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The polarization dynamics of electrons including multiple nonlinear Compton scattering during the
interaction of a circularly polarized ultraintense laser pulse with a counterpropagating ultrarelativistic
electron beam is investigated. While electron polarization emerges mostly due to spin-flips at photon
emissions, there is a nonradiative contribution to the polarization which stems from the one-loop QED
radiative corrections to the self-energy, which admits of a simple physical model. We put forward a method
to single out the nonradiative contribution to the polarization, employing the reflection regime of the
interaction when the radiation reaction is significant. The polarization of electrons that penetrate in the
forward direction through a colliding laser is shown to be dominated by the loop effect, while the reflected
electrons are mostly polarized by spin-flips at photon emissions. We confirm this effect by quantum
Monte Carlo simulations considering the helicity transfer from the laser field to the electrons, taking into
account the opposite sign of the polarizations induced by the nonradiative loop effect and radiative
spin-flip. Our Monte Carlo simulations show a polarization signal as high as ≳10% from the nonradiative
effect, amenable for experimental detection with current technology.
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I. INTRODUCTION

Ultrastrong laser technology is advancing rapidly [1,2],
which opens the door to laser-driven techniques for
electron and ion acceleration, bright x-ray, and γ-ray
generation [3–5]. In experiments, it rendered accessible
nonlinear QED processes [6–10], in particular, extreme
multiphoton processes with radiation reaction [11,12], and
electron-positron pair production [13,14], and will offer a
test bed for the nonperturbative QED [15,16].
A recent new twist in the theory of nonlinear QED is

the scrutiny of possibilities to employ ultrastrong laser
fields for ultrafast polarization of electrons [17–21] and
positrons [22–24] in a femtosecond timescale. While
radiative electron polarization (RP), has been known from
early works on synchrotron radiation (Sokolov-Ternov
effect) [25–28], its realization with laser fields has been
hindered by the oscillating symmetric character of the

laser magnetic field [29–32] such that specific setups are
necessary [19–23] to break the symmetry and to yield
sizable polarization.
The main reason for the electron RP is the spin-flip

during photon emission. However, even if all emissions
occur without spin-flip, polarization may emerge because
of the dependence of the photon emission probability on
the electron’s initial spin projection on the magnetic field in
the instantaneous rest frame of the particle. For instance, in
an initially unpolarized beam, the electrons that radiate will
be polarized even without spin-flip because the emission is
preferred in a certain spin state. Accordingly, the electrons
in the beam that do not emit will be polarized oppositely to
the radiating ones because, in the absence of spin-flip,
the initial unpolarized state of the total beam cannot change
[30]. In this case the polarization can arise not in the whole
beam but only in the separated parts of the radiating and
nonradiating electrons. The latter provides a simple explan-
ation (layperson’s model) for the electron nonradiative
polarization (NRP), as well as for the, at first sight
unexpected, probability of the electron polarization change
via the “no-photon-emission” process [33]. In other words,
if the radiating and not radiating electrons are mixed in a
beam, its polarization can arise only due to the additional
effect of the spin-flip. Nevertheless, the NRP effect (i.e.,
no-photon-emission effect connected with the QED loop
diagram, see the discussion below on Fig. 1) may become
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observable with a proper selection of electrons after the
interaction, which will be the main aim of this paper.
While the layperson’s model helps for an intuitive

understanding, a quantum description of NRP within
nonlinear QED is in the order. In strong background
fields, the electron polarization dynamics in the case of
a small value of the quantum strong-field parameter

χ ≡ jej
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
=m3 ≪ 1 has been described by

Baier using the operator approach of strong field QED
[27]. Here Fμν denotes the field tensor, pν the 4-momentum
of the electron, e < 0 and m the electron charge and mass,
respectively. The relativistic units ℏ ¼ c ¼ 1 are used
throughout. The expectation value of the spin is calculated,
expanding the time evolution operator up to the second
order over the coupling with the radiation photon field. The
first-order term describes the photon emission effect and is
related to the polarization effects due to photon emission.
The second-order term stems from the nonradiative one-
loop self-energy (OLSE) interaction. While the real part
of the OLSE contribution describes spin rotation associated
to the anomalous magnetic moment, additional to the
common spin precession due to the electron’s Dirac
magnetic moment, the imaginary part of OLSE (related
according to the optical theorem to the photon emission
probability) introduces spin-dependent damping terms for
polarization, which correspond to the NRP effect. The
combination of all damping terms in Ref. [27] yields solely
the probability of the polarization due to the radiative spin-
flip in consistence with the layperson’s model presented in
Sec. II, which tells us that the NRP and RP effects without
spin-flip cancel each other if no selection of radiating
(nonradiating) electrons is implemented. The impact of the
OLSE correction on the electron spin dynamics in intense
background fields has been demonstrated also in [34,35]
solving the Dirac equation with the QED mass operator
(Schwinger-Dirac equation), and in [36], via the resumma-
tion method using Müller matrices.
The polarization picture given by Baier can be illustrated

using the QED technique of Feynman diagrams in Furry
representation [37], which is also valid at high χ, see Fig. 1.
The first diagram ∼α0 (with the fine structure constant α) is
related to the electron spin precession known from the
Bargmann-Michel-Telegdi (BMT) equation [38], and the
second one (∼α) describes the RP at a photon emission,
which includes two contributions, one due to the spin-flip,
and one due to the spin dependence of the photon emission
probability. The NRP is described by the third, interference
diagram (∼α) of the OLSE diagram with the forward
scattered one [27,39]. It includes NRP due to the spin
dependence of the photon emission probability, and the
modification of the spin precession due to the anomalous
magnetic moment. Note that the layperson’s model and
QED calculations yield the same probability for the NRP,
expressed via the spin-dependent radiation probability.

Thus, in physical terms, the leading contribution to electron
polarization in a strong background field of the first order in
α is induced by the following three processes: the spin-flip
during photon emission, the spin dependence of the photon
emission probability (which induces NRP, but has a contri-
bution for radiating electrons as well), and the spin preces-
sion modification due to the electron anomalous magnetic
moment. Note the spin precession via BMT equation does
not yield electron polarization because the relative pointing
directions of the electron velocity and spin remain
unchanged [34,37]. The spin-flip is employed for electron
beam polarization in Refs. [19–21]. We have also discussed
the possibility of the observation of the electron polarization
caused by the electron anomalous magnetic moment [21].
The NRP is described by the OLSE. To observe the

distinct signature of the OLSE in the electron polarization,
one needs to face the challenge of the separation of the
electrons experiencing substantial radiation recoil from
those with negligible recoil in the beam, because the
polarization due to radiation and NRP are both of the
same order of magnitude (∼α) and mixed for the total
beam. The OLSE polarization effect was discussed in
Refs. [34,37,39]. Reference [34] shows that the electron’s
exact spin-dependent wave function is unstable inside a
linearly polarized laser field, leading to ∼1% longitudinal
polarization due to OLSE at χ ∼ 1, being rotated from the
initial transverse polarization (100%) for unscattered elec-
trons, ∼10−4 out of the total amount (in a linearly polarized
laser field, the net polarization is negligible due to the
averaging of polarization effects in oscillating fields).
The use of an ultrashort laser pulse allows one in this
scheme to neglect the amount of radiating electrons. In
Ref. [39], deriving the spin-resolved probabilities for
nonlinear Compton scattering, the electron polarization
via OLSE is discussed, however, without a specific setup
and estimating the experimental feasibility. Another possi-
bility for the detection of the OLSE polarization effect was
proposed in Ref. [37], working in the χ ≪ 1 regime, when

FIG. 1. Feynmandiagramsup to the first order ofα contributing to
the polarization of an electron in a background strong field: (a) spin
precession in a background field (corresponding to the BMT
equation); (b) radiative polarization due to the spin-flip and the
spin dependence of the photon emission probability; (c) the OLSE
contribution, including NRP, and the modification of the spin
precession due to the anomalousmagneticmoment.Here,p ðσÞ and
p0 ðσ0Þ are the initial and final momentum (spin).
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the spin-flip at photon emission is damped more strongly
than the OLSE one. The obtained OLSE polarization
signature in [37] was of α2-order with a suppressed
probability w ≤ 10−6. Unfortunately, the signal predicted
in these schemes is far below the current experimental
detection precision, which is typically ≳0.5% [40].
In this paper, we put forward a method for the obser-

vation of the OLSE effect of the first order in α, in the
polarization dynamics of electrons during the interaction
with a circularly polarized (CP) ultraintense laser pulse in
the quantum radiation-dominated regime with χ ∼ 1. To
this end, the separation of electrons experiencing a weak
radiation recoil from those with significant recoil is realized
by employing the quantum reflection regime, when deflec-
tion of electrons to large angles arises because of radiation
reaction [41–43]. The spin-polarization of the deflected
electrons is dominated by the RP, while that of the forward-
moving ones (at small deflection angles) is dominated by
the NRP because of small energy loss. We demonstrate that
there exists a small angle domain in which NRP dominates
over RP, providing a distinct signature for the NRP effect,
see Fig. 2. While the longitudinal polarization of electrons
coincides with the driving-laser helicity as RP dominates, it
is the opposite when NRP dominates. An important point is
that we employ a polarization mechanism that is based on
the anomalous magnetic moment of the electron induced by
OLSE. In this mechanism the helicity of the laser photons is
transferred to the electron helicity, enabled by the spin
precession via the g − 2 term of the BMT equation. In this
process, the phase matching of the transverse electron
polarization and the laser field leads to the accumulation
of helicity through the oscillating laser field and to the
enhancement of the OLSE signal.
The structure of the paper is the following. In Sec. II

we will introduce a layperson’s model for the intuitive
explanation of the NRP effect, which is augmented with the

known QED description in Sec. III. The detection scheme
of Møller polarimetry and results of the numerical QED
Monte Carlo simulations are presented in Sec. IV. The
experimental feasibility is analyzed in Sec. V. The impact
of laser and electron beam parameters on the OLSE
signature, efficiency of the detection with energy-selection
technique, and the influence of pair-production effect are
discussed. Our conclusion is given in Sec. VI.

II. LAYPERSON’S MODEL

Following the tradition of the strong-field atomic
physics [44,45], in this section, we provide a layperson’s
model similar to that in Ref. [33] describing the emergence
of the electron beam polarization during photon emissions
in a strong background field.

A. No spin-flip

In this subsection we discuss the electron beam polari-
zation which arises due to the spin dependence of the photon
emission probability. The latter has a consequence not only
for the polarization of the radiating electrons, but also for the
polarization of the nonradiating part of the beam. In the next
subsection we extend the layperson’s model including the
spin-flip effect during a photon emission.
Let us assume that the electron beam consisting of N

electrons is initially partially polarized with the average
spin projection Si on the given quantization axis along the
magnetic field of the laser (for the sake of convenience,
here and below we often indicate as “spin” quantities which
are actually twice larger):

Si ¼
Nþ − N−

N
; ð1Þ

where N� are the number of fully polarized electrons
in the initial beam with positive and negative spin projec-
tions, and

N ¼ Nþ þ N−: ð2Þ
We can find from Eqs. (1)–(2) that

N�

N
¼ 1� Si

2
: ð3Þ

Let us denote the number of electron in the beam that emit
photons by NR, and that with no-photon emission NNR,

N ¼ NR þ NNR: ð4Þ

If N�
R are the number of radiating electrons in the initial

beam with the positive and negative spin projections, and
N�

NR that of the nonradiating electrons:

N� ¼ N�
R þ N�

NR ð5Þ

FIG. 2. The scheme for the detection of OLSE during nonlinear
Compton scattering of a CP strong laser pulse by an unpolarized
electron beam. The instantaneous polarization caused by RP (NRP)
is rotated into a longitudinal direction through spin precession.After
the interaction, the electrons dominated by RP (NRP) have a final
longitudinal polarizationwithPk > 0 (Pk < 0).While the electrons
undergoing a substantial radiative recoil have Pk > 0 and are
reflected from the laser pulse, the electrons moving forward have
Pk < 0 and indicate the signature of OLSE.
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NR ¼ Nþ
R þ N−

R ð6Þ

NNR ¼ Nþ
NR þ N−

NR ð7Þ

Firstly, assume that no spin-flip takes place, but the photon
emission probability depends on the electron initial spin,
which can be expressed as

w�
R ¼ N�

R

N� ¼ w0 � ws; ð8Þ

which follows from the photon emission probability in
locally constant-field approximation (LCFA) in the
u-interval Δu and time-interval Δt summed up over the
final polarization [7]:

wR ¼ ΔuΔtCRða1 þ a2 · SiÞ; ð9Þ

with

a1 ¼ −ð1þ uÞIntK1
3
ðu0Þ þ ðu2 þ 2uþ 2ÞK2

3
ðu0Þ;

a2 ¼ −ê2uK1
3
ðu0Þ;

CR ¼ αmffiffiffi
3

p
πγeð1þ uÞ3 ;

where γe the electron Lorentz factor, u ¼ ωγ=ðεi − ωγÞ, ωγ

the emitted photon energy, εi the electron energy before
radiation, u0 ¼ 2u=3χe, IntK1

3
ðu0Þ≡ R∞

u0 dzK1
3
ðzÞ, Kn the

nth-order modified Bessel function of the second kind, ê1
the unit vector along the transverse component of the
electron acceleration, ê2 ¼ êv × ê1, êv the unit vector along
the electron velocity, Si the electron spin vector before
radiation. Thus,

w0 ¼ ΔuΔtCRa1; ws ¼ ΔuΔtCRa2; ð10Þ

where the quantization axis is assumed along −ê2, and
a2 ¼ ja2j.
The polarization of the part of the beam of radiating

electrons due to the spin dependence of the photon
emission probability is

Sno−sfR ¼ Nþ
R − N−

R

NR
¼

Nþ
R

Nþ
Nþ
N − N−

R
N−

N−

N
Nþ

R
Nþ

Nþ
N þ N−

R
N−

N−

N

¼ ðw0 þ wsÞ 1þSi
2

− ðw0 − wsÞ 1−Si2

ðw0 þ wsÞ 1þSi
2

þ ðw0 − wsÞ 1−Si2

¼ ws þ Siw0

w0 þ Siws
; ð11Þ

where we have used Eqs. (3) and (8), and the “no-sf”
superscript indicates that the spin-flip is not accounted for
in these expressions.

The polarization of the part of the beam of nonradiating
electrons due to the spin dependence of the photon emission
probability, i.e., NRP, is

SNR ¼ Nþ
NR − N−

NR

NNR
¼ SiN − ðNþ

R − N−
RÞ

N − NR
; ð12Þ

where we have used Eqs. (1) and (5). Then, we have

SNR ¼
Si −

�
Nþ

R
Nþ

Nþ
N − N−

R
N−

N−

N

�

1 −
�
Nþ

R
Nþ

Nþ
N þ N−

R
N−

N−

N

�

¼ Si − ðws þ Siw0Þ
1 − ðw0 þ SiwsÞ

≡ B
A
; ð13Þ

again via Eqs. (3) and (8).
Thus, we conclude that nonradiating part of the electron

beam can be also polarized because of the spin dependence
of the radiation probability. The change of the polarization
of nonradiating electrons is

SNR − Si ¼
ðS2i − 1Þws

1 − ðw0 þ SiwsÞ
; ð14Þ

i.e. it is vanishing only for the initial beam fully polarized
along the magnetic field of the laser, S2i ¼ 1.
The total beam polarization solely due to the spin

dependence of the photon emission probability is naturally
not changing after the interaction if no selection of radiating
(nonradiating) electrons is carried out:

Sno−sftot ¼ NRSno−sfR þ NNRSNR
N

¼ Nþ − N−

N
¼ Si: ð15Þ

In the most simple case of the initially unpolarized electron
beam Si ¼ 0:

Sno−sfR ¼ ws

w0

SNR ¼ −
ws

1 − w0

; ð16Þ

withNR=N ¼ w0 andNNR=N ¼ 1 − w0, and the total beam
polarization is vanishing Sno−sftot ¼ 0. Nevertheless, if radi-
ating electrons will be separated from the nonradiating ones
both subbeams will be polarized even without accounting
for the spin-flip during the photon emission.
The equation (13) gives the average spin of the

nonradiating electron, from which the NRP probability is
recovered

WNR ¼ 1

2
ðAþ SfBÞ

¼ 1

2
f1 − ðw0 þ SiwsÞ þ Sf½Si − ðws þ Siw0Þ�g:

ð17Þ
While Eq. (13) provides the ratio B=A, the prefactor in
Eq. (17) is chosen to yield for the spin-averaged total
probability WNR ¼ 1 − w0.
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Thus, with the spin dependent radiation probability in the
form of Eq. (8), one can derive NRP probability Eq. (17),
which taking into account Eqs. (9), (10), will read:

WNR ¼ 1

2
f1 − ΔuΔtCRða1 þ a2 · SiÞ

þ Sf · ½Sið1 − ΔuΔtCRa1Þ − ΔuΔtCRa2�g: ð18Þ

The same NRP probability is derived within the nonlinear
QED theory from the OLSE diagram, see Sec. III B below.
Note that Eqs. (11) and (14) for the polarization change

due to the spin dependence of the radiation probability can
be expressed, using expressions of Eq. (10), as

Sno−sf
R − Si ¼

a2 − Si ða2 · SiÞ
a1 þ Si · a2

ð19Þ

SNR − Si ¼
Si ða2 · SiÞ − a2

1 − ða1 þ Si · a2ÞΔuΔtCR
ΔuΔtCR. ð20Þ

The average spin changes for the radiating and nonradiating
electrons, without accounting spin-flip, are

ΔSno−sf
R ¼ ðSno−sf

R − SiÞ
NR

N
¼ −½Si ða2 · SiÞ − a2�ΔuΔtCR ð21Þ

ΔSNR ¼ ðSNR − SiÞ
NNR

N
¼ ½Si ða2 · SiÞ − a2�ΔuΔtCR: ð22Þ

The latter shows that without spin-flip the total beam
polarization does not change ΔSno−sf

R þ ΔSNR ¼ 0.

B. The electron beam polarization including
the spin-flip effect

Now let us consider the spin-flip effect during a photon
emission for the electron beam polarization. Assume the
electron spin-flip can happen due to the photon emission
with a probability w�

sf, and it depends on the initial spin
state. Then, after the spin-flip we have for the number of
radiating electrons:

Nsfþ
R ¼ N−

Rw
−
sf þ ð1 − wþ

sfÞNþ
R ð23Þ

Nsf−
R ¼ Nþ

Rw
þ
sf þ ð1 − w−

sfÞN−
R: ð24Þ

Of course the total number of radiating electrons does not
change because of the spin-flip NRf ¼ Nsfþ

R þ Nsf−
R ¼ NR,

and

Nsfþ
R − Nsf−

R ¼ ð1 − 2wþ
sfÞNþ

R − ð1 − 2w−
sfÞN−

R: ð25Þ

With the spin-flip, the polarization of the radiating
electrons will read:

SsfR ¼ Nsfþ
R − Nsf−

R

NR

¼ ð1 − 2wþ
sfÞ

Nþ
R

NR
− ð1 − 2w−

sfÞ
N−

R

NR

¼ ð1 − 2wþ
sfÞ

w0 þ ws

w0 þ Siws

1þ Si
2

− ð1 − 2w−
sfÞ

w0 − ws

w0 þ Siws

1 − Si
2

¼ ws þ Siw0

w0 þ Siws

− 2wþ
sf

w0 þ ws

w0 þ Siws

1þ Si
2

þ 2w−
sf

w0 − ws

w0 þ Siws

1 − Si
2

:

ð26Þ

After the interaction, the average spin of the total beam,
taking into account all polarization effects, will be

Stot ¼
SsfRNR þ SNRNNR

N

¼ Si − 2wþ
sfðw0 þ wsÞ

1þ Si
2

þ 2w−
sfðw0 − wsÞ

1 − Si
2

:

ð27Þ

Thus, the change of the total beam polarization ΔStot ≡
Stot − Si is only due to spin-flip as it is ∝ w�

sf , while
the NRP is canceled by the similar contribution for the
radiating electrons, see Eqs. (21)–(22). Introducing radia-
tion probabilities with the spin-flipWsf�

R ≡ w�
sfw

�
R , Eq. (27)

reads:

ΔStot ¼ −2Wsfþ
R

1þ Si
2

þ 2Wsf−
R

1 − Si
2

: ð28Þ

The expressions for w�
sf can be found from the fully spin

resolved emission probability [46]:

WR ¼ ΔuΔt
CR

2
ða1 þ a2 · Si þ b · SfÞ; ð29Þ

with

b ¼ b0Si þ b1 þ b2ðSi · êvÞêv; ð30Þ

b0 ¼ −ð1þ uÞ½IntK1
3
ðu0Þ − 2K2

3
ðu0Þ� ð31Þ
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b1 ¼ −uð1þ uÞK1
3
ðu0Þê2 ð32Þ

b2 ¼ −u2½IntK1
3
ðu0Þ − K2

3
ðu0Þ�; ð33Þ

and Sf being the final spin. Please refer to Eq. (9) for a1
and a2. Comparing the two expressions for the photon
emission probability with spin-flip

Wsf
R ≡WRðSfÞjSf¼−Si ¼ wsfðSiÞwR; ð34Þ

which reads a1 þ a2 · Si − b · Si ¼ 2ða1 þ a2 · SiÞwsfðSiÞ,
we obtain for the spin flip conditional probability:

wsfðSiÞ ¼
1

2

�
1 −

b · Si

a1 þ a2 · Si

�
: ð35Þ

When using the quantization axis along −ê2 we obtain

w�
sf ¼

1

2

�
1 −

b0 þ b02 � b1
a1 � a2

�
; ð36Þ

with b02 ¼ b2ðê2 · êvÞ2. From Eq. (28) and using Eq. (36)
the change of the total beam polarization due to radiation is

ΔStot ¼ ΔuΔtCRðb − Sia1 − a2Þ: ð37Þ

From Eqs. (26) and (36) [or alternatively Eq. (29)], the
average polarization of the radiating electrons due to all
effects is derived:

ΔSR ¼
�

b
a1 þ a2 · Si

− Si

�
NR

N

¼ ΔuΔtCR½b − Siða1 þ a2 · SiÞ�: ð38Þ

We confirm via Eqs. (22) and (38) that ΔStot ¼
ΔSR þ ΔSNR. The spin-flip induced part of the radiative
polarization can be singled out using Eq. (21):

ΔSsf
R ¼ ΔSR − ΔSno−sf

R

¼ ΔuΔtCRðb − Sia1 − a2Þ: ð39Þ

We stress that ΔSsf
R coincides with the total beam polari-

zation change of Eq. (37), which indicates again that the
total beam polarization arises solely due to the spin-flip.
The total spin change of Eq. (37) is in accordance with the
total quantum probability given in Sec. III.

III. RADIATIVE POLARIZATION WITHIN
NONLINEAR QED THEORY

A. The QED treatment of radiative polarization

Here we collect the information on the spin re-
solved photon emission probabilities derived with the
Baier-Katkov QED operator method in LCFA [7].
In LCFA, the photon emission probability is determined

by the local value of the quantum parameter χe. LCFA
is generally considered as a good approximation if the
formation length for radiation is much smaller than the laser
wavelength and the typical size of the electron trajectory
[6,7]. This is usually the case for ultraintense laser fields with
a0 ≫ 1. Here, a0 ≡ jejE0=ðmω0Þ is the invariant laser field
parameter with E0 denoting the laser field amplitude and ω0

the laser frequency.
The fully spin resolved photon emission probability,

summed up by the emitted photon polarization, is given by
Eq. (29). After the photon emission, the electron spin is in a
mixed state with

SR ¼ b
a1 þ a2 · Si

; ð40Þ

determined from Eq. (29).

B. The QED treatment of nonradiative polarization

The nonradiative polarization in QED up to the first
order in α is given by the sum of the propagation diagram
and the interference one of the OLSE with the propagation
amplitude, see Fig. 1. We present the QED calculations
of Ref. [39], and check its agreement with NRP via the
layperson’s model. The α0-order spin-dependent probabi-
lity comes from propagation diagram and reads

Wð0Þ ¼ 1

2
ð1þ Sf · SiÞ: ð41Þ

The α-order loop contribution to spin variation comes from
the product of the tree-level propagation diagram and one-
loop propagation diagram. The first-order loop probability
takes the form:

WðLÞ ¼ 2ReM0M�
1; ð42Þ

whereM0 ¼ 1
2
ūfui is the zeroth order scattering amplitude,

and M1 the first order scattering amplitude (Eq. (B11)
in [39]). Within the LCFA, the probability reads

WðLÞ ¼ hWðLÞi þWðLÞ
0 · Si þWðLÞ

1 · Sf þ Sf ·W
ðLÞ
10 · Si;

ð43Þ
where the dots indicate both vector and tensor products
and wheren

hWðLÞi;WðLÞ
0 ;WðLÞ

1 ;WðLÞ
10

o

¼ α

2

Z
dσ
kp

Z
1

0

ds
n
hRðLÞi; RðLÞ

0 ; RðLÞ
1 ; RðLÞ

10

o
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with s¼ 1
1þu ;ds¼− 1

ð1þuÞ2du;σ ¼ ðϕ1þϕ2Þ=2;dt¼ γ
kpdσ,

and

hRðLÞi ¼ Ai1ðξÞ þ κ
Ai0ðξÞ
ξ

;

RðLÞ
0 ¼ RðLÞ

1 ¼ −q
AiðξÞffiffiffi

ξ
p B̂;

RðLÞ
10 ¼ hRðLÞiI þ q

GiðξÞffiffiffi
ξ

p ðÊ k̂−k̂ ÊÞ: ð44Þ

Here κ ¼ 1=sþ s ¼ 2þ2uþu2
1þu ; r ¼ 1=s − 1 ¼ u; q ¼ u

1þu ;
ξ ¼ ðrχÞÞ2=3 ¼ ðuχÞ2=3.

To prove that the QED calculation based on the loop
diagrams Eq. (43) is equivalent to the NRP probability of
Eq. (48), we express the Airy functions via modified Bessel
functions with the argument of u0 ¼ 2

3
u
χ:

AiðξÞ ¼ 1

π
ffiffiffi
3

p
ffiffiffi
ξ

p
K1=3ðu0Þ;

Ai1ðξÞ ¼
1

π
ffiffiffi
3

p IntK1
3
ðu0Þ;

Ai0ðξÞ ¼ −
ξ

π
ffiffiffi
3

p K2
3
ðu0Þ:

Thus, hRðLÞi; RðLÞ
0 ; RðLÞ

1 ; RðLÞ
10 in Eq. (44) can be written as

hRðLÞi ¼ −
1

π
ffiffiffi
3

p 1

1þ u
½−ð1þ uÞIntK1

3
ðu0Þ þ ð2þ 2uþ u2ÞK2

3
ðu0Þ�

RðLÞ
0 ¼ RðLÞ

1 ¼ 1

1þ u
1

π
ffiffiffi
3

p uK1
3
ðu0Þê2

RðLÞ
10 ¼ −

1

π
ffiffiffi
3

p 1

1þ u
½−ð1þ uÞIntK1

3
ðu0Þ þ ð2þ 2uþ u2ÞK2

3
ðu0Þ�I þ u

1þ u
GiðξÞffiffiffi

ξ
p ðê1êv − êvê1Þ: ð45Þ

Note that ê1êv − êvê1 is an off-diagonal matrix that leads to spin rotation in ê1; êv plane and the integration of the
coefficient over u gives

R
u

ð1þuÞ3 du
GiðξÞffiffi

ξ
p ¼ μ χ

α with μ ¼ g−2
2

being the anomalous magnetic moment (Eq. (25) in [37]).

Substituting Eq. (45) into Eq. (43), we obtain the first-order probability coming from interference diagram

WðLÞ ¼ −
1

2
Δt

Z
CRdu½−ð1þ uÞIntK1

3
ðu0Þ þ ð2þ 2uþ u2ÞK2

3
ðu0Þ − uK1

3
ðu0Þê2 · Si�

þ 1

2
Δt

Z
CRdufuK1

3
ðu0Þê2 − ½−ð1þ uÞIntK1

3
ðu0Þ þ ð2þ 2uþ u2ÞK2

3
ðu0Þ�Sig · Sf

þ μ

2
ω0a0ðφÞΔt½ðSf · ê1ÞðSi · êvÞ − ðSf · êvÞðSi · ê1Þ�: ð46Þ

W ¼ Wð0Þ þWðLÞ ¼ WNR þ μ

2
ω0a0ðφÞΔt½ðSf · ê1ÞðSi · êvÞ − ðSf · êvÞðSi · ê1Þ�; ð47Þ

where the probability for no photon emissions reads:

WNR ¼ 1

2
ðcþ Sf · dÞ; ð48Þ

where, c¼1−CRða1þa2 ·SiÞ and d¼Sið1−
R
CRa1duΔtÞ−R

CRa2duΔt The average spin due to NRP is

SNR ¼ d=c: ð49Þ

The expression for NRP probability WNR via OLSE inter-
ference diagramW ¼ Wð0Þ þWðLÞ of Eq. (47) is exactly the
same as that deduced from the layperson’smodel, seeWNR of

Eq. (18), except for an extra rotating term [the last term
proportional to μ in Eq. (47)], describing the spin precession
modification due to the anomalous magnetic moment. The
latter we account for in our Monte Carlo code using the
anomalous magnetic moment in the BMT equation, see
Appendix A.
The total fully spin resolved probability of the interaction

is derived via combining of radiative and nonradiative
probabilities of Eqs. (29) and (48)

dWtot ¼ dWR þWNR

¼ 1

2
½1þ Sf · ðbþ Si − a1Si þ a2ÞCRΔuΔt�: ð50Þ
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The latter yield the same final average spin which has been
deduced from the layperson’s model, see Eq. (37) in Sec. II.

C. The radiative spin dynamics

In this section we derive differential equations describing
the evolution of the polarization dynamics.

ΔStot ¼
X
Sf

�Z
dWR

dudt
SRduΔt − Si þWNRSNR

�
;

¼
X
Sf

�Z
dWR

dudt
ðSR − SiÞduΔtþWNRðSNR − SiÞ

�
;

ð51Þ

where we have used WNRSi þ
R P

S0
dWR
dudt SiduΔt ¼ Si.

One can split the spin variation in Eq. (51) into the radiative
polarization term and the nonradiative (self-energy) term.
The radiative polarization term takes the form:

ΔSR ¼
X
Sf

�Z
dWR

dudt
ðSR − SiÞduΔt

�
;

¼
Z

CRða1 þ a2 · SiÞ
�

b
a1 þ a2 · Si

− Si

�
duΔt:

ð52Þ

Then,

dSR

dt
¼

Z
CR½b − Siða1 þ a2 · SiÞ�du

¼
Z

CRf½−ð1þ uÞ½IntK1
3
ðu0Þ − 2K2

3
ðu0Þ�Si − uð1þ uÞK1

3
ðu0Þê2�

− Si½−ð1þ uÞIntK1
3
ðu0Þ þ ðu2 þ 2uþ 2ÞK2

3
ðu0Þ − Si · ê2uK1

3
ðu0Þ�gdu

¼ −
Z

CRfuð1þ uÞK1
3
ðu0Þê2 þ Si½u2K2

3
ðu0Þ − ðSi · ê2ÞuK1

3
ðu0Þ�gdu: ð53Þ

The nonradiative spin variation induced by self-energy is

ΔSNR ¼ WNRðSNR − SiÞ

¼ c ×
�
d
c
− Si

�

¼
�
Si

Z
CRða2 · SiÞdu −

Z
CRa2du

�
Δt; ð54Þ

such that

dSNR

dt
¼ Si

Z
CRða2 · SiÞdu−

Z
CRa2du

¼ −Si

Z
CRðSi · ê2ÞuK1

3
ðu0Þduþ

Z
CRê2uK1

3
ðu0Þdu:

ð55Þ
The Baier’s equation for the average spin evolution in the
limit of χ ≪ 1, see Eq. (3.23) in Ref. [27], is recovered via

dStot

dt
¼ dSR

dt
þ dSNR

dt
; ð56Þ

using corresponding asymptotic expressions in Eqs. (53)
and (55).
In Ref. [47] Baier et al. derive an analogous equation

for the average electron momentum p, which takes into
account the emission of photons at the leading order in α
and which in our notation reads

dp
dt

¼ −
Z

dWRðkÞkþ
dp
dt

				
L
; ð57Þ

where dWRðkÞ is the probability per unit time of the
emission of a photon with momentum between k and
kþ dk, and dpL=dtjL is the variation of the momentum in
the absence of radiation, i.e., the Lorentz force. The first
term in Eq. (57) corresponds to the radiative change dSR=dt
in the case of the spin, whereas the second one corresponds
to the BMT equation for the spin. This shows that, unlike
the average spin, the average momentum of the electron
changes either because of the Lorentz force or because of
the radiation of photons.
We employ a QED Monte Carlo simulation code similar

to Ref. [21], which includes the three sources of strong field
polarization, see Appendix A: the RP is accounted for by
the spin-resolved QED probability in the local constant
field approximation [7,48], the NRP by the corresponding
probability [23,33], and the OLSE contribution to the
anomalous magnetic moment by the appropriate modifi-
cation of BMT equation.

IV. THE OLSE SIGNATURE IN ELECTRON
ANGULAR DISTRIBUTION

A. Møller polarimetry

The most relevant technique for the detection of
∼100 MeV electron polarization is Møller polarimetry.
The electron polarization is defined by the vector Si, which
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is the electron spin in the rest frame of the electron. For a
monoenergetic electron beam, the average beam polariza-
tion is straightforwardly the average over Si:

hSi ¼
P

iniSiP
ini

; ð58Þ

with the number of the electrons ni in the beam with
polarization Si, because the rest frame of all electrons is the
same. In this case polarimetry determines the average
polarization hSi defined by Eq. (58).
However, in our setup, the electrons after the interaction

are distributed in a quite large energy and angle range. In
this case, the rest frames of electrons are different and the
definition of Eq. (58) is not relevant. How can in this case
Møller polarimetry be applied, and which parameter will be
measured? Let us calculate the signal of Møller polarimetry
with our broad electron distribution. We will assume that
the electrons collected at certain angle region are focused
via beam optics over the angle, but still have a large energy
distribution Δε ∼ ε0 around the mean energy ε0.
Møller polarimetry employs the scattering of polarized

solid-targets off the electrons. The difference of the
scattered electron yield N þ

e −N −
e is measured between

the cases when the electron helicity is parallel or antipar-
allel to the target polarization direction. It allows one to
derive the average polarization vector from the incoming
particles’ polarization resolved Møller scattering cross
section. The cross section in the center of momentum
frame reads [49,50]:

dσ
dΩ0 ¼

dσ0
dΩ0

�
1þ

X
i;j

Pi
BAi;jP

j
T

�
; ð59Þ

where Pi
BðPj

TÞ are the components of the beam (target)
polarization, as measured in the rest frame of the beam
(target) electrons. Here, we set a new coordinate system
with z0-axis along the momentum of the electron beam to be
detected and the y0-axis normal to the Møller scattering
plane, and add a superscript of 0 into the symbols of angles
to distinguish with those in the xyz-coordinate system we
used for the laser-electron interaction.
The cross section is characterized by the unpolarized

cross section dσ0
dΩ0, and nine asymmetries Ai;j. By measuring

the spin-dependent cross section on a target of known
polarization PT , Eq. (59) can be used to extract the beam
polarization components Pi

B. To lowest order in QED and
using the ultra-relativistic approximations, the unpolarized
cross section and nine asymmetries are [49,50]:

dσ0
dΩ0 ¼

�
αð1þ cos θ0CMÞð3þ cos2θ0CMÞ

2msin2θ0CM

�
2

; ð60Þ

Az0z0 ¼ −
ð7þ cos2θ0CMÞsin2θ0CM

ð3þ cos2θ0CMÞ2
; ð61Þ

−Ax0x0 ¼ Ay0y0 ¼
sin4θ0CM

ð3þ cos2θ0CMÞ2
; ð62Þ

Ax0z0 ¼ Az0x0 ¼ −
2sin3θ0CM cos θ0CM
γð3þ cos2θ0CMÞ2

; ð63Þ

Ax0y0 ¼ Ay0x0 ¼ Ay0z0 ¼ Az0y0 ¼ 0: ð64Þ

Note that θ0CM is the center of mass (CM) scattering angle.
To measure the longitudinal polarization, the experimen-
tally determined quantity is the asymmetry parameter of

A ¼ N þ
e −N −

e

N þ
e þN −

e
: ð65Þ

This asymmetry parameter is related to the theoretical
asymmetry by

A ¼ PBPTAz0z0 : ð66Þ

In the case of a monoenergetic electron beam, with the
given PT and Az0z0 , the polarization of the beam of PB could
be deduced from the measured A via Eq. (66). As Az0z0 is
a function of θ0CM, with the maximum value of 7=9 at
θ0CM ¼ 90°, the detectors are typically located at the Lab
angle of θ0d corresponding to θ0CM ¼ 90°. The current
experimental capability of measuring the asymmetry
parameter is Am ¼ 0.5% × PT × 7

9
¼ 3.89 × 10−3PT , with

a given target polarization PT . It leads to the experimental
detection accuracy of 0.5% in electron beam polarization.
Considering the connection between the Lab scattering

angle and the center of mass scattering angle [51],

θ02L ¼ 2m

�
1

ps
−

1

pi

�
; ð67Þ

ps ¼
pi

2
ð1þ cos θ0CMÞ; ð68Þ

the Az0z0 is a function of the incident electron energy mγ
and the detection angle θ0d in the Lab frame. Here, ps (pi) is
the momentum of the scattered (incident) electron for
Møller scattering.
In the case of a broad energy distribution the asymmetry

parameter for a certain detection angle θ0d is given by:

A ¼ PT

P
i
dσi

0

dΩ0
i
Sz0iAz0z0 ðθ0d; γiÞniP

i
dσi

0

dΩ0
i
ni

¼ PThSz0Az0z0 i; ð69Þ
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where ni is the number of electrons with γi and the
corresponding average polarization Sz0i for the given
energy.

B. Numerical QED Monte Carlo simulations

A typical simulation result for density and polarization
distributions of the scattered electrons is illustrated in
Fig. 3. A left-hand CP tightly focused Gaussian laser
pulse is used. The peak laser intensity is I0 ≈ 1 ×
1023 W=cm2 ða0 ¼ 200Þ, the pulse duration τ ¼ 6T0, with
period T0, wavelength λ ¼ 1 μm, and focal radius w0 ¼ 2λ.
The electron bunch of a cylindrical form is considered, with
a length of Le ¼ 3λ, and radius of we ¼ 1λ, the electron
number is Ne ¼ 7.5 × 105, they are uniformly distributed
longitudinally and normally distributed transversely. The
initial kinetic energy is 500 MeV, the energy spread 10%,
and the angular divergence 1 mrad. The pair production in
the applied conditions is estimated to be negligible.
The dependence of polarization and density of electrons

on the azimuthal angle φ is uniform in a circular polarized
field, and only the polar angle θ for electrons with respect
to the initial beam propagation direction is relevant for
evidencing the role of NRP. After the interaction, most of
the electrons are reflected to the laser propagation direction
(θ > 90°), while some keep moving forward (θ < 90°)
[Fig. 3(a)]. The helicity of the laser field can be transferred
to the scattered electrons [21], which is observed for the
electrons with θ > 69.7°. The longitudinal polarization Pk
of the forward electrons with θ < 69.7° is negative and
opposite to that of the remaining electrons [Fig. 3(b)]. We
will show below that the latter is a distinct signature of
NRP. Through collecting electrons within a certain angle
of θ ∈ ½0; θ̃�, θ̃ < 69.7°, one could optimize the number of
electrons with polarization dominated by NRP. Our aim is
to characterize the average polarization of postselected
electrons within θ < θ̃, which is a nontrivial task. The
electron polarization is defined by the spin vector in the rest
frame of the electron as we have mentioned. However, in
our setup, the electrons after the interaction are distributed
in a large energy range, when the rest frames of electrons
are different and the straightforward averaging over the
spin vector is not physically valid. We characterize the
polarization of the broadly distributed collection of elec-
trons after the interaction via the polarimetry signal.
The Møller polarimetry [49] is well suited to our setup

with the involved energies ∼100 MeV, see Sec. IVA. The
Møller polarimetry measures asymmetry parameter A
which is expressed by the rest frame spin vector. We
calculate the average A over the energy (scaled by the
target polarization PT) for postselected electrons with
θ < θ̃, for each energy value using the corresponding
average spin vector [Fig. 3(d)]. The asymmetry parameter
A with respect to θ for different detection angles of θ0d is
shown in Fig. 4. In experiment, the scaling law of A over θ

can be obtained by arranging a series of Møller polari-
meters over angle. A higherA can be obtained by selecting
electrons in a smaller angle region. For instance, if we
collect electrons within ½0°; 40.25°�, corresponding to 0.1%
of the total, we would obtain A about 0.084PT , far larger
than the experimental capacity of 3.89 × 10−3PT in polari-
zation measurement [50].
The spin dynamics during RP process is described by

the spin resolved photon emission rates of Eq. (53), which
could be approximated as:

dSR

dt
¼ −

αmffiffiffi
3

p
πγ

Z
∞

0

du
ð1þ uÞ3 f½u

2K2=3 − uK1=3ðSi · ê2Þ�Si

þ uð1þ uÞK1=3ê2g

≈ −
αmffiffiffi
3

p
πγ

Z
∞

0

du
ð1þ uÞ3 ½uð1þ uÞK1=3ê2�; ð70Þ

The approximation is valid for initially unpolarized elec-
trons with jSij ≪ 1.
The polarization evolution related to NRP approximated

form Eq. (55) reads:

dSNR

dt
¼−

αmffiffiffi
3

p
πγ

Z
∞

0

du
ð1þuÞ3f½ðSi · ê2ÞuK1=3�Si−uK1=3ê2g

≈
αmffiffiffi
3

p
πγ

Z
∞

0

du
ð1þuÞ3 ½uK1=3ê2�: ð71Þ

In the colliding geometry where ê2 is the direction
of the local magnetic field, we have SRðtÞ ∝ E while
SNRðtÞ ∝ −E, according to Eqs. (70) and (71). There-
fore, the RP (NRP) induces an instantaneous transverse
polarization oscillating in phase with the laser field E (−E)

FIG. 3. (a) Electron number density log10½dne=ðsin θdθdεfÞ�,
and (b) Longitudinal polarization Pk vs εf and polar angle of
θ ¼ acosðpz=γÞ; (c) The asymmetry parameter A of Møller
polarimetry averaged over the energy (with the target polarization
PT) and number density log10½dne=ðdθ sin θÞ� vs θ; (d) A of the
selected electrons with θ < θ̃ (left axis) and their relative fraction
(right axis) vs θ̃ at a detection angle of θ0d ¼ 2=15.
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during the interaction. Since dSR=dt ¼ −dSNR=dt ≈
− αmffiffi

3
p

πγ

R
∞
0 du½uK1=3ê2� for χ ≪ 1, the RP cancels NRP at

the leading order in α, which causes a vanishing longi-
tudinal polarization [36,39]. However, as long as radiation
reaction and spin-flip at emission become significant at
large parameter χ, RP prevails over NRP [Fig. 5(a)] leading
to an instantaneous polarization phase-matched with the
local E. This transverse polarization is rotated by spin
precession, resulting in the helicity transfer from the laser
field to the scattered electrons. As shown in Fig. 5(b), the
electrons with less photon recoil experience no significant

spin-flip, and have smaller polarization change induced by
RP. Thus, the polarization dynamics of electrons experi-
encing less radiation recoil is dominated by NRP, which
results in an opposite helicity with the laser. The radiation
loss, in its turn, is correlated with the electron final
propagation direction, see Fig. 5(c), which contains also
information on the emission phase. Electrons undergoing
significant radiation energy loss (also RP) at the beginning
of the laser pulse tend to be reflected and accelerated to
high energies by the laser field. Meanwhile, the electrons
that radiate only slightly in the later part of the laser pulse,
would penetrate through the laser field with a smaller θ.
When radiative recoil is small enough, the NRP can surpass
RP, resulting in electron helicity along the opposite
direction, see Fig. 3.
How the angle dependent radiation loss is built up during

multiple photon emissions is illustrated in Fig. 5(d). It
shows that the electrons scattered at large (small) angles
have emitted less (more) photons, however, with larger
(smaller) photon energy on average. This has a simple
explanation. Assuming an electron with pi

k ≈mγ, p⊥ ¼ 0

interacts with a CP plane-wave field. In the laser field
the electron gains a transverse momentum p⊥ ¼ −eAðψÞ.
The ultrarelativistic electron emits a photon ωγ along the
instantaneous momentum in the laser field, consequently,
the electron final transverse momentum after the interaction

will be determined by the photon recoil pf
⊥ ¼ ωγeAðψeÞ=ε,

with the emission phase ψe, and the electron energy in the
laser field ε ¼ γ þ a20=4γ, i.e., the deflection angle due to a

single emission is Δθ ≈ sin−1 jpf
⊥=εfj, with the electron

final energy εf, which is proportional to δ. The final
transverse momentum of multiple emissions is a sum of
pf
⊥;i along random directions Aðψ iÞ, and could average out

to a vanishing value at extremely large emission events.
Consequently, Δθ is proportional to the statistical error
of the number of emissions Nrad during stochastic photon
emissions, i.e., Δθ ∼ 1=

ffiffiffiffiffiffiffiffiffi
Nrad

p
. Thus, statistically, Δθ

increases with the photon energy ω̄γ and decreases with
Nrad, which is confirmed in Fig. 5(d).

V. THE EXPERIMENTAL FEASIBILITY

A. Impact of laser and electron-beam
parameters on the signature

For the experimental feasibility, we have investigated the
impact of laser intensity and initial electron energy on the
NRP signature [Fig. 6(a)]. Since the quantum parameter
χ ∼ 10−6γa0 controls the strength of NRP [Fig. 5(a)] and
the quantum stochastic effects which separate NRP and RP,
the increase of γ or a0 is certainly beneficial for a stronger
signature of NRP [Fig. 6(a)]. Meanwhile, for a larger
critical angle θc, below which the signature of OSLE can be
detected, larger a0 and smaller ε0 are favorable [Fig. 6(b)].

FIG. 4. The average characteristic spin-parameter A=PT vs θ
for detection angle θ0d changing from 1=30 to 6=30.

FIG. 5. (a) Instantaneous polarization via RP (red-solid) and
NRP (blue-dotted) via Eqs. (70) and (71) vs the quantum strong-
field parameter χ; (b) Instantaneous polarization via RP (red-
dash-dotted) and radiation probability (black-dashed) calculated
from Eq. (70) vs δ≡ ωγ=εe for χ ¼ 1; (c) Average radiation
energy loss per electron and average radiation phase ψ̄ of multiple
photon-emission events vs θ. Here, ψ is in unit of 2π, and ψ ¼
ω0tþ k0z ¼ 0 refers to the peak of the laser pulse; (d) The
average radiation energy loss per photon-emission and average
photon-emission times per electron vs θ, for forward moving
electrons.
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To verify the feasibility of the NRP observation, we
investigate the influence of fluctuations of the laser and
electron parameters on the value of the OLSE signal, see
Figs. 7 and 8. We vary the following parameters: initial
electron kinetic energy ε0, electron beam divergence
Δθi=θi, the electron bunch length Le, and the collision
angle θcollision; focus radius w0, pulse duration τ, carrier-
envelope phase ψCEP of the laser pulse, and intensity a0
within the limits of the experimental feasibility [52]. It can
be seen that the OLSE signature, i.e. a sizeable longitudinal
polarization degree in the opposite direction to the driven
laser, is robust under the influence of such fluctuations.
Therefore, an averaging over the uncertainty of the vari-
ables would still allow for the detection of the considered
effect under realistic conditions.
Let us give a rough estimation of the signal to noise ratio

(SNR) considering the statistical noise for experimental
detection. When selecting the scattered electrons with
θ < 45.7°, we can get an average A=PT of 0.075 which
is one order of magnitude larger than the experimental
detection precision. The relative fraction of electron density

for these electrons is 0.23%. Typically, the charge of an
electron bunch accelerated by laser-plasma interactions is
in a range of tens to hundreds pC, corresponding to the
electron number of 108. Then we get the SNR ∼

ffiffiffiffi
N

p ¼
478.6 and the statistical uncertainty ∼1=

ffiffiffiffi
N

p ¼ 0.0021. It
could be demonstrated that the signal of the OLSE
signature is strong enough for detection taking account
of the statistical error.

B. The possibility of NRP detection
with the energy-selecting technique

For forward scattered electrons, the polarization depend-
ence on the electron energy allows us to purify A with
postenergy-selection [see Fig. 9]. One may naively expect
that electrons with higher final energy, would have less
radiative energy loss and should have larger jAj induced by
NRP. However, Fig. 9(a) indicates that the maximum of jAj
is located at ε ¼ 43.4 MeV with A ¼ −5.8%PT . This is
because the radiation loss due to high energy photon
emission is accompanied by laser photons absorption,
which leads to a nonlinear dependency of the electron

FIG. 8. Influence of fluctuations of laser pulse parameters,
including focus radius w0 (a), pulse duration τ (b), initial carrier-
envelope phase ψCEP (c), and intensity a0 (d), on the OLSE
signature.

FIG. 9. (a)APT
and number density of log10ðdne=dεfÞ ðMeV−1Þ

vs εf; (b) Asymmetry parameter of selected electrons with energy
ε < ε̃ (left axis) and their relative fraction (right axis) vs ε̃. Here only
forward electrons (θ < 90°) are shown.

FIG. 6. Distributions of the minimum of A=PT (a) and the
critical angle θc (b) at which A=PT changes sign, vs a0 and ε0.

FIG. 7. Influence of fluctuations of electron-beam parameters,
including initial electron kinetic energy ε0 (a), beam divergence
Δθi=θi (b), bunch length Le (c) and collision angle θcollision
(d), on the OLSE signature.
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final energy on the emitted photon energy. Therefore the
energy-selecting technique is less sensitive compared with
the angle-selecting technique.
Is it possible to detect NRP with energy postselection?

This question is analyzed in Fig. 10. As pointed out above,
the energy of an electron is determined by two processes,
radiation energy loss due to high energy photon emissions
and absorption of the laser photons, which accompanies
the process. As a result the relation of εf and δ becomes
nonlinear [see Fig. 10(a)]. Therefore, electrons scattered to
different θ could be closely located in the energy spectrum
[Fig. 3(a)], leading to a reduced sensitivity of Pk to the
energy selection with respect to the angle one [Fig. 3(b)].
The polarization degree could be further improved by
combining post-angle-selection and post-energy-selection
methods. For instance, jAj of electrons with θ ∈ ð0; 40.25°Þ
could be enhanced to 11.3% by selecting electrons with
ε ∈ ½45 MeV; 60 MeV�, see Fig. 10(b).

C. Influence of pair-production
on the electron polarization

We analyze the impact of the pair-production process
for our parameters. The electrons created from the Breit-
Wheeler pair-production process are included in the simu-
lation result presented in Fig. 11. The yield of the created
electrons is only 0.11% with respect to the initial electron

amount. The ratio of the created eþe− pairs to the
emitted photons is Neþe−=Nγ ∼ 1.7 × 10−5. Therefore, pair-
production is negligible for the considered parameters and
neglected in the above simulations.

VI. CONCLUSION

We have put forward a scheme to identify the distinct
signature of the electron NRP, described by the contri-
bution of the QED one-loop self-energy correction, in the
electron and laser beam collision. Employing the radi-
ation dominated reflection regime, an experimentally
accessible signal of electron helicity Pk ≳ 10%, opposite
to the driving laser helicity for electrons collected within
the specific small scattering angle will indicate the
signature of the NRP effect. The signature is robust with
respect to the laser and electron parameters and measur-
able with currently available experimental technology,
providing a way for an experimental detection of the
QED prediction on self-energy corrections via intense
laser driven spin dynamics.
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APPENDIX A: THE APPLIED SIMULATION
METHOD

We employ a Monte Carlo method incorporating all the
polarization effects in strong-QED processes to simulate
the interaction of a circularly polarized ultraintense laser
pulse with an ultrarelativistic electron beam. In our simu-
lations, the electron initial and final spins are resolved,
while the polarization of the emitted photons is summed
over. The energy of the emitted photon is determined by the
spectral probability with the commonly used stochastic
procedure [33,53–55]. The propagation direction of the
emitted photon is along that of the emitting particle in the
relativistic regime.
At each time step, the electron polarization vector Si

jumps to SR after a photon emission. Here, the 3-vector SR
is the mean value of the electron final spin in its rest frame,
corresponding to the electron average polarization state
resulting from the scattering process itself [56]. When a
photon emission does not take place at the given time step,
nevertheless, the electron spin varies to the state of SNR
according to the no-emission probability [33], which
follows from the one-loop contribution to the electron
mass operator [34,37,39]. Besides, the spin precession

FIG. 11. Asymmetry parameterA vs polar angle θ (a) and vs εf
(b) The red-solid curves indicate the numerical results with pair-
production, while the blue-dotted curves correspond to those with
pair-production effects removed artificially. In (b), only forward
electrons (θ < 90°) are shown.

FIG. 10. (a) The final electron energy (red-solid) and deflec-
tion angle Δθ (blue-dashed) versus δ for a single emission,
γ ¼ 100, a0 ¼ 200. Distributions vs final electron energy of εf
and θ; (b) Distribution of A=PT with respect to εf for electrons
with θ ∈ ð0; 40.25°Þ.
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between emissions is governed by the Bargmann-Michel-
Telegdi (BMT) equation [38], where a field dependent
anomalous magnetic moment is included as a result of the
one-loop vertex correction [27]. Meanwhile, between
quantum events of photon emissions, the electron dynamics
in the laser field is described classically by the Lorentz
equation.
In Ref. [23], we have improved the Monte Carlo method

for simulating the strong-field QED processes incorporat-
ing the algorithm introduced in [33,53–55]. In comparison
with the existing spin-resolved laser-plasma (electron
beam) interaction codes [19,20,22,24,46,57], the upgraded
code allows for the calculation of the three-dimensional
polarization effects.

1. Algorithm of event generation for photon emission

In a time step Δt, the probability for an electron to emit a
photon with an energy ωγ ¼ δεi (0 < δ < 1) is calculated

with Eq. (29), i.e. WRðδÞ ¼
P

�Sf
dWR
dudt

du
dδΔt, where δ ¼ r31,

with r1 being a random number in [0,1]. Another random
number r2 ∈ ½0; 1� is used to determine if a photon is
emitted: if WRðr1Þ < r2, the photon emission event is
rejected; otherwise, emission of a photon with energy
ωγ ¼ δεi occurs. Given the smallness of the emission angle
1=γe for the ultrarelativistic case, the photon is emitted
along the electron velocity direction. Note that an approxi-
mation to the leading order in 1=γe is used throughout the
paper. More detailed information on this method and its
accuracy have been shown in Ref. [55]. After the photon
emission, the electron spin jumps to a mixed state SR
determined by Eq. (40). Note that, one could also chose a
pure spin state of �SR=jSRj by using a random number
[19,23,46], which coincides with the former method except
for a higher statistical fluctuation. The former can be
regarded as an averaged method of the latter and the
differences are negligible for a dense electron beam.
Meanwhile, if a photon emission event is rejected, the
electron spin is also changed due to the no-emission
probability, see Secs. II and III B. The final polarization
vector of the electron is SNR via Eq. (49). Equation (57) and
the discussion below it clarify why the momentum does not
undergo a corresponding change in the nonradiative case.

2. Particle dynamics in the external laser
field between photon emissions

Between quantum events, the electron dynamics in the
ultraintense laser field are described by the Lorentz
equation

dp
dt

¼ eðEþ β ×BÞ: ðA1Þ

The spin precession is governed by the Thomas-
Bargmann-Michel-Telegdi equation [38]:

dS
dt

¼ e
m
S ×

�
−
�
g
2
− 1

�
γ

γ þ 1
ðβ ·BÞβ

þ
�
g
2
− 1þ 1

γ

�
B −

�
g
2
−

γ

γ þ 1

�
β ×E

�
; ðA2Þ

where E and B are the laser electric and magnetic
fields, respectively, g is the electron gyromagnetic factor:
gðχeÞ ¼ 2þ 2μðχeÞ and μðχeÞ ¼ α

πχe

R∞
0

y
ð1þyÞ3 L1

3
ð 2y
3χe
Þdy

with L1
3
ðzÞ¼ R∞

0 sin ½3z
2
ðxþ x3

3
Þ�dx. As χe ≪ 1, g ≈ 2.00232.

3. Motion of the spin of an electron ensemble in a strong
external field with inclusion of radiation effects

In our semiclassical Monte-Carlo simulation, the evo-
lution of electron spin is determined by two parts: spin
precession between emissions via the BMT equation, and
quantum spin variation due to the nature of radiation
(including radiative polarization resulting from the emis-
sion of a real photon, and nonradiative variation originating
from the emission and reabsorption of a virtual photon).
The nonradiative polarization probability applied in our
simulation can be derived from the interference of the
OLSE and forward scattering diagrams [see Sec. III B],
which additionally yields the spin evolution according to
the modified spin precession due to the electron anomalous
magnetic moment. The OLSE contribution to the polari-
zation is included in our simulation as NRP probability and
the spin precession governed by BMT with the anomalous
magnetic moment. The faithfulness of our method is
proved by the limiting procedure χ ≪ 1, when it yields
the seminal Baier equation (3.23) in [27] for the spin
evolution in an external field. Taking into account both spin
precession and quantum spin variation, we can obtain
the following equation for the motion of the spin of an
ensemble of electrons in an external field,

dS
dt

¼ e
m
½S × F� − αmffiffiffi

3
p

πγ

Z
∞

0

u2du
ð1þ uÞ3 ðK2=3S

þ ðIntK1=3 − K2=3ÞðS · βÞêv þ ê2K1=3Þ;

F ¼
�
−
�
g
2
− 1

�
γ

γ þ 1
ðβ ·BÞβþ

�
g
2
− 1þ 1

γ

�
B

−
�
g
2
−

γ

γ þ 1

�
β ×E

�
: ðA3Þ

The first term corresponds to the BMT equation that
governs the precession of the spin, taking into account
the electron anomalous magnetic moment, with g − 2 being
due to the QED radiative corrections. This rotation term,
which does not contain Planck’s constant ℏ explicitly
(besides the implicit dependence via g), can be obtained
on the basis of a classical consideration and describes the
precession of the magnetic moment. The remaining terms
(containing ℏ) are associated with the quantum spin
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variation, with and without photon emission. These terms
are derived with Eqs. (51)–(55). In contrast to the BMT
term which does not change jSj, the quantum terms lead to
a damping effect of jSj. Therefore, BMT and quantum
spin variation between emissions have significantly differ-
ent effects on spin evolution and are both essential for a
comprehensive description of spin dynamics in an exter-
nal field.
According to Eq. (A3), the accumulation of the longi-

tudinal polarization of an ensemble of electrons is governed
by the equation, see Ref. [58]:

dSk
dt

¼ −
e
m
S⊥ ·

��
g
2
− 1

�
β ×Bþ

�
gβ
2
−
1

β

�
E

�

−
αmffiffiffi
3

p
πγ

Sk

Z
∞

0

u2du
ð1þ uÞ3 IntK1=3ðu0Þ: ðA4Þ

APPENDIX B: THE ELECTROMAGNETIC
FIELDS OF THE LASER PULSES

In this work, we employ tightly focused laser pulses
with a Gaussian temporal profile, which propagate along
the −z direction as a scattering laser beam. The spatial
distribution of the electromagnetic fields takes into account
up to ϵ30-order of the nonparaxial solution, where
ϵ0 ¼ w0=zr, w0 is the laser focal radius, zr ¼ k0w2

0=2 the
Rayleigh length, k0 ¼ 2π=λ0 the laser wave vector, and λ0
the laser wavelength. The expressions of the electromag-
netic fields of the linearly polarized (LP) (along x axis)
laser pulse are as follows [59]:

EðLÞ
x ¼ −iEðLÞ

�
1þ ϵ20

�
f2x̃2 −

f3ρ4

4

��
;

EðLÞ
y ¼ −iEðLÞϵ20f

2x̃ ỹ;

EðLÞ
z ¼ −EðLÞ

�
ϵ0fx̃þ ϵ30x̃

�
−
f2

2
þ f3ρ2 −

f4ρ4

4

��
;

BðLÞ
x ¼ 0; BðLÞ

y ¼ iEðLÞ
�
1þ ϵ20

�
f2ρ2

2
−
f3ρ4

4

��
;

BðLÞ
z ¼ EðLÞ

�
ϵ0fỹþ ϵ30ỹ

�
f2

2
þ f3ρ2

2
−
f4ρ4

4

��
;

EðLÞ ¼ E0Fnfe−fρ
2

eiðψþψCEPÞe−
t2

τ2 ; ðB1Þ

where τ is the laser pulse duration, E0 the ampli-
tude of the laser fields with normalization factor
Fn ¼ i in order to provide in the focal spot E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEðLÞ

x j2 þ jEðLÞ
y j2 þ jEðLÞ

z j2
q

, with scaled coordinates

x̃ ¼ x
w0

; ỹ ¼ y
w0

; z̃ ¼ z
zr
; ρ2 ¼ x̃2 þ ỹ2; ðB2Þ

f ¼ i
z̃þ i

; ðB3Þ

the laser field phase ψ ¼ ω0tþ k0z, and the carrier-
envelope phase ψCEP.
The circularly polarized (CP) laser pulses can be

assumed to be the combination of two orthogonal LP laser
pulses, polarized along x and y directions, respectively,
with a π=2 phase delay:

Ex¼Eð1Þ
x þEð2Þ

x ; Ey¼Eð1Þ
y þEð2Þ

y ; Ez¼Eð1Þ
z þEð2Þ

z ;

Bx¼Bð1Þ
x þBð2Þ

x ; By¼Bð1Þ
y þBð2Þ

y ; Bz¼Bð1Þ
z þBð2Þ

z ;

where
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f2ỹ2 −

f3ρ4

4

��
;

Eð2Þ
z ¼ Eð2Þ

�
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Eð1Þ ¼ E0Fnfe−fρ
2

eiðψþψCEPÞe−
t2

τ2 ;

Eð2Þ ¼ E0Fnfe−fρ
2

eiðψþπ=2þψCEPÞe−
t2

τ2 ; ðB4Þ

and the superscripts ð1Þ and ð2Þ denote the laser pulses
linearly polarized along x and y directions, respectively.

APPENDIX C: DESCRIPTION OF ELECTRON
DYNAMICS IN THE REFLECTION REGIME

The electron dynamics in the reflection regime is
analyzed in Fig. 12. We plotted the distribution curves
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of average radiation energy loss, average phase (time)
ψ ¼ ω0tþ k0z of multiple photon-emission events, and
average final energy of electrons with respect to θ. It can
be seen that electrons with Pk > 0 experience more
stochastic radiation loss (also radiative polarization effect),
while those with Pk < 0 experience less stochastic radiation
loss, i.e. more nonradiative polarization. Electrons under-
going more radiation energy loss at the beginning of the
laser pulse tend to be reflected and accelerated to higher
energies by the laser field. Electrons experiencing less
radiation energy loss would penetrate deeper into the laser
pulse, and emit photon with larger phase ψ [see Fig. 12(b)].
When radiation energy loss is small enough, the OLSE
could surpass SFE, making the negative helicity associated
with OLSE dominates over positive helicity associated
with SFE.
We provide a rough estimation of the deflection angle

corresponding to the average emitted photon energy δ̄c
relevant for RP, which can be estimated as

Δθc ∼
½2 − δ̄cð1þ cos θγÞ�δ̄c sin θγ
2þ δ̄cðδ̄c − 2Þð1þ cos θγÞ

: ðC1Þ

We estimate the final electron momentum and energy.
For simplicity, we use a circularly polarized monochro-
matic plane-wave for estimating the final electron momen-
tum and energy. The momentum and energy of electrons in
the laser can be represent as [3]:

p⊥ðψÞ ¼ p⊥;0 − eAðψÞ;

pkðψÞ ¼ pk;0 þ
e2½AðψÞ�2

2Λ
;

εðψÞ ¼ εk;0 þ
e2½AðψÞ�2

2Λ
; ðC2Þ

where AðψÞ ¼ îA0 cosðψÞ þ ĵA0 sinðψÞ is the potential
of the wave with A0 ¼ ma0=e, Λ ¼ k · p, p⊥;0 ¼ 0 and
pz;0 ≈ γ. When a photon with angular frequency ωγ is
emitted, then we get the emission angle

sin θγ ¼
p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2⊥ þ p2
k

q ≈
p⊥ðψÞ
εðψÞ ≈

a0
γ þ a20=4γ

: ðC3Þ

The final electron energy and momentum can be obtained
via the energy-momentum conservation:

pþ nk ¼ p0 þ k0; ðC4Þ

with p, p0 being the electron four-momentum before and
after the interaction, and k, k0 the incident and outgoing
photon four-momentum, and n the number of photons
absorbed. Here we can get:

n ¼ k0p
kp − k0k

≈
ωγε0ð1 − cos θγÞ

2ω0ε0 − ωγω0ð1þ cos θγÞ
: ðC5Þ

The final transverse momentum and energy of electrons out
of laser can be obtained from Eq. (C4),

pf
⊥ ¼ −ωγ sinθγ;

εf ¼ ε0 −ωγ þ nω0 ≈ ε0
2þ δðδ− 2Þð1þ cosθγÞ

2− δð1þ cosθγÞ
; ðC6Þ

and the electron deflection angle:

θe ¼ sin−1
pf
⊥
εf

≈ sin−1

½2− δð1þ cosθγÞ�δ sinθγ
2þ δðδ− 2Þð1þ cosθγÞ

�
: ðC7Þ
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