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We analyze quasi-two-body charmless B decays BðsÞ → P1V → P1P2P3 with V representing a vector
resonant, and P1;2;3 as a light pseudoscalar meson, pion, kaon, or ηð0Þ. The intermediate processes BðsÞ →
P1V are calculated in the factorization-assisted topological-amplitude approach and the vector resonant
effects are described by the Breit-Wigner propagator, which successively decay to P1P2 via strong
interaction. Taking into account of all vector resonances in ground state, ρ; K�;ω;ϕ, we present the related
branching fractions, and calculate the virtual effects for BðsÞ → π; Kðρ;ω →ÞKK. We also predict direct CP
asymmetries of three-body B decay modes with ρ; K� resonances as intermediate states. Our predicted
branching fractions of decay modes dominated by the color-favored tree diagram or the color-favored
penguin diagram are consistent with the perturbative QCD approach’s predictions as well as the QCD
factorization approach. While for those nonperturbative contribution dominated decay modes, the
branching ratios in this work are in better agreement with current experimental data than the perturbative
QCD (PQCD) predictions and the QCD factorization results due to their shortage of the nonperturbative
contributions or 1=mb power corrections. Many of the decays channels, especially for direct CP
asymmetries, are waiting for the future experiments.

DOI: 10.1103/PhysRevD.107.116023

I. INTRODUCTION

Three-body nonleptonic B meson decays constitute a
large portion of B decay channels. Contrary to two-body B
meson decays, they have nontrivial kinematics and phase
space distributions, which can provide more opportunities
for the study of CP asymmetries and factorization issues in
QCD for multibody nonleptonic decays. Generally, one can
utilize the Dalitz plot technique to analyze the phase space
of three-body B meson decays, where the invariant mass of
a pair of final-state particles peaks as a resonance. In the
edges of the Dalitz plot, various resonances as the inter-
mediate states in three-body B meson decays will show up,
so that the analysis on these decays enables one to study the
properties of these resonances.

Experimentally, a large amount of branching ratios and
CP asymmetry parameters of three-body charmless B
decays have already been measured by BABAR, Belle,
and LHCb collaborations [1–5], while more are expected
from the upgrade of LHCb and Belle II experiments. On the
theoretical side, three-body nonleptonic Bmeson decays are
more complicated than two-body cases as they involve
three-body decay matrix elements. In a phenomenological
factorization model [6–8], the three-body matrix elements
of charmless B decays were factorized naively, with the
resulting local correlaters studied extensively based on
heavy meson chiral perturbation theory for nonresonant
contributions and the usual Breit-Wigner formalism for
resonant effects. Besides these phenomenological descrip-
tions of three-body charmless B decays in the whole Dalitz
plot, theoretical analysis in the context of QCD factorization
are mainly concentrated on the edges of the Dalitz dis-
tribution, since the contribution in the center regions of
phase space is argued to be both 1=mb power and αs
suppressed [9,10].
Since the vector (scalar) mesons usually decay domi-

nantly to two pseudoscalar mesons with large decay width,
the three-body B decays are found to be dominantly
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happened by B decaying to a vector (scalar) meson and a
pseudoscalar meson, and the vector (scalar) meson sub-
sequently decaying to two pseudoscalar mesons. In this
case, two of the three final particles are collinear, gen-
erating a small invariant mass in the edges of the Dalitz
distribution, and recoil against the third meson in three-
body decays. Then one expects a similar factorization
theorem as for two-body decays, with the difference that
one of the mesons in the two-body case is substituted by a
pair of collinear moving mesons with small invariant mass.
A series of works [10–22] using perturbative QCD
approach concentrated on this situation that the pair of
collinear mesons are described collectively through inter-
mediate resonances, that is, the three-body decays are
processed as quasi-two-body decays. The CP asymmetry
of B → πππ decays has been studied within the QCD
factorization framework at leading order in αs [23,24],
using naive factorization for three-body matrix elements,
which involve the generalized form factor of B → ππ
transition and dimension light cone distribution amplitudes
in [25–28]. The calculation of the nonleptonic three-body
B decays with heavy-to-heavy transitions, up to the
precision of next-next-to-leading order in αs has also been
done in QCD factorization [29]. In all these quasi-
two-body calculations of the three-body B decays, the
theoretical calculations rely heavily on the precision of
two-body theoretical calculation methods.
In the case of two-body nonleptonic B decays, power

corrections in the heavy-quark expansion, such as weak
annihilation effects and chirally enhanced power correc-
tions, are difficult to estimate and remain the sources of
uncertainty in QCD factorization approach [30]. A complete
next-to-leading order calculation of two-body B decays in
perturbative QCD factorization approach has not been
finished [31]. The problem about precision predictions in
the calculation of two-body nonperturbative matrix ele-
ments also exist in the three-body case. As discussed in
Ref. [8], the predicted branch ratios of quasi-two-body
decays such as B → ϕðKþK−ÞK;K�ðK−πþÞπ; ρðπþπ−ÞK
are smaller than experimental data due to the absence of
1=mb power corrections. To include the nonperturbative and
nonfactorization contribution in two-body B decays, a
model independent framework of topological diagram
approach [32] has been introduced. The equivalence of
the topological decay amplitudes and the SUð3Þ irreducible
amplitudes has been approved [33,34]. In this approach, one
classifies the decay amplitudes of two-body charmless B
decays into different electroweak topological Feynman
diagrams under SUð3Þ symmetry. The topological ampli-
tudes including the nonfactorizable QCD contributions
were extracted through a global fit from all experimental
data of these decays. The precision of this topological
diagram approach is limited to the size of SUð3Þ breaking
effect.

In order to include the SUð3Þ breaking effects, the so-
called factorization-assisted topological-amplitude (FAT)
approach [35–42] has been introduced. They can give the
most precise decay amplitudes of the two-body charmless
B-meson decays. For instance, the amplitude of the color-
suppressed topological diagram dominated by the non-
factorizable QCD effect, was larger in the FAT approach
than that in other perturbative approaches so that the
long-standing B → ππ branching ratio puzzle and B →
πK CP asymmetry puzzle were solved simultaneously.
Encouraged by the success in two-body B decays, we will
systematically analyze three-body charmlessB decays using
the FATapproach at the edges of the Dalitz distribution with
only vector resonance contribution, i.e., quasi-two-body
decays with two of the pseudoscalar mesons decaying from
the vector resonance. The vector resonant effects are
described in terms of the usual Breit-Wigner formalism,
and a strong coupling accounts for the subsequent vector
meson two-body decay. We will study the branching ratios
andCP violations of these three-bodyB decays, and discuss
the virtual effects of intermediate resonance ρ; K�;ω, and ϕ
on quasi-two-body decays.
This paper is organized as follows. In Sec. II, the

theoretical framework is introduced. The numerical results
and discussions are collected in Sec. III. Section V is a
summary.

II. FACTORIZATION AMPLITUDES
FOR TOPOLOGICAL DIAGRAMS

As a quasi-two-body process, the BðsÞ → P1P2P3 decay
(with P denoting a light pseudoscalar meson) is divided into
two stages. First, BðsÞ meson decays to P1V, and the
intermediate vector resonance V decays to P2P3 sub-
sequently. The first decay BðsÞ → P1V is a weak decay
induced by b → uūdðsÞ at quark level in leading order (tree
diagram) and b → dðsÞqq̄ðq ¼ u; d; sÞ in next-to-leading
order (penguin loop diagram). The secondary decay V →
P2P3 proceeds via strong interaction. In Fig. 1 we show the
topological diagrams of BðsÞ → P1P2P3 under the frame-
work of quasi-two-body decay at tree level, including
(i) color-favored tree emission diagram T, (ii) color-
suppressed tree emission diagram C, (iii) W-exchange tree
diagram E, and (iv) W-annihilation tree diagram A, which
are specified by topological structures of the weak inter-
action. Likewise, one loop penguin diagram can also be
grouped into four categories: (i) QCD-penguin emission
diagram P, (ii) flavor-singlet QCD-penguin diagram PC or
EW-penguin emission diagram PEW, (iii) timelike QCD-
penguin diagram PE, and (iv) spacelike QCD-penguin
annihilation diagram PA, which are shown in Fig. 2. In
the two kinds of figures, we only show one case that the
intermediate resonance (labeled by gray ovals) is produced
as a recoiling particle in emission diagrams.

ZHOU, HAI, LI, and LÜ PHYS. REV. D 107, 116023 (2023)

116023-2



The electroweak B decays at tree level have been proven
to be factorizable at high precision [43]. Therefore, we
can calculate the decay amplitude of color-favored tree
diagram T in perturbative QCD order by order. Large
nonfactorizable contributions, such as soft corrections to
the color-suppressed tree amplitude and 1=mb power
corrections from annihilation type diagram, are found to

be non-negligible [38]. Similar to the FAT approach for
two-body B decays [38], we have to introduce unknown
parameters for nonfactorizable contributions for color-
suppressed tree diagram C, and W-exchange tree diagram
E (W-annihilation tree diagram A is negligible) to be fitted
from experimental data. The formulas of BðsÞ → P1V; VP1

decays are given as [38]

TP1V ¼
ffiffiffi
2

p
GFVubV�

uq0a1ðμÞfVmVF
B−P1

1 ðm2
VÞðε�V · pBÞ;

TVP1 ¼
ffiffiffi
2

p
GFVubV�

uq0a1ðμÞfP1
mVAB−V

0 ðm2
P1
Þðε�V · pBÞ;

CP1V ¼
ffiffiffi
2

p
GFVubV�

uq0χ
C0
eiϕ

C0
fVmVF

B−P1

1 ðm2
VÞðε�V · pBÞ;

CVP1 ¼
ffiffiffi
2

p
GFVubV�

uq0χ
Ceiϕ

C
fP1

mVAB−V
0 ðm2

P1
Þðε�V · pBÞ;

EP1V;VP1 ¼
ffiffiffi
2

p
GFVubV�

uq0χ
Eeiϕ

E
fBmV

�
fP1

fV
f2π

�
ðε�V · pBÞ: ð1Þ

The QCD-penguin emission diagram P and the electroweak penguin emission diagram PEW are also proved to be
factorizable, and thus are calculable in QCD factorization. The flavor-singlet QCD-penguin diagram PC and spacelike
QCD-penguin annihilation diagram PA contain large nonfactorizable contribution which will be determined by χ2 fit from
experimental data. The timelike QCD-penguin diagram PE is found to be smaller than other contribution, which can be
ignored in the modes not dominated by it in the fit as discussed in [38]. The formulas can be expressed as [38]

PP1V ¼ −
ffiffiffi
2

p
GFVtbV�

tq0a4ðμÞfVmVF
B−P1

1 ðm2
VÞðε�V · pBÞ;

PVP1 ¼ −
ffiffiffi
2

p
GFVtbV�

tq0 ½a4ðμÞ − χPeiϕ
P
rχ �fP1

mVAB−V
0 ðm2

P1
Þðε�V · pBÞ;

PP1V
C ¼ −

ffiffiffi
2

p
GFVtbV�

tq0χ
P0
Ceiϕ

P0
C fVmVF

B−P1

1 ðm2
VÞðε�V · pBÞ;

PVP1

C ¼ −
ffiffiffi
2

p
GFVtbV�

tq0χ
PCeiϕ

PC fP1
mVAB−V

0 ðm2
P1
Þðε�V · pBÞ;

PP1V
A ¼ −

ffiffiffi
2

p
GFVtbV�

tq0χ
PAeiϕ

PA fBmV

�
fP1

fV
f2π

�
ðε�V · pBÞ; ð2Þ

(a) (b) (c) (d)

FIG. 2. Typical topological penguin diagrams of BðsÞ → P1V → P1P2P3 under the framework of quasi-two-body decay with the wavy
line representing a W boson: (a) QCD-penguin emission diagram P, (b) flavor-singlet QCD-penguin diagram PC or EW-penguin
diagram PEW, (c) timelike QCD-penguin diagram PE, and (d) spacelike QCD-penguin annihilation diagram PA.

(a) (b) (c) (d)

FIG. 1. Typical topological tree diagrams of BðsÞ → P1V → P1P2P3 under the framework of quasi-two-body decay with the wavy line
representing a W boson: (a) color-favored tree diagram T, (b) color-suppressed tree diagram C, (c) W-exchange tree diagram E, and
(d) W-annihilation tree diagram A.
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PP1V
EW ¼−

3
ffiffiffi
2

p

2
GFVtbV�

tq0eqa9ðμÞfVmVF
B−P1

1 ðm2
VÞðε�V ·pBÞ;

PVP1

EW ¼−
3

ffiffiffi
2

p

2
GFVtbV�

tq0eqa9ðμÞfP1
mVAB−V

0 ðm2
P1
Þðε�V ·pBÞ:

ð3Þ
In these equations, we use the superscripts P1V; VP1 to
distinguish cases in which the recoiling meson (the first
particle of P1V; VP1) is a pseudoscalar or a vector meson.
The quark in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix element is q0 ¼ d, s. ε�V is the polarization vector of

vector meson V. rχ ¼
m2

P1
mq0mB

is the chiral factor of pseudo-

scalar meson in the “chiral enhanced” term of PVP1

amplitude. fP1
, fV are the decay constants of the corre-

sponding meson P1 and V. FB−P1

1 and AB−V
0 represent the

vector form factors of BðsÞ → P1 and BðsÞ → V transitions.
The Q2 dependent of form factor is expressed in the dipole
model as

FiðQ2Þ ¼ Fið0Þ
1 − α1

Q2

m2
pole

þ α2
Q4

m4
pole

; ð4Þ

where Fi represents form factor F1 or A0, and mpole is the
mass of the corresponding pole state, e.g., B for A0, and B�
for F1. The effective Wilson coefficients aiðμÞ can be

calculated perturbatively. χC
ð0ÞðE;P;Pð0Þ

C ;PAÞ and ϕCð0ÞðE;P;Pð0Þ
C ;PAÞ

denote the magnitude and associate phase of C (E, P, PC,
and PA) diagram, which are universal to be fitted globally
from the experimental data.
We adopt the relativistic Breit-Wigner line shape to

describe ρ,K�, ω, and ϕ resonances, which is widely used
in the experimental data analyses [44–46]. The explicit
expression of relativistic Breit-Wigner line shape is in the
following form:

LRBWðsÞ ¼ 1

s −m2
V þ imVΓVðsÞ

; ð5Þ

where the two-body invariant mass square is s ¼ m2
23 ¼

ðp2 þ p3Þ2 with p2 and p3 denoting the 4-momenta of the
collinearly moving mesons P2 and P3, respectively. The
energy-dependent width of vector resonance ΓVðsÞ is
defined by

ΓVðsÞ ¼ Γ0

�
q
q0

�
3
�
mVffiffiffi
s

p
�
X2ðqrBWÞ: ð6Þ

The Blatt-Weisskopf barrier factor XðqrBWÞ is given as [47]

XðqrBWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðq0rBWÞ2�=½1þ ðqrBWÞ2

q
�; ð7Þ

where q ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðmP2

þmP3
Þ2�½s − ðmP2

−mP3
Þ2�=s

q
is

the magnitude of the momentum of the final state P2 or P3

in the rest frame of resonance V, and q0 is the value of q
when s ¼ m2

V . When a pole mass locates outside the
kinematics region, i.e., mV < mP2

þmP3
, mV will be

replaced with an effective mass meff
V , given by the ad hoc

formula [48,49],

meff
V ðmVÞ ¼ mmin þ ðmmax −mminÞ

×

�
1þ tanh

�
mV − mminþmmax

2

mmax −mmin

��
; ð8Þ

wheremmax andmmin are the upper and lower boundaries of
the kinematics region, respectively. The barrier radius
rBW ¼ 4.0 ðGeVÞ−1 is for all resonances [46]. The full
widths of the resonances Γ0, together with their massesmV ,
are taken from Particle Data Group [50] and listed in
Table I.
The matrix element of strong decay hP2ðp2ÞP3ðp3Þ

jVðpVÞi is parametrized as a strong coupling constant
gVP2P3

, which can be extracted from measured the partial
decay widths ΓV→P2P3

through the relations

ΓV→P2P3
¼ 2

3

p3
c

4πm2
V
g2V→P2P3

; ð9Þ

where pc is the magnitude of pseudoscalar meson momen-
tum in the rest frame of vector meson. The numerical
results of gρ→πþπ− , gK�→Kþπ− , and gϕ→KþK− have already
been determined from experimental data [8],

gρ→πþπ− ¼ 6.0; gK�→Kþπ− ¼ 4.59; gϕ→KþK− ¼ −4.54:

ð10Þ
The other strong coupling constants can be derived from
the relationships with the results in Eq. (10) by using the
quark model result [51],

gρ→KþK−∶ gω→KþK−∶gϕ→KþK− ¼ 1∶1∶ −
ffiffiffi
2

p
;

gρ0πþπ− ¼ gρþπ0πþ ; gρ0π0π0 ¼ gωπþπ− ¼ 0;

gρ0KþK− ¼ −gρ0K0K̄0 ¼ gωKþK− ¼ gωK0K̄0 ;

gϕKþK− ¼ gϕK0K̄0 :

TABLE I. Masses mV and full widths Γ0 of vector resonant
states.

Resonance
Line shape
parameters Resonance

Line shape
parameters

ρð770Þ mV ¼ 775.26 MeV ωð782Þ mV ¼ 782.65 MeV
Γ0 ¼ 149.1 MeV Γ0 ¼ 8.49 MeV

K�ð892Þþ mV ¼ 891.66 MeV K�ð892Þ0 mV ¼ 895.55 MeV
Γ0 ¼ 50.8 MeV Γ0 ¼ 47.3 MeV

ϕð1020Þ mV ¼ 1019.46 MeV
Γ0 ¼ 4.25 MeV
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Combing them together for quasi-two-body decay BðsÞ → P1V → P1P2P3, we express the decay amplitudes of tree
topological diagrams shown in Fig. 1 as

TðP2P3ÞP1 ¼ hP2ðp2ÞP3ðp3ÞjðūbÞV−AjBðpBÞihP1ðp1Þjðq̄uÞV−Aj0i;

¼ hP2ðp2ÞP3ðp3ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðūbÞV−AjBðpBÞihP1ðp1Þjðq̄uÞV−Aj0i;

¼ p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVubV�

uq0a1ðμÞfP1
mVABV

0 ðm2
P1
Þ gVP2P3

s −m2
V þ imVΓVðsÞ

;

TP1ðP2P3Þ ¼ hP2ðp2ÞP3ðp3Þjðq̄uÞV−Aj0ihP1ðp1ÞjðūbÞV−AjBðpBÞi;

¼ hP2ðp2ÞP3ðp3ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðq̄uÞV−Aj0ihP1ðp1ÞjðūbÞV−AjBðpBÞi;

¼ p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVubV�

uq0a1ðμÞfVmVF
BP1

1 ðsÞ gVP2P3

s −m2
V þ imVΓVðsÞ

; ð11Þ

CðP2P3ÞP1 ¼ hP2ðp2ÞP3ðp3ÞjðūbÞV−AjBðpBÞihP1ðp1Þjðq̄uÞV−Aj0i;

¼ hP2ðp2ÞP3ðp3ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðūbÞV−AjBðpBÞihP1ðp1Þjðq̄uÞV−Aj0i;

¼ p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVubV�

uq0χ
Ceiϕ

C
fP1

mVABV
0 ðm2

P1
Þ gVP2P3

s −m2
V þ imVΓVðsÞ

;

CP1ðP2P3Þ ¼ hP2ðp2ÞP3ðp3Þjðq̄uÞV−Aj0ihP1ðp1ÞjðūbÞV−AjBðpBÞi;

¼ hP2ðp2ÞP3ðp3ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞjðq̄uÞV−Aj0ihP1ðp1ÞjðūbÞV−AjBðpBÞi;

¼ p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVubV�

uq0χ
C0
eiϕ

C0
fVmVF

BP1

1 ðsÞ gVP2P3

s −m2
V þ imVΓVðsÞ

; ð12Þ

EP1ðP2P3Þ ¼ hP1ðp1ÞP2ðp2ÞP3ðp3ÞjHeff jBðpBÞi;

¼ hP2ðp2ÞP3ðp3ÞjVðpVÞi
s −m2

V þ imVΓVðsÞ
hVðpVÞP1ðp1ÞjHeff jBðpBÞi;

¼ p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVubV�

uq0χ
Eeiϕ

E
fBmV

fVfP1

f2π

gVP2P3

s −m2
V þ imVΓVðsÞ

; ð13Þ

where q0 ¼ d, s and pV ¼ p2 þ p3 ¼
ffiffiffi
s

p
. Similarly, the amplitudes of penguin diagrams shown in Fig. 2 can be

expressed as

PðP2P3ÞP1 ¼ −p3 · ðp1 − p2Þ
ffiffiffi
2

p
GFVtbV�

tq0 ½a4ðμÞ − χPeiϕ
P
rχ �fP3

mVABV
0 ðm2

P3
Þ gVP1P2

s −m2
V þ imVΓVðsÞ

;

PP1ðP2P3Þ ¼ −p3 · ðp1 − p2Þ
ffiffiffi
2

p
GFVtbV�

tq0a4ðμÞfVmVF
BP1

1 ðsÞ gVP1P2

s −m2
V þ imVΓVðsÞ

;

PP1ðP2P3Þ
A ¼ −p1 · ðp2 − p3Þ

ffiffiffi
2

p
GFVtbV�

tq0χ
PAeiϕ

PA fBmV
fVfP1

f2π

gVP2P3

s −m2
V þ imVΓVðsÞ

;

PðP2P3ÞP1

C ¼ −p1 · ðp2 − p3Þ
ffiffiffi
2

p
GFVtbV�

tq0χ
PCeiϕ

PC fP1
mVABV

0 ðm2
P1
Þ gVP2P3

s −m2
V þ imVΓVðsÞ

;

PP1ðP2P3Þ
C ¼ −p1 · ðp2 − p3Þ

ffiffiffi
2

p
GFVtbV�

tq0χ
P0
Ceiϕ

P0
C fVmVF

BP1

1 ðsÞ gVP2P3

s −m2
V þ imVΓVðsÞ

;

PðP2P3ÞP1

EW ¼ −p1 · ðp2 − p3Þ
3

ffiffiffi
2

p

2
GFVtbV�

tq0eqa9ðμÞfP1
mVABV

0 ðm2
P1
Þ gVP2P3

s −m2
V þ imVΓVðsÞ

;

PP1ðP2P3Þ
EW ¼ −p1 · ðp2 − p3Þ

3
ffiffiffi
2

p

2
GFVtbV�

tq0eqa9ðμÞfVmVF
BP1

1 ðsÞ gVP2P3

s −m2
V þ imVΓVðsÞ

; ð14Þ

where the form factor FBP1

1 is dependent on invariant mass s not a fixed value as in two-body decays.
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The matrix element of BðsÞ → P1P2P3 can be written in
the following form:

hP1ðp1ÞP2ðp2ÞP3ðp3ÞjHeff jBðsÞðpBÞi¼p1 ·ðp2−p3ÞAðsÞ;
ð15Þ

where AðsÞ represents the summation of amplitudes in
Eqs. (11)–(13) and Eq. (14) with the prefactor p1 ·
ðp2 − p3Þ taken out. The differential width of BðsÞ →
P1P2P3 is

dΓ ¼ ds
1

ð2πÞ3
ðjp1kp2jÞ3

6m3
B

jAðsÞj2; ð16Þ

where jp1j and jp2j denote the magnitudes of the momen-
tum p1 and p2, respectively. In the rest frame of the vector
resonance, their expressions are

jp1j ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðm2

B −m2
P1
Þ2�− 2ðm2

B þm2
P1
Þ2sþ s2

q
;

jp2j ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðmP2

þmP3
Þ2�½s− ðmP2

−mP3
Þ2�

q
; ð17Þ

where jp2j ¼ q in Eq. (6).

III. NUMERICAL RESULTS
OF BRANCHING RATIOS

In the numerical calculations, we need input parameters,
such as mV , Γ0, and gVP1P2

involved in strong interaction
decay of vector mesons, which are listed in the previous
section. For the CKM matrix elements needed in the weak
transition calculation, we use Wolfenstein parametrization
with parameters from the global fit [50] as follows:

λ ¼ 0.22650� 0.00048; A ¼ 0.790þ0.017
−0.012 ;

ρ̄ ¼ 0.141þ0.016
−0.017 ; η̄ ¼ 0.357� 0.01:

The decay constants of light pseudoscalar mesons and
vector mesons, and transition form factors of B-meson

decays at recoil momentum square Q2 ¼ 0 are listed in
Tables II and III, respectively. The decay constants of
pseudoscalar mesons π, K, and B are from the Particle Data
Group [50]. The decay constants of Bs and the vector
mesons, and all form factors are not measured by experi-
ments and only calculated theoretically, such as in con-
stitute quark model and light cone quark model [52–55],
covariant light front approach [56–58], light-cone sum
rules [59–79], PQCD [80–88], and lattice QCD [89–91].
We will use the same theoretical values as in the charmless
two-body decays [38], with 5% uncertainty kept for decay
constants and 10% for form factors. The dipole model
parameters α1, α2 applied to describe theQ2 dependence of
form factors are also listed in Table III [54,81].
The effective Wilson coefficients aiðμÞ calculated at next-

to-leading order can be found in [92], a1ðmb=2Þ ¼ 1.054,
a4ðmb=2Þ ¼ −0.04, and a9ðmb=2Þ ¼ −0.009. The 14 non-
pertubative parameters of topological diagrams χC

ð0Þ
; χE; χP;

χP
ð0Þ
C ; χPA , and associated phases ϕCð0Þ

;ϕE;ϕP;ϕPð0Þ
C ;ϕPA ,

extracted from experimental data by a global fit performed
in Ref. [38], together with uncertainty are

χC ¼ 0.48� 0.06; ϕC ¼ −1.58� 0.08;

χC
0 ¼ 0.42� 0.16; ϕC0 ¼ 1.59� 0.17;

χE ¼ 0.057� 0.005; ϕE ¼ 2.71� 0.13;

χP ¼ 0.10� 0.02; ϕP ¼ −0.61� 0.02;

χPC ¼ 0.048� 0.003; ϕPC ¼ 1.56� 0.08;

χP
0
C ¼ 0.039� 0.003; ϕP0

C ¼ 0.68� 0.08;

χPA ¼ 0.0059� 0.0008; ϕPA ¼ 1.51� 0.09: ð18Þ

With all the inputs, the branching fractions of BðsÞ →
P1V → P1P2P3 can be obtained by integrating the differ-
ential width in Eq. (16) over the whole kinematics region.
Our numerical results for the branching ratios of BðsÞ decays
are collected in Tables IV–VII, for decays BðsÞ → P1ρ →
P1ππ, BðsÞ → P1K� → P1Kπ, BðsÞ → P1ϕ → P1KK̄, and
BðsÞ → P1ρ; P1ω → P1KK̄, respectively. In these tables, we
also list the intermediate resonances decays as well as the
topological contributions represented by the corresponding
symbols T; Cð0Þ and so on. In our results, the first uncertainty
is from the nonpertubative parameters in Eq. (18), and the
other two uncertainties are estimated with 10% variations
of form factors, 5% variations of decay constants. One
can see that the dominant source of uncertainties are from
form factors.

TABLE III. Transition form factors atQ2 ¼ 0 and dipole model
parameters used in this work.

FB→π
1 FB→K

1 F
B→ηq
1 AB→ρ

0 AB→ω
0 AB→K�

0

Fið0Þ 0.28 0.31 0.21 0.36 0.32 0.39
α1 0.52 0.54 1.43 1.56 1.60 1.51
α2 0.45 0.50 0.41 0.17 0.22 0.14

TABLE II. Decay constants of light pseudoscalar mesons and vector mesons (in units of MeV).

fπ fK fB fρ fK� fω fϕ

130.2� 1.7 155.6� 0.4 190.9� 4.1 213� 11 220� 11 192� 10 225� 11
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A. Branching ratios of BðsÞ → P1ρ → P1ππ

Comparing the results shown in Table IV with the
corresponding ones calculated in the previous work [38],
we find that the branching ratios of quasi-two-body decay
BðsÞ → P1ρ → P1ππ are a little smaller than that of the
direct two-body decays BðsÞ → P1ρ. It can be attributed to
the not narrow resonance width Γρ. We cannot apply the
narrow width approximation to factorize quasi-two-body
decay formula together with Bðρ → ππÞ ∼ 100% to obtain
the precise results of two-body decays.
From Table IV, it is easy to see that our results are well

consistent with the experimental data shown in the last
column of the Table. For the decay modes B → πðρ →Þππ,
B → ηð0Þðρ →Þππ with color favored T diagram dominated
contribution, and the penguin diagram P dominated modes
BðsÞ → Kðρ →Þππ, the perturbation calculation is reliable,
since these kinds of diagrams are proved to be factorizable
to all orders of αs. Our results are in good agreement with
those calculated under the QCD factorization [8] and that in
PQCD approach [13] within errors.
For the decay modes with dominated color suppressed

diagrams Cð0Þ contributions, such as B̄0 → π0ðρ0 →Þππ and
B̄0 → ηð0Þðρ0 →Þππ, the theoretical results are sensitive to
the power corrections and next-to-leading order contribu-
tions. With the magnitude and phase of this Cð0Þ diagram
given in Eq. (18), our results of branching ratios are
consistent with experimental data and results calculated
under the QCD factorization approach [8]. On the contrary,
the calculations of these decay modes are only done to the

leading order in the perturbative QCD approach with one
order magnitude smaller branching ratio [13].

B. Branching ratios of BðsÞ → P1K� → P1Kπ

In Table V, we only list quasi-two-body decays BðsÞ →
P1K� → P1Kπ through strong decays K�0 → Kþπ−,
K̄�0 → K−πþ, and K�− → K−π0 with a pair of uū from
the sea. The branching ratios for BðsÞ → P1K� → P1Kπ via
sea quark pair dd̄ strong decay K�0 → K0π0, K̄�0 → K̄0π0,
and K�− → K̄0π− can be calculated under the narrow width
approximation according to the isospin conservation rela-
tionship for strong interaction,

BðK̄�0 → K−πþÞ ¼ 2BðK̄�0 → K̄0π0Þ; ð19Þ

BðK�− → K̄0π−Þ ¼ 2BðK�− → K−π0Þ: ð20Þ

The experimental data listed in the last column are
measured by BABAR [44,94–96] and Belle [97,98] experi-
ments. As we have considered the power corrections from
“chiral enhanced” term, penguin annihilation contribution
and EW-penguin diagram for the penguin-dominated
modes Bu;d → πK� → πKπ, our results are well consistent
with experimental data, and larger by a factor of 2–4 than
QCD factorization approach [8].
The decay channels Bu;d → KK� → KKπ listed in

Table V are CKM suppressed (jVtd=Vtsj) comparing with
decay Bu;d → πK� → πKπ, so that the branching ratios of
the former are one order magnitude smaller than the latter.

TABLE IV. Branching ratios (×10−6) of quasi-two-body decays BðsÞ → P1ρ → P1ππ together with experimental data [50]. The

characters T, Cð0Þ, E, P, Pð0Þ
C , PA, and PEW representing the corresponding topological diagram contributions are also listed in the second

column.

Modes Amplitudes FAT results Experiment

B− → π−ðρ0 →Þπþπ− T;C0; P; PA; PEW 8.08� 1.74� 1.29� 0.19 8.30� 1.20
B− → π0ðρ− →Þπ−π0 T; C; P; PA; PEW 12.70� 0.71� 2.24� 1.12 10.90� 1.40
B̄0 → π−ðρþ →Þπþπ0 T; E; P; PA 5.72� 0.63� 1.61� 0.33 8.40� 1.10
B̄0 → πþðρ− →Þπ−π0 T; E; P 12.10� 0.91� 3.14� 1.27 14.60� 1.60
B̄0 → π0ðρ0 →Þπþπ− Cð0Þ; E; P; PA; PEW 1.23� 0.51� 0.08� 0.16 2.00� 0.50

B− → K−ðρ0 →Þπþπ− T;C0; P; PEW 3.41� 0.25� 0.80� 0.04 3.70� 0.50
B− → K̄0ðρ− →Þπ−π0 P 6.85� 0.47� 1.55� 0.07 7.30þ1.00

−1.20
B̄0 → K−ðρþ →Þπþπ0 T, P 7.42� 0.44� 1.65� 0.07 7.00� 0.90
B̄0 → K̄0ðρ0 →Þπþπ− C0; P; PEW 4.13� 0.34� 0.79� 0.04 3.40� 1.10
B̄0
s → Kþðρ− →Þπ−π0 T; P; PA 17.00� 0� 3.50� 0.20 � � �

B̄0
s → K0ðρ0 →Þπþπ− C0; P; P0

C; PA; PEW 1.55� 1.10� 0.31� 0.02 � � �
B− → ηðρ− →Þπ−π0 T;C; P; PC; PA; PEW 7.93� 0.48� 1.43� 0.07 7.00� 2.90
B− → η0ðρ− →Þπ−π0 T;C; P; PC; PA; PEW 5.81� 0.48� 1.43� 0.07 9.70� 2.20
B̄0 → ηðρ0 →Þπþπ− Cð0Þ; E; P; Pð0Þ

C ; PA; PEW
4.20� 1.15� 0.39� 0.17 < 1.5

B̄0 → η0ðρ0 →Þπþπ− Cð0Þ; E; P; Pð0Þ
C ; PA; PEW

3.09� 0.77� 0.29� 0.12 < 1.3

B̄0
s → ηðρ0 →Þπþπ− C0; E; P0

C; PEW 0.11� 0.02� 0.02� 0.003 � � �
B̄0
s → η0ðρ0 →Þπþπ− C0; E; P0

C; PEW 0.34� 0.07� 0.05� 0.01 � � �
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Since there are not experimental measurements of these
decays and Bs → KK� → KKπ, we show in the last
column the results of QCD factorization approach [8,93]
for comparison. Similarly with the case happened in
Bu;d → πK� → πKπ decays, the results of Bu;d → KK� →
KKπ as well as penguin-dominated decays Bs → KK� →
KKπ calculated in the FAT approach are larger by a factor
of 2–3 than those in QCD factorization approach [8].
We also give the numerical results of branching ratios of

decay modes BðsÞ → ηK� → ηKπ, shown in Table V. These
decays have not been measured by experiments from the
three-body Dalitz plot analyses. However the correspond-
ing two-body decays have been measured experimentally.
Applying the narrow width approximation for the K�
resonance, we have ΓðBðsÞ→ηK�→ηKπÞ¼ΓðB→ηK�Þ
BðK�→KπÞ. Utilizing the isospin symmetry relationship

BðK�0 → Kþπ−Þ ¼ BðK�− → K̄0π−Þ ¼ 2BðK�− → K−π0Þ;
ð21Þ

we can obtain the branching ratios for two-body decays
B → ηK�,

BðB− → ηK�−Þ ¼ ð16.05� 1.11� 2.22� 0.57Þ × 10−6;

ð22Þ

BðB− → η0K�−Þ ¼ð3.06� 1.05� 0.36� 0.18Þ × 10−6;

ð23Þ

BðB̄0 → ηK̄�0Þ ¼ð16.95� 1.13� 2.30� 0.62Þ × 10−6;

ð24Þ

BðB̄0 → η0K̄�0Þ ¼ð3.02� 1.11� 0.32� 0.18Þ × 10−6:

ð25Þ

These results agree well with the experimental measure-
ments of these two-body decays and the ones given in FAT
approach [38].

C. Branching ratios of BðsÞ → P1ϕ → P1KK̄

We show the branching fraction results of BðsÞ →
P1ðϕ →ÞKK̄ decays in Table VI together with the results
from PQCD approach [16] in the last column. For penguin

TABLE V. Branching ratios (×10−6) in FAT approach of quasi-two-body decays BðsÞ → P1K� → P1Kπ, together

with experimental data or QCD factorization (QCDF) results. The characters T, Cð0Þ, E, P, Pð0Þ
C , PA, and PEW

representing the corresponding topological diagram contributions are also listed in the second column.

Decay modes Amplitudes FAT results Experiment=QCDF

B− → π−ðK̄�0 →ÞK−πþ P;PA 6.91� 0.66� 1.19� 0.67 7.2� 0.4� 0.7þ0.3−0.5
a

6.45� 0.43� 0.48þ0.25
−0.35

b

B− → π0ðK�− →ÞK−π0 T; C; P; PA; PEW 1.91� 0.16� 0.29� 0.16 2.7� 0.5� 0.4a

B̄0 → πþðK�− →ÞK−π0 T; P; PA 2.57� 0.25� 0.44� 0.25 2.7� 0.4� 0.3a

4.9þ1.5þ0.5þ0.8
−1.5−0.3−0.3

b

B̄0 → π0ðK̄�0 →ÞK−πþ C; P; PA; PEW 2.33� 0.27� 0.44� 0.26 2.2� 0.3� 0.3a

<2.3b

B̄0
s → π0ðK�0 →ÞK−πþ C; P; PEW 0.90� 0.18� 0.17� 0.003 � � �

B− → K−ðK�0 →ÞKþπ− P;PA 0.40� 0.04� 0.07� 0.04 0.22þ0.00þ0.04þ0.01
−0.00−0.04−0.01

c

B− → K0ðK�− →ÞK−π0 P 0.14� 0.01� 0.03� 0.001 � � �
B̄0 → K0ðK̄�0 →ÞK−πþ P 0.27� 0.02� 0.05� 0.002 � � �
B̄0 → K̄0ðK�0 →ÞK−πþ P;PA 0.37� 0.04� 0.06� 0.04 0.20þ0.00þ0.04þ0.00

−0.00−0.03−0.00
c

B̄0
s → KþðK�− →ÞK−π0 T; E; P; PA 2.76� 0.44� 0.31� 0.29 � � �

B̄0
s → K0ðK̄�0 →ÞK−πþ P;PA 6.36� 0.98� 0.82� 0.66 3.8þ0.0þ0.8þ0.0

−0.0−0.7−0.0
c

B̄0
s → K̄0ðK�0 →ÞKþπ− P 4.28� 0.26� 0.84� 0.04 1.5þ0.0þ2.4þ0.0

−0.0−0.9−0.0
c

B− → ηðK�− →ÞK−π0 T;C; P; PC; PA; PEW 5.35� 0.37� 0.74� 0.19 � � �
B− → η0ðK�− →ÞK−π0 T;C; P; PC; PA; PEW 1.02� 0.35� 0.12� 0.06 � � �
B̄0 → ηðK̄�0 →ÞK−πþ C; P; PC; PA; PEW 11.3� 0.75� 1.53� 0.41 � � �
B̄0 → η0ðK̄�0 →ÞK−πþ C; P; Pð0Þ

C ; PA; PEW
2.01� 0.74� 0.21� 0.12 � � �

B̄0
s → ηðK�0 →ÞKþπ− C; P; PC; PA; PEW 0.69� 0.13� 0.11� 0.02 � � �

B̄0
s → η0ðK�0 →ÞKþπ− C; P; PC; PA; PEW 1.17� 0.14� 0.16� 0.04 � � �
aExperimental data from BABAR.
bExperimental data from Belle.
cResults from QCD factorization approach [8,93].
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diagram P dominated decay modes, Bu;d → Kðϕ →ÞKK̄,
the results in FAT approach are consistent with the ones in
PQCD approach. As discussed in the previous section, this
kind of decays are dominated by reliable perturbation
contributions, which agree well with the experimental
data BðB−→K−ðϕ→ÞKþK−Þ¼ð4.48�0.22þ0.33

−0.24Þ×10−6

[99] and BðB− → K−ðϕ →ÞKþK−Þ ¼ ð4.72� 0.45�
0.35þ0.39

−0.22Þ × 10−6 [100]. The decay modes Bs→Kðϕ→Þ
KK̄ are CKM suppressed (jVtd=Vtsj) comparing with
Bu;d → Kðϕ →ÞKK̄ decays, so that the branching ratios
of the former are one order smaller than the latter. It is easy
to see from Table VI that branching ratios of all the CKM
suppressed decay modes from the FAT approach are larger
that that from PQCD approach. It can be attribute to the
missing power corrections and next-to-leading order cor-
rections to the color suppressed penguin diagram P0

C in
PQCD approach.
Summing over the two quasi-two-body decay modes with

same weak decay but different subsequent strong decay, i.e.,
BðsÞ → P1ðϕ →ÞKþK− and BðsÞ → P1ðϕ →ÞK0K̄0, we
should obtain results of the corresponding two-body decays
BðsÞ → P1ϕ by applying the narrow width approximation.
For instance, the summation of the results of BðB− →
π−ðϕ →ÞKþK−Þ and BðB− → π−ðϕ →ÞK0K̄0Þ in Table VI
is in agreement with the two-body decay value BðB− →
π−ϕÞ ¼ ð2.80� 0.04� 0.55� 0.03Þ × 10−7 in [38] within
the error bar.

D. The virtual effects of BðsÞ → π;Kðρ;ω →ÞKK̄
The decay modes BðsÞ → π; Kðρ;ω →ÞKK̄ represent a

category of decays, whose pole masses of the resonances ρ,
ω smaller than the threshold mass of producing KK̄ pair.
They can only happen with the virtual effect, which is also
called the Breit-Wigner tail effect. In Table VII, we collect
these virtual effects in the FAT approach, together with the
results in PQCD approach [17] for comparison. Here we
only show subprocesses ρ0;ω → KþK− without ρ0;ω →
K0K̄0 due to the tiny mass difference between KþK− and
K0K̄0. The virtual effects of BðsÞ → π; Kðρ →ÞKK̄ are
approximately 1–2 order smaller than the dominated con-
tribution of BðsÞ → π; Kðρ →Þππ in Table IV. Unlike the on-
shell resonance contributions that mostly give the similar
contributions between the FAT and PQCD approaches, the
virtual contributions give quite different results between the
two approaches. Since the color suppressed tree diagram
Cð0Þ is calculated in PQCD approach only to the leading
order, its size is significantly smaller that that fitted
from experimental data in FAT approach [38]. As a result,
the off-shell effects in Cð0Þ dominated decay modes,
B̄0 → π0ðρ0;ω →ÞKþK−, B̄0

s → K0ðρ0;ω →ÞKþK− using
the FAT approach are nearly one order magnitude larger
than that of PQCD approach. For another example, the
hierarchy between the magnitude of virtual contributions for
quasi-two-body decays B− → π0ðρ− →ÞK−K0 and B− →
π−ðρ0 →ÞKþK− is opposite in the PQCD and FAT

TABLE VI. Branching ratios of quasi-two-body decays BðsÞ → P1ϕ → P1KK̄ from the FAT approach and that from the PQCD

approach. The characters C, P, Pð0Þ
C , PA, and PEW representing the corresponding topological diagram contributions are also listed in the

second column.

Modes Amplitudes BFAT BPQCD

B− → π−ðϕ →ÞKþK− P0
C; PEW 1.47� 0.19� 0.30� 0.15 × 10−7 3.58� 1.17� 1.87� 0.34 × 10−9

→ π−ðϕ →ÞK0K̄0 1.03� 0.13� 0.21� 0.10 × 10−7 2.47� 0.81� 1.30� 0.24 × 10−9

B̄0 → π0ðϕ →ÞKþK− P0
C; PEW 6.82� 0.87� 1.37� 0.68 × 10−8 1.74� 0.53� 0.91� 0.14 × 10−9

→ π0ðϕ →ÞK0K̄0 4.78� 0.61� 0.96� 0.48 × 10−8 1.20� 0.37� 0.63� 0.10 × 10−9

B̄0
s → π0ðϕ →ÞKþK− C; PEW 1.44� 0.13� 0.29� 0.004 × 10−7 9.11� 2.03� 0.14� 0.61 × 10−8

→ π0ðϕ →ÞK0K̄0 1.00� 0.09� 0.20� 0.003 × 10−7 6.30� 1.40� 0.10� 0.43 × 10−8

B− → K−ðϕ →ÞKþK− P;P0
C; PA; PEW 4.53� 1.00� 0.38� 0.52 × 10−6 4.03� 0.67� 0.49� 0.15 × 10−6

→ K−ðϕ →ÞK0K̄0 3.16� 0.70� 0.26� 0.37 × 10−6 2.79� 0.46� 0.34� 0.11 × 10−6

B̄0 → K̄0ðϕ →ÞKþK− P;P0
C; PA; PEW 4.20� 0.93� 0.35� 0.48 × 10−6 3.62� 0.64� 0.59� 0.19 × 10−6

→ K̄0ðϕ →ÞK0K̄0 2.94� 0.65� 0.24� 0.34 × 10−6 2.50� 0.44� 0.41� 0.13 × 10−6

B̄0
s → K0ðϕ →ÞKþK− P; P0

C; PEW 1.84� 0.24� 0.31� 0.035 × 10−7 8.34� 0.48� 0.94� 2.07 × 10−8

→ K0ðϕ →ÞK0K̄0 1.28� 0.16� 0.22� 0.02 × 10−7 5.76� 0.33� 0.65� 1.44 × 10−8

B̄0 → ηðϕ →ÞKþK− P0
C; PEW 4.10� 0.52� 0.82� 0.41 × 10−8 � � �

→ ηðϕ →ÞK0K̄0 2.87� 0.37� 0.57� 0.29 × 10−8 � � �
B̄0 → η0ðϕ →ÞKþK− P0

C; PEW 2.75� 0.35� 0.55� 0.27 × 10−8 � � �
→ η0ðϕ →ÞK0K̄0 1.92� 0.25� 0.38� 0.19 × 10−8 � � �

B̄0
s → ηðϕ →ÞKþK− C; P; PC; PA; PEW 4.14� 2.50� 2.77� 1.21 × 10−7 � � �
→ ηðϕ →ÞK0K̄0 2.88� 1.75� 1.92� 0.84 × 10−7 � � �

B̄0
s → η0ðϕ →ÞKþK− C; P; PC; PA; PEW 6.94� 1.65� 0.52� 0.58 × 10−6 � � �
→ η0ðϕ →ÞK0K̄0 4.83� 1.14� 0.36� 0.40 × 10−6 � � �
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approaches, which need further experimental measurements
to check.
Comparing the results between Tables IV and VII, one

can see that the off-shell effects in B → π; Kðρ →ÞKK̄ are
small, that is only about 1% of the on-resonance contri-
bution. However from Table VII, one can see that the off-
shell effect from the ground state ρð770Þ0 in B− →
π−ðρ0 →ÞKþK− decay in FAT approach is at the same
order as the branching ratio

BðB− → π−ðρð1450Þ0 →ÞKþK−Þ
¼ ð9.46þ1.79þ1.16þ0.72þ0.49þ1.82

−1.65−1.14−0.69−0.38−1.82 Þ × 10−8; ð26Þ

calculated by PQCD approach [17]. The latter branching
fraction of B− → π−ðρð1450Þ0 →ÞKþK− was measured by
LHCb [101], Belle [102], and BABAR [103]. Therefore the
virtual contribution of B− → π−ðρð770Þ0 →ÞKþK− should
also be considered in experimental analysis.
Comparing the virtual effect contributions of ρ with ω

resonance in Table VII, for instance,B− → π−ðρ0 →ÞKþK−

and B− → π−ðω →ÞKþK−, we find that the virtual effects
are at the same order magnitude, even though the decay
widths of ρ and ω meson are very different, shown in
Table I. It means that the virtual contributions of these
decays are not very sensitive to the full decay width of ρ
and ω meson, which is also confirmed by the PQCD
approach [17]. This can be explained by the behavior of the
Breit-Wigner propagators in Eq. (5) in the kinematics
regions of these decays, where the imaginary part
imρ;ωΓρ;ωðsÞ becomes unimportant when the invariant mass
square s is larger than 1 GeV2.

IV. CP ASYMMETRY

The study of three-body B decays attracts a lot of
interests because of its large CP asymmetry. In this work,
we will concentrate on direct CP violation and will not
discuss mixing-induced CP violation. We also do not
consider integrated CP asymmetry of the whole phase
space of three-body B decays, but we only consider the
direct CP asymmetry of quasi-two-body decay with one
resonant as the intermediate state. Consequently this CP
asymmetry will arise from the interference between tree
and penguin amplitudes of the two-body resonances but not
from the interference between three-body nonresonant and
resonant contribution or between different resonant states.
It is well known that direct CP asymmetries are induced

by the interference between difference of strong phases and
different CKM phases of different contributions. The strong
phase is also the major source of direct CP violation
uncertainty as it is mostly from nonperturbative QCD
dynamics. As illustrated in Ref. [38] for the two-body B
decays, the strong phases extracted from experimental data
are sufficient to induce correct direct CP asymmetry, while
QCD factorization approaches and soft-collinear effect
theory usually make wrong predictions or no prediction
for the direct CP asymmetries due to absence of non-
perturbative strong phases, such as the well-known Kπ
puzzle. The problem in two-body decays will also exist in
three-body decays. For example, the signs of CP asym-
metry of B− → π−KþK− and B− → K−πþπ− decay were
in conflict with experimental data under the QCD factori-
zation approach [8]. The authors need to consider the final-
state rescattering effect by introducing an unknown strong

TABLE VII. Comparison of results from the FAT and PQCD approaches for the virtual effects of BðsÞ →
π; Kðρ;ω →ÞKK̄ decays, which happened when the pole masses of ρ, ω are smaller than the invariant mass of KK̄.

Modes BFAT BPQCD

B− → π0ðρ− →ÞK−K0 1.02� 0.05� 0.19� 0.09 × 10−7 2.01þ0.38þ0.29þ0.24þ0.10þ0.06
−0.35−0.26−0.20−0.07−0.06 × 10−8

B− → π−ðρ0 →ÞKþK− 5.48� 1.40� 0.85� 0.16 × 10−8 1.43þ0.26þ0.19þ0.11þ0.06þ0.04
−0.25−0.17−0.10−0.05−0.04 × 10−7

B− → π−ðω →ÞKþK− 4.48� 1.15� 0.70� 0.13 × 10−8 4.21þ1.67þ1.03þ0.08þ0.21þ0.14
−1.34−0.96−0.08−0.17−0.14 × 10−8

B̄0 → πþðρ− →ÞK−K0 1.10� 0.07� 0.27� 0.11 × 10−7 1.02þ0.21þ0.28þ0.14þ0.06þ0.03
−0.17−0.25−0.13−0.05−0.03 × 10−7

B̄0 → π−ðρþ →ÞKþK̄0 3.51� 0.39� 0.99� 0.20 × 10−8 9.59þ3.25þ1.96þ0.22þ0.46þ0.29
−2.90−1.88−0.19−0.33−0.29 × 10−8

B̄0 → π0ðρ0 →ÞKþK− 7.54� 3.39� 0.44� 1.03 × 10−9 1.47þ0.96þ0.53þ0.19þ0.13þ0.04
−0.78−0.49−0.14−0.07−0.04 × 10−9

B̄0 → π0ðω →ÞKþK− 1.60� 0.67� 0.18� 0.11 × 10−8 4.96þ0.73þ1.25þ0.63þ0.24þ0.17
−0.87−1.36−0.65−0.22−0.17 × 10−9

B− → K̄0ðρ− →ÞK−K0 4.16� 0.25� 0.84� 0.04 × 10−8 2.21þ0.51þ0.51þ0.34þ0.10þ0.07
−0.45−0.46−0.29−0.08−0.07 × 10−7

B− → K−ðρ0 →ÞKþK− 2.13� 0.14� 0.43� 0.02 × 10−8 5.15þ0.91þ0.99þ0.69þ0.25þ0.16
−0.85−0.98−0.66−0.21−0.16 × 10−8

B− → K−ðω →ÞKþK− 5.09� 0.84� 0.95� 0.47 × 10−8 8.92þ1.67þ2.33þ1.19þ0.43þ0.30
−1.47−2.18−1.07−0.34−0.30 × 10−8

B̄0 → K−ðρþ →ÞKþK̄0 4.51� 0.24� 0.91� 0.04 × 10−8 1.77þ0.30þ0.41þ0.27þ0.08þ0.05
−0.25−0.39−0.25−0.06−0.05 × 10−7

B̄0 → K̄0ðρ0 →ÞKþK− 2.71� 0.24� 0.45� 0.06 × 10−8 5.44þ0.88þ1.26þ0.82þ0.24þ0.17
−0.81−1.19−0.76−0.18−0.17 × 10−8

B̄0 → K̄0ðω →ÞKþK− 3.81� 0.71� 0.81� 0.41 × 10−8 5.99þ1.15þ1.60þ0.88þ0.22þ0.20
−0.96−1.39−0.75−0.19−0.20 × 10−8

B̄0
s → Kþðρ− →ÞK−K0 1.40� 0.003� 0.28� 0.14 × 10−7 2.04þ0.03þ0.43þ0.22þ0.11þ0.06

−0.02−0.41−0.21−0.09−0.06 × 10−7

B̄0
s → K0ðρ0 →ÞKþK− 1.29� 0.90� 0.25� 0.13 × 10−8 1.03þ0.63þ0.19þ0.18þ0.08þ0.03

−0.45−0.17−0.16−0.05−0.03 × 10−9

B̄0
s → K0ðω →ÞKþK− 1.09� 0.72� 0.20� 0.11 × 10−8 1.39þ0.68þ0.17þ0.12þ0.07þ0.05

−0.57−0.14−0.14−0.07−0.05 × 10−9
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phase δ to account for the sign flip of CP asymmetry.
Therefore possible 1=mb power corrections, such as final-
state interactions, or other nonperturbative contributions are
necessary to correctly describe CP asymmetry. For the
quasi-two-body decays under the framework of FAT, the
strong phases result in from the nonperturbative contribu-
tion parameters in Eq. (18) and the Breit-Wigner formalism
for resonance in Eq. (5). These strong phases have already

contained all perturbative and nonperturbative QCD
effects, for instance, final-state interactions, color sup-
pressed contribution, penguin annihilation contribution,
and so on. They explain well the measured branching
ratios and thus are expected to give the right prediction of
CP asymmetry parameters in three-body B decays.
We show the CP asymmetries of BðsÞ → P1ρ → P1ππ

and BðsÞ → P1K� → P1Kπ in Tables VIII and IX,

TABLE IX. The same as Table VIII, but for the quasi-two-body of quasi-two-body decays BðsÞ → P1K� → P1Kπ.

Modes Amplitudes Quasi-two-body results Experiment

B− → π−ðK̄�0 →ÞK−πþ P;PA 0.006� 0.001 −0.04� 0.09
B− → π0ðK�− →ÞK−π0 T;C; P; PA; PEW 0.09� 0.04 −0.39� 0.21
B̄0 → πþðK�− →ÞK−π0 T; P; PA −0.21� 0.04 −0.27� 0.04
B̄0 → π0ðK̄�0 →ÞK−πþ C; P; PA; PEW −0.27� 0.05 −0.15� 0.13
B̄0
s → π0ðK�0 →ÞK−πþ C; P; PEW −0.29� 0.06 � � �

B− → K−ðK�0 →ÞKþπ− P;PA −0.11� 0.02 0.12� 0.10
B− → K0ðK�− →ÞK−π0 P −0.19� 0.18 � � �
B̄0 → K0ðK̄�0 →ÞK−πþ P −0.19� 0.01 � � �
B̄0 → K̄0ðK�0 →ÞK−πþ P;PA −0.11� 0.02 � � �
B̄0
s → KþðK�− →ÞK−π0 T; E; P; PA −0.31� 0.04 � � �

B̄0
s → K0ðK̄�0 →ÞK−πþ P;PA 0.002� 0.001 � � �

B̄0
s → K̄0ðK�0 →ÞKþπ− P 0.009� 0.000 � � �

B− → ηðK�− →ÞK−π0 T; C; P; PC; PA; PEW −0.18� 0.02 0.02� 0.06
B− → η0ðK�− →ÞK−π0 T; C; P; PC; PA; PEW −0.47� 0.09 −0.26� 0.27
B̄0 → ηðK̄�0 →ÞK−πþ C; P; PC; PA; PEW 0.067� 0.012 0.19� 0.05
B̄0 → η0ðK̄�0 →ÞK−πþ C; P; Pð0Þ

C ; PA; PEW
0.062� 0.052 −0.07� 0.18

B̄0
s → ηðK�0 →ÞKþπ− C; P; PC; PA; PEW 0.58� 0.12 � � �

B̄0
s → η0ðK�0 →ÞKþπ− C; P; PC; PA; PEW −0.45� 0.10 � � �

TABLE VIII. Direct CP asymmetry of quasi-two-body decay BðsÞ → P1ρ → P1ππ together with experimental
data [50].

Modes Amplitudes Quasi-two-body results Experiment

B− → π−ðρ0 →Þπþπ− T;C0; P; PA; PEW −0.43� 0.04 0.009� 0.019
B− → π0ðρ− →Þπ−π0 T;C; P; PA; PEW 0.15� 0.02 0.02� 0.11
B̄0 → π−ðρþ →Þπþπ0 T; E; P; PA −0.43� 0.03 −0.08� 0.08
B̄0 → πþðρ− →Þπþπ0 T; E; P 0.14� 0.03 0.13� 0.06
B̄0 → π0ðρ0 →Þπþπ− Cð0Þ; E; P; PA; PEW 0.34� 0.08 −0.27� 0.24

B− → K−ðρ0 →Þπþπ− T; C0; P; PEW 0.62� 0.06 0.37� 0.10
B− → K̄0ðρ− →Þπþπ0 P 0.009� 0.000 −0.03� 0.15
B̄0 → K−ðρþ →Þπ−π0 T; P 0.59� 0.01 0.21� 0.11
B̄0 → K̄0ðρ0 →Þπþπ− C0; P; PEW −0.085� 0.059 −0.06� 0.09
B̄0
s → Kþðρ− →Þπþπ0 T; P; PA 0.15� 0.03 � � �

B̄0
s → K0ðρ0 →Þπþπ− C0; P; P0

C; PA; PEW −0.40� 0.14 � � �
B− → ηðρ− →Þπþπ0 T;C; P; PC; PA; PEW −0.11� 0.02 0.11� 0.11
B− → η0ðρ− →Þπþπ0 T;C; P; PC; PA; PEW 0.42� 0.05 0.26� 0.17
B̄0 → ηðρ0 →Þπþπ− Cð0Þ; E; P; Pð0Þ

C ; PA; PEW
−0.22� 0.03 −0.23� 0.03

B̄0 → η0ðρ0 →Þπþπ− Cð0Þ; E; P; Pð0Þ
C ; PA; PEW

0.083� 0.078 � � �
B̄0
s → ηðρ0 →Þπþπ− C0; E; P0

C; PEW −0.50� 0.39 � � �
B̄0
s → η0ðρ0 →Þπþπ− C0; E; P0

C; PEW −0.64� 0.09 � � �
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respectively. As the theoretical uncertainty from hadronic
parameters (form factors and decay constants) mostly
cancel, the major theoretical uncertainties for CP asym-
metry parameters are from the nonperturbative contribu-
tion parameters in Eq. (18) and weak phases. Here we only
list the uncertainty arise from the strong phase in Eq. (18)
due to small uncertainties of CKM matrix elements. We
also list the experimental data in the last column of the two
tables. Actually only three decay modes with the inter-
mediate processK−ρ0, πþK�−, and ηK̄�0 are well measured
in experiments with more than 3σ signal significance. Most
CP asymmetries listed here are predictions to be tested by
the future experiments. For example, the CP asymmetry of
B− → πþρ0 → πþπþπ− is predicted quite large in this
work, which is consistent with the theoretical predictions
using QCDF [30] and the PQCD approach [13] but not yet
measured by the experiments. We did not list the CP
asymmetries of B → P1ϕ → P1KK̄ decays in our table,
since most of them are from pure penguin diagram
contributions, PC, PA, whose CP asymmetry is expected
to be zero with only one single CKM phase, at leading
order approximation. We also do not list the CP asymme-
tries of BðsÞ → P1ρðωÞ → P1KK̄ decays contributed by the
virtual effects.
Most of the quasi-two-body decays are extracted

from the Dalitz-plot analysis of three-body ones in
experimental analysis. For example, B− → K−ρ0 and
B− → π−K̄�0 decays are extracted from B− → K−πþπ−
decays. Comparing the CP asymmetries of quasi-two-
body decay by integrating out the invariant mass square (s)
distribution of CP asymmetry over the kinematics region
in the Dalitz plot with the corresponding ones of two-body
decay with s fixed as m2

V as in Ref. [38], we find that the
size of CP asymmetries of BðsÞ → P1ρ → P1ππ in
Table VIII are slightly smaller than that of BðsÞ → P1ρ.
The CP asymmetry of BðsÞ → P1K� → P1Kπ in Table IX
are slightly larger than that of the BðsÞ → P1K� decay.
These very small changes of CP asymmetry between two-
body and quasi-two-body decays arise from the finite
decay width of vector resonances.

V. CONCLUSION

We systematically analyze the three-body charmless B
meson decays through the intermediate resonance, i.e., they
proceed via quasi-two-body decays as BðsÞ → P1V →
P1P2P3, with the vector resonant state V including all
ground states ρ; K�;ω;ϕ. The first step of two-body B
decays to P1V intermediate states is induced by flavor
changing weak decays b → uūdðsÞ at leading order and
b → dðsÞqq̄ðq ¼ u; d; sÞ at one loop level. The second step
is that the intermediate vector resonant state V, described
by the Breit-Wigner propagator, decays into two light

pseudoscalar mesons via strong interaction. In order to
include all possible perturbative and nonperturbative QCD
corrections, the two-body weak B decays are described by
the FAT approach with the decay amplitudes extracted from
experimental data.
We compare results of the branching fractions from FAT

approach with the PQCD approach’s predictions and the
ones of QCD factorization, as well as the experimental data.
For a color suppressed tree diagram and color suppressed or
annihilation penguin diagram dominated decay modes, the
branching ratios in FAT approach are larger than that of
the PQCD approach and the QCD factorization approach.
The reason is that the decay magnitudes and phases
extracted from experimental data in FATapproach are larger
than that in the other two approaches due to the shortage of
nonperturbative contribution and 1=mb power corrections.
We have also considered the virtual effects from ρ and ω
resonance tail, which are usually ignored by the experi-
mental analysis. These virtual effects from ground state
ρð770Þ0 are about 1–2 order magnitude smaller than the
dominated contribution of BðsÞ → π; Kðρ →Þππ decays.
However, these virtual effects contributions are at the same
order as the higher resonance contributions, such as
ρð1450Þ. We also find that the virtual contributions of these
decays are not very sensitive to the decay widths of ρ and ω.
The branching ratios of BðsÞ → P1ðρ →Þππ, BðsÞ →
P1ðK� →ÞKπ are consistent with experimental data, and
the others are predictions waiting for future experiments
to test.
For CP asymmetry, theoretical predictions of three-body

decays are mostly based on quasi-two-body decays via
intermediate resonance, where the strong phases extracted
from experimental data in FAT approach are sufficient to
induce correct direct CP asymmetries. In this work, we
utilize the same strong phases of two-body decays together
with the phases from Breit-Wigner formalism to predict the
direct CP asymmetries of quasi-two-body decays, BðsÞ →
P1ðρ →Þππ and BðsÞ → P1ðK� →ÞKπ. Our results agree
well with the existing experimental measurements. But
many of the CP asymmetry predictions are waiting for
future experiments.
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