

One can easily check that

wo(321) = —w(231),
w1 (321) =y, (231). (45)

In addition, it can be shown that

() =7y}

with the transition matrix

bo-g
T = 4

which satisfies T-! = T, as expected.

Now we are ready to determine the overlap factors in the
diquark picture. Take the process of ;. (cbu) - A,(dbu)
as an example, where the b, ¢ quarks in the initial state are
considered to form an axial-vector diquark, while the u, d
quarks in the final state are considered to form a scalar
diquark. The initial and final states can be rewritten as

116025-6
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wi(bcu) = —§W0(b“0) _%Wl(buc)’

woludb) = Sy (ubd) - ?w] (ubd)

= —%wo(bud) - \/751//1 (bud). (48)

Then it is easy to write the transition matrix element as

(wo(udb)ly(beu)) = ? {wo(bud)lyo(buc))

X () (b)), (49)

from which one can read the two overlap factors

Cg =Cp = ——. (50)

They are the same as those in the diquark picture
in Ref. [7].

It is time to go one step further to derive the overlap
factors of B/ (ccu) — A.(dcu). To this end, notice that
there is only one difference between this process and
B, (cbu) - A,(dbu); that is, Ef;" contains two identical
quarks. At this time, one can obtain the overlap factors for
B = A,

2 V3 _ V6
ST T
where the factor 2/4/2 can be found in Eq. (39). These

factors are also the same as those in the diquark picture
in Ref. [7].

(51)

G. Improved definitions of interpolating currents

The definitions of interpolating currents are the starting
point of lattice QCD and QCD sum rules. The following
definitions are usually adopted for Ay, and Z, in the
literature [41-44]:

JAQ = €abc [ugcySdb]Qw
Jsy = €anc [“ZCY”db}Yﬂch- (52)

These interpolating currents of baryons were first given in
Ref. [45], and then widely used to study the properties of
baryons. They are obtained with the help of symmetry
analysis; however, to our knowledge, there is no literature
that provides a rigorous proof starting from quark spinors
and Dirac matrices. This work may fill this gap.

Hermite conjugating Eq. (43), one can obtain the
following improved definitions of interpolating currents
for Ay and Zj:

JAQ = €abc[uc{cy5(1 + ﬁ)db]Qw

1
Jry = €ape[ug C(r* = o) (1 + p)d,] 7§7ﬂ75Qc’ (53)

where o* = p#/ \/? with p the four-momentum of
baryon. Some comments are in order.

(i) As can be seen in Eq. (56) that /IEQ ~ 2/1AQ, which
are calculated in QCD sum rules using the defini-
tions in Eq. (52) [42,43]. If the factor of 1/ \/§
in Eq. (53) is considered, one would expect
As, R Ap,-

(i1) It can be seen that we can even let v — 0 in Eq. (53)
to get the definitions in Eq. (52) if we temporarily

forget the coefficient 1/1/3. However, we cannot do
that, because v#, according to its definition, is O(1).

III. NUMERICAL RESULTS

The following quark masses are adopted:

m, = my = 0.25 GeV,

m, = 1.4 GeV, my, = 4.8 GeV, (54)
which are widely wused in previous literature of
LFQM [7-11,46-48]. Throughout this article, the follow-
ing baryon masses are used [49]:

my, = 5.620 GeV, my, = 2.286 GeV,
my, = 5.811 GeV, my_ = 2.453 GeV,
Mmgi+ = 3.622 GeV. (55)

A. The shape parameters
Using the pole residues of Ay, £, and E., obtained in

Refs. [42-44],
Ap, = 0.030 £0.009, 1, = 0.022+0.008,
Ay, =0.0624+0.018, Ay =0.045+0.015,
Az, = 0.11540.027, (56)
which are calculated in QCD sum rules, one can obtain the
following optimal shape parameters:
B jua) = 0.63+0.05 GeV,
Pejua) = 0.45£0.05 GeV;
Bb.uay = 0.66 +0.04 GeV,
Bejuay = 0.49 £0.04 GeV;
ﬂu.{cc} =0.490+0.040 GGV,
Bieey = 0.400 +0.025 GeV. (57)

Brua = 0.27+0.03 GeV,

Bruay = 0.28£0.03 GeV,

116025-7



ZHAO, ZHANG, HU, and SHI

PHYS. REV. D 107, 116025 (2023)

Some comments are in order:

(i) Respectively denote the pole residues calculated in
Egs. (20) and (21) as 4; and 4,, with the pole residue
in Eq (56) as /IQCDSR' By lettlng j.] ~ 12 ~ j’QCDSR’
one can determine the shape parameters in Eq. (57),
and the uncertainty comes from that of the pole
residue.

(i) It would be interesting to compare the shape
parameters with those used in the diquark picture [8],
and the latter are in fact the shape parameters of
mesons. For example, numerically, our £, 4], B jua)»
and f, 4 are, respectively, close to [in units of giga-
electron volts (GeV)] f,; = 0.623, . = 0.535, and
Pas = 0.393 in Ref. [8]. A significant difference is
found between f3(..; = 0.400 GeV in this work and
Pz = 0.753 GeV in Ref. [8]. It seems that the charm
quark and the anticharm quark in 7. are more
energetic than the two charm quarks in Z... It is
worth noting that, when deriving the pole residue
expressions for E,,, a factor of 2/1/2 also appears.
Using the pole residue 1z in Eq. (56), and having
considered this factor, one can obtain the much
smaller shape parameter .., together with f, ;...

B. The form factors and semileptonic decays

The following form factors at g> = 0 are obtained for
Ah - Ac:

f1(0)=0.469+0.029,
91(0)=0.461+£0.027,

£2(0)=-0.105+£0.011,
9>(0) =0.006 %+ 0.005; (58)

for X, — X

f1(0)=0.490+0.018,
91(0) =—=0.163 £0.005,

f2(0)=0.467 £0.006,
9>(0)=0.007 £0.001;  (59)

and for .. — A.:

f1(0)=0.517+0.071,
91(0)=0.155+0.019,

f2(0)=-0.036 £0.007,
9,(0) =-0.072+£0.012.  (60)
It can be seen that about 6%, 4%, 14% uncertainties are,

respectively, introduced for the three groups of form factors
because of the uncertainty of the pole residue.

To access the ¢* dependence of the form factors, we
calculate the form factors in an interval ¢ € [=5, 0] GeV?
for A, —» A, and X, » X, and ¢* € [-0.5,0] GeV? for
E.. = A, and fit the results with the following simplified
z-expansion [50]:

a+ bz(q?)
@) =—=5 (61)
1- qz/mg)ole
where my. = mp_for A, = A.and X, — X, and m,q. =
mp for 2. = A,

2(q?) = Vi =@ = V1] = G
\/t+ - q2 + \/t+ - Qrznax

with 1. =m? ., Gua = (Mp, —My)* for A, — A,
qgwx = (MZ,, - MZc)z for Z“b - Zc’ and qzmax = (MECL. -
My )?* for B, — A.. The fitted results of (a,b) for the
three processes are given in Table L.

The obtained form factors are then applied to semi-
leptonic decays, it turns out that the central values of decay
widths and branching ratios are

(62)

Ay = Ae™D,) =254 x 10714 GeV,

A, = AeeD,)=5

rE, - Z.e,)=0.870 x 10°'* GeV,

(B, = Acer,) =0.755 x 10714 GeV,
)=0

.294%,

B~ ATy, (63)
where 75, = 1.471 x 1072 s, |V | = 0.0408, and 75+ =
0.256 x 1072’5, |V.4| = 0.221 have been used [49].
Considering the uncertainties of form factors in
Eqgs. (58)-(60), there are, respectively, about 13%, 7%,
and 29% uncertainties in these phenomenological
predictions.

C. Comparison with other results in the literature

In Tables II and III, we, respectively, compare our form
factors and semileptonic decay widths with those in the
literature. It can be seen that our predictions are comparable
with other results; in addition, it seems that the diquark
picture tends to give larger predictions. It is likely that

TABLE I. Fitted results of (a, b) for the form factors.

Transition F (a,b) Transition F (a,b) Transition F (a,b)
i (0.648,-2.177) £ (0.794,-3.617) fi (1.101,-3.312)

Ay = A, fs (—0.162,0.704) 3, = =, fr»  (0.728,-3.103) B.—= A fo (—0.064,0.162)
a (0.632, —2.068) 7 (—0.222,0.697) 7 (0.280, —0.710)
¢ (0.011,-0.065) ¢ (0.011,-0.053) g (—0.185,0.644)
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TABLE II. Our form factors are compared with other results in the literature.”

Ap = A, f1(0) £2(0) f3(0) 9:(0) 9,(0) 93(0)
This work 0.469 + 0.029 —0.105 £0.011 cee 0.461 + 0.027 0.006 + 0.005

Three-quark [32] 0.488 -0.180 cee 0.470 —0.048

Diquark [8] 0.670 -0.132 . 0.656 —-0.012

Diquark [51] 0.506 —0.099 . 0.501 -0.009 cee
QCDSR [21] 0.431 -0.123 0.022 0.434 0.036 —-0.160
LQCD [50] 0.418 —0.099 —-0.075 0.390 —0.004 —-0.206
X, = 2, f1(0) 12(0) 13(0) 91(0) 9,(0) 93(0)
This work 0.490 +0.018 0.467 = 0.006 S —0.163 £ 0.005 0.007 = 0.001 s
Three-quark [32] 0.494 0.407 cee —-0.156 —0.053

Diquark [29] 0.466 0.736 cee —-0.130 —0.090

Eee = A £1(0) 12(0) 13(0) 91(0) 92(0) 93(0)
This work 0.517 +£0.071 —0.036 £ 0.007 cee 0.155 +£0.019 —-0.072 £0.012 cee
Diquark [7] 0.790 —0.008 cee 0.224 —0.050 cee
QCDSR [19]* 0.63 +0.20 —-0.05 £0.02 —-0.81 £0.26 0.24 +0.08 —0.11 £0.03 —0.84 +0.30
LCSR [23] 0.81 +0.01 0.32 £ 0.01 —-0.90 £ 0.07 1.09 +£0.02 —0.86 = 0.02 0.76 + 0.01
NRQM [52] 0.36 0.14 0.08 0.20 0.01 -0.03
MBM [52] 0.45 0.01 -0.28 0.15 0.01 -0.70

*The asterisk on Ref. [19] indicates that, in this literature, we made a mistake in the sign for the axial-vector form factors, and here we
have corrected it.

TABLE III.  Our decay widths (in units of 10~'% GeV) are compared with other results in the literature.”

Ay = Ace7p, Decay width 2, > X, Decay width Eee = Aety, Decay width
This work 2.54 +£0.33 This work 0.870 £ 0.061 This work 0.755 +£0.219
Three-quark [32] 2.78 Three-quark [32] 1.03 Diquark [7] 1.05
Diquark [8] 3.96 Diquark [29] 0.908 QCDSR [19]* 0.76 +0.37
Diquark [51] 3.39 LCSR [23] 3.95+0.21
QCDSR [21] 2.96 +0.48

LQCD [50] 2.354+0.15

*The asterisk on Ref. [19] indicates that, in this literature, although we made a mistake in the sign for the axial-vector form factors, the
prediction for the decay width is not affected.

larger shape parameters are used in the diquark picture, as (i) At this point, we have constructed a relatively
pointed out in Sec. I A. complete three-quark picture for baryons, which
can be applied to study semileptonic, nonleptonic,

IV. CONCLUSIONS AND DISCUSSIONS strong, and electromagnetic decay processes of

heavy flavor baryons in the future.

(i1) When building the model, we found that the Lorentz
boost plays a crucial role. As can be seen in the
Appendix, in spin space, we first couple quark 3 and
quark 2 to form a diquark, and then couple this
diquark to quark 1. Obviously, this bottom-up
modeling approach can be generalized to multiquark
states. We may establish a unified theoretical frame-

In this work, a three-quark picture is constructed using a
bottom-up approach for baryons in a light-front quark
model, where quark spinors and Dirac matrices act as
building blocks. The shape parameters, which characterize
the momentum distribution inside a baryon, are determined
with the help of the pole residue of the baryon. Some
semileptonic decays are investigated under this three-quark
picture. The relation between the three-quark picture and

the diquark picture is clarified. There is still a small flaw work for describing multiquark states.

worth pointing out: that is, when determining the shape (iif) As a by-product of model construction, we can easily
parameters, we demand that 4; ~ 4, % dqcpsg, and some obtain an improved definition of baryon interpolating
uncertainty can still be introduced. A better prescription we current. The hadron interpolating currents are the
can think of is to do global fitting. Given that our main goal starting point of lattice QCD and QCD sum rules,
in this article is to develop a set of methods, such a more and therefore are of great importance. These new
detailed consideration is left for our future work. Here are interpolating currents can be applied to study more
some prospects: detailed problems, such as the Z, — :’Q mixing [53].
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APPENDIX: SPIN WAVE FUNCTIONS

In this appendix, we will derive the spin wave functions
of Ay, Zp, and Z*Q. For spinor and Dirac matrix con-
ventions, as well as some important equations, readers can
refer to Ref. [30].

In Eq. (3), W55 is defined as

LPSSZ(pi’ )41)
= Z</11\Rjt4(f71’m1)|51></12|RITw(1~727m2>|52>

§185253

X (A3| Ry (B3 m3)ls3)

11 1

X §§;S3SZ S$23523 5523;S1523 SS,

x ®(x;, ki),
where S5 is the total spin of the diquark and S,; =0, 1, 1
for Ay, Xy, Xj), respectively. An instant spinor up(p, s) is
Melosh transformed into a light-front spinor u(p,s) by

(A1)

Z@JRL(?% m;)|si)iip(pi. i)

i

_ Zﬁ(PiJi) up(pi, s;)ip(p;, s;) —a(pi i), (A2)

2m,-

Once the Clebsch-Gordan (CG) coefficients in Eq. (A1) are
rewritten into the product of instant spinors and Dirac
matrices, the instant spinors can then be transformed into
the light-front ones using Eq. (A2). Therefore, in the
following, we will focus on rewriting the CG coefficients
in Eq. (A1) into the product of instant spinors and Dirac
matrices. Note that the spinors appearing below are all
instant spinors (we have omitted their subscript D), except
u(P,S,) and u,(P,S.). When one of these two spinors is
involved, we always take the rest frame of P, where its
instant form and light-front form coincide.

It is worth pointing out that the proof given here does not
introduce any additional assumptions; for example, it does
not assume heavy quark symmetry, nor does it depend on
the coordinate system selection of LFQM. In addition, one
can clearly see that the Lorentz boost between the rest
frame of the diquark and the rest frame of P plays a crucial
role for the case involving an axial-vector diquark.

(Of course, for the case involving a scalar diquark, the
Lorentz boost is trivial.)

1. To derive the spin wave function of A,

Ay has quark components udQ, in which ud are
considered to form a 0" diquark.
(i) Step 1, couple the spins of quark 3 and quark 2 to
form a scalar diquark

(P+M,)
2M,

=/(es+my)(e3+ m3))(j~3 (io2)xs,

1

i(p3.s3) rs(=C)i" (pa,s2)

=1/2(ez+m;)(es +m3)<;;§53sz 0323>- (A3)

(i1) Step 2, calculate the trivial coupling

1l = L_‘(Pl’sl)”(Psz>
= /2M(e, +m1))(IIZS,
1
= \/2M0(€1 +m1)<50,s10

Therefore, for Ay, the CG coefficients in Eq. (Al) can be
rewritten into

%SZ>. (A4)

11 1 1
<§§;S3SZ OS23> <§O, S]O‘ 5S2>
= Agit(p3, 53)(P + Mo)(=ys)Cit” (ps, 55)
x a(py,s))u(P,S.) (A5)
with
1
A (A6)

o 4\/M8(el +my) (e +my)(es + m3)

2. To derive the spin wave function of X,

2 also has quark components ud(Q, in which ud are
considered to form a 17 diquark. Technically, it is much
more complicated to arrive at the spin wave function of X,.

(1) Step 1, couple the spins of quark 3 and quark 2 in the

rest frame of p,; (defined below) to form an axial-
vector diquark

(P + M,)
2M,

x (=C)i" (p2. 52)

I" = i(ps, s3) 7' (P23)

with
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1523>

Mophy + my PPy (P) - py

P (p) = 7 (P) , Vzvmﬁ+mM%+mﬁGL%&

Mo(ers +mp3)  myy 22
P23 = P2+t P3, m3y = Pa3, X €M(pa3, 523)- (A9)
YL(P) = y" — fo#, v* = P*/M,. (A8)
Phs is the four-momentum of the diquark, e,3 is its Equation (A9) can be verified by considering three
energy in the rest frame of P, and m3 is its invariant specific cases: y = 0, u = 1, 2, and p = 3. Take the
mass. ¥/ (p3) and ¢/ (P) are related by a Lorentz u = 0 case as an example:

boost. It can be shown that
|

IO

_ ! <@+mp _wf)0<5@Mm+mmrﬂm0
Jes Fmy \\B T TP J My(exs +ma3)  mo3

y ( 0 iaz) 1 ( (ex +my)ys, )
iGz 0 V€2 + my —(5 . ]_7)2)T}(:2
ZEe

= V/(es + my)(e5 + my) ==yl (ic30)x,
nmy3

11
= \/2(62 +my)(e3 + m3)<§§§s352

1S23>€*0(P23,S23)- (AlO)

In Eq. (A10), in the rest frame of P, we choose the diquark to move along the z-axis, and then its four-momentum
Phy = (€23.0,0, [pa]), polarization vector €/(0) = (|pa3], 0,0, ex3)/my3.
(i) Step 2, couple the diquark to quark 1,

T=1"xa(py,s)T23,u(P,S.) (All)
with
Tl = % <y,, - %Pﬂ). (A12)
It can be shown that
T =2/My(e, +my)(es + my)(es + m3)<%%;s3s2 1s23><% 1; 51523 %Sz>. (A13)

Equation (A13) can be verified by considering two specific cases: 5,3 = 0 and s,3 = =£. Take 5,3 = 0 as an example:

11
T= \/2(6’2 +my)(es + m3)<§§;3352

;15.51)

1
[P R — L=
323> ﬁ——-el+ml((€1+m1))(sl X
1 /0 1 1 My + my + mosz | Pas| Xs
X — —(|Poaly® — ep3p?) = 2L T 723 My |\/2My | ">
\/§<1 0>{m23<|19237 23}’) 0 0

Mo (ex3 + my3) mys

=)

11
= /2(ey + my)(e3 + m3)<§§?s3sz

1 N
1S23> —3\/@1 +myy/ ZMOZSI1G3)(SZ

\/_
11 1
=2/Mo(e, +my)(es + my)(e3 + m3)( 5= 5352|1823 2 L5 51803

22

%s> (A14)
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(iii) Step 3, tensor simplify 7

(Pz,sa)(P+Mo)Vi(P2%)( C)
= i(p3. 53)(P + Mo)y', (P
i(ps. s3)(P + Mo)y'L (P

<

T(pa.s2)i(py.s1)ly 23,u(P, S,)

)a' (pa, $2)a(py. 1)1 23,u(P, S,)
—C)i" (p2. 5,)0 (pl,sn%m(hs»

i(p3, 53)(P + My) (7" — o) (=C)i (py, 2)i(py, 51) %w@, S.)

— -~ _ _ 1 -
= 059 (B M) = )OO (0 s2)apr50) (s P52 (A15)
|

where, in the second step, we have used (i) Step 2, couple the diquark to quark 1

H(P). D —

7Y (P)-P=0. . ~ e
Therefore, for X, the CG coefficients in Eq. (A1) can be T'=1"xu(p, sl)rl.23/wu (P.S.) (A18)
rewritten into with

11 L. ! P, (Mopy3, + my3P,)

<22 $382 1523><51,s1s23 ESZ> U3 = =G +— . (A19)

= Ayii(p3, 53) (P + M) (r* — v*)Ci" (p,. s5)

M} (ex; + mo3)

and the vectorial spinor u, (P, S,) can be expressed

1 _
X b_‘(Pl,Sl)(%J’ﬂs)”(P, S.) (Al6) by [9,54]
- 1 3 - -
with “u(P’Sz):Slz:SB<§1§S1S23 ESZ>M(P7SI>€M(P’SZ3>'
1
A = (A17) (A20)
4\/M8(61 +my)(ex + my)(e3 + m3) It can be shown that
=2v/My(e; +m;)(e; + my)(ez + m3)
3. To derive the spin wave function of X5 \/1 f( : N ) 2)es 3 ’
X also has quark components udQ, in which ud are <22 5352 1523><§1;51323 §Sz>' (A21)
considered to form a 11 diquark.
(i) Step 1, same as that of Z. Equation (A21) can be proved as follows:
T/
V2(es + my)(es + m3)<%% S332|1S23>
_ . Myphy + my PP - _
=u(py,s1) {—6 "(p23s523) +W€ (P23+523) 'P] u,(P.S.)
0
1 . - 1 3 - _
=———((e;+m I] 'o-p )(—e*H(P,s <—1;/1/1 —S>uP,/1 e, (P,A
m(( 1 l))( s D1 )( ( 23))% 7 112 2 z ( 1) ﬂ( 2)
1 P 1 3 X2
:\/ﬁ((ﬁ +m)yl =G Py )Z<§1;/11/12 §Sz> 2M0< 01 >5s23,12
PN
3
=\er + mI\/2M02< 1 A /12 ESZ>551~/115523712
e
1 3
2M0(€1 —|—m1) 21 S1S23 ESZ . (A22)

116025-12



BARYONS IN THE LIGHT-FRONT APPROACH: THE THREE ...

PHYS. REV. D 107, 116025 (2023)

Here, we have used

€"(paz.523) —

and

(iii) Step 3, tensor simplify 7"

i(ps. s3)(P + Mo)Y'L (pa3)(—C

it(p3. s3)(P + Mo)y'L(

= u(p3,53)(P + Mo)(r" —

M phs + mos P -

= ii(ps, s3)(P + Mo)y' (P)(-C
P)(-C

Therefore, for Z*Q, the CG coefficients in Eq. (A1) can be rewritten into

11
55;5352

1 3
1523><§1;31523

2

with

.533) - P = et (P, A23
M(z)(e23 ¥ ) €(p23. 523) €"(P, 523) ( )
G*M(P,S23)€ﬂ<P,/12) = —5523,/12. (A24)
T(pa.s2)i(py.s1)0 231" (P, S,)
)a' (pa. s2)i(py. 1) 234" (P, S,)
)a" (pa. s2)a(py. s1) (=g )u (P, S,)
)CﬁT(p27 s2>ﬁ(p17 Sl)u”(p,Sz). (AZS)
_Sz> = Alit(ps. 53) (P + Mo) (" — v*)Ci" (s, 83)i(py. s1)u,(P.S,) (A26)
1
(A27)

A/

One can see that Ay = A = A.

b 4\/M(3)(el +my)(ey + my)(e3 + mj3) .
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